Rotational Rheometry

Embed Size (px)

Citation preview

  • 8/18/2019 Rotational Rheometry

    1/41

    M

    ω

    Rotation

    Brno, 28-29th march 2012 – School of Rheology

    Part I: Rotational Rheometry

    How to measure Shear Viscosity correctly?

  • 8/18/2019 Rotational Rheometry

    2/41

    Outline

    • Basic terms in shear rheometry

    • Principle of Operation: Rotational Rheometer 

    • Applications:

    A) Steady State Flow Curves using a Rotational Rheometer:Impact of particle size, volume fraction and polydispersity on dispersion flow

     properties, Polymer Melt Rheology

    B) Time-dependent Flow Behaviour 

    Yield Stress of Dispersions and it`s relation to Zeta Potential, Thixotropy,Structure Recovery

    - with Live Tests on Kinexus Rheometer 

  • 8/18/2019 Rotational Rheometry

    3/41

    Basic Terms in ShearBasic Terms in Shear RheometryRheometryTangentialTangential--force Fforce F

    ss

    displacement udisplacement u

    aa  b b

    area = aarea = a ·· b bGap = sGap = s

     A

    dt d 

    s

    u

    tan=

    =

    =

    τ 

    γ γ 

    γ 

    .

    strainstrain [][]

    Shear stress [Pa=N/mShear stress [Pa=N/m22]]

    Shear rate [1/s]Shear rate [1/s]

  • 8/18/2019 Rotational Rheometry

    4/41

  • 8/18/2019 Rotational Rheometry

    5/41

    Shear ViscosityShear Viscosity

    τ

    η =γ

    .

    γ Shear RateShear Rate

    .τ Shear StressShear Stress

    η Shear ViscosityShear Viscosity

     Resistance of a sample against the flow Resistance of a sample against the flow

  • 8/18/2019 Rotational Rheometry

    6/41

    Typical Shear ViscositiesTypical Shear Viscosities

    MaterialMaterial

    Air Air AcetonAceton

    Water Water 

    Olive OilOlive Oil

    GlycerolGlycerolMolten PolymersMolten Polymers

    BitumenBitumen

    Glass at 500Glass at 500°°CC

    Glass at ambientGlass at ambient

    Shear Shear --Viscosity (Pas)Viscosity (Pas)

    1010--66

    1010--44

    1010--33

    1010--11

    101000101033

    101088

    10101212

    10104040

    Units: Remember  

    Pascal second Pas (SI) 1 Pas = 10 P

    Poise P (CGS) 1 mPas = 1 cP

  • 8/18/2019 Rotational Rheometry

    7/41

    Shear Shear --Viscosity depends onViscosity depends on……

    •• PhysicalPhysical--chemical structure of the samplechemical structure of the sample

    •• Temperature (up to 20% / K)Temperature (up to 20% / K)

    •• PressurePressure

    •• TimeTime

    •• Shear RateShear Rate

    τ

    η (Τ, p, t, γ) =

    γ

    ..

  • 8/18/2019 Rotational Rheometry

    8/41

    SteadySteady--State Flow Behaviour State Flow Behaviour 

    ..

    Shear Rate

    Silicon Oil, Suspension Inks, Paints Cornflower 

       S   t  r  e  s  s

    Shear Rate

    Newtonian Shear Thinning Shear Thickening

       S   t  r  e  s  s

    Shear Rate

       S   t  r  e  s  s

    Shear Rate

       V   i  s  c  o  s   i   t  y

       V   i  s  c  o  s

       i   t  y

    Shear Rate

       V   i  s  c  o  s   i   t  y

    Shear Rate

  • 8/18/2019 Rotational Rheometry

    9/41

    Principle of Operation: Rotational Rheometer 

    • The drive is situated above the sample,

    not below.

    • The driven spindle is air bearingsupported so torque can be measured.

    • The separate torque transducer is

    eliminated!

