470
The amic Properties -stances at 298. U.S. GEOLOGICAL SURVE^ BULLETIN 2131

robie 1995

Embed Size (px)

Citation preview

Page 1: robie 1995

The amic Properties -stances at 298.

U.S. GEOLOGICAL SURVE^ BULLETIN 2131

Page 2: robie 1995

AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY

Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica­ tions released prior to the current year are b'sted in the most recent annual "Price and Availabib'ty List." Publications that may be b'sted in various U.S. Geological Survey catalogs (see back inside cover) but not h'sted in the most recent annual "Price and Availability List" may be no longer available.

Order U.S. Geological Survey publications by mail or over the counter from the offices given below.

BY MAIL OVER THE COUNTER

Books

Professional Papers, Bulletins, Water-Supply Papers, Tech­ niques of Water-Resources Investigations, Circulars, publications of general interest (such as leaflets, pamphlets, booklets), single copies of Earthquakes & Volcanoes, Preb'minary Determination of Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from

U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225

Subscriptions to periodicals (Earthquakes & Volcanoes and Preb'minary Determination of Epicenters) can be obtained ONLY from the

Superintendent of DocumentsGovernment Printing Office

Washington, DC 20402

(Check or money order must be payable to Superintendent of Documents.)

Books and Maps

Books and maps of the U.S. Geological Survey are available over the counter at the following U.S. Geological Survey Earth Science Information Centers (ESIC), all of which are authorized agents of the Superintendent of Documents:

ANCHORAGE, Alaska Rm. 101,4230 University Dr. LAKEWOOD, Colorado Federal Center, Bldg. 810 MENLO PARK, California Bldg. 3, Rm. 3128, 345

Middlefield Rd. RESTON, Virginia USGS National Center, Rm 1C402,

12201 Sunrise Valley Dr. SALT LAKE CITY, Utah Federal Bldg., Rm. 8105, 125

South State St. SPOKANE, Washington U.S. Post Office Bldg., Rm. 135,

West 904 Riverside Ave. WASHINGTON, D.C. Main Interior Bldg., Rm. 2650,18th

and C Sts., NW.

Maps

For maps, address mail orders to

U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225

Residents of Alaska may order maps from

U.S. Geological Survey, Earth Science Information Center101 Twelfth Ave. - Box 12

Fairbanks, AK 99701

Maps Only

Maps may be purchased over the counter at the following U.S. Geological Survey offices:

FAIRBANKS, Alaska New Federal Bldg., 101 Twelfth Ave.

ROLLA, Missouri 1400 Independence Rd. STENNIS SPACE CENTER, Mississippi Bldg. 3101

Page 3: robie 1995

Thermodynamic Properties of Minerals andRelated Substances at 298.15 K and 1 Bar(105 Pascals) Pressure and at Higher Temperatures

By Richard A. Robie and Brace S. Hemingway

U. S. GEOLOGICAL SURVEY BULLETIN 2131

A summary of the thermodynamic data for minerals at 298.15 K together with calculated values for the JunctionsC°P>T , AfH?, AfG?, S?, (H? - HgJT1. and (G? - at temperatures up to 1800 K

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1995

Page 4: robie 1995

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director

For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Published in the Eastern Region, Reston, Va. Manuscript approved for publication March 23, 1995.

Library of Congress Cataloging in Publication Data

Robie, Richard A., 1928-Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10

Pascals) pressure and at higher temperatures / by Richard A. Robie and Bruce S.Hemingway.p. cm. (Geological Survey bulletin ; 2131)Includes bibliographical references and indexes.Supt.ofDocs.no.: I 19.3:82131

1. Minerals Tables. 2. Thermodynamics Tables. I. Hemingway, Bruce S. II. Title. III.Series: U.S. Geological Survey bulletin ; 2131.

