24
Open Source Pharma Background White Paper Rockefeller Foundation Bellagio Center July 2014 Publicly licensed under CC BYi SA 4.0 From Hierarchies To Networks 1

RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

!Open  Source  Pharma

Background White Paper    

Rockefeller  Foundation  Bellagio  

Center  July  2014  

Publicly  licensed  under  CC  BYi SA  4.0  

!!!

From  Hierarchies  To  Networks  !!

�1

Page 2: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

!Abstract  The  contemporary  pharmaceutical  company  is  typically  large,  expensive,  slow-­‐moving,  and  a  risky  –  if  very  occasionally  incredibly  lucrative  –  investment.  Most  firms  fail,  most  projects  fail,  and  the  industry  as  a  whole  has  trouble  getting  drugs  to  market  at  anything  close  to  a  fair  price.    !While  the  biology  is  fiendishly  complex  and  difficult,  and  represents  the  largest  single  barrier  to  finding  new  drugs,  there  is  a  real  argument  to  be  made  that  the  organizational  structures  of  the  firms  themselves  bear  part  of  the  blame.  Firms  are  heavily  centralized  into  command-­‐control  hierarchies  derived  from  manufacturing  concerns  and  chemical  companies,  and  those  structures  are  poorly  fitted  to  the  underlying  complexity  of  the  science.  To  these  command-­‐control  hierarchies  is  added  a  relentless  focus  on  privatizing  knowledge  as  trade  secret  in  order  to  protect  the  right  to  acquire  patents,  which  are  in  turn  used  to  protect  prices  high  enough  to  pay  off  innumerable  legacy  failures  –  and  which  in  turn  price  hundreds  of  millions  of  human  beings  out  of  the  market  for  medicine.  !This  paper  argues  that  the  organizational  and  political  systems  associated  with  open  source  software  and  free  culture  bear  significant  promise  as  an  alternative,  competitive  business  structure  for  pharmaceutical  investigation.  By  adopting  a  networked  structure  of  “small  parts,  loosely  joined”  and  a  liberal  approach  to  intellectual  property,  a  firm  might  leverage  networks  of  voluntary  contributors  (rather  than  paid  full-­‐time  staff),  networks  of  service  providers  (rather  than  cumbersome  in-­‐house  facilities),  and  find  routes  to  market  that  do  not  require  complex,  heavy  corporations  and  cost  structures.  !!

�2

“The  greatest  critique  that  can  be  laid  at  the  door  of  the  current  system  is  that  it  does  not  truly  encourage  the  scientific  process.  In  many  ways,  it  promotes  a  culture  that  works  contrary  to  the  spirit  of  science.”    

-­‐  Manica  Balasegaram  

Page 3: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Background  The  pharmaceutical  industry  is  in  crisis.  Despite  decades  of  massive  investments  in  new  infrastructure  technologies,  productivity  rates  are  down.  It  is  now  clear  that  discovering  safe,  effective  new  drugs  is  not  yet  something  that  can  be  effectively  “industrialized”  for  higher  throughput.  Exacerbating  the  problem  is  the  choice  of  targets:  diseases  and  indications  perceived  to  be  more  profitable,  such  as  cholesterol  management,  dominate  the  research  pipelines,  leading  to  “me-­‐too”  drugs  and  ignoring  the  health  needs  of  billions  of  people.  !Every  success  still  must  pay  off  a  legacy  of  failures,  with  prices  skyrocketing  into  the  hundreds  of  thousands  of  dollars  per  year  for  many  new  compounds.  And  those  prices  bring  with  them  serious  questions  of  access,  fairness,  and  human  rights:  is  the  social  view  of  drug  discovery  one  that  accepts  pricing  much  of  the  world  out  of  the  market  as  an  opportunity  cost?  The  industry  is  thus  caught  on  three  sharp  points  at  once.  Its  productivity  is  down,  its  prices  are  up,  and  those  prices  themselves  are  under  withering  attack  from  patient  advocates,  the  public  sector,  and  governments  across  the  world.  !There  is  also  a  new  approach  being  deployed:  sharing.  It’s  a  simple  concept,  and  a  fundamental  part  of  human  culture.  But  as  a  business  practice  sharing  touches  politics,  economics,  law,  technology,  and  society.  Its  emergence  in  software  is  one  grounded  in  freedoms:  the  right  to  re-­‐use,  to  change,  to  share  with  others,  without  asking  for  permission  from  a  centralized  authority.  1!Sharing  has  changed  markets  in  software,  textbooks,  encyclopedias,  stock  photography,  scholarly  literature,  and  music.  It  has  been  touted  since  the  early  1990s  2as  a  candidate  to  accelerate  pharmaceutical  knowledge  development,  and  clear  sharing  inroads  already  exist  in  non-­‐profit,  public-­‐private,  government,  and  even  fully  private  initiatives  across  the  industry.  !This  should  not  be  a  surprise.  There  is  no  inherent  reason  that  pharmaceutical  companies  must  control  all  phases  of  the  process,  like  a  Hollywood  studio  in  the  old  days.  It’s  simply  been  the  case  that  until  recently,  doing  everything  inside  the  walls  of  a  unified  corporate  structure  created  the  best  statistical  odds  to  proceed  from  disease  understanding  to  molecule  discovery  to  clinical  trials  and  marketing.  But  as  the  environment  outside  the  firm  becomes  more  powerful  and  able  to  support  discovery  elements,  however,  moving  to  a  sharing  approach  is  a  natural  experiment.  

�3

 This  is  the  central  concern  –  political  and  economic  –  of  free  software.  But  these  freedoms  in  turn  revealed  unexpected  1

behaviors  of  people  connected  via  computer  networks:  sometimes,  a  centralized  firm  is  not  the  best  way  to  collaborate  on  building  something  complex,  or  solving  a  complex  problem.  This  is  the  central  concern  –  management  of  production  –  of  open  source  software.  They  are  often  combined  into  the  acronym  FLOSS,  but  the  tensions  between  those  involved  for  freedom  and  those  involved  for  management  purposes  do  not  disappear  in  the  combination.

 Richard  Jefferson’s  CAMBIA  project,  in  particular  its  work  on  open  source  biological  licensing,  was  an  early  leader  in  this  2

space,  and  remains  a  guiding  force  in  applying  open  source  and  open  innovation  concepts  to  biological  research.  

Page 4: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

!The  goal  of  this  paper  is  to  provide  an  overview  of  that  ongoing  natural  experiment.  The  rise  of  peer  production  and  sharing  economies  offers  us  a  chance  to  define  and  differentiate  the  two  in  the  context  of  the  pharmaceutical  industry,  and  to  examine  their  powers  to  create  knowledge  and  leverage  slack  resources  to  build  an  entirely  new  kind  of  drug  discovery  engine.  This  paper  will  attempt  to  identify  where  and  when  peer  production  might  work,  identify  where  and  when  sharing  economy  might  work,  identify  barriers  to  emergence  of  new  models,  and  present  for  discussion  an  alternative  model  for  organizing  drug  discovery.  !Part  I  is  an  overview  of  sharing  practices.  It  begins  with  the  roots  of  collaborative  peer  production  (CBPP),  which  drives  open  source,  in  economic  and  legal  theories  of  knowledge  production.  It  also  examines  non-­‐collaborative  approaches  to  peer  production,  which  are  potentially  relevant  to  drug  discovery.  Part  I  closes  with  an  overview  of  the  modern  “sharing  economy”  which  is  often  times  more  of  a  “renters  economy”  but  again  offers  some  tantalizing  ideas  for  restructuring  the  drug  discovery  firm.  !Part  II  is  an  overview  of  the  drug  discovery  process  and  its  sharing  experiments.  It  uses  the  classic  organization  of  the  drug  discovery  and  development  process  (DDP)  that  typically  involves  target  discovery,  target  validation,  screening,  optimization,  pre-­‐clinical,  clinical,  and  manufacturing  stages.  The  paper  describes  a  variety  of  projects  ranging  from  classic  “open  source”  peer  production  to  classic  “sharing  economy”  resource  optimization  to  hybrid  public-­‐private  partnerships.  Part  II  also  focuses  on  the  intellectual  property  factors  of  each  section  of  DDP  and  posits  opportunities  in  each  for  application  of  various  kinds  of  sharing.  !Part  III  is  an  anticipatory  look  forward.  It  lays  out  one  potential  model  for  end-­‐to-­‐end  drug  discovery.  It  is  not  a  complete  model,  the  final  model,  or  the  only  model.  But  it  does  describe  a  path  from  early  stage  biological  knowledge  to  a  compound  in  people  that  does  not  rely  on  a  single,  central  organizing  entity  for  its  success.  !!!

