Rubber and Plastics 4

Embed Size (px)

Citation preview

  • 7/29/2019 Rubber and Plastics 4

    1/47

    Rubber and PlasticsFormulations for Food Contact

    Dr. Mike Zumbrum, Maztech, Inc.

    Dr. Roger Avakian, PolyOne Corp.

  • 7/29/2019 Rubber and Plastics 4

    2/47

    Outline{ Introduction: Polymer Parameters

    { Example Formulations{ Impact of Additives

    {

    Optimizing Formulations{ Applications

    { Conclusions

    { Acknowledgements

  • 7/29/2019 Rubber and Plastics 4

    3/47

    Polymer Parameters{ Chemical Composition

    { Molecular Weight & Distribution{ Stereochemistry

    {

    Topology{ Morphology

    { Additives

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    4/47

    Important Energies to Consider

    Intermolecular Intramolecular

    t

    g+

    g-

    Chain Stiffness and Bond Rotation

    Hydrogen Bonding in Polyamides 2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    5/47

    Microstructures of Chemical Composition

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    6/47

    Molecular Weight Distribution

    http://openlearn.open.ac.uk/mod/resource/view.php?id=196637

  • 7/29/2019 Rubber and Plastics 4

    7/47

    Effects of Stereochemistry:Geometric Isomers of Polyisoprene

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    8/47

    Trans-Polyisoprene

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    9/47

    Additional Stereochemistry:

    Tacticity of Polymers

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    10/47

    Effect of Tacticity on Glass Transition

    Temperature (Tg) of Polyacrylates

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    11/47

    Topology of Polyethylene

    HDPE

    LDPE

    LLDPE

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    12/47

    Thermoset Network Topology

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    13/47

    Morphology of Polymers

    Tm Tg

    2010 Thomas C. Ward

  • 7/29/2019 Rubber and Plastics 4

    14/47

    Spherulitic Morphology of PET

    20

    Microphase Separated Morphology of

  • 7/29/2019 Rubber and Plastics 4

    15/47

    Microphase Separated Morphology of

    Styrene Butadiene Block Copolymer

    PR Lewis and C Price, Polymer, 13, 22 (1972)

  • 7/29/2019 Rubber and Plastics 4

    16/47

    Morphology of Impact Modified Nylon

    IM1/Compatibilizer Only IM1

    Smaller Impact Modifier Size

    Gives Better Impact in this System

  • 7/29/2019 Rubber and Plastics 4

    17/47

    Polymer Parameters{ Chemical Composition

    { Molecular Weight & Distribution{ Stereochemistry

    {

    Topology{ Morphology

    { Additives

  • 7/29/2019 Rubber and Plastics 4

    18/47

    21CFR177.2600i. ElastomersEPDM, Silicone, NR

    ii. Vulcanization Materials

    i. Vulcanizing AgentsSulfur

    ii. Accelerators/RetardersTMTM, DiCUP

    iii. ActivatorsStearic Acid

    iii. AntioxidantsBHT, TNPP (21CFR178.2010)

    iv. PlasticizersDioctyl phthalate

    v. FillersATH, TiO2, SiO2, carbon blackvi. Colorants

    vii. Lubricants

    viii. Emulsifiers

    ix. Miscellaneousblowing agents

  • 7/29/2019 Rubber and Plastics 4

    19/47

    Outline{ Introduction: Polymer Parameters

    { Example Formulations{ Impact of Additives

    {

    Optimizing Formulations{ Applications

    { Conclusions

    { Acknowledgements

  • 7/29/2019 Rubber and Plastics 4

    20/47

    Example Formulations

    Thermosets:

    z Platinum silicone

    z EPDM

    Thermoplastics:z Styrenic block copolymer (TPE)

    z Polypropylene

    z PET

  • 7/29/2019 Rubber and Plastics 4

    21/47

    Platinum Silicone Formulation{ Vinyl Siloxane

    { Fumed Silica{ Hydride Siloxane

    { Ethynyl Cyclohexanol

    { Platinum Catalyst

    70 %

    25 %5 %

    0.1 %

    15 ppm

    { Base Polymer

    { Reinforcement{ Crosslinking

    { Inhibitor

    { Hydrosilylation

    Vinyl Siloxane Hydride Siloxane

  • 7/29/2019 Rubber and Plastics 4

    22/47

    EPDM Formulation63 %

    31 %(15 %)