     Advantages:

    • Wide Torque Range 10e-9 to 10e-1 Nm

    • Short Response times

    • Small inertia design

    • Direct Stress and Direct Strain

    Sample

    Upper Measuring

    Plate

    Temperature

    Controller 

    Position

    sensor 

     Ai r bearing

    Motor 

    Stress- and

    Strain Control

    possible.

  • 8/18/2019 Rotational Rheometry

    10/41

    Choice of Geometry: From Fluids to Solids

    R

    M

    ω

     Apply Torque /Measure Torque

    Measure Displ.

     Apply Displacement

    δ

    Parallel Plates Cup&Bob Solids Fixture

    • the higher the viscosity,the smaller the geometry

    • the higher the shear rate,

    the smaller the gap.

    Rule of Thumb

    for dispersions:

    Gap Size > 10 * D90

  • 8/18/2019 Rotational Rheometry

    11/41

    Cone-Plate / Plate-Plate

    0s-1 10s-1

    10s-1 10s-1 10s-1

    • Cone Adv: Const Shear Rate along

    the complete gap, easy cleaning,low sample volume, wide viscosityrange

    • Cone DisAdv: only for homogeneous samples, for disperse samples D90 < 10 x gap,

    solvent evaporation

    • Plate Adv: flexible gap, auto-tensionpossible, low sample volume, oftenused for temperature dependenttests, good for disperse systems

    • Plate DisAdv: shear ratedependency, solvent evaporation

  • 8/18/2019 Rotational Rheometry

    12/41

    Cup & Bob / Double Gap• Cup&Bob Adv: large gap, works well

    for disperse systems, also for samplesshowing sedimentation, large surfacearea, nearly no evaporation effects,

    good for low viscous samples, lessimpact of loading errors

    • Cup&Bob DisAdv: high moment ofinertia limits oscillation and transientsteps, high cleaning effort, largesample volumes (ca 2ml – 15ml)

    • Double Gap Adv: highest sensitivity for low viscous samples, lower inertiacompared to cup&bob, nearly noimpact on loading errors

    • Double Gap DisAdv: large samplevolume (ca. 15ml – 30ml), difficultcleaning

    Cup&BobCup&Bob accacc DIN53019DIN53019

    Double GapDouble Gap

  • 8/18/2019 Rotational Rheometry

    13/41

    BasicBasic ViscometryViscometry: How to run a flow curve: How to run a flow curveCS CS -- Mode: Steady state and non Mode: Steady state and non--steady state measurementssteady state measurements

    Steady state:Steady state:

    nonnon--steady state:steady state:

    τ

    τ

    γγ

    γγ

    .

    .

    tt tt

    tttt

    Table of stressesTable of stresses

    Linear rampLinear ramp

  • 8/18/2019 Rotational Rheometry

    14/41

    Newton:τη =γ

    .

    CR-Mode CS-Mode

    . equivalentFlow Curve: τ = τ (γ) γ = γ (τ). .

    equivalentShear Viscosity

    Curve: η = η (γ) η = η (τ).

    1. Steady State Flow Properties

  • 8/18/2019 Rotational Rheometry

    15/41

    SteadySteady State ConditionState Condition

    ⇒⇒ dLnJ/dLntdLnJ/dLnt = 1= 1 for for  pure pure viscousviscous flowflow!!⇒⇒ DeviationsDeviations showshow measurementmeasurement errorserrors!!

    Kinexus Rheometer 

    τ 

    γ = J 

  • 8/18/2019 Rotational Rheometry

    16/41

    SteadySteady StateState CalculationCalculation

    ( )( )( ) ( )

    ( ) ( )

    ( )

    ( )

    .1ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    lnln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ln

    ,

    :

    ln

    ln

    ln

    ln

    ln

    lnln

    ln

    ln

    ln

    ln

    0

    statesteady for t d 

     J d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    const t const t 

    t dt  Law Newtons

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

    t d 

     J d 

    =⇒

    −+−=

    −+−

    =

    =−+⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    =−⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ⋅