�4

Page 5: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Why Open Source Pharma, and why now? !There  is  a  glib  way  to  explain  the  pharmaceutical  industry’s  recent  embrace  of  sharing:  they’ve  tried  everything  else.  Massive,  non-­‐recoverable  capital  investment  in  wave  after  wave  of  new  “can’t  miss”  technologies  ranging  from  nucleic  acid  arrays  to  RNA  interference  to  angiogenesis  and  on  have  drastically  increased  the  cost  of  discovery.  But  the  irony  of  the  post-­‐genome  industry  is  that  all  this  information  has  not  made  the  process  of  generating  actionable  knowledge  less  expensive…while  it  has  made  it  arguably  less  effective.!Figure  1  3

Married  to  this  cost  boom  has  been  an  organizational  restructuring  boom.  Every  large  pharmaceutical  company  still  standing  has  endured  reorganizations  spawned  by  management  consulting,  whether  around  therapeutic  area,  centers  of  excellence  within  the  drug  discovery  “chain”  of  processes,  geography,  and  more.  None  of  it  worked.  has.  Massive  mergers  and  acquisitions  have  come  and  gone,  with  little  evidence  of  efficacy  in  terms  of  shareholder  value  and  even  less  in  terms  of  drug  

�5

From (from http://vectorblog.org/2011/08/big-pharmas-changing-business-model-inviting-academia-to-take-the-3

lead/)

Page 6: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

discovery  capacity.  Each  of  these  re-­‐organizations  comes  at  enormous  capital  cost  and  opportunity  –  some  very  effective  compounds  have  been  shelved  and  sold  off  by  companies  in  the  midst  of  re-­‐organization.    4!The  third  element  pressing  against  the  industry  is  the  so-­‐called  “patent  cliff”  –  the  near-­‐simultaneous  evaporation  of  monopoly  rights  on  a  batch  of  blockbuster  drugs  whose  revenues  have  been  propping  up  the  industry  through  its  technology  and  organizational  spending  booms.  Sanofi,  Novartis,  Roche,  Astra  Zeneca,  and  Eli  Lilly  collectively  face  $35.7  billion  dollars  in  revenues  threatened  by  blockbuster  patent  expirations  –  and  that’s  just  in  2014.  The  emergent  practice  to  deal  with  the  patent  5

cliff  is  to  acquire  smaller  companies  with  promising  late-­‐stage  drugs,  but  that  comes  at  high  price  and  is  itself  fraught  with  risk.      To  make  matters  worse,  there  are  often  suggestions  that  the  industry  has  already  discovered  the  "low-­‐hanging  fruit",  meaning  it  is  likely  that  deeper  R&D  is  required  to  tease  out  new  compounds  for  complex  diseases.    !There  are  glimmers  of  hope  in  new  kinds  of  compounds.  After  a  brutal  voyage  through  the  Gartner  Hype  Cycle,  RNA  interference  compounds  are  finally  in  phase  III  clinical  trials  and  showing  real  promise.  Gene  therapies  hold  great  promise,  and  even  gene  editing.  But  the  reality  of  industrial  structure  inertia  and  regulatory  time  scales  means  even  these  new  kinds  of  compounds  won’t  reach  citizens,  or  transform  prices,  for  a  decade  or  more.  !And  prices  matter.  It  is  no  longer  socially  acceptable  to  price  the  majority  of  the  world  out  of  a  life-­‐saving  drug.  Public  debate  around  the  fairness  of  the  drug  prices  that  emerge  from  the  pharmaceutical  industry  is  at  a  fever  pitch.  Access  to  medicines  and  drugs  pricing  have  been  for  years  issues  well  beloved  to  the  non-­‐governmental  organization  community,  and  to  a  few  patient  advocacy  groups.  While  there  has  been  some  success  around  access  to  HIV  anti-­‐retrovirals,  and  most  recently  to  HCV  drugs,  in  the  aggregate,  drug  companies  remain  in  strong  control  of  pricing  regimes  and  continue  to  push  punitive  intellectual  property  provisions  in  international  treaties,  trade  agreements,  and  more.  !And  as  citizens  of  the  west  and  the  north  begin  to  engage  more  directly  in  drug  research,  especially  around  rare  diseases,  the  access  to  medicines  issue  begins  to  hit  

�6

 “Pfizer  brought  up  more  interesting  compounds  than  it  later  was  able  to  develop.  It's  a  good  question  to  wonder  what  4

they  could  have  done  with  these  if  they  hadn't  been  pursuing  their  well-­‐known  merger  strategy  over  these  years,  but  we'll  never  know  the  answer  to  that  one.  The  company  got  too  big  and  spent  too  much  money,  and  then  tried  to  cure  that  by  getting  even  bigger.  Every  one  of  those  mergers  was  a  big  disruption,  and  you  sometimes  wonder  how  anyone  kept  their  focus  on  developing  anything.  Some  of  its  drug-­‐development  choices  were  disastrous  and  completely  their  fault  (the  Exubera  inhaled-­‐insulin  fiasco,  for  example),  but  their  decisions  in  their  oncology  portfolio,  while  retrospectively  awful,  were  probably  quite  defensible  at  the  time.  But  if  they  hadn't  been  occupied  with  all  those  upheavals  over  the  last  ten  to  fifteen  years,  they  might  have  had  a  better  chance  on  focusing  on  at  least  a  few  more  of  their  own  compounds.”  From  http://pipeline.corante.com/archives/2014/08/20/did_pfizer_cut_back_some_of_its_best_compounds.php

 http://moneymorning.com/2014/02/18/patent-­‐cliff-­‐2014-­‐chart-­‐shows-­‐much-­‐revenue-­‐big-­‐pharma-­‐will-­‐lose/  5

Page 7: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

much  closer  to  home.  This  exposes  the  rather  ugly  reality  of  a  pharmaceutical  industry  CEO  in  the  contemporary  world:  he  or  she  must  either  price  drugs  out  of  the  range  of  the  vast  majority  of  the  world,  or  be  replaced  by  someone  who  will.  This  has  been  conveniently  ignorable  as  long  as  those  suffering  were  distant,  or  un-­‐connected.  When  they  are  neighbors,  when  they  have  social  media,  when  they  can  collectively  organize,  it’s  impossible  to  hide  the  access  issue.  It’s  little  wonder  that  sharing  is  emerging  as  a  potential  lifeline.  !On  a  purely  structural  basis,  a  sharing  approach  to  drug  discovery  has  only  recently  become  feasible.  One  side  effect  of  the  massive  investment  in  technology  has  been  a  commodification  of  much  of  that  technology,  so  that  even  as  it  does  not  increase  efficiency,  its  costs  have  dropped.  This  makes  it  easier  and  cheaper  to  generate  data  outside  a  pharmaceutical  firm  than  it  has  ever  been.  Networks  of  research  instruments,  robots,  and  other  infrastructure  key  to  the  discovery  process  are  now  accessible  to  anyone  with  a  credit  card.  And  cheap  cloud  computing  technology  means  that  the  data  coming  off  these  research  networks  can  be  stored,  analyzed,  and  –  crucially  –  shared  with  secondary  analysts  in  ways  that  were  simply  impossible  even  a  decade  ago.  !Taken  together,  we  can  reasonably  say  that  there  is  now  an  incentive  to  try  a  new  approach  based  on  networks  rather  than  hierarchies,  and  the  external  structures  that  might  make  a  sharing  approach  functionally  possible  are  now  in  place.  The  key  is  therefore  to  understand  the  sharing  approaches  themselves,  and  begin  to  map  those  approaches  to  the  portions  of  the  drug  discovery  process.  !!

