4
Robust Extraction o f Access Elements f o r Broadband Small-signal F E T Models Anthony E . Parkert a n d Simon J. Mahon+ t Department o f Electronics, Macquarie University, Sydney Australia 2109, [email protected] T Mimix Broadband, 10795 Rockley Rd , Houston, T X 77099, USA, [email protected] Abstract- A small-signal transistor model tech- nique i s proposed. I t partitions access a n d intrinsic elements with a more accurate network f o r t h e intrinsic section. This resolves problems o f nonphysicalparameters a nd inconsisten- cies across bias. Th e technique uses l o w gate an d zero drain bias measurements t o directly determine an access network. There is no need t o apply electrical stress t o the device during measurement. Th e procedure i s deterministic. Index Terms- Small-signal Modeling, HEMT, Transistor Characterization, Microwave FET, I. INTRODUCTION Microwave transistors consist o f a n active region ac - cessed v i a metal contacts a nd wiring. Apart from heating a n d trapping effects, t h e active region i s usually well behaved across t h e frequency band. I n contrast, t h e access elements present significant impedances a t high frequen- cies, vary with device geometry, a n d introduce losses. A correct lumped-element model o f access impedances enables accurate scaling with geometry a n d describes t h e connection o f the nonlinear active region t o i t s circuit. T h e access network i s critical t o t h e determinationof equivalent circuits f or both linear a n d nonlinear models. There ar e techniques f or determining access elements from measurements a t zero drain-source bias (coldfet con- ditions). A t this bias, i t c an b e assumed that a t extreme gate potentials the intrinsic region c a n b e approximated b y very l o w or very high impedances [1], [2]. Th e choice of intrinsic network c an ameliorate non physical results [3]. intrinsic network includes channel a nd gate junc- tion resistances, which ar e apportioned between the drain a n d source. This gives more unknowns than measurable relations, so one, usually channel resistance, must b e s e t a priori [4]. A n incorrect setting c a n produce inconsistent results across frequency a n d bias. Optimization c an produce a f i t t o a given lumped- element model across a range o f bias a n d frequencies [5]. It i s still necessary t o determine starting values f o r t h e calculation, which also requires setting a n element, such as gate resistance, a priori [6]. Th e accuracy o f th e topology a n d scalability o f t h e model remains untested. Correct representation o f t h e intrinsic region i s k e y t o accurate coldfet extraction o f access networks. This c an lead t o a n intractable mathematical problem, b ut simplifi- cation c a n lead t o non physical results. Fig. 1 . Small-signal F E T model with access elements and laterally symmetric channel, which applies t o zero drainbias a n d l o w gate current. I n this work, a n accurate analysis o f network parameters retains frequency dependence in the relationships, s o that additional information is available f o r t h e extraction. Th e result i s a robust procedure that gives consistent results a t other biases a n d frequencies. Th e only assumption is that the coldfet intrinsic region h a s lateral symmetry. Th e topology used f o r t h e extraction i s presented in Section II . This i s analyzed i n Section I I I t o extract access elements. T h e nature o f intrinsic capacitacnce a t other biases is demonstration i n Section I V before conclusions ar e drawn in Section V . I I. SMALL-SIGNAL MODEL A t zero drain bias with l ow gate current t h e intrinsic regions is laterally symmetric a n d th e conductance f t h e gate junction i s insignificant. Th e latter infers that the device should b e tested without undue gate-current stress, so power dissipation a t heavy forward gate biases i s n o t a consideration. This condition also applies t o insulated gate devices. Lateral symmetry c a n b e assumed provided there is no alteration to either e n d o f t h e channel, such as field plates or lightly doped drain regions. T h e small-signal F E T model f o r zero drain-source bias in Fig. 1 includes access inductances, (LD, L G, L S ) a nd resistances (RD, RG, RS) a nd extrinsic capacitances (CGP, CDP, CGD). As drawn, i t i s configured f o r a back-side ground plane with a v a t o t h e source. Th e intrinsic part o f the model consists o f a drain-source conductance, Gd,, a n d a delta-network of capacitances (Cg, C g , C d ) arranged i n symmetry around t h e gate. Th e 1-4244-0688-9/07/$20.00 2007 IEEE L G R G CGD R D L D Port 1 C g C g C Port 2 T CGP G d T T CDP 78 3

Robust Extraction of Access Element

  • Upload
    iwbagm

  • View
    230

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Robust Extraction of Access Element

8/3/2019 Robust Extraction of Access Element

http://slidepdf.com/reader/full/robust-extraction-of-access-element 1/4

R o b u s t E x t r a c t i o n o f A c c e s s E l e m e n t s f o rB r o a d b a n d S m a l l - s i g n a l FET M o d e l s

A n t h o n y E . P a r k e r t a n d S i m o n J . M a h o n +t D e p a r t m e n t o f E l e c t r o n i c s , M a c q u a r i e U n i v e r s i t y , S y d n e y A u s t r a l i a 2 1 0 9 , t o n y p @ i e e e . o r g

T Mimix B r oa d b a n d, 1 0 7 9 5 R o c k l e y R d , H o u s t o n , TX 7 7 0 9 9 , USA, s m a h o n @ m i m i x b r o a d b a n d . c o m

