Robust control design

Embed Size (px)

Citation preview

  • 7/24/2019 Robust control design

    1/46

    A Control Approach for Thrust-Propelled

    Underactuated Vehicles and its Application to VTOL

    Drones

    Minh-Duc Hua, Tarek Hamel, Pascal Morin, Claude Samson

    To cite this version:

    Minh-Duc Hua, Tarek Hamel, Pascal Morin, Claude Samson. A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones. IEEE Transactionson Automatic Control, Institute of Electrical and Electronics Engineers, 2009, VOL. 54 (NO.8), pp.1837-1853.

    HAL Id: hal-00415854

    https://hal-unice.archives-ouvertes.fr/hal-00415854

    Submitted on 11 Sep 2009

    HAL is a multi-disciplinary open access

    archive for the deposit and dissemination of sci-

    entific research documents, whether they are pub-

    lished or not. The documents may come from

    teaching and research institutions in France or

    abroad, or from public or private research centers.

    Larchive ouverte pluridisciplinaire HAL, est

    destinee au depot et a la diffusion de documents

    scientifiques de niveau recherche, publies ou non,

    emanant des etablissements denseignement et de

    recherche francais ou etrangers, des laboratoires

    publics ou prives.

    https://hal-unice.archives-ouvertes.fr/hal-00415854https://hal-unice.archives-ouvertes.fr/hal-00415854https://hal.archives-ouvertes.fr/
  • 7/24/2019 Robust control design

    2/46

    ap por t

    de r e c he r ch e

    ISSN

    0249-6399

    ISRN

    INRIA/RR--6

    453--FR+ENG

    Thme NUM

    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

    Control of Thrust-Propelled Underactuated Vehicles

    Minh-Duc HUA Tarek HAMEL Pascal MORIN Claude SAMSON

    N 6453

    February 2008

    http://hal.archives-ouvertes.fr/
  • 7/24/2019 Robust control design

    3/46

  • 7/24/2019 Robust control design

    4/46

    Unit de recherche INRIA Sophia Antipolis

    2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)Tlphone : +33 4 92 38 77 77 Tlcopie : +33 4 92 38 77 65

    Minh [email protected] [email protected]

    [email protected]

    [email protected]

  • 7/24/2019 Robust control design

    5/46

  • 7/24/2019 Robust control design

    6/46

    H2

    H

  • 7/24/2019 Robust control design

    7/46

  • 7/24/2019 Robust control design

    8/46

    G

    m

    J

    I {O; o, o, k o}

    o o k o B {G; , , k } k

    k

    k

  • 7/24/2019 Robust control design

    9/46

    G I x =

    (x1, x2, x3)T

    OG= x1

    o+ x2 0+ x3k o

    OG= ( o, o, k o)x

    B I

    R

    R

    , ,k I

    G I

    x = (x1, x2, x3)T I v = (v1, v2, v3)T

    B

    v = ddtOG= ( o, o, k o)x= ( , , k)v

    B I B = (1, 2, 3)T

    I v f= ( o, o, k o)xf= ( , , k)vf

    v a G v a = v v f xa = x xf

    I va = v vf B v a = ( o, o, k o)xa = ( , , k)va

  • 7/24/2019 Robust control design

    10/46

    {e1, e2, e3} R3 e1 = (1, 0, 0)T e2 = (0, 1, 0)T e3 = (0, 0, 1)T

    u R3 S(u)

    u

    S(u)v= u

    v

    v

    R3

    R3 |.|

    y : [to, +) Rp c

    T |y(t)| c, t T y = h(x, t) Rp

    c

    x = f(x, t)

    (xo, to)

    y(.) = h(x(., xo, to))

    c

    x(, xo, to)

    x = f(x, t)

    xo

    t= to

    T

    k

    T =Tk

    {G; k } G

    Fe

    F = Tk + Fe

    Fe

    {0; k o} I

    (xa, xa, , )

    R

    |xa|

    Fe

  • 7/24/2019 Robust control design

    11/46

    Fe

    Fe

    Fe

    Fe

    x

    mx= T Re3+ Fe(x,x,R,, , t)

    Fe

    Fe

    B

    () :

    (1) :

    xmv

    R

    =

    RvmS()v T e3+ RTFe(x,x,R,, , t)

    RS()

    (2) : J = S()J+ + e(x, x,R,, , t)

    = (1, 2, 3)T

    e

    e

    = 0

    (2)