    =−=

    ⇒==

    ⋅=⋅=

    −=−

    =⎟ ⎠ ⎞

    ⎜⎝ ⎛ 

    =

    τ η τ 

    τ η τ 

    τ η 

    τ 

    τ η 

    τ 

    τ γ 

    τ η 

    η τ 

    η τ γ 

    τ γ τ γ τ 

    γ 

  • 8/18/2019 Rotational Rheometry

    17/41

    ComparisonComparison StressStress-- and Rateand Rate ControlledControlled TestTest

    Shower Gel:

    Comparison CS □ und CR  ∆ Shear Viscosity Curve

    Live Measurement onLive Measurement on KinexusKinexus::

    Shower Gel Flow CurveShower Gel Flow Curve

  • 8/18/2019 Rotational Rheometry

    18/41

    Normal StressNormal Stress DifferenceDifference N1N1

    ⇒⇒ AlwaysAlways watchwatch thethe Normal Stress Normal Stress duringduring aa Shear Shear ViscosityViscosity MeasurementMeasurement!!

    Fn

    Ft

    Shower Gel

    Edge failure

  • 8/18/2019 Rotational Rheometry

    19/41

    SteadySteady StateState FlowFlow CurvesCurves: Impact of: Impact of ParticleParticle SizeSize

    10-1

    100

    101

    102

    103

    104

    105

    106

    γ (s-1)

    10-2

    10-1

    100

    101

    102

         η

       (   P  a .  s

       )

    Increase the size of latex

    particles in a pressure sensitiveadhesive from D50=175µm to

    D50=750mm

    Polydispersity and Volume

    Fraction similar 

    175 µm

    750 µm

    .

    Smaller size means an increase in number of particles which causes an

    increase in particle-particle interactions. Hence an increase in low shear

    viscosity.

  • 8/18/2019 Rotational Rheometry

    20/41

    Reason for Shear Rate Dependency

    Entanglement Network / Particle-Particle-Interaction

    Log γ

     L o g 

    Equilibrium 

     Molecules / Particles

    Entanglements / Particle Interaction

    Destruction >

    Recovery

     No Entanglements

    ..

  • 8/18/2019 Rotational Rheometry

    21/41

    Changing the Volume Fraction of Particles…

       L  o  g

       Z  e  r  o   S   h  e  a  r   V   i  s

      c  o  s   i   t  y

    1.0<mφ 

    φ  5.01.0 mφ 

    φ 

    Volume Fraction

    Newtonian Shear Thinning Shear Thickening

    [ ] m

    mmedium

    φ η 

    φ φ 

    η η 

    ⎟⎟ ⎠ ⎞⎜⎜

    ⎝ ⎛  −= 1

    Krieger-Dougherty:

    SteadySteady StateState FlowFlow CurvesCurves: Impact of: Impact of ParticleParticle LoadingLoading

  • 8/18/2019 Rotational Rheometry

    22/41

    Shear Shear ThickeningThickening ofof concentrated concentrated dispersionsdispersions

    ⇒⇒ thosethose shear shear thickeningthickening effectseffects cancan havehave negativenegative impactimpact onon processability processability –  – seesee sectionsection capillarycapillary rheometryrheometry

    Kinexus Rheometer 

  • 8/18/2019 Rotational Rheometry

    23/41

    We keep the volume fraction (φ ) constant

    But changing polydispersity…

    What happens to the viscosity?

     Particle Size Distribution

    0.1 1 10 100 1000 3000

    Particle Size (µm)

    0

    5

    10

    15

    20

       V  o   l  u  m  e   (   %   )

    SteadySteady StateState FlowFlow CurvesCurves: Impact of: Impact of PolydispersityPolydispersity

  • 8/18/2019 Rotational Rheometry

    24/41

    Impact ofImpact of PolydispersityPolydispersity onon FlowFlow Behaviour Behaviour Fine talc of different D50, mixed into an epoxy resin

    Increasing amount of 175Increasing amount of 175 µµmm particlesparticles

       Z

      e  r  o   S   h  e  a  r   V   i  s  c

      o  s   i   t  y

    100%

    175 µm

    100%

    750 µm

    Increasing amount of 750Increasing amount of 750µµm particlesm particles

    0%0%

    100%100%

    100%100%

    0%0%

    If you want to increase the solid content of the sample but keep the viscosity the same,

    increase the particle size distribution (polydispersity) as well.

