1380
Abstract Linear Algebra I Singular Value Decomposition (SVD) Linear Algebra. Week 10 Dr. Marco A Roque Sol 03 / 17 / 2020 Dr. Marco A Roque Sol Linear Algebra. Week 10

€¦ · Abstract Linear Algebra I Singular Value Decomposition (SVD) Complex Eigenvalues Repeated Eigenvalues Diagonalization Complex Eigenvalues In this section we consider again

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Linear Algebra. Week 10

    Dr. Marco A Roque Sol

    03 / 17 / 2020

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section

    we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again

    a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n

    linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations

    with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where

    the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix

    A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A

    is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued.

    If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek

    solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutions

    of the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form

    x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt ,

    then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then

    it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that

    λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be

    an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand

    v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v

    a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector

    of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the

    coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case,

    λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ

    is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex,

    we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have

    complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues and

    eigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors

    always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear

    in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate.

    Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus,

    if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν;

    v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    In this section we consider again a system of n linear homogeneousfirst order differential equations with constant coefficients

    x′ = Ax

    where the coefficient matrix A is real-valued. If we seek solutionsof the form x = veλt , then it follows that λ must be an eigenvalueand v a corresponding eigenvector of the coefficient matrix A.

    In the case, λ is complex, we have complex eigenvalues andeigenvectors always appear in complex-conjugate. Thus, if wehave that

    λ±k = µ± i ν; v±k = a± i b

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate

    eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors

    of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A,

    then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued

    solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions,

    but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but

    taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t =

    eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition,

    then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )

    X2(t) =1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two complex-conjugate eigenvalues and eigenvectors of thematrix A, then

    X±(t) = e(µ±i ν)t (a± i b)

    are complex-valued solutions, but taking in account that

    e(µ±i ν)t = eµt (cos(νt)± i sin(νt))

    and the principle of superposition, then we have that

    X1(t) =1

    2

    (X+(t) + X−(t)

    )X2(t) =

    1

    2i

    (X+(t)− X−(t)

    )

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two (real) solutions !!!

    X1(t) = eµt (acos(νt)− bsin(νt))

    X2(t) = eµt (acos(νt) + bsin(νt))

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two

    (real) solutions !!!

    X1(t) = eµt (acos(νt)− bsin(νt))

    X2(t) = eµt (acos(νt) + bsin(νt))

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two (real) solutions !!!

    X1(t) = eµt (acos(νt)− bsin(νt))

    X2(t) = eµt (acos(νt) + bsin(νt))

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two (real) solutions !!!

    X1(t) = eµt (acos(νt)− bsin(νt))

    X2(t) = eµt (acos(νt) + bsin(νt))

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    are two (real) solutions !!!

    X1(t) = eµt (acos(νt)− bsin(νt))

    X2(t) = eµt (acos(νt) + bsin(νt))

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve

    the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    x

    Solution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find

    the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues

    of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix

    A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.6

    Solve the following ODE

    x′ = Ax =

    3 1 10 2 10 −1 2

    xSolution

    Let’s find the eigenvalues of the matrix A

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    |A− λI| =

    ∣∣∣∣∣∣3− λ 1 1

    0 2− λ 10 −1 2− λ

    ∣∣∣∣∣∣ = 0(3− λ)

    ∣∣∣∣2− λ 1−1 2− λ∣∣∣∣ =

    (3− λ)(λ2 − 4λ+ 5) = 0 =⇒

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    |A− λI| =

    ∣∣∣∣∣∣3− λ 1 1

    0 2− λ 10 −1 2− λ

    ∣∣∣∣∣∣ = 0(3− λ)

    ∣∣∣∣2− λ 1−1 2− λ∣∣∣∣ =

    (3− λ)(λ2 − 4λ+ 5) = 0 =⇒

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    |A− λI| =

    ∣∣∣∣∣∣3− λ 1 1

    0 2− λ 10 −1 2− λ

    ∣∣∣∣∣∣ = 0

    (3− λ)∣∣∣∣2− λ 1−1 2− λ

    ∣∣∣∣ =(3− λ)(λ2 − 4λ+ 5) = 0 =⇒

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    |A− λI| =

    ∣∣∣∣∣∣3− λ 1 1

    0 2− λ 10 −1 2− λ

    ∣∣∣∣∣∣ = 0(3− λ)

    ∣∣∣∣2− λ 1−1 2− λ∣∣∣∣ =

    (3− λ)(λ2 − 4λ+ 5) = 0 =⇒

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    |A− λI| =

    ∣∣∣∣∣∣3− λ 1 1

    0 2− λ 10 −1 2− λ

    ∣∣∣∣∣∣ = 0(3− λ)

    ∣∣∣∣2− λ 1−1 2− λ∣∣∣∣ =

    (3− λ)(λ2 − 4λ+ 5) = 0 =⇒

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3,

    λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2=

    2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    0 1 10 −1 10 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =

    0 1 10 0 20 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    λ1 = 3, λ2,3 =4±

    √16− (4)(5)