A b s t r a c t - A s m a l l - s i g n a l t r a n s i s t o r m o d e l e x t r a c t i o n t e c h -

n i q u e i s p r o p o s e d . I t p a r t i t i o n s access a n d i n t r i n s i c e l e m e n t sw i t h a more a c c u r a t e n e t w o r k f o r t h e i n t r i n s i c s e c t i o n . T h i sr e s o l v e s p r o b l e m s o f n o n p h ys i c a l p a r a m e t e r s a n d i n c o n s i s t e n -

c i e s across b i a s . Th e t e c h n i q u e uses l o w g a t e an d zero d r a i nb i a s m e a s u r e m e n t s t o d i r e c t l y d e t e r m i n e an access n e t w o r k .T h e r e i s no n e e d t o a p p l y e l e c t r i c a l s t r e s s t o t he d e v i c e d u r i n gm e a s u r e m e n t . Th e p r o c e d u r e i s d e t e r m i n i s t i c .

I n d e x Terms- S m a l l - s i g n a l M o d e l i n g , HEMT, T r a n s i s t o r

C h a r a c t e r i z a t i o n , Microwave F E T ,

I. INTRODUCTION

M i c r o w a v e t r a n s i s t o r s c o n s i s t o f an a c t i v e r e g i o n ac -

c e s s e d v i a m e t a l c o n t a c t s a n d w i r i n g . A p a r t f r o m h e a t i n g

a n d t r a p p i n g e f f e c t s , t h e a c t i v e r e g i o n i s u s u a l l y w e l l

b e h a v e d across t h e f r e q u e n c y b a n d . I n c o n t r a s t , t h e access

e l e m e n t s p r e s e n t s i g n i f i c a n t i m p e d a n c e s a t h i g h f r e q u e n -

c i e s , vary w i t h d e v i c e g e o m e t r y , a n d i n t r o d u c e l o s s e s .

A c o r r e c t l u m p e d - e l e m e n t m o d e l o f access i m p e d a n c e s

e n a b l e s a c c u r a t e s c a l i n g w i t h g e o m e t r y a n d d e s c r i b e s t h e

c o n n e c t i o n o f t he n o n l i n e a r a c t i v e r e g i o n t o i t s c i r c u i t . T h e

access n e t w o r k i s c r i t i c a l t o t h e d e te r m i n a t i o n o f e q u i v a l e n t

c i r c u i t s f o r b o t h l i n e a r a n d n o n l i n e a r m o d e l s .T h e r e ar e t e c h n i q u e s f o r d e t e r m i n i n g access e l e m e n t s

f r o m measurements a t zero d r a i n - s o u r c e b i a s ( c o l d f e t con-

d i t i o n s ) . A t t h i s b i a s , i t c an b e a s s u m e d t h a t a t e x t r e m e

g a t e p o t e n t i a l s t h e i n t r i n s i c r e g i o n c an b e a p p r o x i m a t e d b y

very l o w or very h i g h i m p e d a n c e s [ 1 ] , [ 2 ] . Th e c h o i c e o f

i n t r i n s i c n e t w o r k can a m e l i o r a t e non p h y s i c a l r e s u l t s [ 3 ] .

T h e i n t r i n s i c n e t w o r k a l s o i n c l u d e s c h a n n e l a n d g a t e j u n c -

t i o n r e s i s t a n c e s , w h i c h ar e a p p o r t i o n e d b e t w e e n t he d r a i n

a n d s o u r c e . T h i s g i v e s more u n k n o w n s t h a n m e a s u r a b l e

r e l a t i o n s , so one, u s u a l l y c h a n n e l r e s i s t a n c e , must b e s e t

a p r i o r i [ 4 ] . A n i n c o r r e c t s e t t i n g can p r o d u c e i n c o n s i s t e n t

r e s u l t s across f r e q u e n c y a n d b i a s .O p t i m i z a t i o n can p r o d u c e a f i t t o a g i v e n l u m p e d -

e l e m e n t m o d e l across a range o f b i a s a n d f r e q u e n c i e s [ 5 ] .

I t i s s t i l l necessary t o d e t e r m i n e s t a r t i n g v a l u e s f o r t h e

c a l c u l a t i o n , w h i c h a l s o r e q u i r e s s e t t i n g a n e l e m e n t , s u c h as

g a t e r e s i s t a n c e , a p r i o r i [ 6 ] . Th e accuracy o f t h e t o p o l o g y

a n d s c a l a b i l i t y o f t h e m o d e l r e m a i n s u n t e s t e d .

C o r r e c t r e p r e s e n t a t i o n o f t h e i n t r i n s i c r e g i o n i s k e y t o

a c c u r a t e c o l d f e t e x t r a c t i o n o f access n e t w o r k s . T h i s c an

l e a d t o a n i n t r a c t a b l e m a t h e m a t i c a l p r o b l e m , b u t s i m p l i f i -c a t i o n can l e a d t o non p h y s i c a l r e s u l t s .