QE75.B9no. 2131 [QE366.8] 557.3 s dc20[549'. 12] 95-19844

CIP

Page 5: robie 1995

CONTENTS

Abstract........................................................................................................................... 1Introduction..................................................................................................................... 1Physical Constants and Atomic Weights......................................................................... 2Reference States.............................................................................................................. 3Methods of Calculation................................................................................................... 3Additional Comments..................................................................................................... 4Thermodynamic Properties at 298.15 K......................................................................... 5

Elements................................................................................................................ 5Sulfides and Sulfosalts.......................................................................................... 11Oxides and Hydroxides......................................................................................... 15Multiple Oxides .................................................................................................... 21Halides.................................................................................................................. 23Carbonates and Nitrates........................................................................................ 25Sulfates andBorates.............................................................................................. 28Phosphates, Molybdates, and Tungstates.............................................................. 30Ortho and Ring Structure Silicates ....................................................................... 31Chain and Band Structure Silicates....................................................................... 34Framework Structure Silicates.............................................................................. 36Sheet Structure Silicates ....................................................................................... 39

Coefficients for Heat Capacity Equations....................................................................... 41Elements................................................................................................................ 41Sulfides and Sulfosalts.......................................................................................... 45Oxides and Hydroxides......................................................................................... 47Multiple Oxides .................................................................................................... 51Halides.................................................................................................................. 53Carbonates and Nitrates........................................................................................ 55Sulfates and Phosphates........................................................................................ 56Ortho and Ring Structure Silicates ....................................................................... 58Chain and Band Structure Silicates....................................................................... 61Framework Structure Silicates.............................................................................. 63Sheet Structure Silicates ....................................................................................... 65

Thermodynamic Properties at High Temperature of Individual Phases ......................... 67References Cited.............................................................................................................397Namelndex.....................................................................................................................454Formula Index.................................................................................................................458

TABLE

1. Atomic weights of the elements for 1985.................................................................. 4

HI

Page 6: robie 1995

iv CONTENTS

SYMBOLS, CONSTANTS, AND CONVERSION FACTORS

T Temperature in Kelvins. Ttm Temperature of transition in Kelvins.

K Kelvin, the unit of temperature. It is the fraction 1/273.16 of the thermodynamic tem­ perature of the triple point of water.

J Joule, the unit of energy (or work). One joule = 1/4.1840 thermochemical calories or10 cm3«bar.

mol Mole, the amount of substance of a system that contains as many elementary entities as there are atoms in 0.012 kilograms of carbon 12. It is identical with the gfw (gram formula weight),

p Pressure in bars. One bar = 105 Pascals or 0.1 MPa. The standard atmosphere is equalto 101325 Pascals. The kilogram-cm"2 is equal to 98065.5 Pascals.

0 Superscript indicates that the substance is in its standard state, 1 bar (105 Pascals) fora condensed phase.

HT- H298 Enthalpy at temperature T relative to 298.15 K in J'mol"1 , also called the heat con­ tent.

(HJ - H^g)"!"1 Enthalpy function in JnnoH'K"1 (See note below). ST Entropy at temperature T, in J-mor^K"1 .

Gibbs energy function in JnnoH'K"1 . Heat capacity at constant pressure in Jmior^K"1 .Volume of 1 mol of a substance at 1 bar pressure and at 298.15 K, in cm3, or J'bar"1 .

AfuSH° Enthalpy of melting at 1 bar pressure in J'mol"1 . AfcnH0 Enthalpy of transition at 1 bar pressure in J'mol"1 .

AVapH° Enthalpy of vaporization to the ideal gas at 1 bar pressure at the normal boiling pointin J^mol"1 .

AfH° Enthalpy of formation from the elements in their reference states in J'mol"1 . AfG° Gibbs energy of formation from the elements in their reference states in J^mol"1 .

Kf Equilibrium constant of formation. R Gas constant, 8.31451±0.00007 I-K^-mol"1 . F Faraday constant, 96,485.309±0.029 I-V^-mol"1 .

NA Avogadro constant, (6.0221367±0.0000036) x 1023mor1 . log Common logarithm, base 10.

In Natural logarithm, base e = 2.71828... atm Standard atmosphere.

m=l The standard state for an electrolyte in aqueous solution is the hypothetical ideal solu­ tion at unit activity and with the ions at infinite dilution.

When multiple units appear in the denominator of the symbol (for example, enthalpy function), the SI system does not recommend a particular order. For example, the units for entropy are given as J mol-1 K"1 in table 2.11 and as J K"1 mol" 1 in table 3.5 of the Greenbook (278).

Page 7: robie 1995

Thermodynamic Properties of Minerals and Related Substancesat 298.15 K and 1 Bar (105 Pascals) Pressure

and at Higher Temperatures

By Richard A. Robie and Bruce S. Hemingway

ABSTRACT

Selected values for the entropy (S°), molar volume (V°), and for the enthalpy and Gibbs energy of formation (AfH° and AfG°) are given for 50 reference elements, 55 sul- fides, 93 oxides and hydroxides, 141 silicates, and 154 other minerals and related substances at 298.15 K. For those min­ erals for which high-temperature heat-capacity or heat- content data are also available (Hf - H^T"1 , Sj, (Gf - H^g)!"1 , CJ, AfHT.AfGjand log Kf>T are tabulated at 100 K intervals for temperatures up to 1800 K.

