45
1 Romain Teyssier Cosmological simulations of galaxy formation Romain Teyssier

Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

1Romain Teyssier

Cosmological simulations ofgalaxy formation

Romain Teyssier

Page 2: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

2Romain Teyssier

Outline

- Cosmological disc formation with RAMSES- Towards resolving the clumpy ISM ?- Cold streams and clumpy galaxies- The cosmic dynamo

Stephanie Courty, Brad Gibson (Preston)Oscar Agertz, Ben Moore (Zurich)

Damien Chapon, Frédéric Bournaud (Saclay)Tobias Goerdt, Avishai Dekel (Jerusalem)

Yohan Dubois (Oxford)

Page 3: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

3Romain Teyssier

Galaxy formation theory: a minimal modelDark matter is collisionless: Vlasov-Poisson equations with a PIC or Tree codeBaryons are collisional: Euler-Poisson equations with a grid or SPH codeGravitational collapse and shock heating (gas temperature increases with halo mass).Cooling by H, He, metals and heating by Haardt & Madau UV backgroundMultiphase interstellar medium as a “sub-grid” model• Polytropic equation of state• Phenomenological star formation model• Supernova driven winds and metal enrichment

Star formation recipes:

• t0= 1-10 Gyr (Kennicutt 1998)• α = 0.02-0.05 (Krumholz & Tan 2007)• n0= 0.1-100 H/cm3

Parameters depend on physical resolution

Numerical issues:• SPH/Tree versus PM/AMR• Resolution in mass• Resolution in space and time

Page 4: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

4Romain Teyssier

N body module: Particle-Mesh method on AMR grid (similar to the ARTcode). Poisson equation solved using a multigrid solver.

Hydro module: unsplit second order Godunov method (MUSCL) withvarious Riemann solvers and slope limiters. New CT based MHD solver.

Time integration: single time step or fine levels sub-cycling.

Other: Radiative cooling and heating, star formation and feedback.

MPI-based parallel computing using time-dependant domain decompositionbased on Peano-Hilbert cell ordering.

RAMSES: a parallel AMR code

• Graded octree structure: the cartesian mesh isrefined on a cell by cell basis• Full connectivity: each oct have direct accessto neighboring parent cells and to children octs(memory overhead 2 integers per cell).• Optimize the mesh adaptivity to complexgeometry but CPU overhead can be as large as50%.

Page 5: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

5Romain Teyssier

Simulating disc galaxies with AMR

RAMSES (AMR) simulation of a spiral disc at z=0.200 pc spatial resolution (sub-grid model)

8x105 dark matter particles in R200 and M200=7x1011 MsolCollaboration with Brad Gibson and Stéphanie Courty

(University of Central Lancashire)

Page 6: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

6Romain Teyssier

A realistic spiral galaxy ?

Mock gri SDSS composite image with dustabsorption based on Draine opacity model.

NGC4622 as seenfrom HST

B/D ~ 1

Page 7: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

7Romain Teyssier

A realistic spiral galaxy ?

AMR1

I Band Tully-Fisher relationGASOLINE data from Governato et al. 2007, Mayer et al. 2008

Page 8: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

8Romain Teyssier

Different implementation of supernovae feedback

1- Thermal feedback: 1051 erg per supernova (10 Msol) after 10 Myr.

2- Thermal feedback with delayed cooling: cooling turned-off during 50 Myrafter last star formation episode (Governato et al. in GASOLINE)

Kinetic feedback:For each new stellar particle, create another collisionless particle to account fora companion Giant Molecular Cloud. After 10 Myr, release the GMC masstogether with the supernova ejecta in a Sedov blast wave.

3- Kinetic feedback with MGMC=M*: blast wave velocity vSN = 600 km/s withshock radius of 400 pc (Springel & Hernquist 2005; Dubois & Teyssier 2008)

4- Kinetic feedback with MGMC=Mgas/2 in the parent cell: blast wave withmaximum momentum kick but vSN < 35 km/s

Page 9: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

9Romain Teyssier

Galactic winds at redshift 3Thermal Delayed 50 Myr

Kinetic iso-mass Kinetic max-massMetal maps:Size 200 kpc/hphysicalMax. resolution200 pc physical

Page 10: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

10Romain Teyssier

Circular velocities

ThermalDelayed 50 MyrKinetic iso-massKinetic max-mass

Milky Way model fromDennen & Binney (2005)

Page 11: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

11Romain Teyssier

Star formation histories

ThermalDelayed 50 MyrKinetic iso-massKinetic max-mass

Page 12: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

12Romain Teyssier

fgasKineticmax-mass

Kinetic iso-mass

Delayed 50Myr

Thermalx1010 Msol

4.0

4.1

8.1

20%

2.5%

10%

4.54.64.8MB

3.12.83.1MD

7.67.47.9MD+MB

Galaxy: R < 15 kpc and |z| < 3 kpcBulge: r < 3 kpc

Baryon budget

Mvir = 7x1011 Msol

Page 13: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

13Romain Teyssier

Circular velocities

Page 14: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

14Romain Teyssier

Isolated disc within astatic NFW halo.