    Conversely, narrow the particle size distribution to increase the viscosity.

    [ ] m

    mmedium

    φ η 

    φ 

    φ 

    η 

    η −

    ⎟⎟ ⎠

     ⎞

    ⎜⎜⎝ 

    ⎛ 

    −= 1

    Krieger-Dougherty

  • 8/18/2019 Rotational Rheometry

    25/41

    ==>==> the higher the concentration ofthe higher the concentration of XanthanXanthan, the higher the zero shear viscosity., the higher the zero shear viscosity.

    Xanthan Solution - measured with Cone Plate and Double Gap

    0,001

    0,01

    0,1

    1

    10

    100

    1000

    1,0E-04 1,0E-03 1,0E-02 1,0E-01 1,0E+00 1,0E+01 1,0E+02 1,0E+03

    Shear Rate [1/s]

       S   h  e  a  r  v   i  s  c  o

      s   i   t  y   [   P  a  s   ] .

    1%

    0.5%

    0.3%

    0.1% CP

    0.1% DG

    1%

    0.1%

    0.3%

    0.5%   [ ]η π 

    3

    3

    10  h

     A

     R N  M    ⋅⋅=

    [ ] [ ]   ck c

      hsp   2η η η  +=Mw= 2.400.000 g/mol

    SteadySteady StateState FlowFlow CurvesCurves: Impact of Matrix: Impact of Matrix AdditivesAdditives

  • 8/18/2019 Rotational Rheometry

    26/41

    Further Factors Influencing Dispersion Rheology

    volume fraction, φ Particle size Particle size distribution

    Particle shapeElectrostatic interactions

    Vs

    - - - - - -+ + + +

    + + + +

    Steric Hindrance

    Laser Diffraction

    Digital Microscopy

    Light Scattering

    Size and Zeta

    Spray Particle

     Analyzer 

    Wet

    Dry

  • 8/18/2019 Rotational Rheometry

    27/41

    Polymer Melt Rheology: Determination of Mw from Flow Curves

    γγ.

  • 8/18/2019 Rotational Rheometry

    28/41

    Polymer Melt Rheology: Effect of Molecular Weight Distribution

    Narrow MWD

    Broad MWD

    Log Shear Rate (1/s)

       L  o  g

       V   i  s  c  o  s   i   t  y

       (   P  a .  s

       )

     A Polymer with a broad MWD exhibits non-

    Newtonian flow at a lower rate of shear than a

    polymer with the same η0 but has a narrow MWD

  • 8/18/2019 Rotational Rheometry

    29/41

    2. Time Dependent Flow PropertiesViscosity is not only dependent on shear rate it is

    also time dependent.

    Think of paint. Thick in the can when left in the

    shed for months, but thins when stirred.

    However, it is thixotropic as it does not rebuild

    straight away on stopping the stirring.

  • 8/18/2019 Rotational Rheometry

    30/41

    Thixotropic Example

    Two samples… one very thixotropic, one not so

    thixotropic.

    Time

       S   h  e  a  r  r  a   t  e

       V   i  s  c  o  s   i   t  y

    Time

    Bad paint – leaves brush

    marks.Rebuilds too thick too quickly.

    Good paint – leaves smooth

    finish.

    Rebuilds quite slowly. Enough

    time to allow ridges to smooth

    out.

  • 8/18/2019 Rotational Rheometry

    31/41

    Thixotropy 3- Step-Shear profile

    Thixotropy: Decrease of viscosity vs. time at

    constant shear + complete recovery under rest

    11   22   33

    1 = Initial Viscosity at low shear 

    2 = high shear phase (time-and rate dependent)

    3 = Recovery

  • 8/18/2019 Rotational Rheometry

    32/41

     Another Time Dependent Property: Yield Stress

    Some samples require a certain stress until they

    flow – a yield stress.

     A transition to go from solid to liquid. Or…

    Why toothpaste needs to be squeezed to get

    out of the tube.