INTRODUCTION

In the 17 years since the predecessor to this bulletin was published, an enormous body of new thermochemical and equilibrium measurements for minerals has been pub­ lished, personal computers have become almost universally available, and a number of "internally consistent thermody- namic property databases" (ICTDB) have been published (37, 67, 117, 149,150,159,187, 188, 374). (In this section, references are indicated by numbers in parentheses.) This report is an updated revision and expansion of U.S. Geolog­ ical Survey (USGS) Bulletin 1452 (361) and entirely super­ sedes it. As an example of growth of the thennodynamic properties of mineral database, USGS Bulletin 1452 con­ tained data for 58 silicate minerals whereas in the current set of tables this number has been increased to 141.

The purpose of these tables is to present a critical sum­ mary of the available thennodynamic data for minerals and related substances in a convenient form for the use of earth scientists. To make the tables as useful as possible, we have tried (1) to include enough auxiliary data so that a single set of tables would suffice for most calculations, (2) to ensure internal consistency, and (3) to provide the means for rapid revision and expansion as new data become available.

The tables in this compilation are divided into three sections. In the first section, values are given for the entropy (8293), molar volume (Vigg), enthalpy of formation

, Gibbs energy of formation (AfG^g), and the log­ arithm of the equilibrium constant of formation (log Kft29g) for the reference elements, minerals, and other substances of geological interest (properties at 298.15 K and 1 bar). In the second section, coefficients for the polynomial used to represent the heat capacity at high temperature are tabulated together with the temperature limits of applicability. In the third section, values are given for the thennodynamic prop­ erties at 100 K intervals for temperatures up to 1800 K. The data are arranged in order of their conventional mineralogi- cal groups. Within each group (for example, the oxides) the listing is by alphabetical order of the chemical symbol of the principal cation.

The data have been taken from the original literature, recent critical evaluations, or have been evaluated by the present authors and estimated uncertainties have been assigned to the thennodynamic properties at 298.15 K. The primary sources of data are indicated numerically in the thennodynamic table of properties at 298.15 K, as "S" for the reference to the data for the entropy, "H/G" for the refer­ ence to the formation properties, and "C" to references to measured heat capacities above 298.15 K. The references are listed in complete form following the tables. The entropy and heat-capacity values tabulated are based almost exclusively on calorimetric measurements whereas the val­ ues for the enthalpy or Gibbs energy of formation were obtained from both equilibrium and calorimetric measure­ ments. The values for the thennodynamic properties of the reference elements have been taken from the JANAF tables (67), the CODATA (85) recommended values, or in the case of calcium, from measurement at the USGS (360). For those silicate glasses for which Sf - S§ has been determined calo- rimetrically and for which the enthalpy of fusion of the crystalline equivalent could be evaluated, the residual entropy (that is, SQ) of the glass has been evaluated and added to the calorimetric entropy to obtain the correct entropy for use in thennodynamic calculations. Glasses and other phases for which Sj - SQ has been measured but for which the residual entropy has not been evaluated are indi­ cated by a "+" sign and the user must be aware that the

Page 8: robie 1995

THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

value tabulated does not include the configuration^ entropy.

Although a number of different forms of equations for the representation of the heat capacity at high temperatures have been proposed over the past 10 years, for example Berman (37), Fei and Saxena (104), Richet and Piquet (342), we have retained the form adopted in the previous version of these tables,

Cp = A! + A2 »T + A3-T-2 +

This equation can not be extrapolated beyond its upper limit Inasmuch as most users will have access to a personal computer, the conversion from one form of equation to an alternative form is possible and is left up to the individual user's preference. The entropies listed in the table of coeffi­ cients for the Cp polynomials corresponds to the tempera­ ture at the lower limit of the temperature range for the polynomial. This is usually 298.15 K.

For several phases, the existence of multiple transi­ tions at high temperature makes it impractical to provide a simple polynomial expression for the heat capacity. For such phases, for example Fe, Cui.gS, and several pyrrho- tites, we have listed only the heat capacity at 298. 15 K.

For these phases, one must go to the high-temperature table for the particular phase (if tabulated) to get the heat capacity (and entropy) above room temperature.