    2= 2± i

    If λ1 = 3, then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =0 1 10 −1 1

    0 −1 −1

    v1v2v3

    =0 1 10 0 2

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and

    a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding

    eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If

    λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i ,

    then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(1) =

    100

    If λ2 = 2 + i , then

    (A− λ1I) v =

    3− λ 1 10 2− λ 10 −1 2− λ

    v1v2v3

    =

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    3− (2 + i) 1 10 2− (2 + i) 10 −1 2− (2 + i)

    v1v2v3

    =1− i 1 10 −i 1

    0 −1 −i

    v1v2v3

    =1− i 1 10 −i 1

    0 0 0

    v1v2v3

    =1− i 0 1− i0 −i 1

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    3− (2 + i) 1 10 2− (2 + i) 10 −1 2− (2 + i)

    v1v2v3

    =

    1− i 1 10 −i 10 −1 −i

    v1v2v3

    =1− i 1 10 −i 1

    0 0 0

    v1v2v3

    =1− i 0 1− i0 −i 1

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    3− (2 + i) 1 10 2− (2 + i) 10 −1 2− (2 + i)

    v1v2v3

    =1− i 1 10 −i 1

    0 −1 −i

    v1v2v3

    =

    1− i 1 10 −i 10 0 0

    v1v2v3

    =1− i 0 1− i0 −i 1

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    3− (2 + i) 1 10 2− (2 + i) 10 −1 2− (2 + i)

    v1v2v3

    =1− i 1 10 −i 1

    0 −1 −i

    v1v2v3

    =1− i 1 10 −i 1

    0 0 0

    v1v2v3

    =

    1− i 0 1− i0 −i 10 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    3− (2 + i) 1 10 2− (2 + i) 10 −1 2− (2 + i)

    v1v2v3

    =1− i 1 10 −i 1

    0 −1 −i

    v1v2v3

    =1− i 1 10 −i 1

    0 0 0

    v1v2v3

    =1− i 0 1− i0 −i 1

    0 0 0

    v1v2v3

    =00

    0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and

    a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding

    eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    +

    i

    010

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    =

    a + ib

    The corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ib

    The corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding

    solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions

    of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation

    are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ;

    x(2) = e2t

    10−1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)−

    010

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) +

    010

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    and a corresponding eigenvector is

    v(2) =

    10−1

    + i01

    0

    = a + ibThe corresponding solutions of the differential equation are

    x(1) =

    100

    e3t ; x(2) = e2t 10

    −1

    cos(t)− 01

    0

    sin(t)

    x(3) = e2t

    10−1

    cos(t) + 01

    0

    sin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian

    of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions

    is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t(sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )=

    e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t

    6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    The Wronskian of these solutions is

    W [x(1), x(2), x(3)](t) =

    ∣∣∣∣∣∣e3t e2tcos(t) e2tcos(t)0 −e2tsin(t) e2tsin(t)0 −e2tcos(t) −e2tcos(t)

    ∣∣∣∣∣∣ =

    e3te2te2t

    ∣∣∣∣∣∣1 cos(t) cos(t)0 −sin(t) sin(t)0 −cos(t) −cos(t)

    ∣∣∣∣∣∣ =e3te2te2t

    (sin2(t) + cos2(t)

    )= e7t 6= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence,

    the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions

    x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and

    x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3)

    form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and

    the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution

    of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system

    is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X =

    c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X =

    c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t +

    c2

    10−1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)−

    010

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) +

    010

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Hence, the solutions x(1), x(2) and x(3) form a fundamental set,and the general solution of the system is

    X = c1x(1) + c2x

    (2) + c3x(3) =⇒

    X = c1

    100

    e3t + c2 10

    −1

    e2tcos(t)− 01

    0

    e2tsin(t)+

    c3

    10−1

    e2tcos(t) + 01

    0

    e2tsin(t)

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =

    c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is

    the direction field associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field

    associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with

    the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with the system

    x ′1x ′2x ′3

    =

    3 1 10 2 10 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    X =

    x1x2x3

    =c1e3t + e2t(c2cos(t) + c3sin(t))0 e2t(−c2sin(t) + c3cos(t))

    0 −e2t(c2cos(t) + c3sin(t))

    Here is the direction field associated with the system

    x ′1x ′2x ′3

    =3 1 10 2 1

    0 −1 2

    x1x2x3

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2− λ)2 + 1 = λ2 + λ+ 5

    4= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2− λ)2 + 1 = λ2 + λ+ 5

    4= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve

    the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2− λ)2 + 1 = λ2 + λ+ 5

    4= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2− λ)2 + 1 = λ2 + λ+ 5

    4= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2− λ)2 + 1 = λ2 + λ+ 5

    4= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2− λ)2 + 1 = λ2 + λ+ 5

    4= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2− λ)2 + 1 = λ2 + λ+ 5

    4= 0

    Dr. Marco A Roque Sol Linear Algebra. Week 10

  • Abstract Linear Algebra ISingular Value Decomposition (SVD)

    Complex EigenvaluesRepeated EigenvaluesDiagonalization

    Complex Eigenvalues

    Example 9.7

    Solve the following ODE

    x′ = Ax =

    (−1/2 1−1 −1/2

    )X

    Solution

    Let’s find

    the eigenvalues of the matrix A

    |A− λI| =∣∣∣∣−1/2− λ 1−1 −1/2− λ

    ∣∣∣∣ = 0(−1/2