  • 7/24/2019 Robust control design

    12/46

    G |e|

    T

    (1)

    Fe

    x

    t

    t Fe(x, t) t Fex(x, t)

    t Fet (x, t)

    x

    Fe

    x

    c1 0, c2 > 0

    |Fe(x, t)| c1+ c2|x|2 , (x, t) R2 R

  • 7/24/2019 Robust control design

    13/46

    c3 0, c4 > 0

    xTFe(x, t) c3|x| c4|x|3 , (x, t) R2 R

    F

    e

    c1

    v r vr d

    dtv r d2dt2 v r

    (1)

    x = Rvv = S()v ue3+ RTe(x, t)R = RS()

    e(x, t) := Fe(x, t)/m

    u := T /m

    3

    3 = 0

    3(t)

    R3 || = 1 I

  • 7/24/2019 Robust control design

    14/46

    RT

    e3

    := RT

    (; ] e3 cos=3

    = 0

    1 = k2(1 + 3)2

    TS(Re1)

    2 = k1(1 + 3)2

    TS(Re2)

    R = RS() = 0

    (, )

    xr I xr

    xr

    v := RT(x xr) B

    (x, t) := e(x, t) xr(t)

    x= Rv

    v= S()v ue3+ RT(x, t)

    R= RS()

    x :=t0

    (x(s) xr(s)) ds x := x xr

    xr

    x xr

    v

    v 0 ue3+ RT(x, t) = 0

  • 7/24/2019 Robust control design

    15/46

    (x, t)

    = 0

    (v, R) = (0, R)

    e(xr(t), t)

    >0

    (x, t) |(x, t)|

    ||

    = ||e3.

    (; ] e3 ||

    cos= 3||

    = 0

    =||e3 = =||e3

    = 0

    k1

    k2

    k3

    u = 3+ ||k1v3

    1 = ||k2v2 k3||2(|| + 3)2

    1

    ||2 TS(Re1)

    2 = ||k2v1+ k3||1(|| + 3)2

    1

    ||2 TS(Re2)

    (v,) = (0, 0)

    R3 (, )

  • 7/24/2019 Robust control design

    16/46

    V =1

    2

    vTv+ 1

    k21

    3

    ||=

    1

    2

    vTv+ 1

    k2

    (1

    cos)

    (x, t) = e(x, t) xr(t)

    Fe

    e

    e

    x xr

    Iv(t) :=

    t0

    (x(s) xr(s)) ds+ I0

    I0

    h

    [0, +) ,

    s > 0, h(s2)s <

    s

    R, 0 |c|

    Iv = Rv

    Iv

    R3 (Iv, v,) = (Iv , 0, 0)

    R3 R3 (, )

    h

    h

    Iv

    c

    || < g

    e

    c

    xr

    v

    x xr

    x= x xr

    I0 = x(0) xr(0)

    Iv = x

    z

    x

    z = x

    z

    x

    z = 2kzz k2z(z

    z) + kzhz(|x|2)x (kz > 0, z(0) = 0)

    hz

    z, z

  • 7/24/2019 Robust control design

    18/46

    x R3 |x| (x) =x

    > 0 x R3 | (x)|

    (c, x)

    R3

    R3

    |c

    | 0)

    =

    |z| |z| |z| +z/kz

    2(kz + z)

    6kz(kz + z)

    y:= x + z

    v:= v+ RTz

    := e xr+ h(|y|2)y+ z

    e

    e

    h

    , >0

    k1

    k2

    k3

    u = 3+ ||k1v3

    1 = ||k2v2 k3||2(|| + 3)2

    1

    ||2 TS(Re1)

    2 = ||k2v1+ k3

    |

    |1

    (|| + 3)2 1

    ||2 T

    S(Re2)

    v, ,

    y

    c:= e e

    lims+

    h(s2)s > |c|

    > |z| z h(|z|2)z= c

    h hz

  • 7/24/2019 Robust control design

    19/46

    (z, z, x, v,) = (z, 0, 0, 0, 0)

    R3

    R3 R3 R3 (, )

    h

    h

    x

    h

    kz

    kz

    z

    |z| x= 0 kz

    |z| || kz kz

    kz

    || ||

    kz

    u

    u || || > 0

    u 0

    k1

    k2

    k3

    v

    : R R (0) = 0

    (s)> 1k1 ,s R

    u = || + ||k1(v3) ( 0)

