Rodwell_SBSEE10

Embed Size (px)

Citation preview

  • 8/9/2019 Rodwell_SBSEE10

    1/32

    High Speed TransistorsLow Power Transistors for VLSI

    [email protected] 805-893-3244, 805-893-5705 fax

    Energy Summit, Santa Barbara, May 12, 2010

    Mark Rodwell

    University of California, Santa Barbara

    Coauthors: HBT

    E. Lobisser, V. Jain, A. Baraskar, B. J. Thibeault,University of California, Santa Barbara

    Z. Griffith, J. Hacker, M. Seo, M. Urteaga, Richard Pierson, B. BrarTeledyne Scientific Company

    Coauthors: FETM. A. Wistey*, U. Singisetti, G. J. Burek, A. Carter B. J. Thibeault, A. Baraskar, J. Law, J. Cagnon, C.Palmstrom, S. Stemmer, A. C. GossardUniversity of California, Santa Barbara (*Now at Notre Dame)

    E. Kim, P. C. McIntyreStanford University

    B. Yue, L. Wang, P. Asbeck, Y. Taur, A. KummelUniversity of California, San Diego

  • 8/9/2019 Rodwell_SBSEE10

    2/32

    High-Speed Transistors...an overview.

  • 8/9/2019 Rodwell_SBSEE10

    3/32

    Why Build THz Transistors ?

    THz amplifiers! THz radios! imaging, sensing,communications

    precision analog designat microwave frequencies! high-performance receivers

    500 GHz digital logic! fiber optics

    Higher-ResolutionMicrowave ADCs, DACs,DDSs

  • 8/9/2019 Rodwell_SBSEE10

    4/32

    FET parameter change

    gate length decrease 2:1

    current density (mA/m), gm (mS/m) increase 2:1

    channel 2DEG electron density increase 2:1

    gate-channel capacitance density increase 2:1

    dielectric equivalent thickness decrease 2:1

    channel thickness decrease 2:1

    channel density of states increase 2:1

    source & drain contact resistivities decrease 4:1

    Changes required to double transistor bandwidth

    HBT parameter change

    emitter & collector junction widths decrease 4:1current density (mA/m2) increase 4:1

    current density (mA/m) constant

    collector depletion thickness decrease 2:1

    base thickness decrease 1.4:1

    emitter & base contact resistivities decrease 4:1

    constant voltage, constant velocity scaling

    nearly constant junction temperature! linewidths vary as (1 / bandwidth)2

    fringing capacitance does not scale! linewidths scale as (1 / bandwidth )

  • 8/9/2019 Rodwell_SBSEE10

    5/32

    THz & nm Transistors: it's all about the interfaces

    Metal-semiconductor interfaces (Ohmic contacts):very low resistivity

    Dielectric-semiconductor interfaces (Gate dielectrics):very high capacitance density

    Transistor & IC thermal resistivity.

  • 8/9/2019 Rodwell_SBSEE10

    6/32

    256 nm InP HBT 150 nm thick collector

    70 nm thick collector

    60 nm thick collector

    440 GHz VCO

    340 GHzdynamicfrequency

    divider

    324 GHzamplifier

    Z. Griffith

    J. Hacker, TSC

    Z. Griffith

    E. Lind

    M. Seo, UCSB/TSC

    M. Seo, UCSB/TSC

    204 GHzstaticfrequencydivider

    Z. Griffith, TSC

  • 8/9/2019 Rodwell_SBSEE10

    7/32

    InP Bipolar Transistor Scaling Roadmap

    emitter 512 256 128 64 32 nm width

    16 8 4 2 1 !"m2 access #$

    base 300 175 120 60 30 nm contact width,

    20 10 5 2.5 1.25!"m2 contact

    #

    collector 150 106 75 53 37.5 nm thick,

    4.5 9 18 36 72 mA/m2 current density

    4.9 4 3.3 2.75 2-2.5 V, breakdown

    f% 370 520 730 1000 1400 GHzfmax 490 850 1300 2000 2800 GHz

    power amplifiers 245 430 660 1000 1400 GHz

    digital 2:1 divider 150 240 330 480 660 GHz

    industry university

    !industry

    university

    2007-9

    appears

    feasible

    maybe

  • 8/9/2019 Rodwell_SBSEE10

    8/32

    128 / 64 nm process: Sputtered Refractory Base

    V. Jain

    E. Lobisser

    In-situ MBE emitter contacts:refractory! high Jlow contact #: ~0.7 !-m2Refractory emitter contactdry-etched! nm resolutionrefractory! high current

    Wet/dry etched emitterdry-etched! nm resolution

    Refractory base contactslow penetration! thin baseslow contact # ~2.5 !-m2self-aligned/ liftoff-free