Internally consistent thermodynamic property data sets for silicate minerals have been published by Haas et al. (149), Holland and Powell (187, 188), Berman (37), Hal- bach and Chatterjee (150), and Saxena and Chatterjee (374) among others. Inasmuch as most of the authors relied on the same sources of calorimetric and equilibrium data to derive their adopted values, it is surprising that significant differ­ ences in their listed values for such important phases as grossular, anorthite, phlogopite and muscovite exist. For example, between the most frequently cited ICTDB, those of Berman (37) and Holland and Powell (188), the values of

calculated from their listed values of S^g and differ by 5.7, 3.7 and 3.7 kJTnoH for grossular,

anorthite, and muscovite, respectively, and for analbite and muscovite the tabulated entropies differ by 4.4 and 9.1 JmioH'K"1 , respectively. The point is, of course, that inter­ nal consistency does not imply that the derived values are accurate.

The reason for these discrepancies is most likely in the assumptions that the individual compiler makes concerning the state of internal Al/Si order. For a 1:3 AJ/Si compound such as the alkali feldspars or micas the complete random mixing of the 3 Si and 1 Al over the 4 tetrahedral sites leads to a contribution to the entropy of 18.7 J»mol~1»K~1 . How­ ever, if the aluminum-avoidance model is valid, the config- urational entropy will be considerably smaller and of the order of 13 to 14 J'mol'^K"1 . The aluminum-avoidance model has not been calculated exactly and only approxi­

mate values are available. The values for the configura- tional entropies that have been derived from phase equilibrium studies by Holland and Powell (188) and by Berman (37) are 12.6 and 17.0 J'moH-K-1 for analbite and 16.0 and 15.1 JnnoH'K"1 for sanidine, respectively. It appears that these calculated values for the entropy of disor­ der do not unequivocally support the aluminum-avoidance model but rather tend to yield a configurational entropy that is greater than that estimated by the aluminum-avoidance value, but definitely less than the fully random model. Any value of AS greater than that calculated from aluminum- avoidance would presumably mean that this model was inapplicable at high temperatures; for example, at tempera­ tures greater than 1300 K for analbite the disordering entropy would approach 18.7 JmioH'K"1 . Moreover Gold­ smith and Jenkins (123) have shown that the Al/Si disorder in NaAlSi3Og is a continuous function of the temperature and that it occurs over a range of several hundred degrees (500-1050 K) and occurs without change in symmetry.

As a consequence of these points the question arises whether one can extract meaningful (unique) values for the entropy of the disordered phase of an alumino-silicate from phase equilibrium studies without having additional infor­ mation on the Al/Si distribution. For this reason, we have adopted the fully random model for tabulating the high- temperature properties for the Al/Si disordered feldspars and micas. For an extended discussion of the contribution to the entropy of silicate minerals arising from Al/Si or mag­ netic spin disorder, see Ulbrich and Waldbaum (413).

The differences in the derived values for the thermody­ namic properties of phases in the CASH system is due in part to the existence of two calorimetric values for the entropy of grossular which differ from one another by 4.6 J-moH-K-1 . The value of Westrum et al. (438) was deter­ mined on a natural sample and involved a substantial cor­ rection for impurities. The value given by Haselton and Westrum (157) was derived from measurements on a syn­ thetic sample. The heat capacity of the synthetic sample used by Haselton and Westrum (157) was later remeasured at the USGS by the present authors (359), who found an entropy S°(Ca3Al2Si3Oi2, 298.15 K) of 259.9 J-moH-K-1 which agrees with the Haselton and Westrum value to within 0.2 Jnnol^K"1 (0.08 percent). For this reason we have accepted the Haselton-Westrum value for the entropy of grossular in evaluating the thermodynamic properties of phases in the CASH system.

PHYSICAL CONSTANTS AND ATOMIC WEIGHTS

The symbols and constants used to prepare these tables are listed in the table of contents. The units adopted for reporting the thermodynamic properties are those of the International System of Units (SI). A formal description of

Page 9: robie 1995

METHODS OF CALCULATION

the SI system is given by Goldman and Bell (122). The rec­ ommended symbols and terminology used are those from the International Union of Pure and Applied Chemistry (IUPAC), "Quantities, Units and Symbols in Physical Chemistry", by Mills et al. (278) and commonly called the "Greenbook". The Greenbook is also a convenient source for the CODATA values of the fundamental physical con­ stants, the 1985 atomic weights of the elements, and con­ tains a detailed description of the SI system of units.