�7

Page 8: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Assessing potential of open / sharing economies!There  are  multiple  ways  to  categorize  the  variety  of  sharing-­‐based  approaches  covered  in  this  paper.  The  categorizations  –  like  the  phrase  “open  source”  –  come  fraught  with  meaning  from  previous  uses  in  software,  in  cultural  works,  and  more.  Thus  we  will  attempt  to  use  more  granular  terms  to  describe  certain  kinds  of  activities,  and  to  map  those  activities  to  the  drug  discovery  process.  6!Peer  Production  Classic  open  source  software  approaches  represent  a  kind  of  commons-­‐based  peer  production  (CBPP).  The  central  characteristic  of  CBPP  is  that  groups  of  people  can  work  together  in  complex  ways:  on  complex  tasks,  for  a  complex  variety  of  reasons,  following  a  complex  set  of  social  signals  mostly  unrelated  to  intellectual  property  or  traditional  corporate  organizational  structures.    !By  one  definition,  "commons-­‐based  peer  production  refers  to  any  coordinated,  (chiefly)  internet-­‐based  effort  whereby  volunteers  contribute  project  components,  and  there  exists  some  process  to  combine  them  to  produce  a  unified  intellectual  work.  CBPP  covers  many  different  types  of  intellectual  output,  from  software  to  libraries  of  quantitative  data  to  human-­‐readable  documents  (manuals,  books,  encyclopedias,  reviews,  blogs,  periodicals,  and  more)."  7!CBPP  has  resulted  in  enormous  value  creation  without  centralized  firms:  Wikipedia  and  the  Linux  operating  system  are  the  most  obvious  examples,  but  the  economic  value  of  CBPP  in  software  alone  is  estimated  in  the  tens  (if  not  hundreds)  of  billions  of  dollars  per  year.  8!Where  CBPP  works,  it  can  be  more  efficient  than  using  market  signals  or  centralized,  command-­‐and-­‐control  management.  It  works  best  in  areas  with  several  core  

�8

 To  some  ears,  the  use  of  the  term  “open  source”  outside  of  software  is  harsh.  Open  source  inside  software  is  a  term  of  art  6

that  was  long  fought  over,  and  that  has  a  precise  definition.  But  outside  software  it  has  become  a  short-­‐hand  for  a  different,  more  open  way  of  operating.  We  understand  this  difference,  and  use  the  term  in  the  short-­‐hand  context:  a  way  of  doing  the  knowledge  creation  necessary  for  drug  discovery  in  the  open,  using  technical  architectures  and  social  signals  to  collaborate,  with  a  way  to  unify  the  knowledge  at  the  end.    Open  Source  Pharma  will  include  elements  of  liberal  -­‐  or  no  -­‐  intellectual  property,  crowdsourcing,  standardized  contracting,  sharing  of  pre-­‐competitive  knowledge,  and  more.  The  term  is  a  catch-­‐all  for  an  idea.  Its  definition  will  likely  only  “harden”  through  its  exploration  and  application  by  scientists,  entrepreneurs,  and  policymakers.  

 http://www.freesoftwaremagazine.com/articles/fud_based_encyclopedia/  7

 An  EU  working  group  estimated  a  savings  of  €75,000,000,000  per  year  from  the  reuse  of  enterprise  software  code.  http://8

www.slideshare.net/cdaffara/economic-­‐value-­‐of-­‐open-­‐source-­‐14861646  slide  19

Page 9: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

features.  It  works  best  when  the  problems  are  modular,  granular,  relatively  low  cost  to  integrate,  and  when  the  product  is  knowledge  or  culture.  9!CBPP  is  not  simply  a  feature  of  problems  with  modularity  and  granularity.  It  also  needs  the  required  capital  investment  to  be  widely  distributed  –  recall  the  explosion  of  personal  computers,  internet  access,  and  enabling  technologies  that  came  together  in  the  1990s.  This  explosion  lowered  the  capital  costs  of  software  development  which  in  turn  dramatically  increased  the  population  of  programmers  with  capacity  to  participate  in  free/libre  open  source  projects  without  asking  permission.      It  is  CBPP  that  most  have  in  mind  when  they  quote  “open  source”  as  a  goal.  However,  not  all  peer  production  is  commons-­‐based.  Peer  production  is  simply  the  activity  of  leveraging  lots  of  disparate  individuals  to  create  a  knowledge  or  cultural  product.  What  makes  peer  production  commons-­‐based  is  the  use  of  legal  tools,  technologies,  processes,  and  social  norms  that  encode  freedoms  into  the  products  –  freedoms  to  use,  to  copy,  to  remix,  to  redistribute.  !Facebook  is  a  good  example  of  a  non-­‐commons  peer  production  system.  All  its  users  make  the  product,  but  no  user  has  the  freedom  to  take  content  out  of  Facebook,  to  export  one’s  friends  list  and  take  to  another  social  network,  and  so  forth.  Similarly,  Innocentive  and  other  companies  represent  crowdsourcing  systems  in  which  networks  of  individuals  attack  problems,  but  those  outcomes  are  not  necessarily  commons-­‐based  and  the  results  are  not  necessarily  recombinable  into  a  larger  knowledge  product.    !Both  social  networks  and  crowdsourcing  are  key  elements  of  any  eventual  CBPP  in  pharmaceuticals,  as  additions  and  complements  to  more  purely  “open”  processes.  In  this  paper  we  will  try  to  tease  apart  when  CBPP  is  possible,  when  regular  peer  production  is  possible,  and  when  one  might  be  more  or  less  desirable  than  the  other.  !CBPP in Drug Discovery and Development 10

There  are  clear  differences  between  the  activities  involved  in  drug  discovery  and  software  development,  and  they  present  hurdles  for  CBPP  in  pharmaceuticals.      These  include  the  need  to  work  in  physical  space  rather  than  more  purely  virtual  space;  involvement  with  biological  organisms  rather  than  purely  with  code;  the  extremely  expensive  and  centralized  capital  infrastructure;  and  the  relative  ease  of  large  scale  collaboration  in  software.        However,  the  modular  and  granular  requirements  are  actually  very  consistent  with  the  way  that  pharmaceutical  companies  organize  their  scientific  programs.      

�9

 There  are  many  works  on  the  subject.  Perhaps  the  most  well  known  is  “Coase's  Penguin,  or,  Linux  and  The  Nature  of  the  9

Firm”  by    Yochai  Benkler  in  112  Yale  L.J.  369.

 For  brevity  and  readability,  we  amend  “discovery  and  development”  to  “discovery”  and  “DDP”    in  this  document.10

Page 10: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Problems  are    broken  down  into  the  smallest  feasible  possible  components  so  that  progress  can  be  measured:  a  certain  compound  in  a  certain  strain  of  mouse  for  a  certain  amount  of  time,  to  be  measured  by  a  certain  kind  of  blood  test  for  a  certain  kind  of  outcome.  !Nevertheless,  there  is  an  additional  hurdle  to  CBPP  in  pharmaceuticals,  namely,  decision-­‐making.    The  decision  process  that  creates  the  needed  modularity  in  pharmaceuticals  has  yet  to  be  successfully  translated  into  a  consensus-­‐based  model  like  those  associated  with  successful  CBPP.    There  have  been  formalisms  developed  for  criteria  against  which  projects  can  be  measured,  such  as  the  MMV  compound  progression  criteria  for  malaria,  (http://www.mmv.org/research-­‐development/essential-­‐information-­‐scientists)  and  these  probably  arose  from  a  committee,  the  decision  processes  are  not  openly  debated  and  indeed  are  subject  to  the  command  and  control  processes  of  the  committee.  !CBPP  is  also  not  popularly  associated  with  industries  that  have  high-­‐risk  “go/no  go”  decisions  as  a  regular  part  of  product  development.  The  level  of  risk  tends  to  correlate  with  information  control  among  the  upper  echelons  of  firm  management  who  have  access  to  enough  information  to  make  such  a  decision,  as  well  as  a  general  unwillingness  to  “reverse”  analyze  failed  decisions  for  indicators  of  future  failures.  This  element  has  significant  conflicts  with  classic  “open  source”  CBPP,  where  in  the  event  of  a  disagreement,  the  community  divides  (known  as  “forking”)  into  two  groups,  each  taking  their  own  desired  decision  forward.  !Last,  CBPP’s  lack  of  a  centralized  planning  authority  can  create  issues  with  regulatory  filings:  who  prepares  and  signs  the  paperwork  that  submits  a  drug  to  the  FDA?  Who  answers  the  questions?  Who  pays  for  manufacturing  and  distribution  in  advance  of  revenues?  Who  is  liable  if  a  marketed  compound  must  be  removed  from  the  market  due  to  side  effects,  like  Vioxx?  !It  is  very  possible  that  the  creation  of  scientific  assignments,  the  expense  of  capital  infrastructure,  the  need  for  expensive  and  consequential  “yes  or  no”  decisions,  and  the  innate  structure  of  the  regulatory  and  manufacturing  process  create  a  set  of  transaction  costs  that  bias  in  favor  of  the  centralized  firm  –  even  if  that  firm  is  regularly  failing  at  its  core  mission  of  discovering  drugs.  A  model  built  on  CBPP  –  in  part  or  in  whole  –  must  be  able  to  plausibly  explain  how  these  obligations  can  be  met  in  the  absence  of  a  single  organizing  firm.  !Collaborative ConsumptionThe  rise  of  what  is  popularly  called  the  “sharing”  economy  can  create  confusion  with  peer  production.  In  the  sharing  economy,  it’s  actually  not  about  sharing,  but  about  selling:  it’s  a  class  of  economic  arrangements  in  which  participants  share  access  to  products  or  services  in  return  for  compensation.  It  is  similar  to  CBPP  in  that  the  11