    0.6 %

    3 %0.9 %

    0.9 %

    0.3 %

    0.5 %

    { EPDM

    {

    Carbon Black{ Oil

    { Stearic Acid

    { Zinc Oxide{ Sulfur

    { TMTM

    { Mercapto BZ

    { Antioxidant

    { Base Polymer

    {

    Reinforcement{ Extender

    { Co-activator

    { Activator{ Curative

    { Accelerator

    { Co-accelerator

    { Heat Stabilizer

    Could have 20 different ingredients

  • 7/29/2019 Rubber and Plastics 4

    23/47

    Thermoplastic Elastomer (TPE)

    Styrenic Block Copolymer{ S-EB-S

    { Polystyrene

    { Polypropylene

    { Mineral Oil

    {

    BHT{ Alphamethyl styrene

    58 %

    22 %

    Optional

    16 %

    0.3 %3.4 %

    { Base Polymer

    { Reinforcement

    { Toughness

    { Softness

    {

    Stabilizer{ Processing

    Broad range of properties available depending upon composition

    Composition called out in FCN from Kraton

  • 7/29/2019 Rubber and Plastics 4

    24/47

    Polypropylene Formulation{ Polypropylene

    { Phosphite{ BHT

    { Nucleant

    99 %

    500 ppm1000 ppm

    0.5 %

    { Base Polymer

    { Processing stabilizer{ Co-stabilizer

    { Crystallization

    Thermoplastic formulations have fewer ingredients.

    Materials sold as produced from resin manufacturer.

  • 7/29/2019 Rubber and Plastics 4

    25/47

    PET Formulation{ Polyethylene Terephthalate

    { Phosphite

    { Anthranilic Acid derivative

    { (Amorphous Nylon & cobaltcatalyst) in masterbatchs

    { Anthraquinone dye{ Benzotriazole

    99 %

    100 ppm

    200 ppm

    (3 %)

    50 ppm1000 ppm

    { Base Polymer

    { Stabilizer

    { Scavenger

    { Oxygen scavenge

    { Colorant{ UV Absorber

    Very low levels of additives todayDepends upon application (ie. bottles)

  • 7/29/2019 Rubber and Plastics 4

    26/47

    Outline{ Introduction: Polymer Parameters

    { Example Formulations{ Impact of Additives

    { Optimizing Formulations

    { Applications

    { Conclusions

    { Acknowledgements

  • 7/29/2019 Rubber and Plastics 4

    27/47

    Types of Additives{ Stabilizers/Antioxidants (21CFR178.2010){ Modifiers (plasticizers){ Colorants

    z Organic (phthalocyanine, anthraquinone)z Inorganic (TiO2, carbon black)

    {

    Mold Releases & Slip Agentsz Euracamides, waxes, silicones

    { Flow Aidsz Low MW olefinsz Glycerol monostearatez Vulcanized vegetable oil

    { Conductive materials

    { Others

  • 7/29/2019 Rubber and Plastics 4

    28/47

    Why Use Stabilizers/Antioxidants?{ Protect Polymer During:

    z Dryingz ProcessingExtruding; moldingz In Use Exposurez Long Term Exposure

    { Protect Against:z

    Thermo-oxidative Degradationz Long Term Heat/UV Radiationz Harmful Effects of Gamma Radiation Sterilizationz Gas Fading reactions with NOx

    { Common Stabilizersz Hindered phenolsz PhosphitesTNPPz Thio-estersz Aluminum Trihydrate (ATH) Al2O3

    .3H2O

    BNX 1010

    TNPP

  • 7/29/2019 Rubber and Plastics 4

    29/47

    Temperature Range for Stabilizers

    Hindered

    Amines

    HinderedPhenols

    Thioesters

    Phosphites

    http://www.ampacet.com/usersimage/File/tutorials/Antioxidants.pdf

  • 7/29/2019 Rubber and Plastics 4

    30/47

    Modifiers(Typically Used at Levels >1 wt.% to ~40 wt. %)

    { Plasticizers

    z

    Dioctyl phthalatez Mineral oil

    {

    Impact Modifiersz rubbery material

    z core shell

    z functionalized EPDMz HIPSpolybutadiene

  • 7/29/2019 Rubber and Plastics 4

    31/47

    Testing to Identify Extractables &

    Leachables{ Test Conditions: Some StandardMany Custom

    z Usually 24 hrs at fixed temperature using:z

    Distilled Waterz 5% Acetic Acid

    z 95% Ethanol or hexane to simulate Fatty Foods

    { Sometimes a Synthetic Olive Oil is Used

    { Analytical Methods{ Gravimetric

    { Organic analysis: ChromatographyGC & LC

    { Elemental analysis: ICP & Ion Chromatography

  • 7/29/2019 Rubber and Plastics 4

    32/47

    Concerns about Leachables{ Residual Monomers

    z Styrene (Suspect Carcinogen)z Bis-phenol A (Suspect Endocrine Disrupter)

    z VCM (Vinyl Chloride Monomer) Carcinogen

    { Modifiersz Plasticizers

    { Phthalates (Suspect Endocrine Disrupters)

    z Mercaptothiazole (Suspect Carcinogen)