Kim & Ostriker 2001Wada et al 2002Tasker & Bryan 2006Wada & Norman 2007Kim & Ostriker 2007

Few pc resolution !

Formation of “clumpy”galaxies and turbulentHI gas discs throughgravitational instability.

Agertz et al. 2008Tasker et al. 2008

Modelling the turbulent ISM in low z galactic disc

Page 15: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

15Romain Teyssier

Disc edge on (gas column density)

Agertz et al. 2008

If the density exceeds ρ0=100 H/cc, we form stars with 2% efficiency, and weimpose a temperature floor around 300 K (polytrope with γ=2).Supernovae feedback with a thermal dump after 10 Myr.Refinement strategy: 100 pc initially, then Lagrangian evolution augmented by4 cells per Jeans length criterion (Truelove et al. 1997) down to 6 pc !

Page 16: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

16Romain Teyssier

Volume-weighted histograms

A multiphase ISM à la McKee & Ostriker (1977) with only gravitationalinstability, hydrodynamics, cooling and supernovae feedback ?

In mass:

Page 17: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

17Romain Teyssier

Clump mass function

pc scale resolution limit

~ 1

Page 18: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

18Romain Teyssier

Clump formation in the Antennae galaxy

with D. Chapon and F. Bournaud, in collaboration with the Strasbourg group

Page 19: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

19Romain Teyssier

Stellar cluster formation in the Antennae galaxy

No feedback. Star formation with 1% efficiency for gas density above 10 H/cc.

Page 20: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

20Romain Teyssier

Stellar cluster mass function

Page 21: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

21Romain Teyssier

Associated star formation history

Smooth discs models find SFR ~ 2 Msol/yr (Mihos+ 93, Karl+ 09)

Page 22: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

22Romain Teyssier

Young galaxies are moreasymmetrical and more clumpy than present day galaxies

Hubble Ultra Deep Field

Page 23: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

A model for high-redshift clumpy disks

Starting with smooth unstable disks:

Fragmentation into realistic clump-clusters/chains in 100-300Myr

Bournaud, Elmegreen & Elmegreen 2007

~ 1

Page 24: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

24Romain Teyssier

Accretion: cold streams or hot shocks?

Kravtsov (2003)Birnboim & Dekel (2003)Keres+ (2005)Dekel & Birnboim (2006)

MareNostrum run

Standard model: gas is shock-heated at Tvir, then coolsdown and rains to the central disc.

New model: large scale filaments feed directly fresh coldgas into the disc.

Cold streams accretion occurs at high redshift aroundhigh-sigma peaks

Galaxy cluster in the Millenium run z=4 z=2

Page 25: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

25Romain Teyssier

Smooth gas accretion flows

4 different accretion modes

M*

Cold stream critical mass:Filament survival: tcool(ρf) ~Rvir/Vvir

Density enhancement: ρf T* ~ρvirTvir

for Mvir>M*

Hot shock critical mass:Shock stability: tcool(ρvir) ~Rvir/Vvir

The MareNostrum simulationconfirms Birnboim & Dekel (2006)analytical theory.

Data points from Ocvirk+ 2008

HS

CF

HS+CS

CS

CF: cold flows

CS: cold streams

HS: hot shocks

Page 26: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

26Romain Teyssier

Star formation and cold stream accretion

Star formation at high redshift (BzK galaxies ?) proceeds through efficient gasaccretion via cold streams. Major mergers (sub-mm galaxies ?) are not frequentenough and cannot explain the disk-like morphologies.