�10

 From  “The  Case  Against  Sharing”  at  https://medium.com/the-­‐nib/the-­‐case-­‐against-­‐sharing-­‐9ea5ba3d216d  11

Page 11: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

central  organizer  is  not  a  firm  selling  an  asset,  but  differs  in  that  the  key  signaler  is  a  market  force,  not  a  collaborative  desire  to  co-­‐create.      The  market  forces  work  to  enable  access  to  resources  that  were  previously  impossible  to  tap  to  work  in  a  two-­‐sided  market  (many  sellers  to  many  buyers):  apartments  with  spare  rooms,  cars  with  empty  seats,  people  with  time  on  their  hands  and  a  willingness  to  assemble  flatpack  furniture.  The  transaction  costs  of  reaching  the  number  of  sellers  and  buyers  used  to  be  so  high  that  a  firm  was  required  to  create  capital-­‐intensive  resources  (like  a  hotel  or  taxi  fleet)  to  provide  the  service.  But  the  ubiquity  of  mobile  devices  has  brought  a  change  in  transaction  costs.  Those  low  costs  combined  with  the  idea  of  a  multi-­‐sided  platform  (the  firm  that  mediates  the  connections  between  sellers  and  buyers  through  technology)  to  underpin  the  emergence  of  the  sharing  economy.      The  sharing  economy  is  dominated  by  redistribution  and  peer  sharing  enabled  by  ubiquitous  digital  networks.  Redistribution  firms  facilitate  the  transfer  of  goods  –  designer  handbags,  Pez  dispensers,  free  furniture  –  without  needing  garage  sales,  flea  markets,  antique  stores,  or  trunk  shows.  Peer  sharing  firms  facilitate  short-­‐term  rentals  and  services:  a  clean  room  for  the  night,  a  car  ride,  an  Ikea  cabinet  assembled.      Sharing Economy and Drug Discovery The  sharing  economy  appears  to  have  extraordinary  potential  for  drug  development.  The  underlying  characteristics  of  industrial  drug  discovery  are  very  well  suited  to  redistribution  and  peer  sharing,  and  indeed,  one  can  see  evidence  of  those  activities  dating  back  decades  in  pharmaceuticals.  But  the  implementation  of  redistribution  and  peer  sharing  has  either  been  highly  formal  (mergers  and  acquisitions,  divestments,  cross-­‐licensing)  or  highly  informal  (conversations  in  the  bar  at  a  scholarly  conference).  What’s  been  missing  is  the  emergence  of  multi-­‐sided  platform  brokers  to  facilitate  the  connections  between  buyers  and  sellers.      The  massive  cost  of  investment  in  machinery  and  tools  cuts  across  the  drug  discovery  process.  Every  process  has  been  hit  with  parallelization,  miniaturization,  and  robotics  to  make  the  creation  of  data  faster  and  cheaper.  The  scale  of  the  data  has  exploded  as  a  result.  Simultaneously,  research  institutions  have  invested  in  core  facilities  replicating  many  of  the  same  infrastructure  elements.  But  these  are  facilities  that  can  sit  idle  for  periods  of  time,  creating  an  ideal  space  for  peer  sharing.  The  same  assets  can  become  liabilities  when  taking  a  smaller  company  into  acquisition  or  bankruptcy,  creating  an  ideal  space  for  redistribution  markets.  Indeed,  a  quick  search  on  eBay  for  DNA  sequencers  returns  more  than  100  results,  most  with  next-­‐day  shipping  available.  !!

�11

Page 12: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Block by block analysis of DDP Having  limned  the  contours  of  CBPP  and  the  sharing  economy,  we  now  turn  to  an  analysis  of  the  drug  discovery  process.    The  classic  view  of  the  process  is  that  of  an  industrialized,  linear  process  in  which  drug  targets  are  identified,  validated,  and  screened,  where  compounds  emerge  and  are  optimized  and  prepared  for  the  clinic,  then  moved  into  human  trials  and  out  into  the  market.  This  is  most  often  visualized  as  a  series  of  chevrons,  immortalized  in  power  points  and  Figure  2  below  (from  Nature  Reviews  Drug  Discovery ).  12!Figure  2  

!We  will  proceed  through  the  process  and  explore  the  applicability  and  potential,  or  inapplicability  and  lack  of  potential,  of  CBPP  and  sharing  economy  techniques  to  each  element.    !Target Identification Modern  drug  discovery  classically  starts  with  the  identification  of  a  drug  target  –  if  the  drug  is  the  key,  the  target  is  the  lock  to  be  opened.  The  goal  is  to  identify  the  biological  roots  of  the  disease,  and  to  find  areas  of  the  genome  and  their  associated  proteins  that  appear  to  drive  the  mechanistic  action  of  disease.  Typically  the  goal  is  either  to  increase  (in  the  event  of  a  protective  target)  or  decrease  (in  the  event  of  a  harmful  target)  the  effect  of  the  protein.  !Some  recent  drug  discovery  programs,  particularly  in  infectious  diseases,  have  involved  a  phenotypic  approach  where  screening  is  conducted  on  live  organisms  and  active  compounds  are  pursued  in  the  absence  of  any  knowledge  of  the  relevant  biological  target  (10.1126/science.1194923).  Such  strategies  have  given  rise  to  unusual  depositions  of  data  obtained  in  the  private  sector  into  the  public  domain  with  

�12

Cooper, Matthew “Optical biosensors in drug discovery” Nature Reviews Drug Discovery 1, 515-528 (July 2002) 12

doi:10.1038/nrd838

Page 13: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

significant  impact  on  the  direction  of  drug  discovery  collaborations  between  academic  and  industrial  groups  in  malaria,  tuberculosis  and  other  tropical  diseases.  The  resulting  drug  development  programs  have  then  been  pursued  outside  the  public  domain.  This  phenotypic  screening  approach  coupled  with  public  domain  databases  has  not  yet  extended  outside  infectious  disease.      Drug  discovery  is  wildly  complex  work.  Estimates  of  the  total  number  of  proteins  in  the  human  body  range  up  to  2,000,000,  and  each  protein  can  exist  in  many  states  depending  on  temperature,  time,  and  more.  This  is  in  contrast  to  the  number  of  genes  in  the  human  body,  which  are  estimated  at  a  far  more  tractable  20,000,  and  which  are  far  more  stable  to  study.      One  classic  method  of  target  identification  is  to  compare  genomes  (either  sequence  or  activity)  of  the  sick  to  genomes  of  the  healthy,  to  generate  hypotheses  about  which  genes  or  mutated  genes  are  responsible  for  disease.  Another  method  is  to  silence  the  activity  of  one  gene  at  a  time  and  see  if  anything  “breaks”  afterwards.  It’s  also  common  to  start  with  a  known  quantity  of  chemical  and  explore  its  genetic  effects  (aspirin  for  inflammation,  for  example)  to  learn  about  other  potential  targets  for  new  drugs.  Once  a  set  of  genes  and  proteins  has  been  identified,  it  is  turned  over  to  a  different  segment  of  the  firm  to  be  validated.      Before  the  sequencing  of  the  genome  and  its  associated  explosion  of  data  and  content,  target  identification  was  a  slow,  laborious  process  that  created  strong  incentives  for  aggressive  intellectual  property  approaches.  In  the  US  and  elsewhere,  courts  allowed  patents  on  genetic  sequences  to  create  incentives  to  identify  useful  areas  of  natural  genomes.  But  just  as  the  advance  of  genomics  since  the  late  1990s  has  lowered  the  cost  of  target  identification  by  orders  of  magnitude,  the  courts  have  increasingly  recognized  naturally  occurring  sequences  as  being  in  the  public  domain.      There  is  also  systemic  public  investment  in  genetics  research  by  governments  around  the  world  that  creates  vast  databases  of  papers  about  targets  as  well  as  raw  and  processed  data  about  targets.  Even  more,  funders  of  the  public  research  typically  require  open  access  to  outputs  of  the  research  process,  which  creates  the  possibility  for  significant  reuse  and  reanalysis  of  those  outputs.      This  means  that  at  least  in  theory,  target  validation  meets  many  of  the  criteria  for  CBPP.  The  resources  being  created  are  inherently  knowledge  resources,  which  is  the  first  step.  Second,  the  capital  required  to  create  new  knowledge  is  relatively  low  –  with  the  advent  of    services  like  Assay  Depot  and  Science  Exchange,  a  motivated  group  of  individuals  can  engage  in  data  creation  and  analysis.  Then,  once  the  data  exist  and  are  shared,  new  data  mining  is  well  within  the  reach  of  a  typical  programmer  in  the  US  or  Europe.  The  ability  to  practice  CBPP  in  the  real  world  depends  on  the  terms  of  the  capital  investment  in  targets  and  on  the  creation  of  appropriate  incentives  for  data  analysts  to  attack  the  data.      