F i g . 1 . S m a l l - s i g n a l FET m o d e l w i t h access e l e m e n t s a n d l a t e r a l l ys y m m e t r i c c h a n n e l , w h i c h a p p l i e s t o zero d r a i n b i a s a n d l o w g a t e c u r r e n t .

I n t h i s w o r k , a n a c c u r a t e a n a l y s i s o f n e t w o r k p a r a m e t e r s

r e t a i n s f r e q u e n c y d e p e n d e n c e i n t h e r e l a t i o n s h i p s , so t h a t

a d d i t i o n a l i n f o r m a t i o n i s a v a i l a b l e f o r t h e e x t r a c t i o n . Th e

r e s u l t i s a r o b u s t p r o c e d u r e t h a t g i v e s c o n s i s t e n t r e s u l t sa t o t h e r b i a s e s a n d f r e q u e n c i e s . Th e o n l y a s s u m p t i o n i s

t h a t t he c o ld f e t i n t r i n s i c r e g i o n h a s l a t e r a l s y m m e t r y . Th e

t o p o l o g y u s e d f o r t h e e x t r a c t i o n i s p r e s e n t e d i n S e c t i o n II .

T h i s i s a n a l y z e d i n S e c t i o n I I I t o e x t r a c t access e l e m e n t s .

T h e n a t u r e o f i n t r i n s i c c a p a c i t a c n c e a t o th e r b i a s e s i s

d e m o n s t r a t i o n i n S e c t i o n I V b e f o r e c o n c l u s i o n s ar e d r a w n

i n S e c t i o n V .

I I. SMALL-SIGNAL M O D E L

A t zero d r a i n b i a s w i t h l o w g a t e c u r r e n t t h e i n t r i n s i c

r e g i o n s i s l a t e r a l l y s y m m e t r i c a n d t h e c o n d u c t a n c e o f t h e

g a t e j u n c t i o n i s i n s i g n i f i c a n t . Th e l a t t e r i n f e r s t h a t t h e

d e v i c e s h o u l d b e t e s t e d w i t h o u t u n d u e g a t e - c u r r e n t s t r e s s ,

so po w e r d i s s i p a t i o n a t h e a v y f o r w a r d g a t e b i a s e s i s n o t a

c o n s i d e r a t i o n . T h i s c o n d i t i o n a l s o a p p l i e s t o i n s u l a t e d g a t e

d ev i c es . L a t er a l symmetry c an b e a s s u m e d p r o v i d e d t h e r ei s no a l t e r a t i o n t o e i t h e r e n d o f t h e c h a n n e l , s u c h as f i e l d

p l a t e s or l i g h t l y d o p e d d r a i n r e g i o n s .T h e s m a l l - s i g n a l FET m o d e l f o r zero d r a i n - s o u r c e b i a s

i n F i g . 1 i n c l u d e s access i n d u c t a n c e s , ( L D , L G , L S )a n d r e s i s t a n c e s ( R D , R G , R S ) a n d e x t r i n s i c c a p a c i t a n c e s

( C G P , CDP, C G D ) . As d r a w n , i t i s c o n f i g u r e d f o r a

b a c k - s i d e g r o u n d p l a n e w i t h a v i a t o t h e source. Th e

i n t r i n s i c p a r t o f t h e m o d e l c o n s i s t s o f a d r a i n - s o u r c e

c o n d u c t a n c e , G d , , a n d a d el t a - n et w o r k o f c a p a c i t a n c e s

( C g , C g , C d ) a r r a n g e d i n s y m m e t r y a r o u n d t h e g a t e . Th e

1 - 4 2 4 4 - 0 6 8 8 - 9 / 0 7 / $ 2 0 . 0 0 2 0 0 7 IEEE

LG R G CG D R D L D

P o r t 1 C g C g C P o r t 2

T C GP G dT T

CDP

7 8 3

Page 2: Robust Extraction of Access Element

8/3/2019 Robust Extraction of Access Element

http://slidepdf.com/reader/full/robust-extraction-of-access-element 2/4

RD LD

P o r t 2

1 2

10

CDP + C dC s 8a )

g 6

a / ) P 4 4

2

0

F i g . 2 . A n a p p r o x i m a t i o n t o t h e m o d e l o f F i g . 1 , w h i c h i s a c c u r a t e f o rf r e q u e n c i e s l o w e n o u g h t h a t t h e c a p a c i t i v e r e a c t a n c e i s l a r g e r t h a n t h eaccess r e s i s t a n c e s a n d source r e a c t a n c e .

g a te c u r r e n t i s a s s u m e d l o w e r e n o u g h t h a t g a t e - j u n c t i o nd y n a m i c r e s i s t a n c e i s much g r e a t e r t h a n t h e r e a c t a n c e

o f t h e g a t e c a p a c i t a n c e . F o r t y p i c a l d e v i c e s , t h i s s i m p l y

i m p l i e s t h a t a h i g h g a t e b i a s ( > + 0 . 6 V ) ar e a v o i d e d .