    { Stabilizersz TNPP tris(nonyl phenyl) phosphite (Endocrine

    Disrupter)

  • 7/29/2019 Rubber and Plastics 4

    33/47

    Nanotechnology{ Extractability of Inorganic Particulates

    { Carbon Nanotubesz Fibrous Irritant like asbestos?

    { Do Nanomaterials penetrate cell walls?

    { Can they be inhaled, or consumedinternally from packaging

    { End of Life{ Where do they go upon combustion,

    land burial, disposal at sea?

  • 7/29/2019 Rubber and Plastics 4

    34/47

    New Approaches

    { Naturally Occuring Stabilizers

    z Vitamin E

    z Glycerol Monostearates

    {

    Bound Stabilizers{ Inorganic Stabilizers

    z Non-migrating, e.g. nano Zn Oxide

    { Nanoplatelets

    z Synthetics: -zirconium phosphate

  • 7/29/2019 Rubber and Plastics 4

    35/47

    Outline{ Introduction: Polymer Parameters

    { Example Formulations{ Impact of Additives

    { Optimizing Formulations

    { Applications

    { Conclusions

    { Acknowledgements

  • 7/29/2019 Rubber and Plastics 4

    36/47

    Optimizing Formulations{ Structure

    z Chemical Composition, MW, stereochemistry

    z Fillersz Crosslinkers

    z Additives

    { Processz Shear/Dispersion

    z Coupling Agents

    z Temperature/time

    { Propertiesz Modulus, strength, fatigue life, compatibility

    Properties

    Structure Process

  • 7/29/2019 Rubber and Plastics 4

    37/47

    Extrusion and Compounding

    16 mm Twin Screw Extruder Sigma Blade Dough Mixer

    Example of a Optimized Mixture Design

  • 7/29/2019 Rubber and Plastics 4

    38/47

    Example of a Optimized Mixture Design

    COM-A COM-B COM-A COM-B

    F.M.=aComA+bComB+c*IM1Impact=a*ComA+b*ComB+c*IM1

    Typical Response Surface Plot

  • 7/29/2019 Rubber and Plastics 4

    39/47

    Typical Response Surface Plot

    X1 ( 1 . 0 0 )

    X2 ( 1 8 . 0 0 )

    X2 ( 4 . 0 0 )

    X3 ( 1 5 . 0 0 )

    X3 ( 1 . 0 0 )

    0 . 0 0 0

    0 .250

    0 .500

    0 .750

    1 .000

    Desirability

    X1 ( 1 5 . 0 0 )

  • 7/29/2019 Rubber and Plastics 4

    40/47

    Outline{ Introduction: Polymer Parameters

    { Example Formulations{ Impact of Additives

    { Optimizing Formulations

    { Applications

    { Conclusions

    { Acknowledgements

  • 7/29/2019 Rubber and Plastics 4

    41/47

    Hygienic Envelope Gaskets

  • 7/29/2019 Rubber and Plastics 4

    42/47

    Hygienic EPDM Gaskets

  • 7/29/2019 Rubber and Plastics 4

    43/47

    BPE Standard Test Conditions

    Dynamic Application: Effects of Fatigue on

  • 7/29/2019 Rubber and Plastics 4

    44/47

    Dynamic Application: Effects of Fatigue on

    EPDM Diaphragm

    FailedNew

    Effects of Thermal & Chemical Cycling on

  • 7/29/2019 Rubber and Plastics 4

    45/47

    Effects of Thermal & Chemical Cycling on

    Fluoropoymer Lined Hose

    Severe Cracks

    Smooth,

    Straight,

    New Liner

    Failed HoseNew Hose

  • 7/29/2019 Rubber and Plastics 4

    46/47

    Conclusions

    { Start with the polymer parameters

    { Additives are often necessarywatchfor leachables

    {

    Optimize by understanding structure-property-process interrelationships

    { Understand the application

    requirements

  • 7/29/2019 Rubber and Plastics 4

    47/47

    Acknowledgements

    { Tim Rugh 3-A Standard

    { Roger Avakian PolyOne Corp.

    { Tom Ward VA Tech

    { Bob Elbich Exigo Manufacturing