�13

Page 14: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

In  many  ways,  the  industry  practices  peer  production.  Experts  have  argued  for  years  that  science  is  basically  a  giant  wiki,  with  a  paper  being  the  unit  of  knowledge  produced  rather  than  a  wiki  page,  and  with  each  paper  representing  a  small  edit  to  the  scholarly  paradigm.  This  is  a  slow,  inefficient  form  of  peer  production,  but  the  technology  paradigms  do  not  support  true  commons-­‐based  creativity  and  innovation.  Publishers  assert  vigorous  copyrights  against  text  miners,  the  most  common  format  (PDF)  is  often  impermeable  to  machine-­‐reading,  sharing  of  negative  data  is  generally  discouraged  and  scientists  themselves  are  slow  to  move  to  new  methods  of  indexing  and  reading.      Similarly,  the  sharing  economy  echoes  many  systems  already  in  place  in  the  industry.  Peer  to  peer  resource  sharing  and  redistribution  are  regular  elements  of  cross-­‐company  collaboration,  but  those  collaborations  are  usually  one-­‐to-­‐one  deals  rather  than  one-­‐to-­‐many  offers  like  those  associated  with  the  sharing  economy.    !IP  factors  in  target  identification  include  copyright  on  papers  and  databases,  database  rights  in  some  jurisdictions,  desire  for  trade  secrecy  ahead  of  disclosure  /  filing,  historical-­‐but-­‐fading  patenting  on  sequences,  desire  to  protect  unknown  upstream  opportunities.      Functional  opportunities  include  text  mining,  data  integration  and  mining,  reuse  of  sequencing-­‐phenotype  studies,  patient-­‐powered  research.  Scientific  opportunities  include  increasing  the  number  of  proteins  with  known  function  and  discovering  more  targets  through  CBPP  and  PP:  text  mining,  data  mining,  crowdsourcing,  and  competitions.  !Target validation Target  validation  is  the  filtering  of  a  set  of  potential  targets  to  a  single  target  (or  family  of  related  ones).  Validation  is  inherently  about  separating  potential  targets  that  are  correlated  with  disease  from  those  that  are  causally  involved.  Processes  include  a  variety  of  cellular  and  molecular  tests  that  can  systematically  weed  out  correlations,  and  can  operate  as  both  “forward”  and  “reverse”  genetics  processes.      In  the  forward  process,  the  investigation  starts  with  observed  physiology  (a.k.a.  “phenotype”)  and  moves  to  the  genes,  while  the  reverse  goes  the  other  way  from  genetic  studies  that  identify  genes  to  finding  those  individuals  and  querying  their  physical  states.  The  forward  can  proceed  from  data  integration  of  existing  phenotypes  that  have  genomes,  while  the  reverse  requires  ability  to  recontact  and  then  confirm  a  related  phenotype.        Validation  hinges  on  choices  informed  by  highly  designed  and  controlled  experiments,  and  both  choice  and  design  complicate  CBPP  in  validation.  The  negotiation  of  consensus  to  a  single  decision  in  commons-­‐based  governance  process  is  often  very  slow,  and  contentious.  In  comparison,  the  ability  to  tightly  control  the  design  of  an  experiment  is  a  feature  that  firms  are  familiar  with  and  have  developed  systems  for  completing,  and  the  processes  that  make  choices  with  tremendous  

�14

Page 15: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

financial  and  scientific  decisions  are  a  key  part  of  the  industry.  These  factors  combine  to  challenge  the  emergence  of  CBPP  in  validation.      Some  non-­‐commons  based  peer  production  seems  applicable  to  validation,  however.  Contests  to  generate  standardized  experimental  data,  or  to  design  analytic  and  decision  support  models,  are  not  inherently  commons  based  but  could  plausibly  fill  the  roles  played  by  assay  and  informatics  departments  inside  firms.    The  ability  to  use  contest  rules  to  dictate  formats  and  experimental  standards  is  significant;  there  is  far  less  need  for  content  negotiation  and  integration  among  multiple  vendors.  Contests  can  also  be  made  to  feed  the  commons  itself  through  their  rules  and  terms  of  use  (e.g.  compelling  code  sharing  or  open  source  licensing  for  submitted  code).  !Validation  is  well  suited  to  sharing  economy  approaches.  The  high  price  of  creating,  maintaining,  and  staffing  the  validation  phase  drives  up  the  overall  cost  of  directly  engaging  in  validation.  The  instruments  for  validation  are  well  distributed  across  large  firms,  small  firms,  and  academia.  The  assets  rapidly  depreciate,  and  in  many  cases,  may  not  be  in  heavy  usage.      This  maps  well  to  the  peer  to  peer  rental  model  and,  indeed,  there  is  already  a  multi-­‐sided  platform  play  funded  and  operating  in  the  market  (Science  Exchange),  with  a  focus  on  academic  resources.  As  more  resources  become  available  for  rental,  more  organizational  structures  will  be  able  to  take  a  target  from  identification  to  validation  thanks  to  lower  overall  costs  of  capital.  It  is  plausible  that  some  of  these  organizational  structures  will  be  far  more  amenable  to  commons-­‐based  decision-­‐making  and  support  the  emergence  of  CBPP  in  validation  a  decade  from  now.    !The  redistribution  market  holds  significant  possibility  here  as  well.  As  targets  are  deprecated,  they  become  zero-­‐benefit  assets  to  those  investigating  them,  but  the  knowledge  around  those  targets  would  have  significant  value  to  the  rest  of  the  world.  Reduction  of  duplicate  investigation  is  the  obvious  benefit,  but  it’s  also  possible  to  imagine  a  market  emerging  of  target  recycling  amongst  organizations  with  interest  in  biologically  related  diseases.  This  is  indeed  much  how  the  industry  works  today,  though  again  it  operates  in  a  non-­‐platform  context,  mediated  more  by  attorneys  than  software.  The  adoption  of  redistribution  markets  may  require  the  emergence  of  a  new  trusted  entity  that  can  implement  and  enforce  standard  downstream  royalty  terms  to  properly  incent  flow  of  discarded  targets  out  for  re-­‐evaluation.  !IP  factors  include  extreme  trade  secrecy  around  knowledge  that  a  target  is  actually  druggable  and  useful  (particularly  in  order  to  file  patent  claims  on  entire  pathways).  As  with  the  rest  of  the  system,  copyrights  on  papers  containing  key  validation  data  usually  restrict  re-­‐distribution,  machine  analysis  of  the  papers,  and  extraction  of  data.  Patents  obtained  by  universities  are  more  and  more  frequently  entering  the  secondary  market  (in  which  they  are  asserted  by  non-­‐practicing  entities  known  as  “trolls”)  when  their  licensees  are  acquired  and  assets  liquidated.          