III. EXTRACTION PROCEDURE

T h e e x t r a c t i o n f o l l o w s a r e p e a t e d s equ e n c e o f d e t e r m i n -

i n g o u t e r e l e m e n t s a n d s u b t r a c t i n g t h e m f r o m t h e d a t a u n t i lt h e i n t r i n s i c e l e m e n t s ar e r e a c h e d . T h e d a t a i s c o n v e r t e d

t o c o n d u c t a n c e or a d m i t t a n c e p a r a m e t e r s as a p p r o p r i a t e .

A . A c c e s s I n d u c t a n c e

T h e f i r s t s t e p i s t o d e t e r m i n e t h e access i n d u c t a n c e s L Ga n d L D f r o m m e a s u r e d o p e n - c h a n n e l c o l d f e t i m p e d a n c e

p a r a m e t e r s . F o r t h i s , t h e m o d e l o f F i g . 1 i s s i m p l i f i e db y c o m b i n i n g t h e c a p a c i t a n c e s as s h o w n i n F i g . 2 . T h i s

i s r e a s o n a b l e f o r source access i m p e d a n c e s l e s s t h a nt h e c a p a c i t i v e r e a c t a n c e , w h i c h s e t s a n upper l i m i t on

measurement f r e q u e n c y (z 4 0 GHz) a n d f a v o r s open

c h a n n e l ( 0 . 2 V < V G S < 0 . 5 V ) d a t a . S i m u l a t i o n s s h o w

t h a t t h e v a l u e s o f t he d r a i n a n d g a t e i n d u c t a n c e s ar e n o t

s i g n i f i c a n t l y c h a n g e d b y t h e a p p r o x i m a t i o n . V a l u e s f o r t h e

o t h e r e l e m e n t s ar e b e t t e r s e t i n l a t e r s t e p s , h o w e v e r .

T h e i m p e d a n c e p a r a m e t e r s f o r F i g . 2 a r e :

z l l = R G +R s +a2p(w)

+ L G +Ls- 2Cd -Ta2P(w)] ( 1 )

Z 1 2 = Z 2 1 Rs+a p ( w )+ j[Ls- T T a p ( w ) ] ( 2 )

Z 2 2 = RD + R S + p ( w ) + jw[LD + L S - TT p ( w ) ] ( 3 )

w h i c h ar e e x p r e s s e d i n t e r m s o f a p a r t i t i o n i n g r a t i o

a = (CGD + C g ) / ( C G P + C G D + 2 c g ) ( 4 )

a f r e q u e n c y - d e p e n d e n t i n t r i n s i c d r a i n - s o u r c e r e s i s t a n c e

p ( w ) =(Gd5 (1+W 2 T T 2 ) ) - 1

a n d a c h a r a c t e r i s t i c t r a n s i t t i m e

TT = ( C d + CDP +a(Cg + C G P ) ) / G d s . ( 6 )

0 10 2 0 3 0

F r e q u e n c y ( G H z )

4 0 5 0

F i g . 3 . M e a s u r e d r e s i s t a n c e p a r a m e t e r s ( r e a l p a r t s ) f o r a 1 5 0 , u m HEMTa t VGS = 0 . 4 V a n d V D S = 0. T h e l i n e s s h o w ( 1 ) - ( 6 ) f i t t e d t o t h e 2 0 t o

40GHz d a t a , w h i c h g a v e RS = 2 .7 2 Q , RD = 3 . 3 3 Q , R G = 3 . 0 1 Q ,

1 l G d s = 5.28 Q , a= 0 . 4 8 , an d 1TT = 2 w r x 2 2 . 4 GHz.

1 2

10

6

c )

P 4

0 10 2 0 3 0

F r e q u e n c y ( G H z )

6 0

5 0

40-

3 00 i

c t

2 0

10a

o

4 0 5 0

F i g . 4 . M e a s u r e d r e a c t a n c e p a r a m e t e r s ( i m a g i n a r y p a r t s ) f o r a 1 5 0 , umHEMT. T h e l i n e s s h o w ( 1 ) - ( 6 ) f o r LS = 8 . 1 p H , LD = 3 0 . 1 p H ,

LG= 38.8

p H ,CGD +

Cg= 98.9 fF , an d

Gd ,o a , a n d

TTas f o r

F i g . 3 .

T h e s e g i v e s i x e q u a t i o n s ( r e a l a n d i m a g i n a r y p a r t s o f

( 1 ) , ( 2 ) a n d ( 3 ) ) f o r t h e t e n e l e m e n t s o f F i g . 2 . A d d i t i o n a l

i n f o r m a t i o n i s i n t h e f r e q u e n c y d e p e n d e n c e o f p ( w ) .

A f i t t o ( 2 ) p r o v i d e s an e s t i m a t e o f R s , a / G d 5 , TT

a n d L S . A n e x t e n s i v e s t u d y h a s s h o w n t h a t t he d i f fe r e n c e

b e t w e e n F i g s 1 a n d 2 l e a s t a f f e c t s Z 1 2 a n d Z 2 1 , so t h ef r e q u e n c y d e p e n d e n c e o f t h e s e i s t he b e st c h o i c e f o r f i t t i n g

a p ( w ) . T h e q u a l i t y o f f i t i s e v i d e n t i n F i g s 3 a n d 4 .