    1 = ||k2

    v2 v3 2|| + 3

    k3||2

    (|| + 3)2 1

    ||2 TS(Re1)

    2 = ||k2

    v1 v3 1|| + 3

    +

    k3||1(|| + 3)2

    1

    ||2 TS(Re2)

  • 7/24/2019 Robust control design

    20/46

    v

    v

    (s) = k1

    tanh

    k1s

    ,

    (s) = s1 +

    k21s2

    2

    0< 1

    Fe(x, x) =ca|x|x max+mge3 ca, ma

    mx= T Re3+ Fe(x) m= m + ma Fe(x) = ca|x|x + mge3 (x, t)

    (x, t) =Fe(x)

    m xr = ca

    m|x|x + mg

    me3 xr

    cam |x|x 0

    xr mg

    me3

    x

    (x, t) = 0

    xr

    >0

    t |(xr(t), t)|

  • 7/24/2019 Robust control design

    21/46

    x

    1/||

    1/(|| +3)

    = 0

    C1 : [0, +) [0, 1]

    (s) =

    sin(s

    2

    22 ) ,

    s 1 ,

    >0

    u = 3+ ||k1v3

    1 = ||k2v2 (|| + 3) k3||2(|| + 3)2 (||)

    1

    ||2 TS(Re1)

    2 = ||k2v1+ (|| + 3) k3||1(|| + 3)2 (||) 1||2 TS(Re2)

    u

    1, 2

    |u| 1+ 2|x|

    x

    e

    e

    x

  • 7/24/2019 Robust control design

    22/46

    (x, t)

    u

    : R3 R (, ) R3 R3 () 1

    T

    () = ()T

    () := min

    1,

    ||

    d C1

    (x, t) := d(t) +

    M(e,d(x, t)) xr(t)

    e,d(x, t) := e(x, t) d(t)

    d

    M

    Q > 0

    x(t)

    |(x(t), t)| Q

    u

    d

    e = Fe/m

    c1 0, c2 > 0, c3 0, c4 > 0 (x, t) R3 R

    |e,d(x, t)| c1+ c2|x|2xTe,d(x, t) c3|x| c4|x|3

    s

    vr> 0

    P(s) := c4s3 c2vrs2 c3s c1vr

    c4 > 0

    (ci, vr) vr s (ci, vr) P(s) 0

  • 7/24/2019 Robust control design

    23/46

    k1

    k2

    k3

    0< <

    u

    x

    (v, ) = (0, 0)

    M >c1+ c2vr

    M

    M

    M c1+ c2((ci, vr))2 |(x, t)| (x, t) R3 (, )

    M

    d

    xr

    xr = 0

    e(x) =(x) =g+ ae(x)

    g = (mg/m)e3

    ae(x) =(ca/m)|x|x ca > 0

    M

    d

    d =g

    = g +

    M(e,d)

    e,d = ae

    g

    M

    M

    M < mg/m |(x, t)|

    mg/m M > 0 < mg/m M (v,) = (0, 0)

    R3 (, )

    M

    Mc1+ c2((ci, vr))

    2

    c1 = c3 = 0

    c2 = c4 = ca

    (ci, vr) = vr

    M c1 + c2((ci,vr))

    2

    M cav2r

    sup |xr(t)| c1+ c2((ci, vr))2

    M >c1+ c2((ci, vr+ 2z))2

    {G; k } J

    J diag(J1, J1, J2)

    (1) :

    x

    v

    R

    =

    Rv

    S()v ue3+ gRTe3+ 1mRTFae 1mLS(e3)RS()

    (2) : J = S()J+ + Mae

    Fae

    Fae

    I

    Fae

    Mae

    L

    Fae

    Mae

    e:= ge3+ 1

    mFae 1

    mLRS(e3)

    (1)

    Fae

  • 7/24/2019 Robust control design

    25/46

    e

    x

    R

    v

    kg

    ms2

    J1

    kgm2

    J2

    kgm2

    m

    g = 9.81 ms2

    m = 3.2 kg

    J

    = diag(0.13, 0.13, 0.04)

    1

    d,3 = 0

    2

    d

    Mae

    =S()Jd JK( d)

    K

    k1 = 0.24

    k2 = 0.08

    k3 = 12.8

    K = diag(20; 20; 20)

    h(s) = 1+2s/2

    = 1.28

    = 12

    (s) = k1 tanh

    k1s

    = 0.9

    kz = 0.8

    hz(s) = z1+2zs/

    2z

    z = 0.8

    z = 0.8

    = 8

    d= 0

    M

    M= 50

  • 7/24/2019 Robust control design

    26/46

    = 1

    k1

    k2

    k3

    h(0), kz, hz(0)