  • 8/9/2019 Rodwell_SBSEE10

    9/32

    128 nm InP DHBT ProcessV. JainE. Lobisser

  • 8/9/2019 Rodwell_SBSEE10

    10/32

    InGaAs FET Scaling Roadmap

    Applicationsmicrowave / mm-wave / THz ICsVLSI

  • 8/9/2019 Rodwell_SBSEE10

    11/32

    27 nm InGaAs MOSFET with Regrown Source/DrainCarter, Burek,Law, Baraskar

  • 8/9/2019 Rodwell_SBSEE10

    12/32

    III-V MOSFETs: What Are Our Goals ?

    Low off-state current (10 nA/m) for low static dissipation! minimum subthreshold slope! minimum Lg/ Tox

    low gate tunneling, low band-band tunneling

    Low delay CFET!V/Id in gates wheretransistor capacitances dominate.

    Parasitic capacitances are 0.5-1.0 fF/m! while low Cgs is good,

    high Idis much better

    Low delay Cwire!V/Id in gates wherewiring capacitances dominate.

    large FET footprint! long wires between gates

    ! need high Id/ Wgat low voltage

    target ~2.5 mA/

    m @ 500 mV Vdd

  • 8/9/2019 Rodwell_SBSEE10

    13/32

  • 8/9/2019 Rodwell_SBSEE10

    14/32

    Ultra Low Power Logic for Future Computers

    A subject of great importance; being broadly pursued.Can we greatly reduce static and dynamic IC power ?

    Modified { transistors, gates, interconnects, singaling}Alternate logic devices to replace FETs ?

  • 8/9/2019 Rodwell_SBSEE10

    15/32

    Logic must Compute

    e.g. , problem if input is DC H-fieldand output is 50 GHz spin wave amplitude

    e.g. , problem if input is DC currentand output is DC B-field

    e.g. , problem if input is at 2 GHz,and output is at 25 GHz (parametric gain)

  • 8/9/2019 Rodwell_SBSEE10

    16/32

    Logic Must Be Robust

    e.g. , nondegenerate parametric gain ---bilateral

    e.g. clockless tunnel diode logic---bilateral

    e.g. clockless Josephson Junction logic---bilateral

  • 8/9/2019 Rodwell_SBSEE10

    17/32

    Logic Elements Must Communicate

    ion / reagent concentration in solution (biology)wiresgears (adding machines)optical waveguides

  • 8/9/2019 Rodwell_SBSEE10

    18/32

    Parts to Build Computers

    What would you use....to compute ?

    ....to communicate ?

    http://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

    Gluonics ?

    Gravitonics ?

  • 8/9/2019 Rodwell_SBSEE10

    19/32

    Wires

    CMOS VLSI

  • 8/9/2019 Rodwell_SBSEE10

    20/32

    The VLSI Power Problem

    Low standby power! increase supply voltage

    Low dynamic switching power! decrease supply voltage

  • 8/9/2019 Rodwell_SBSEE10

    21/32

  • 8/9/2019 Rodwell_SBSEE10

    22/32

    Thermal-Noise-Limited Voltage Swing

    No Poisson statistics(Shot noise) associated with thecapacitor charge

  • 8/9/2019 Rodwell_SBSEE10

    23/32

    Zero-Resistance wires! no CV2f dissipation

  • 8/9/2019 Rodwell_SBSEE10

    24/32

    Trying To Beat C(kT/q ln(Ion/Ioff))2 : Transistor Approaches

    channel

    P+++source

    N+++source

    gate

    drain

    Appenzeller, PurdueSeabaugh, Notre DameAsbeck, San Diego

  • 8/9/2019 Rodwell_SBSEE10

    25/32

    Beating CVdd2F Using Linear Amplifiers ... at a cost

  • 8/9/2019 Rodwell_SBSEE10

    26/32

    Beating C(kT/q ln(Ion/Ioff))2 using optical interconnects

  • 8/9/2019 Rodwell_SBSEE10

    27/32

    Low Power Logic Using Magnetic Devices ?

  • 8/9/2019 Rodwell_SBSEE10

    28/32

    Current Signaling Suffers From Static Dissipation

  • 8/9/2019 Rodwell_SBSEE10

    29/32

    Reducing Power by Scaling FET & IC Dimensions

  • 8/9/2019 Rodwell_SBSEE10

    30/32

    Reducing Power by Reducing Supply Voltage

  • 8/9/2019 Rodwell_SBSEE10

    31/32

    Normalized Drive Current Comparison

  • 8/9/2019 Rodwell_SBSEE10

    32/32

    end