W i t h f i t t e d v a l u e s R S , L S , G d , , a n d TT, a n d a= 0 . 5 ,

m e a s u r e d Z 2 2 can b e f i t t e d t o ( 3 ) t o y i e l d RD a n d L D .T h e n f i t t i n g m e a s u r e d g a t e - r e s i s t a n c e , R ( z l i ) , t o t h e r e a l

p a r t o f ( 1 ) y i e l d s R G i n t e r m s o f t h e o t he r e s t i m a t e d quan-

t i t i e s . T o e x t r a c t L G , a l i n e a r f i t t o a [ z l i ] / w + T T r a 2 p ( w )

versus 1 7 / 2 y i e l d s a / C g d f r o m t h e s l o p e a n d L G + LSf r o m t h e i n t e r c e p t .

A n i m p o r t a n t p o i n t t o n o t e i s t h a t i t i s t h e l o w f r e q u e n c y

i m p e d a n c e p a r a m e t e r s ar e s i g n i f i c a n t l y a f f e c t e d b y p ( w ) ,

w h i c h i n many processes can h a v e a c h a r a c t e r i s t i c t r a n s i t

f r e q u e n c y 1 I T T much g r e a t e r t h a n 1 0 0 G H z . H o w e v e r , i t

i s o n l y t h e source a n d d r a i n i n d u c t a n c e s t h a t ar e r e q u i r e d

784

CGD + C gL G RG

P o r t 1

C G P + C g

2 2A

ALAL Z l l -

- 1 2Z 2 1

A~AAA -

Page 3: Robust Extraction of Access Element

8/3/2019 Robust Extraction of Access Element

http://slidepdf.com/reader/full/robust-extraction-of-access-element 3/4

L DL G

L S

0 . 2 5

0 . 2

0 . 1 5 -

0 . 1

a)

C t

0 . 0 5

0I

0 0 . 2 0 . 4 0 . 6 0 . 8 1

p ( w ) (Q - m m )

X ( X-X-X-X-X-X-X-X-X-X- X - - X - 1 >

0 0 . 2 0 . 4 0 . 6 0 . 8 1

p ( w ) ( Q - m m )

F i g . 5 . V a r i a t i o n o f e x t r a c t e d access r e a c t a n c e e l e m en t s w i th c h o i c e o fd r a i n c o n d u c t a n c e , 1 l p ( w ) . T h e t o t a l d r a i n r e s i s t a n c e f o r t h i s process i s

R [ Z 2 2 ] =1.5Q-mmfor which 1 1 2 W T T 270 GHz, C g =670 fF/mm,

a= 0 . 4 8 was a s s u m e d .

R G ~ CGD RD

P o r t 1l

Cg

C- P o r t 2CGP_ Gd "'L/D

RS

F i g . 6 . A p p r o x i m a t e m o d e l o f t h e FE T p a r a m e t e r s f o r d a t a f r o m w h i c ht h e i m p e d a n c e s o f LG a n d LD ar e r e m o v e d . T h i s i s an a c c u r a t e m o d e lf o r zero d r a i n b i a s f o r f r e q u e n c i e s l e s s t h a n R s I L s .

f r o m t h i s s t e p a n d t h e s e ar e i n s e n s i t i v e t o aa n d G d s

T h u s , i f t h e t r a n s i t f r e q u e n c y i s b e y o n d t h e measurement

f r e q u e n c y range t h e n e s t i m a t e s o f a, G d , a n d TT c a n b e

u s e d r e l i a b l y . T h e p a r t i t i o n i n g r a t i o , a, i s s l i g h t l y l e s s

t h a n 0 . 5 t y p i c a l l y . T h e v a l u e o f 1 / G d 5 i s b o u n d e d b y0 a n d ( R [ Z 2 2 ] - R [ Z l 2 ] ) / a b u t a s e t t i n g i n t h e m i d d l e

o f t h i s range w i l l p r o v i d e a g o o d e x t r a c t i o n o f d r a i n

a n d g a t e i n d u c t a n c e s f r o m o p e n - c h a n n e l d a t a . T h e t r a n s i t

f r e q u e n c y can b e e s t i m a t e d b y TT R [ Z 2 2 ] ( M [ Y 2 2 ] -[ Y 1 2 ] a [ Y 2 1 ] / a [ y 1 1 ] ) - I f 1 I T T i s g r e a t e r t h a n 50 GHz t h e n

t h e error i n L D r e l a t i v e t o errors i n 1 / G d 5 i s o n l y 1 p H / Q ,

w h i c h l e a d s t o w o r s t case a c c u r a c i e s b e t t e r t h a n 9 9 % .

F i g u r e 5 s h o w s t h e v a r i a t i o n o f some o f t h e e x t r a c t e dp a r a m e t e r s f o r a f a s t t r a n s i t - t i m e d e v i c e versus t h e s e l e c -

t i o n o f G d 5 . P r o v i d e d g a t e c u r r e n t r e m a i n s l o w , errors ar er e d u c e d i n open c h a n n e l c o n d i t i o n s w h e r e G d s i s l a r g e .

T h i s s t e p p r o v i d e s r e l i a b l e e s t i m a t e s f o r source a n d

d r a i n access i n d u c t a n c e s a n d r e a s o n a b l e e s t i m a t e s f o r t h e

access r e s i s t a n c e s .