    (z = 0, z = 0, x= 0, v= 0, R= I)

    G

    x(0) = (8, 5, 8)T R(0) = I3

    xr = (0, 0, 0)T

    xf = (4, 0, 0)T 30 s

    70 s

    xf = (8, 0, 0)T

    e =ge3

    e

    g = g

    m= m

    z, z, z

    z

    G

    lims+

    h(s2)s > |c| c= e e

    h(s2)s

    10

    xf = 8e1

    e

    x

    R

    T

  • 7/24/2019 Robust control design

    27/46

    = 6

    = 1

    xr(t) = (10 cos(t/10), 10 sin(t/10), t)T

    x(0) = (45, 50, 10)T R(0) =I3

    0 T 1.8mg = 56.5, |i=1,2,3| 0.3T L

    .c

    = 6

    .e

  • 7/24/2019 Robust control design

    28/46

    0 20 40 60 80 1008

    6

    4

    2

    0

    2

    4

    6

    8

    10Fig. a) Position tracking error

    t (s)

    x(m)

    x1 : x2 : x3 : .

    0 20 40 60 80 10040

    30

    20

    10

    0

    10

    20

    30

    40

    50Fig. b) Euler angles

    t (s)

    ,,(o)

    : : : .

    = 12

    0 20 40 60 80 1008

    6

    4

    2

    0

    2

    4

    6

    8

    10Fig. a) Position tracking error

    t (s)

    x(m)

    x1 : x1 : x2 : x2 : x3 : .x3 : .

    0 20 40 60 80 10040

    30

    20

    10

    0

    10

    20

    30

    40

    50Fig. b) Euler angles

    t (s)

    ,,(o)

    : : : .

    = 12

    = 8

    0 20 40 60 80 1008

    6

    4

    2

    0

    2

    4

    6

    8

    10Fig. a) Position tracking error

    t (s)

    x(m)

    x1 : x2 : x3 : .

    0 20 40 60 80 10020

    10

    0

    10

    20

    30

    40

    50Fig. b) Euler angles

    t (s)

    ,,(o)

    : : : .

    = 6

    = 1

  • 7/24/2019 Robust control design

    29/46

    0 10 20 30 40 50 60 70 80 90 10010

    5

    0

    5

    10

    15

    t (s)

    xf

    (ms1

    )

    xf,1 : xf,2 : xf,3 : .

    0 20 40 60 80 10010

    5

    0

    5

    10

    15

    20Fig. a) Real apparent acceleration

    t (s)

    e

    (ms2

    )

    e,1 : e,2 : e,3 : .

    0 20 40 60 80 10010

    5

    0

    5

    10

    15

    20Fig. b) Estimated apparent acceleration

    t (s)

    e

    (ms2

    )

    e,1 : e,2 : e,3 :.

    e

    e

  • 7/24/2019 Robust control design

    30/46

    20 10 0 10 20 30 40 5020

    10

    0

    10

    20

    30

    40

    50

    60Fig. a) Projected trajectories on a horizontal plane

    x1(m)

    x2

    (m

    )

    ref. trajectory : act.trajectory:

    20 10 0 10 20 30 40 500

    20

    40

    60

    80

    100

    120Fig. b) Projected trajectories on a vertical plane

    x1(m)

    x3(

    m)

    ref. trajectory: act.trajectory:

    0 20 40 60 80 10010

    0

    10

    20

    30

    40

    50Fig. c) Position tracking error

    t (s)

    x1,2,3

    (m

    ) x1 :

    x2 : x3 : .

    0 20 40 60 80 100100

    80

    60

    40

    20

    0

    20

    40

    60Fig. d) Euler angles

    t (s)

    ,,(o)

    : : : .

    0 20 40 60 80 10025

    30

    35

    40

    45

    50

    55

    60Fig. e) Thrust control input

    t (s)

    T=

    mu(N)

    0 20 40 60 80 1002.5

    2

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    2

    2.5Fig. f) Torque control inputs

    t (s)

    1,2,3

    (N.m

    )

    1 : 2 : 3 :.