    However, does not flow into bristles on tooth

    brush.

    Why Heinz tomato sauce needs a whack.

    But still looks thick on the plate.

    Or why pumps take time to get going.

  • 8/18/2019 Rotational Rheometry

    33/41

       L  o  g   V   i  s  c  o  s   i   t  y

    Log Shear Rate

    “YIELD STRESS”

     An ever increasing viscosity as theshear rate approaches zero, i.e. a does

    not flow / solid like when stationary.

    ZERO SHEAR VISCOSITY

    The viscosity plateau’s as the shear rateapproaches zero, i.e. flows / liquid like

    when stationary.

    10-6 106

    Studying weaker 

    interactions

    Studying stronger 

    interactions

    Rheometer measurement range

    Viscometer Measurement range

    THIXOTROPIC

    Both materials can be, and tend to be“thixotropic” – viscosity depends on time.

    Relation to Flow CurvesRelation to Flow Curves

  • 8/18/2019 Rotational Rheometry

    34/41

    UsuallyUsually StressStress Ramp Ramp isis used used  as a as a pre pre-- test test , , whereaswhereas Multiple Multiple CreepCreep

     gives gives precise precise Yield Yield StressStress

    Fließgrenze = 3Pa

    Schubspannungen

    1Pa, 1.5Pa, 2Pa, 2.5Pa

    Schubspannung3Pa

    Viskoses Fleßen

    Energy absorbed - strong association - no flow

     Linear Linear or or logarithmiclogarithmic StressStress Ramp Ramp  Mutliple Mutliple CreepCreep Tests at differentTests at different

    StressesStresses

    Yield Stress Determination by Stress Ramp and

    Creep Tests

  • 8/18/2019 Rotational Rheometry

    35/41

    Example: Stable Metal Oxide Dispersions

    In this case study we have a sample of silica

    (silicon oxide) which has an average particle size

    greater than 1 micrometer.

    Conventional colloidal theory of

    increasing the zeta potential

    to ±30mV is insufficient tocounter the effect of gravity

    on these large particles…

  • 8/18/2019 Rotational Rheometry

    36/41

    Particle Size

    Sample characterised on a Mastersizer 2000,

    showing a particle size greater the 1 micrometer.

    Laser Diffraction

  • 8/18/2019 Rotational Rheometry

    37/41

    Zeta Potential

    Titrating a silica sample with HCl on a

    Zetasizer Nano with MPT-2 autotitrator.

    The isoelectric point (where the zeta potential is

    zero) is in the very acidic (pH 1) region.

  • 8/18/2019 Rotational Rheometry

    38/41

    Steady-Shear Viscosity vs Zeta-Potential

     At isoelectric point the zero shear viscosity gets infinite

    Stronger associated structures which resist even

    high shear stresses.

       L

      o  g   V   i  s  c  o  s   i   t  y

    Log Shear Stress

     Associated structure

    strong enough to induce

    a yield stress.

    Suspension with

    sub-micron particles

    and high zeta potential

    Suspension with micron particles

    and zeta potential -> 0mV

  • 8/18/2019 Rotational Rheometry

    39/41

    Resultant Rheology for the Silica Supsension

     As the particles associate more, with pH’s closer

    to the iso-electric point, the viscosity increases.

    pH2.42

    pH3.52pH3.97

    Materials with higher low shear viscosities are

    regards as more resistance to separation.

  • 8/18/2019 Rotational Rheometry

    40/41

    Resulting Yield Stress for the Silica Suspension

    Yields stress measurements (the stress at the peak of

    instantaneous viscosity) is a measurement of the internal

    strength of material.

    pH2.42 – yield stress = 15.8 Pa

    pH3.52 – yield stress = 2.5 Pa

    pH3.97 – no yield stress

  • 8/18/2019 Rotational Rheometry

    41/41

    Thank you for your attention!

    Please join our sessions on:

    Capillary Rheometry and Oscillatory Rheometry.

     Any Any QuestionsQuestions?? [email protected]@malvern.de