B . A c c e s s C a p a c i t a n c e s

T h e n e x t s t e p i s d e t e r m i n a t i o n o f e x t r i n s i c c a p a c i t a n c e s

f r o m m e a s u r e d c o l d f e t i m p e d a n c e s t a k e n a t p i n c h - o f f . T h e

source a n d d r a i n i n d u c t a n c e s ar e s u b t r a c t e d f r o m t h e d a t a ,w h i c h i s t h e n t r a n s f o r m e d t o a d m i t t a n c e s . T h e m o d e l o f

F i g . 6 i s u s e d , w h i c h i g n o r e s t h e s o u r c e i n d u c t a n c e . T h i s

g i v e s r e a s o n a b l e r e s u l t s f o r l o w f r e q u e n c i e s ( < 1 0 0 G H z ) .

T h e a d m i t t a n c e p a r a m e t e r s f o r t h e n e t w o r k i n F i g . 6 a r ea h i g h - o r d e r p o l y n o m i a l f u n c t i o n s o f w t h a t i n c l u d e a d o m -

i n a n t p o l e . T h e f u l l e x p r e s s i o n s r e m a i n w e l l a p p r o x i m a t e d

w h e n t r u n c a t e d t o s e c o n d o r d e r b y :

Y i i

Y 1 2

Y 2 2

w h e r e

W T 1 l C g + j [ 2 C g + CGP + C G D ]

Y 2 1 = -W T 1 2 C g -J[Cg + C G D ]

r2R G ( J g R + R S ( d + R D ( C g + Cd)]

+ G d s

G d s ( R s + RD) + 1

+j W J [ C d + C g + C D P + C G D ]

T11 = ( 4 R G +RS +R D ) C g

( 7 )

( 8 )

( 9 )

( 1 0 )

T 1 2 = (2RG + R D ) C g + ( RD - Rs )C d . ( 1 1 )

A t p i n c h - o f f , t h e a p p r o x i m a t i o n i s a c c u r a t e b e y o n d3 0 0 G Hz f o r t y p i c a l HEMTs p r o v i d e d t h a t G d s i s s m a l l

c o m p a r e d w i t h t h e access r e s i s t a n c e s . T h e l a t t e r i s t h e case

a t p i n c h - o f f .T h e r e a l p a r t s , or c o n d u c t a n c e s , ar e n o t i n f l u e n c e d b y

e x t r i n s i c c a p a c i t a n c e s , b u t d o h a v e a f r e q u e n c y d e p e n -

d e n c e d u e t h e i n t r i n s i c c a p a c i t a n c e e l e m e n t s . T h u s , t h e

a d m i t t a n c e p a r a m e t e r s can b e u s e d t o s e p a r a t e e x t r i n s i ca n d i n t r i n s i c c a p a c i t a n c e s .

T h e r e ar e n i n e p a r a m e t e r s i n F i g . 6 t o b e d e t e r m i n e d

f r o m s i x r e l a t i o n s , so t h e t h r e e access r e s i s t a n c e s , R G , RSa n d RD, ar e s e t t o t h e v a l u e s o b t a i n e d i n t h e p r e v i o u s s t e p .

Af i t o f m e a s u r e d [ y i 1 ] t o t h e r e a l p a r t o f ( 7 ) y i e l d s C g .T h e n f i t t i n g m e a s u r e d a [ Y 1 2 I or a [ Y 2 1 I t o t h e i m a g i n a r y

p a r t o f ( 8 ) y i e l d s C G D . A l s o , f i t t i n g m e a s u r e d [ y i l j ] t o

t h e i m a g i n a r y p a r t o f ( 7 ) y i e l d s C G P . N e x t , t h e d r a i n

a d m i t t a n c e , R [ Y 2 2 ] , i s f i t t e d t o t h e r e a l p a r t o f ( 9 ) t o y i e l dC d . F i n a l l y C D P i s d e t e r m i n e d f r o m a f i t t o t h e i m a g i n a r y

p a r t o f ( 9 ) .

C . A c c e s s R e s i s t a n c e s and S o u r c e I n d u c t a n c e

T h e f i n a l s t e p i s t o d e t e r m i n e t h e access r e s i s t a n c e sa n d source i n d u c t a n c e . T h e known v a l u e s o f L G , L D ,

CGp, C D P an d C G D ar e s u b t r a c t e d fro m t h e d a t a an d

t h e e x t r a c t i o n i n S e c t i o n 1 1 1 - A r e p e a t e d . T h i s y i e l d s v a l u e s

f o r t h e r e m a i n i n g p a r a m e t e r s w i t h , as a c h e c k , n ea r zer o

v a l u e s f o r t h e g a t e a n d d r a i n i n d u c t a n c e s . I n t h i s s t a g e , t h e

t o p o l o g y o f F i g . 2 i s no l o n g e r an a p p r o x i m a t i o n b e c a u s e

t h e e x t e r n a l c a p a c i t a n c e s h a v e b e e n r e m o v e d f r o m t h e d a t a .