    = 6

    = 1

    e

  • 7/24/2019 Robust control design

    31/46

  • 7/24/2019 Robust control design

    32/46

  • 7/24/2019 Robust control design

    33/46

  • 7/24/2019 Robust control design

    34/46

    &

    V = 1 3 = 1 cos

    V R = RS()

    || = 1

    V =

    1 2 2

    1

    +

    TS(Re2)TS(Re1)

    1, 2

    V = k 21 +

    22

    (1 + 3)2 = k

    1 31 + 3

    = kV1 + 3

    kV2

    0

    V

    = 0

    tan2(/2) = 21 +

    22

    (|| + 3)2 =

    || 3|| + 3

  • 7/24/2019 Robust control design

    35/46

    V

    V

    V = vT (

    ue3+ ) +

    1

    ||k2 1 2

    21 +

    1

    ||2

    TS(Re2)TS(Re

    1)

    = v3(u + 3) + 1||k2

    1 2 2

    1

    +

    1

    ||2TS(Re2)

    TS(Re1)

    + ||k2

    v1v2

    u

    1

    2

    V = ||k1v23k3k2

    21 + 22

    (|| + 3)2 = ||k1v23

    k3k2

    tan2(/2)

    v V

    v3

    V

    v

    v3

    ddttan2(/2)

    v

    v = RT(x xr)

    x

    e

    u

    x

    x= uRe3+ e(x, t)

    e(x, t) =e

    x(x, t)x +

    et

    (x, t),

    x

    x

    e

    >0

    |(t)| ,t

    d

    dt(1 cos) = k2(1v1+ 2v2) k3 || 3|| + 3 = k2(1v1+ 2v2) k3tan

    2(/2)

    v

    1 > 0

    || > 1 = ddt

    (1 cos)< 0

    = min{1, |(0)|} >0

    tan(/2)

    1/(|| + 3)

  • 7/24/2019 Robust control design

    36/46

    v, , ,

    1

    2

    , v , , u v

    ddttan

    2(/2)

    1/(||+3)

    V

    v3

    1

    2

    v1

    v2

    1,2

    (1, 2)T

    d

    dt

    1,2|| =a(t) + b(t)

    a(t) := 3

    k2v1 k31(|| + 3)2

    k2v2 k32(||

    + 3

    )2

    , b(t) := 1

    ||

    3+ 1

    ||2 TS(Re3)

    21

    a(t)

    a(t)

    v, ,

    1/(|| + 3) b(t)

    3

    3

    1,2

    b(t)

    ddt

    1,2||

    1,2 || + 3 > 0

    v1, v2

    (v, ) = (0, 0)

    v= S()v ue3+ RT RTh(|Iv|2)Iv+ RTc

    f : s h(s2)s f1 f

    h

    f(0) = 0

    cTIv |c||Iv | |Iv|0

    f(s) ds +

    |c|0

    f1(s) ds

  • 7/24/2019 Robust control design

    37/46

    V

    V =1

    2vTv+

    1

    k2

    1 3||

    +

    |Iv|0

    f(s) ds cTIv+ |c|0

    f1(s) ds

    V

    v

    V

    Iv

    V

    Iv 2V

    I2v> 0

    h

    Iv = Rv

    V = vT (ue3+ ) + 1||k2

    1 2 2

    1

    +

    1

    ||2TS(Re2)

    TS(Re1)

    V = ||k1v23k3k2

    21 + 22

    (

    |

    |+ 3)

    2

    (Iv, v,)

    (Iv , 0, 0)

    h

    Iv

    h(|Iv |2)Iv = c

    Iv

    Iv

    a(t) := RTh(|Iv|2)Iv+ RTc , b(t) := S()v ue3+ RT

    (Iv, v,) = (Iv 0, 0)

    V

    v

    v= S()v ue3+ RTz+ RT(e xr)

    v= S()v ue3 RTh(|y|2)y+ RT+ RTc

    V =1

    2vTv+

    1

    k2

    1 3||

    +

    |y|0

    f(s) ds cTy+ |c|0

    f1(s) ds

  • 7/24/2019 Robust control design

    38/46

    f

    V

    v

    y

    y= Rv

    V = ||k1v23k3

    k2

    21

    + 22

    (|| + 3)2

    z, z

    z

    y

    v

    z

    z

    y= x + z

    v= v+ RTz

    x

    v

    hz

    z(3)

    z

    h(|z|2)z = c

    (y, v, )

    (z, 0, 0)