�15

Page 16: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Opportunities  include  a  secondary  market  for  validated  but  abandoned  targets,  collaborative  licensing  approaches,  Uber-­‐style  access  to  slack  resources  in  core  facilities  in  academia  and  companies,  ex  ante  accession  to  open  source-­‐type  IP  arrangements  by  researchers,  particularly  in  areas  of  low  revenue  or  neglected  disease,  cloud-­‐mediated  access  to  real-­‐world  cohorts  with  stable  electronic  data  and  contactability  /  pre-­‐consent  to  be  deep  phenotyped  or  genotyped.  !Primary / Secondary screening and Lead optimization Once  a  target  has  been  validated,  the  classic  drug  discovery  process  calls  for  handover  of  the  target  for  screening:  the  search  for  a  chemical  or  biomolecule  that  inhibits  or  excites  the  target.  In  high-­‐throughput  screening,  large  libraries  of  compounds,  some  proprietary,  are  robotically  exposed  to  cell  lines  of  interest  and  watched  for  activity.  If  a  candidate  compound  “hits”  in  the  cell  then  it  is  funneled  via  workflow  into  much  deeper  analysis  to  determine  how  and  where  it  is  creating  a  reaction.      This  process  does  not  assume  any  hypothesis  or  knowledge  about  classes  of  chemicals  and  classes  of  targets,  though  that  knowledge  is  often  informally  applied.  Other  processes  formally  incorporate  knowledge  of  structure  and  activity  relationships  in  attempting  to  design  compound  libraries  with  higher  likelihood  of  success,  or  use  only  fragments  of  compounds  to  inform  later  chemical  design  processes.  13

   Secondary  screens  deploy  candidate  drugs  into  various  more  complex  environments  including  mouse,  xenograph,  and  hollow  fiber,  then  observed  to  see  if  effects  are  “real”  or  not.  The  US  National  Cancer  Institute  reports  about  2%  of  all  drugs  it  screens  (2500  per  year)  pass  primary  phase  into  secondary  screening.  14

   Primary  screening  requires  less  than  a  week  and  often  uses  pre-­‐existing  libraries  of  compounds  that  are  either  openly  sold  (NCI,  Pharmacopeia)  or  trade  secret  based  pre-­‐patent,  non-­‐disclosed  chemicals  that  are  used  via  collaborative  licensing  deals.  Secondary  screening  typically  requires  less  than  a  month,  though  this  timing  is  deeply  dependent  on  workflow  systems  implemented  within  a  firm.  External  timing  could  be  significantly  longer.  !IP  factors  include  trade  secrecy  around  the  compound  structures  themselves,  as  well  as  trade  secrecy  around  structure-­‐activity  relationships  (SAR).  Non-­‐IP  property  factors  include  the  complexity  of  synthesis  of  a  compound  (i.e.  a  good  candidate  that  is  hard  to  manufacture).      But  the  primary  IP  issue  in  screening  is  the  desire  to  file  a  strong  composition  of  matter  patent  on  a  promising  compound  in  advance  of  regulatory  filing  for  new  

�16

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058157/13

 http://www.cancer.gov/cancertopics/factsheet/NCI/drugdiscovery14

Page 17: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

chemical  entities.  The  very  knowledge  required  to  spur  CBPP  in  this  sector  (chemical  structure  of  leads  and  related  data)  is  the  same  knowledge  that  constitutes  disclosure  in  the  eyes  of  patent  law.  The  need  for  such  patents  to  support  investment  is  a  regular  part  of  the  debate  over  open  source  drug  discovery,  and  attempts  to  reverse-­‐license  patents  in  genomics  and  drug  discovery  have  not  taken  off.      The  whole  screening  phase  of  drug  discovery  is  not  particularly  well  suited  to  CBPP.  As  noted  above,  the  disclosure/patent  issue  creates  a  disincentive  to  share  knowledge,  but  CBPP  is  also  limited  by  the  deeply  physical  nature  of  screening.  The  15

best  examples  we  have  of  CBPP  are  those  that  create  knowledge  and  culture.  A  compound  is  neither.  It’s  instead  an  artificially  synthesized  chemical  that  exists  as  a  rivalrous  resource  in  a  library.  Typically  the  library  is  quite  literally  that  –  compounds  on  shelves  –  and  when  exhausted,  the  compounds  must  be  re-­‐synthesized  at  laborious  expense.  Thus  the  chemicals  are  harder  to  copy,  distribute,  work  on  16

modularly,  and  re-­‐integrate  –  the  features  of  CBPP.  But  though  screening  may  not  be  ideal  for  CBPP  as  practiced  elsewhere,  one  may  adopt  its  ethos  if  not  all  its  methods  –  and  perhaps  some  new  ones.    !As  the  physical,  capital-­‐intensive  resources  are  deployed  to  create  knowledge  about  compound-­‐target  relationships,  a  different  organizational  model  might  well  choose  not  to  depend  on  patents  and  trade  secrets  as  a  foundational  element.  Most  arguments  for  patents  and  secrecy  assume  that  investment  without  strong  IP  rights  is  impossible.      Alternative  investment  models  exist,  with  prizes  perhaps  the  best  developed,  that  render  strong  IP  rights  unnecessary,  and  in  that  context  adopting  intentional  knowledge  flow  from  the  funded  laboratory  to  the  commons  is  not  just  allowable  but  desirable.  In  this  case,  Open  Notebook  Science  as  a  method  is  an  essential  practice.  The  primary  benefit  of  opening  up  the  notebooks  is  to  attract  CBPP  to  a  well-­‐fitted  task:  the  finding  and  documenting  of  errors  and  improvement  of  methods,  which  are  indeed  knowledge  products,  unlike  the  compounds  themselves.      This  is  an  important  meta-­‐point  for  open  source  drug  discovery.  When  the  product  is  chemistry,  the  assumption  is  that  capital  requirements,  IP  factors,  and  the  nature  of  the  underlying  product  mitigate  against  CBPP.  But  the  process  itself  is  just  as  vulnerable  to  frailty  due  to  few  eyes,  and  thus  improvement  via  many  eyes,  as  when  the  underlying  product  is  knowledge.  The  IP  factors  must  be  minimized  if  one  is  to  achieve  this  benefit  however.      The  existence  of  alternative  organizational  and  investment  models  is  essential  for  this  division  to  take  place.  Traditional  models  of  science  (academic,  startup,  

�17

 Computational  drug  design  does  hold  promise  and  bears  future  observation  but  as  yet  isn’t  delivering  drugs  that  can  skip  15

the  in  vivo  work.

 3D  printing  is  a  long  term  trend  that  may  radically  affect  the  creation  of  libraries  and  patentabilty  of  compounds,  but  it’s  16

not  yet  able  to  print  at  the  molecular  level.