Dekel+ 2009

Page 27: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

27Romain Teyssier

Cold streams and the origin of clumpy galaxies at high z

Cosmological simulation with RAMSES: low T metal cooling and 40 pc resolution

1012 Msol halo from Via Lactea run (Diemand et al. 2006)

Artificial fragmentation suppressed using pressure floor (Truelove et al. 1997)

Agertz+ 2009; Dekel+ 2009; Ceverino+ 2009

z ~ 3

Page 28: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

28Romain Teyssier

Formation of an unstable disc at z=2.7

SFR ~ 20 Msol/yr

M*~ 6x1010 Msol

R ~ 10 kpc

3 clumps Mb ~ 109 Msol

9 clumps Mb ~ 108 Msol

2 satellites

Misaligned inner andouter discs

Z/Zo (inner) ~ 1

Z/Zo (clumps) ~ 0.1

Page 29: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

29Romain Teyssier

Cosmic evolution of the magnetic fieldIn order to explain the observed magnetic field in galaxy clusters, we need

One possible scenario: gas and magnetic field stripping from galaxy satellites.

Where does this (yet undetected) IGM magneticfield comes from ?

Galactic dynamos can amplify the field andeject it in the IGM with galactic winds(Bertone et al. 2006)

Magnetic field evolution in dwarf galaxies isthe key process in the cosmic history ofthe magnetic field.

Perform MHD simulations of dwarf galaxies with supernovae-driven winds(Dubois & Teyssier submitted).

Page 30: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

30Romain Teyssier

• Isolated gas and DM halo with average profile

• Static potential for the dark halo• Average angular momentum profile

• High initial gas fraction:

• Boundary conditions :− Outflow (hydro and B fields)− Isolated for Poisson

• Physics : Radiative cooling and effective ISMEquation Of State, star formation and supernovaefeedback

Bullock et al. 2001

Navarro, Frenk & White 1996

A dwarf galaxy in isolation

Page 31: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

31Romain Teyssier

38 kpc 38 kpc

300 kpcDubois & Teyssier 2008a

Halo in hydrostaticequilibrium

A dwarf galaxy in isolation

Page 32: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

32Romain Teyssier

zMagnetic field

Dipole structure aligned withrotation axis

Initial magnetic field in the hydrostatic halo

Page 33: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

33Romain Teyssier

38 kpc38 kpc

A critical magnetic field for dwarf galaxies ?

Page 34: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

34Romain Teyssier

A0 : antisymetric mode with m=0

Above the plane

Below the plane

Spiral structure

38 kpc

38 kpc

Topology of the galactic magnetic field

Page 35: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

35Romain Teyssier

Growth of magnetic energy in the disc

See also Wang & Abel (2008) with a clumpy ISM or Kotarba et al (2009) with an isolated disc

Page 36: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

36Romain Teyssier

The evolution of the mean field now writes:

The parameter depends on small scaleproperties of the MHD turbulence that are poorly known.

Galactic Dynamo Theory

Consider the induction equation

Decompose both velocity and magnetic field into:- a mean field- a fluctuating, small scale field

Page 37: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

37Romain Teyssier

300 kpc 75 kpc

Density map

Galactic winds

Page 38: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

38Romain Teyssier

38 kpc38 kpc

t =1 Gyr t =1,5 Gyr

t =2 Gyr t =3 Gyr

Convectivemotions leadto a turbulentfield topology

Building up a magnetized wind

Page 39: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

39Romain Teyssier

Magnetic energydecrease due to fluxconservation

Magnetic energyinjection at the base ofthe wind

Bertone et al. 2006

disc

Magnetic energy injection into the IGM

wind

20xrotation,turbulence

Page 40: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

40Romain Teyssier

Page 41: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

41Romain Teyssier

Page 42: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

42Romain Teyssier

Page 43: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

43Romain Teyssier

Artificial pressure support

In order to resolve the Jeans length, we add to the thermal pressure a dynamical,Jeans-length related, pressure floor defined as PJ=16Δx2Gρ2

This sets an artificialthermal Jeans length in theproblem.

Keeping a fixed artificialJeans length, one can thenrefine the grid and check forconvergence.

This artificial Jeans lengthsets the minimum cloudmass, equal to the thermalJeans mass MJ.

Truelove et al. 1997; Bates & Burkert 1997; Machacek et al. 2001, Robertson & Kravtsov 2008

Page 44: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

44Romain Teyssier

Convergence study

λJ=80 pc with 4 cells λJ=80 pc with 8 cells

High-redshift isolated clumpy disc

Page 45: Romain Teyssier - UC Berkeley Cosmology Groupa companion Giant Molecular Cloud. After 10 Myr, release the GMC mass together with the supernova ejecta in a Sedov blast wave. 3- Kinetic

45Romain Teyssier

Higher resolution simulations in progress

Low T cooling with 50 pc resolution: formation of a clumpy ISM ?

Gas density maps 20 kpc physical at z ~ 1