    (y, v,)

    y:= y z, z := z z, w:= z,gz(y, z) := hz(

    |y

    z

    |2)(y

    z) + hz(

    |z

    |2)z

    gz(y, z)

    y

    x= y z= y z z = ww = 2kzw k2z z+ k2z(

    (z+ z) z) kzhz(|z|2)z+ kzgz(y, z)

    Z= F(Z) + G(y, Z)

    Z:= (z, w)T

    F(Z) :=

    w

    2kzw k2z z+ k2z(

    (z+ z) z) kzhz(|z|2)z

    ,

    G(y, Z) := (0, kzgz(y, z))T

    Z = 0 Z =

    F(Z)

    U= 1

    2kz

    |z|20

    hz(s) ds+1

    2|z|2 +1

    2

    z+ wkz2

    Z= F(Z)

    U= hz(|z|2)|z|2 kz

    |z|2 +z+

    w

    kz

    2

    zT + ( (z+ z) z)T

    z+ w

    kz

    hz(|z|2)|z|2 kz |z|2 kzz+ wkz

    2 + 2kz|z| z+ wkz

  • 7/24/2019 Robust control design

    39/46

    z

    z

    z > 0

    hz(|z|2)> z z, w > 0

    U

    z|z|2

    w z+ w

    kz2

    z

    w

    U

    Z= 0 Z=F(Z)

    Z = 0 Z = F(Z)

    Z

    G(y, Z)

    Z

    (z, z)

    (z, 0)

    z

    y:= z+ x

    x

    v := v+ RTz

    z

    v

    (z, z, x, v, ) = (z, 0, 0, 0, 0)

    (v, y,) = (0, 0, 0)

    Z = 0

    Z= F(Z)

    G

    y = 0

    (v, y,, Z) = (0, 0, 0, 0)

    (z, z, x, v,) = (z, 0, 0, 0, 0)

    u

    u

    V = vT (ue3+ ) + 1||k2

    1 2 2

    1

    +

    1

    ||2TS(Re2)

    TS(Re1)

    = v3(u + ||) v3(|| 3)

    + 1

    ||k2

    1 2 21 + 1||2

    TS(Re2)TS(Re1)

    + ||k2v1v2

    = v3(u + ||)

    + 1

    ||k2

    1 2 2

    1

    +

    1

    ||2TS(Re2)

    TS(Re1)

    + ||k2

    v1v2

    ||k2v3|| + 3

    12

    V = ||k1(v3)v3 k3k2

    21 + 22

    (|| + 3)2

  • 7/24/2019 Robust control design

    40/46

    x

    V = 12 |x|2 |x|

    V = xT(uRe3+ e(x, t))

    V |x||u| + c3m

    |x| c4m

    |x|3

    |x|

    1+ (2+c3m

    )|x| c4m

    |x|2

    x

    12

    2+c3m

    +1

    2

    2+c3m

    2

    +41c4

    m

    e

    x

    u

    x

    e

    e,d

    M c1+ c2((ci, vr))2 (x, t)

    vTRT(e,d(x, t) M(e,d(x, t))) 0

    |e,d(x, t)| < M

    M

    e,d(x, t) =

    M(e,d(x, t))

    |e,d(x, t)| M |x| > (ci, vr)

    M

    (e,d(x, t)) 1 Rv= x xr

    vTRT(e,d(x, t) M(e,d(x, t))) = (1 (e,d(x, t)))(x xr)Te,d(x, t) (1 (e,d(x, t)))(xe,d(x, t) + vr|e,d(x, t)|) (1 (e,d(x, t)))(c4|x|3 c2vr|x|2 c3|x| c1vr)

    |x| > (ci, vr)

    c4|x

    |3

    c2vr

    |x

    |2

    c3

    |x

    | c1vr

    0

  • 7/24/2019 Robust control design

    41/46

    1, 2

    e

    e

    x

    d(t)

    e,d(x, t)

    M

    (x, t)

    u

    1,2

    3

    v= S()v ue3+ RT(x, t) + RT(e,d(x, t) M(e,d(x, t)))

    V

    V =v3(u + 3) + vTRT(e,d M(e,d))

    + 1||k2

    1 2 2

    1

    + 1||2

    TS(Re2)TS(Re1)

    + ||k2 v1v2

    u, 1, 2

    V = ||k1v23 (|| + 3)k3k2

    21 + 22

    (|| + 3)2+ vTRT(e,d M(e,d))

    +(1 (||))

    ||3k2 (1TS(Re2)+ 2

    TS(Re1))