Page 18: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

corporate)  simply  do  not  have  the  incentives  or  internal  structures  to  benefit  from  CBPP  in  this  manner.    !Screening  is  already  a  fee-­‐for-­‐service  market  as  well  as  an  in-­‐house  service,  which  makes  it  very  amenable  to  sharing  economy  approaches  with  the  caveat  that  some  chemicals  in  the  library  are  harder  to  make  than  others  –  long  processes,  expensive  precursors,  unusual  techniques.  Peer  to  peer  rentals  would  require  a  very  trusted  multi-­‐side  platform  vendor;  the  market  already  brokers  many  bilateral  sharing  relationships  mediated  by  lawyers.      Opportunities  for  “open  source  ethos”  development  via  sharing  economy  include  building  large  public  libraries,  leveraging  existing  public  library  resources,  running  contests  to  convert  hard-­‐to-­‐make  chemicals  into  easy-­‐to-­‐make  chemicals,  creating  structures  to  liberally  share  under  trade  secret  with  wider  audiences,  and  more.  Opportunities  for  CBPP  include  open  notebook  science,  pre-­‐competitive  collaborations,  and  incentive  based  models.  !Preclinical development At  the  preclinical  phase  there  has  been  a  conscious  choice  of  compound  (family)  and  the  work  begins  on  lining  up  for  a  clinical  trial  process.  Generally  speaking  both  property  filings  (patents  on  either  composition  of  matter  or  indication)  and  regulatory  filings  (NCE  /  new  chemical  entity)  or  NME  /  new  molecular  entity)  filing  have  been  made  by  the  owner  before  the  investment  in  preclinical  work  begins.  !Key  aspects  of  preclinical  build  on  elements  touched  on  in  lead  development,  but  take  them  to  scale:  how  active  is  the  molecule,  what  organ  systems  does  it  hit  in  model  animals,  what  are  the  likely  toxic  effects  and  how  severe  are  they,  how  will  the  molecule  be  delivered  (pill/shot/cream  etc),  how  will  the  molecule  be  manufactured,  and  so  forth.  Significant  tacit  knowledge  is  deployed  here  to  “know”  from  the  data  whether  model  organism  drug  is  promising  or  not.    !The  process  seems  to  yield  more  false  positives  than  false  negatives,  indicating  that  reactions  from  tacit  knowledge  saying  “this  won’t  work”  tend  to  be  accurate  while  “this  will  work”  may  be  a  result  of  confirmation  bias  as  well  as  simple  lack  of  knowledge  about  mechanisms  of  disease.  It  is  possible  that  the  higher  understanding  of  toxicity  (studied  in  all  cases,  whereas  disease  is  only  studied  in  its  own  case)  allows  researchers  to  recognize  it  in  advance  more  accurately  than  efficacy.  !IP  is  not  the  primary  block  to  “open  source”  in  pre-­‐clinical  development,  as  the  patent  filings  are  typically  already  complete.  But  there  is  still  enormous  importance  attached  to  trade  secrecy  and  fear  of  sharing  –  pre-­‐clinical  can  give  clues  to  investors  and  competitors,  or  provide  grist  for  lawsuits  downstream  over  post-­‐approval  side  effects.  Worse,  the  tacit  knowledge  required  to  effectively  interpret  the  data  is  rare  and  unevenly  distributed.    !

�18

Page 19: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Within  the  space  of  CBPP  on  pre-­‐clinical  knowledge,  data  related  to  the  bioactivity  of  the  compound  is  much  more  sensitive  than  the  data  related  to  the  manufacturing  and  potential  bioavailability  (absorption,  distribution,  metabolism,  excretion)  of  the  compound.  The  latter  may  be  amenable  to  CBPP  in  an  open  system  context.  It  is  also  possible  to  open  source  the  bioactivity  data  but  requires  a  commitment  to  either  an  unpatented  compound  (and  thus  another  incentive  system  to  get  investments  to  get  through  the  clinic)  or  trust  that  a  patent  owner  will  somehow  share  the  benefits  of  CBPP.  !The  sharing  economy  here  seems  divided:  peer  to  peer  rentals  perform  best  when  there  is  a  large  population  on  each  side,  and  that  does  not  exist  in  pre-­‐clinical.  There  is  a  small  population  of  those  with  the  necessary  expertise  in  both  the  chemistry  of  the  molecule  and  the  biology  of  the  disease  to  make  informed  choices  about  taking  a  molecule  forward.  Additionally,  the  number  of  total  compounds  that  make  it  to  this  stage  is  low.  Redistribution  markets  for  shelved  compounds  do  exist  already  but  are  brokered  primarily  through  the  social  networks  of  pharmaceutical  executives  and  scientists.      At  the  close  of  this  phase,  some  group  at  some  point  has  to  come  to  a  decision  as  to  whether  or  not  the  compound  should  be  promoted  to  phase  I  clinical  trials,  which  is  a  decision  costing  tens  of  millions  of  dollars.  That  same  group  also  has  to  decide  whether  or  not  to  file  with  patent  and  regulatory  offices,  which  is  also  not  something  that  CBPP  or  sharing  economy  has  been  shown  to  do  effectively.  There  is  real  movement  towards  consortium-­‐based  experimentation  with  CBPP  and  sharing  economy  in  this  space  to  create  alternatives  to  the  firm  that  are  able  to  make  and  support  these  decisions.  The  implicit  hypothesis  being  tested  is  that  a  more  open  clinical  process  will  allow  stop-­‐go  decisions  to  be  made  more  quickly,  saving  time  and  money  and  improving  quality.    !At  the  manufacturing  end  of  the  pipeline,  we  must  also  consider  the  generics  industry  as  relevant  to  CBPP.    Generic  drug  manufacturers  take  nonproprietary  information  –  for  example  the  relevant  IP  from  off-­‐patent  or  never-­‐patented  drugs  –  and  take  those  drugs  forward  on  a  market  basis.  While  they  may  have  their  own  proprietary  processes,  or  even  process  patents,  they  can  be  considered  a  vehicle  for  bringing  unpatented  health  technologies  to  market.    A  loose  analogy  would  be  that  they  are  the  Red  Hats,  or  a  Red  Hat,  of  the  pharmaceutical  industry,  in  that  they  market  and  distribute  products  built  on  nonproprietary  IP.    !!

�19

Page 20: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

An Open Source Drug Discovery Model, End To End    The  goal  of  part  3  of  this  paper  is  to  imagine  a  set  of  interlinked  public  and  private  structures  that  might  be  capable  of  moving  from  early  stage  target  identification  all  the  way  through  to  approval  and  post-­‐marketing  surveillance.      The  contemporary  model  for  drug  development  is  an  attempt  to  convert  a  fundamentally  uncertain  scientific  process  into  a  quantifiable,  replicable,  and  scalable  business.  It  represents  a  Taylorist  view  of  science  –  rational,  empirical,  improvable.  But  although  scientists  themselves  must  be  rational  and  empirical,  the  conversion  of  scientific  experiments  into  medicines  that  work,  pass  regulatory  approval,  and  can  be  sold  in  the  market  has  turned  out  to  be  at  least  semi-­‐random.      And  the  pharmaceutical  firm  itself  does  not  exist  in  a  vacuum.  It  sits  in  an  ecosystem  of  knowledge  creation  and  investment  with  many  players,  most  notably  the  federal  governments  of  many  countries  investing  billions  of  dollars  in  science  research  and  development  and  the  investment  of  private  capital  into  startup  biotechnology  companies  that  play  a  key  intermediate  role  between  academic  knowledge  creation  and  industrial  drug  discovery.      When  knowledge  is  created  in  academia,  its  primary  form  is  copyrighted  content  via  the  academic  paper.  In  rare  cases  the  knowledge  is  valuable  enough  to  be  patented  and  licensed,  most  often  to  a  startup  company  funded  by  private  capital.  Most  academic  patents  are  unlicensed  however  and  startups  in  biotechnology  have  a  high  failure  rate.  There  is  thus  an  active  secondary  market  in  resale  of  related  patents  to  non-­‐practicing  entities  (“trolls”).      When  a  biotechnology  startup’s  R&D  program  shows  success,  it  can  attract  larger  and  larger  private  capital  and  eventually  make  it  to  the  public  markets.  But  the  expertise  needed  to  navigate  regulatory  phases  and  the  high  failure  rates  of  compounds  in  phase  I-­‐III  trials  often  force  integration  into  larger  firms  via  merger  and  acquisitions.      The  marketed  drug  thus  sits  at  the  end  of  a  long,  expensive  process.  The  firm  that  owns  the  drug  is  dominated  by  the  need  to  navigate  regulatory  systems,  produce,  market,  and  distribute  drugs  worldwide,  and  to  pay  off  failed  bets  inside  and  outside  its  own  walls.  Rare  are  the  drugs  that  are  marketed  by  the  same  firm  that  began  the  target  identification  process.      Although  networked  systems  now  represent  alternative  paths  to  knowledge  creation,  at  transaction  costs  lower  than  previously  possible,  the  emergence  of  CBPP  and  sharing  economy  effects  won’t  necessarily  lead  to  open  source  industrial  models.  A  new  industrial  model  will  require  either  systemic  change  by  existing  players  or  the  creation  of  new  institutional  players  friendly  to  commons-­‐based  and  sharing  economy  knowledge  creation.  