I V . I N T R I N S I C P A R A METER S

W i t h a l l access e l e m e n t s d e t e r m i n e d , t h e i n t r i n s i c r e -

g i o n o f t h e FET can b e d e t e r m i n e d f r o m m e a s u r e d d a t a

across a l l b i a s e s . T h i s y i e l d s f o u r c o n d u c t a n c e s o f w h i c h

t r a n s c o n d u c t a n c e a n d d r a i n - s o u r c e c o n d u c t a n c e ar e s i g n i f -i c a n t . I t a l s o y i e l d s f o u r r e a c t a n c e s , w h i c h ar e s h o w n i n

7 8 5

5

4

0

C A

A

x

2

- 1

Page 4: Robust Extraction of Access Element

8/3/2019 Robust Extraction of Access Element

http://slidepdf.com/reader/full/robust-extraction-of-access-element 4/4

i : l

c t

3 5 0

3 0 0

2 5 0

2 0 0

1 5 0

100

5 0

0

- 5 0

g a t e d r a i n

C g dCgs

X

C d s

s o u r c e

C g s

X d s_ % ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C d s. . . . .

C g d

. . . . . . . . . .= = = = = . . . . . . . . . . . . . . . . . . . = = = . = = = = = . = = = ...........

0 1 2 3 4 5

D r a i n - s o u r c e P o t e n t i a l ( V )

F i g . 7 . I n t r i n s i c c a p a c i t a n c e e l e m e n t s f o r a common-source c o n f i g u r a -

t i o n w i t h a d r a i n - s o u r c e t r a n s c a p a c t a n c e . T h i s i s f o r t h e 1 5 0 , u m FE T o f

F i g . 3 a tV G S = - 0 .75

V m e a s u r e d a t 1 5 G H z .

Cgs

4 0 0

c t

3 0 0

2 0 0

100

0

-100

Xdggs

0 0 . 5 1 1 . 5 2 2 . 5

D r a i n - s o u r c e P o t e n t i a l ( V )

3

F i g . 8 . I n t r i n s i c c a p a c i t a n c e e l e m e n t s f o r a common-gate c o n f i g u r a t i o n .T h i s i s same d a t a o f F i g . 7 w i t h 4 2 f F f r i n g i n g c a p a c i t a n c e s s u b t r a c t e df r o m C g s a n d C g d. D a t a f o r b o t h 4 G Hz a n d 3 0 G Hz ar e s h o w n t o

d e m o n s t r a t e c o n s t a n c y over f r e q u e n c y .

F i g s 7 a n d 8 . F i g u r e 7 s h o w s t h e r e a c t a n c e s i m p l e m e n t e d

b ya

t y p i c a l l y s m a l l - s i g n a l m o d e l a u g m e n t e d w i t ha

t r a n -s c a p a c t a n c e ( i d jW X d s g s V g s ) . T h e i m a g i n a r y p a r t s

o f t h e common-source y p a r a m e t e r s ar e g i v e n b y :

C g s +Cgd Cgd

-Xdsgs-Cgd C d s +Cgd( 1 2 )

T h e t r a n s c a p a c i t a n c e i s zero a t zero d r a i n p o t e n t i a lw h e r e t h e i n t r i n s i c r e g i o n i s l a t e r a l l y s y m m e t r i c . T h u s ,

o n l y t h r e e c a p a c i t a n c e s ar e r e q u i r e d a t t h i s p o i n t b e c a u s e

Y 1 2 = Y 2 1 , w h i c h i s a s s u m e d i n F i g . 1 . I t i s i n t e r e s t i n g t o

n o t e t h a t C d s i s s i g n i f i c a n t l y l a r g e , so c o l d f e t e x t r a c t i o n

p r o c e d u r e s t h a t i n c l u d e o n l y t wo i n t r i n s i c c a p a c i t a n c e s are

pro n e t o p r o d u c i n g non p h y s i c a l r e s u l t s , p a r t i c u l a r l y i n t h ee x t r a c t i o n o f CGD a n d C D P .

T h e t r a n s c a p a c i t a n c e i s s i g n i f i c a n t a n d v a r i e s o v e r b i a s .I t s i n c l u s i o n i n a s m a l l - s i g n a l m o d e l i s e s s e n t i a l t o p r o d u c e

c o n s i s t e n c y b e t w e e n c o l d f e t e x t r a c t i o n s a n d r e s u l t s a t o t h e r

b i a s e s .F i g u r e 8 p r e s e n t s t h e same i n t r i n s i c r e a c t a n c e s i n a

common-gate c o n f i g u r a t i o n , w h i c h i s i n s i g h t f u l . I n t e r m s

o f t h e c a p a c i t a n c e s a n d t r a n s c a p a c i t a n c e s o f F i g . 8 , t h ecommon-source y p a r a m e t e r s ar e g i v e n b y :

(Y) (Cg S -Xsgg d-Xdgs +C gd Xsggd -C gd (13)

( , Xdggs-Cgd C gd J

When e x a m i n e d w i t h r e s p e c t t o g a t e - d r a i n a n d g a t e -

source p o t e n t i a l s , t h e f o u r c a p a c i t a n c e s ar e f o u n d t o b e

s y m m e t r i c f u n c t i o n s w i t h r e s p e c t t o zero d r a i n source

p o t e n t i a l . T h a t i s c g s ( v g s , V g d ) = C g d ( V g d , V g s ) a n d

X d g g s ( V g s , V g d ) = X S g g d ( V g d , u V g s ) . This e l e g a n c e an d t h e

c o n s t a n c y o f v a l u e s w i t h r e s p e c t t o f r e q u e n c y i s a s t r o n g

i n d i c a t o r t h a t t r u e i n t r i n s i c p a r a m e t e r s h a v e b e e n o b t a i n e d .