    M(e,d(xr(t), t)) = e,d(xr(t), t)

    M c1 + c2v2r

    M > c1 + c2v2r

    M(e,d(x, t)) = e,d(x, t)

    x

    xr

    (0, )

    (||) = 1 xr

    V = ||k1v23 (|| + 3)k3k2

    21 + 22

    (|| + 3)2

    M c1 + c2((ci, vr))2 |(x, t)| ,(x, t)

    (||) = 1,(x, t)

    V = ||k1v23 (|| + 3)k3k2

    21 + 22

    (

    |

    |+ 3)

    2 + vTRT(e,d M(e,d))

  • 7/24/2019 Robust control design

    42/46

    V ||k1v23 (|| + 3)k3k2

    21 + 22

    (|| + 3)2

    d

    dt

    ||

    = 1

    ||S()

    1||2 RTS()

    d

    dt

    1 3||

    =

    1

    ||

    1 2 2

    1

    +

    1

    ||2TS(Re2)

    TS(Re1)

    || =R

    T ||

    d

    dt || = S()RT

    || + RT d

    dt ||

    = S() || + RT d

    dt

    ||

    = 1

    ||S()+ RT d

    dt

    ||

    d

    dt

    ||

    =(||2I3 T)

    ||3 = S()2

    ||3

    RT d

    dt || =

    1

    ||3RTS()2=

    1

    ||3S()RTS()

    d

    dt

    1 3||

    = 1||e

    T3S()

    1||2 R

    TS()

    = 1||2 1 0

    1||2 S()R

    T

    = 1

    ||

    1 22

    1

    +

    1

    ||3

    1 2TS(Re2)

    TS(Re1)

    1 + 3

    ||

    3

  • 7/24/2019 Robust control design

    43/46

    x(t)

    x= a(t) + b(t)

    a(t)

    limt+

    x(t) =c

    limt+

    b(t) = 0

    c

    limt+ x(t) = 0

    b= 0

    z = 0, z = 0, x = 0

    v = 0

    R = I3

    u = g

    = 0

    Fe = mg e3

    ge3+ (h(0) + kzhz(0))x + h(0)z 2kzz

    w:= z (s)

    s |s=0= 1

    u g+ (h(0) + kzhz(0))x3+ gk1v3+ h(0)z3+ (gk1 2kz)w31 k34g (h(0) + kzhz(0))x2 gk2v2 k3h(0)4g z2 (gk2 k3kz2g )w2 k34 (eT2RTe3)2 k34g (h(0) + kzhz(0))x1+ gk2v1+ k3h(0)4g z1+ (gk2 k3kz2g )w1+ k34 (eT1RTe3)3 0

    1 := eT1RTe3

    2 := eT2RTe3

    RT =S()RT 3 0 R I3

    1

    2, 2

    1

    z = ww = 2kzw+ kzhz(0)xx = vv = (g1, g2, (h(0) + kzhz(0))x3 gk1v3 h(0)z3 (gk1 2kz)w3)T1 = k34g (h(0) + kzhz(0))x1 gk2v1 k3h(0)4g z1 (gk2 k3kz2g )w1 k34 12 = k34g (h(0) + kzhz(0))x2 gk2v2 k3h(0)4g z2 (gk2 k3kz2g ))w2 k34 2

  • 7/24/2019 Robust control design

    44/46

    (3) :

    z3 = w3w3 = 2kzw3+ kzhz(0)x3x3 = v3v3 = (h(0) + kzhz(0))x3 gk1v3 h(0)z3 (gk1 2kz)w3

    (i) :

    zi = wiwi = 2kzwi+ kzhz(0)xixi = vivi = gii = k34g (h(0) + kzhz(0))xi gk2vi k3h(0)4g zi (gk2 k3kz2g )wi k34 i

    (i= 1, 2)

    P3() = 4 + (2kz+ gk1)

    3 + (h(0) + 2gkzk1+ kzhz(0))2

    + (2kzh(0) + gkzhz(0)k1) + kzhz(0)h(0)

    Pi() = 5

    +

    2kz+

    k34

    4

    +

    g2

    k2+

    kzk32

    3

    +

    2g2

    kzk2+

    h(0)k34 +

    kzhz(0)k34

    2

    +

    g2kzhz(0)k2+

    kzh(0)k32

    +

    kzhz(0)h(0)k34

    h(0) = 2gk1kz 4k2z , k2 =k1k3

    4g , kz