23
Round Beam Collisions at VEPP-2000 Dmitry Berkaev, Alexander Kirpotin, Ivan Koop, Alexander Lysenko, Igor Nestere Alexey Otboyev, Evgeny Perevedentsev, Yuri Rogovsky, Alexander Romanov, Petr Shatunov, Yuri Shatunov , Dmitry Shwartz, Alexander Skrinsky, Ilya Zemlyan Novosibirsk 21.09.2011

Round Beam Collisions at VEPP-2000

Embed Size (px)

DESCRIPTION

Round Beam Collisions at VEPP-2000. Dmitry Berkaev, Alexander Kirpotin, Ivan Koop, Alexander Lysenko, Igor Nesterenko, Alexey Otboyev, Evgeny Perevedentsev, Yuri Rogovsky, Alexander Romanov, Petr Shatunov, Yuri Shatunov , Dmitry Shwartz, Alexander Skrinsky, Ilya Zemlyansky. Novosibirsk - PowerPoint PPT Presentation

Citation preview

Page 1: Round Beam Collisions  at  VEPP-2000

Round Beam Collisions at

VEPP-2000

Dmitry Berkaev, Alexander Kirpotin, Ivan Koop, Alexander Lysenko, Igor Nesterenko,Alexey Otboyev, Evgeny Perevedentsev, Yuri Rogovsky, Alexander Romanov,

Petr Shatunov, Yuri Shatunov, Dmitry Shwartz, Alexander Skrinsky, Ilya Zemlyansky

                         

Novosibirsk21.09.2011

Page 2: Round Beam Collisions  at  VEPP-2000

Layout of VEPP-2000 complex

ILU2.5 MeVLinac

B-3M250 MeVsynchro-betatron

BEP

booster825 MeV

SND

CMD-3

e–e+

convertor

2 m2 m

e–, e+

VEPP-2000

RF

ILU2.5 MeVLinac

B-3M250 MeVsynchro-betatron

BEP

booster825 MeV

SND

CMD-3

e–e+

convertor

2 m2 m

e–, e+

VEPP-2000

RF

Page 3: Round Beam Collisions  at  VEPP-2000

Collider overview

L = 24.39 mfacc= 172 MHzVacc= 120 kV

E=0.2 – 1 GeVBbend = 2.4 TBsol = 13 T

β*=2 – 10 cmσs = 3 cm

ε=1.4•10-7mradνx,z= 2.1; 4.1

α= 0.036ξ = 0.15N± = 1011

L=1•1032cm-2s-1

Page 4: Round Beam Collisions  at  VEPP-2000

The Concept of Round Colliding Beams

Small and equal β-functions at IP:

Equal beam emittances:

Equal betatron tunes:

Angular momentum conservation yM x z xz

x z

x z

x z

z

y

x

Page 5: Round Beam Collisions  at  VEPP-2000

VEPP-2000 lattice

Page 6: Round Beam Collisions  at  VEPP-2000

Round beam options

“Flat”

“NormalRound”

“Single möbius”

“Double möbius”

“Flat”

“NormalRound”

“Single möbius”

“Double möbius”

z

x

Page 7: Round Beam Collisions  at  VEPP-2000

Positron beam lifetime (I+ = 20 mA)

Page 8: Round Beam Collisions  at  VEPP-2000

Machine tuning

Closed orbit corrections Pick-ups Orbit Response Matrix to focusing offsets (4⊗32) SVD analysis steering coil corrections 2-3 iterations + minimizing of ƩIcor correctors setting

Δx; Δz ≃ ± 0.2 mm

Lattice corrections BPMs ORM to steering coils modulations (20⊗36)

SVD analysis focusing corrections (quads +solenoids) 3–4 iterations lattice setting β*; zero dispersion outside achromats;

Coupling compensation 1.5 Tm field of CMD detector + solenoids compensating coils

3 families of skew quads ν1 – ν2 < 0.003

Page 9: Round Beam Collisions  at  VEPP-2000

Lattice corrections

after

3 iterations

after

4 iterationsDispersion

βx, βz (cm)

βx, βz (cm)

βx, βz (cm)

Dx (cm)

Page 10: Round Beam Collisions  at  VEPP-2000

1 2.15; 4.152

10

Lattice and beam sizes (I± <1mA)

Page 11: Round Beam Collisions  at  VEPP-2000

”Week-strong” beam-beam(“dynamic beta and emittance”)

I+=3 mA; I-=48 mA

11

Page 12: Round Beam Collisions  at  VEPP-2000

“Strong-strong” beam-beam(“dynamic beta and emittance”)

I+=61.8 mA; I-=53.2 mA

Page 13: Round Beam Collisions  at  VEPP-2000

Threshold current vs.tune(“week-strong”)

-eξ N r= =0.14πγε

Page 14: Round Beam Collisions  at  VEPP-2000

Luminosity measurements

Bhabha scattering in the SND and СMD detectorsΘscatt ≥ 0.5

Main disadvantage ⇛ low counting rate ≃ 10 Hz at L=1•1031 cm-2s-1n

Basic formulae of the luminosity:

Beam profile measurements at 16 points ⇛with dynamic β-functions and beam emittance, but under assumption: no other lattice distortions besides counter beam. Time of measurement 1 s at any energy.≃

0 NN4f

L

2 2( ) ( )x z

Page 15: Round Beam Collisions  at  VEPP-2000

Luminosity measurements

t (sec)

L⁎10-30 (cm-2s-1)

(E = 837 MeV; Run 2011)

Page 16: Round Beam Collisions  at  VEPP-2000

Luminosity at run 2011 (CMD data)

120 ( )Ldt pb

16

ramping ⇛

Page 17: Round Beam Collisions  at  VEPP-2000

Luminosity vs.ξ

eξN r= 4πγε

Page 18: Round Beam Collisions  at  VEPP-2000

Positron beam size vs ξ

eξN r= 4πγε

Page 19: Round Beam Collisions  at  VEPP-2000

+

+ -

-

Radiative polarization

0.4 0.6 0.8 1.0

GeV0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

GeV0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

GeV

ζ ζ ζ310s sB B 210s sB B

+ -

τpτp

1

sec

104

102

10-2

τp

1

sec

104

102

10-2

τp

19

Page 20: Round Beam Collisions  at  VEPP-2000

Beam energy calibration

E = 750.67 ± 0.03 MeV10( sec)df Hz

10( sec)df Hz

1( sec)df Hz

d 0

(MeV)Ef = -1 f

440.6484 20

fd (kHz)

Page 21: Round Beam Collisions  at  VEPP-2000

BEP upgrade (1GeV)

26.0 кГс

9,5 кА

Page 22: Round Beam Collisions  at  VEPP-2000

Conclusion

Round beams give a serious luminosity enhancement.

The beam-beam parameter achieves a value ξ= 0.15 .

VEPP-2000 started up for data taking with 2 detectors.

Precise beam energy calibration is in progress.

To reach the target luminosity, more positrons are needed.

Booster BEP upgrade for beam transfer at 1GeV is being prepared.

Page 23: Round Beam Collisions  at  VEPP-2000

Thanks for your attention!

                         

Novosibirsk21.09.2011