V . CONCLUSION

T h e a l g o r i t hm p r es e n t ed h er e e x t r a c t s FET access e l e -ments w i t h a d e t e r m i n i s t i c a n a l y s i s o f s m a l l - s i g n a l param-

e t e r s . F r e q u e n c y d e p e n d e n c e i s e x p l o i t e d t o p r o v i d e r e -

q u r i e d a d d i t i o n a l f i t t i n g r e l a t i o n s h i p s . T h e i n t r i n s i c s e c t i o no f t h e FET i s c o r r e c t l y r e p r e s e n t e d t o g i v e c o n s i s t e n t r e -

s u l t s a t a l l b i a s e s . T h e i n t r i n s i c d a t a o b t a i n e d i s r e m a r k a b l y

i n d e p e n d e n t o f f r e q u e n c y a n d h a s a n e l e g a n t symmetry

w i t h r e s p e c t t o g a t e - s o u r c e a n d g a t e - d r a i n p o t e n t i a l s .

ACKNOWLEDGEMENTS

T h i s w o r k was f u n d e d b y an A u s t r a l i a n R e s e a r c h C o u n c i l

i n d u s t r y l i n k a g e f u n d . T h e a u t h o r s t h a n k G e r r y M c C u l l o c h f o r

measurement a s s i s t a n c e .

REFERENCES

[ 1 ] G . D . D a m b r i n e , A . C a p p y , F . H e l i o d o r e , a n d E . P l a y e z , " A new

m e t h o d f o r d e t e r m i n i n g t h e FET s m a l l - s i g n a l e q u i v a l e n t c i r c u i t , "IEEE T r a n s . M i c r o w a v e T h e o r y T e c h . , v o l . 3 6 , n o. 7 , pp. 1 1 5 1 - 1 1 5 9 ,

J u l y 1 9 8 8 .

[ 2 ] M . B e r r o t h a n d R . B o s c h , " B r o a d - b a n d d et e r m i n a t i o n o f t h e FETs m a l l - s i g n a l e q u i v a l e n t c i r c u i t , " IEEE T r a n s . M i c r o w a v e T h e o r y

T e c h . , v o l . 3 8 , n o. 7 , pp. 8 9 1 - 8 9 5 , J u l y 1 9 9 0 .

[ 3 ] P . M. W h i t e a n d R . M. H e a l y , " I m p r o v e d e q u i v a l e n t c i r c u i t f o r

d e t e r m i n a t i o n o f M E S FET a n d HEMT p a r a s i t i c c a p a c i t a n c e s f r o m" c o l d f e t " m e a s u r e m e n t s , " IEEE M i c r o w a v e G u i d e d W a v e L e t t . ,v o l . 3 , no . 1 2 , p p . 4 5 3 - 4 5 4 , D e c . 1 9 9 3 .

[ 4 ] R . A n h o l t a n d S . S w i r h u n , " E q u i v a l e n t - c i r c u i t p a r a m e t e r e x t r a c t i o nf o r c o l d GaAs M E S F E T ' s , " IEEE T r a n s . M i c r o w a v e T h e o r y T e c h . ,v o l . 3 9 , no . 7 , p p . 1 2 4 3 - 1 2 4 7 , J u l y 1 9 9 1 .

[ 5 ] F . L i n a n d G . K o m p a , "FET m o d e l p a r a m e t e r e x t r a c t i o n b a s e d on

o p t i m i z a t i o n w i t h m u l t i p l a n e d a t a - f i t t i n g a n d b i d i r e c t i o n a l s e a r c h a

new c o n c e p t , " IEEE T r a n s . M i c r o w a v e T h e o r y T e c h . , v o l . 4 2 , no . 7 ,pp. 1 1 1 4 - 1 1 2 1 , J u l y 1 9 9 4 .

[ 6 ] C . F . C a m p b e l l a n d S . A . B r o w n , "A n a n a l y t i c m e t h o d t o d e t e r m i n e

Ga A s FET p a r a s i t i c i n d u c t a n c e s a n d d r a i n r e s i s t a n c e u n d e r a c t i v eb i a s c o n d i t i o n s , " IEEE T r a n s . M i c r o w a v e T h e o r y T e c h . , v o l . 4 9 ,no . 7 , p p . 1 2 4 1 - 1 2 4 7 , J u l y 2 0 0 1 .

786

c g s

Xs g g dd g

_i~ ~ ~ ~ ~ ~ ~ ~ ~ ~ g d X~ ~ ~ ~ ~ ~ ~ X g g s+

+ +++ ++++

fXXXXXX X XXX X

a ( y )b i