�20

Page 21: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

!One  end  to  end  path  might  look  something  like  the  following.    First,  a  heavily  crowdsourced,  non-­‐patented,  computer-­‐driven  form  of  early-­‐stage  drug  discovery.    This  could  take  the  form  of  university-­‐based  labs  working  on  early  stage  “in  silico”  drug  discovery,  as  well  as  medicinal  chemistry      Collaborators  would  agree  ex  ante  to  place  an  “open”  and  likely  patent  free  IP  regime  on  their  work.    This  stage  might  also  be  fueled  by  a  prize,  where  those  who  agreed  up  front  to  place  their  work  in  the  public  domain  would  be  eligible.        !The  second  stage,  where  more  expensive  clinical  trials  must  be  conducted,  could  be  largely  publicly  supported,  where  the  drugs  being  developed  were  for  important  public  health  needs  for  which  there  were  limited  market  incentives  (e.g  antibiotics,  tuberculosis,  malaria,  Ebola).    Funding  could  be  provided  to  any  “open  soruce”  candidate  that  had  reached,  for  example,  phase  1  clinical  trials.  An  affordable  pricing  regime,  or  a  patent  free  condition  for  low-­‐income  markets,    would  be  imposed  as  a  condition.  The  third  stage  would  involve  manufacture.    The  generics  industry  is  already  ready  and  willing  to  take  forward  patent-­‐free  drugs  on  a  market  basis,  ensuring  affordability.    !Systemic change Systemic  change  by  existing  players  is  already  happening,  at  least  around  the  edges  of  the  process.  Governments  now  often  attach  requirements  that  make  scientific  publications  available  to  the  public,  which  is  creating  a  steadily  growing  knowledge  commons  of  biological  knowledge.  This  is  a  new  variation  of  open  source  in  which  a  guild  creates  a  reusable  set  of  knowledge  products  (data  and  papers)  and  then  is  compelled  to  open  them  up,  at  which  point  a  diverse  set  of  individuals  and  institutions  can  begin  to  translate  them  into  drug  discovery.      Similarly,  large  pharmaceutical  firms  have  begun  to  share  data  and  knowledge  connected  to  clinical  and  pre-­‐clinical  compounds  in  hopes  of  leveraging  CBPP  of  knowledge  related  to  toxicity  and  disease  mechanisms.  This  is  an  early-­‐stage  development,  and  most  sharing  is  related  not  to  compounds  under  investigation  but  to  the  “comparator”  data  gathered  on  standard  of  care  or  disease  progression.  The  data  are  typically  available  under  restrictive  contracts  for  re-­‐analysis  and  often  times  the  firm  providing  retains  significant  rights.        This  is  a  long  way  from  a  true  open  source  approach.  But  it  is  a  major  crack  in  the  wall  of  trade  secrecy  and  data  retention  that  mark  the  modern  pharmaceutical  company.  Both  of  these  developments  need  to  accelerate  and  demonstrate  capacity  to  compliment  existing  discovery  capacity  if  existing  models  are  to  approach  an  open  source  ecosystem.      A  potential  systemic  change  by  existing  players  would  be  to  intentionally  allow  the  late  entry  of  non-­‐profit  organizations  or  governments  into  the  existing  discovery  process.  Patents  related  to  shelved  projects  could  be  placed  under  non-­‐assertion  

�21

Page 22: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

pledges  for  use  in  rare  disease  or  diseases  of  the  global  poor,  and  related  data  made  available  as  a  club  good  under  contract  to  accelerate  repurposing  of  compounds.  The  economic  effect  to  the  firm  is  similar  to  the  write-­‐off  but  empowers  new  players  to  jump  in  with  open  source  missions  and  investors.    Indeed,  this  is  already  happening,  as  private  firms  are  donating  candidates  and  molecules  to  nonprofits  for  them  to  take  forward.      !There  is  already  a  strong  market  of  in-­‐licensing  and  out-­‐licensing  of  leads  and  targets  amongst  the  market.  But  the  market  is  highly  artisanal  and  dependent  on  relationships  among  scientists  and  executives.  The  outflow  of  information  about  failures  and  “shelved”  projects  from  firms  is  weak,  which  keeps  knowledge  about  failures  scarce.  This  hampers  the  emergence  of  an  ecosystem  that  supports  open  source  –  the  expense  concentrates  capital  into  a  few  firms,  and  the  scarcity  of  knowledge  caps  total  cognitive  supply  at  a  low  level.      New industrial structures The  emergence  of  new  institutional  structures  –  beyond  federal  investment,  academic  research,  private  capital  and  large  firms  –  could  be  the  key  to  moving  to  a  truly  open  source  approach.  The  lack  of  significant  human  resources  available  in  chemistry  and  in  regulatory  is  not  a  problem  that  can  easily  be  addressed  through  contractual  or  licensing  approaches.  But  we  have  some  parallels  against  which  to  draw  from  other  areas.      1.   A  public  reserve  for  early-­‐stage  biological  knowledge  !The  creation  of  national  parks,  biosphere  reserves,  and  other  structures  in  real  property  could  inspire  the  creation  of  similar  reserves  in  knowledge  related  to  biology.  In  many  ways,  this  already  exists  via  the  US  government’s  investment  in  the  National  Center  for  Biotechnology  Information  and  the  emerging  movement  to  open  access  in  the  scientific  literature.  But  it  could  be  codified  and  most  importantly  economically  valued  as  a  public  resource  that  supports  downstream  drug  discovery  at  substantially  reduced  costs  and  time.  !2.   A  public  or  private  investment  fund  to  support  the  emergence  of  non-­‐exclusionary  sharing  economy  startups  in  the  lead  discovery  and  optimization  space.  !Since  the  human  resources  in  this  space  are  scarce,  and  the  capital  resources  relatively  high  and  concentrated,  the  emergence  of  a  network  of  companies  providing  services  via  standardized  fee-­‐for-­‐service  contract  at  low,  pre-­‐set  prices  could  empower  new  groups  with  less  money  and  expertise  to  work  in  lead  development.  This  field  is  also  already  emerging,  but  the  companies  do  not  have  typically  have  an  incentive  to  work  in  a  fee-­‐for-­‐service  model,  and  often  opt  to  ask  for  downstream  royalties,  which  damages  the  low-­‐price  potential  of  open  source  discovery.  A  fund  dedicated  to  social  value  as  well  as  economic  value  that  made  

�22

Page 23: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

standardized  contracting  part  of  its  investment  thesis  would  relatively  quickly  spur  the  creation  of  a  resource  sector.  !3.   A  contract  research  organization  operated  as  a  public  utility  to  assist  non-­‐profits,  small  corporations,  and  other  parties  to  submit,  navigate,  and  complete  the  regulatory  process.    !Small  parties  that  might  survive  target  identification  via  the  knowledge  commons  and  identify  promising  leads  via  a  “virtual”  contract  model  will  likely  run  aground  in  the  regulatory  process.  Even  savvy  companies  with  massive  amounts  of  private  capital  regularly  fail  to  navigate  regulatory  waters  effectively.  Much  as  public  utilities  broker  access  to  resources  in  energy  and  real  estate,  a  CRO  operated  as  a  public  utility  would  create  a  large  institutional  partner  with  concentrated  regulatory  expertise  that  simultaneously  had  no  incentive  to  demand  punitive  partnership  agreements.  And  of  course  its  costs  would  be  much  lower  as  the  utility  model  caps  profits.  Another  benefit  of  the  utility  model  would  be  the  ability  to  include  contractual  clauses  that  cap  profits,  require  compulsory  licenses  for  generic  manufacture,  and  so  on.    !Using  the  utility  would  be  optional  –  firms  that  did  not  want  those  caps  would  be  free  to  navigate  the  system  on  their  own  –  but  the  very  existence  of  the  utility  would  radically  alter  the  marketplace.  Funding  would  also  be  required  in  order  to  take  drug  candidates  forward  through  clinical  trials,  particularly  in  areas  of  low  revenue/neglected  disease.    This  is  where  a  consortium  of  national  government  funders  (e.g.  the  G-­‐20)  could  play  a  role.      If  each  of  these  three  new  players  emerged,  it  is  possible  to  sketch  a  path  from  early  stage  open  knowledge  to  late  stage  regulatory  submission  that  does  not  require  the  massive  firm  size  or  access  to  stock  market  capital  of  the  current  system.    !

�23

Page 24: RockefellerFoundationBellagio CenterJuly2014 ...65.175.64.176/news/events/From_Hierarchies_to... · The!goalof!this!paper!is!to!provide!an!overview!of!that!ongoing!naturalexperiment

Lead  Authors:  John  Wilbanks  and  Jaykumar  Menon  Supported  by  the  Open  Society  Foundations  Licensed  to  the  public  under  Creative  Commons  BY-­‐SA  4.0    

�24