Values for the gas constant (R), the Faraday constant (F), and the Avogadro constant (A) used in the calculations are those adopted by the CODATA Task Group from the least squares evaluation of Cohen and Taylor (75). For con­ venience, we also give values for the atomic weights for 1985 (scale C12 = 12.000, Mills et al. (278)) in alphabetical order by their chemical symbol in table 1.

REFERENCE STATES

The reference pressure for the standard state adopted for these tables is 1 bar, that is 105 Pascals. For a gaseous phase, C£, (HT - H^g)!"1 , and AfH° are independent of pressure, but the numerical values of 8°, (Gf - H^gyT"1 , AfG° depend upon the choice of pressure. The change in pressure from p = 1 atm (1.0135 bar) to 1 bar yields AS = 0.11 Jnnol-^K"1 . For a condensed phase (liquid or solid), it can be shown that the effect of changing the reference pres­ sure from 1 atm to 1 bar has only a trivial effect upon all the thennodynamic properties tabulated in this report except for AfG°, where a change will occur if one of the reference ele­ ments (usually oxygen) is a gas.

The standard states for the condensed elements are the most stable form at 1 bar pressure and the stated tempera­ ture. For gaseous elements, the standard state is the ideal gas at 1 bar pressure. Data are listed for the elements in their standard reference states, and for a few in nonstandard states; for example, S2 gas and the diamond form of carbon. The reference state adopted for an element above its normal boiling or sublimation temperature is not necessarily its equilibrium state. Thus, at equilibrium, liquid sulfur boils at 1 bar pressure and approximately 716.9 K to a gas com­ posed of S, 82, 84, 85, Sg, etc., but for our reference table, we have assumed the gas phase to be only 82. For the refer­ ence state table for sulfur we have followed the JANAF (67) tables procedure using 882.12 K as the fictive boiling temperature at which liquid sulfur is in equilibrium with 82 gas at 1 bar pressure. Because of the convenience of using diatomic sulfur gas in calculations of sulfide mineral equi­ libria we have included a second set of high-temperature tables for which the reference state for calculating AfG°, and AfH° and log Kf for the sulfide phase is 82 gas. The user is cautioned not to intermix values from the two different reference states in their calculations. In other ambiguous cases, we have chosen either the dominant species in the gas

or that species for which the best thennodynamic data are available as the reference state.

The reference states for AfH°, AfG°, and log Kf of the compounds are the elements in their standard states at 1 bar pressure and the stated temperature.

METHODS OF CALCULATION

Having chosen what we believe are the currently "best available" values for Hf - H&g, or Cj (T), S&g and either AfHlgg or AfGsgg, we have calculated the Gibbs energy function, and the enthalpy, Gibbs energy, and the equilib­ rium constant of formation at 100 K intervals using the fol­ lowing relations:

- ST

= AfH^g + TA[(GT -

and

log Kf;r =AfGx(2.30258 RT)' 1 = -AfG^gC^.HST)-1

These values together with Cj, Sj and (H| - H^g)!"1 are tabulated in the third section.

Transitions in heat capacity are treated in the standard manner: heat capacity curves are fit to the experimental val­ ues above and below the transition; values calculated from an extrapolation of the equation to the transition tempera­ ture are compared to the experimental values; and differ­ ences are summed to give an enthalpy of transition that is applied at the transition temperature.

The uncertainties assigned to the properties apply only to the values at 298.15 K. The principal source has been the original report of the experimental data. By convention, the uncertainty interval reported for calorimetric measurements is twice the standard deviation of the mean; that is,

5 = 2[Z(xi -xm)2/n(n-l)]*

where xj is the value for an individual measurement, xm is the arithmetic mean of all the measurements, and n is the number of measurements.

For generating the high-temperature tables, the input data supplied to the computer are the identifying name of the substance, the entropy, the enthalpy of formation at 298.15 K, the number of atoms of each element in the chemical formula, and the coefficients for the heat capacity equation. A commercial spreadsheet is used to compute the formula weight of the compound and values for Sf, AfGT, log Kf,x, CJ, (HT - HSwyr1 . and (GT - at 100 K intervals up to 1800 K. Auxiliary data such as the melting and boiling points and enthalpies of melting and vaporization are also included. In addition, coefficients

Page 10: robie 1995

THERMODYNAMC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

from a regression performed on the calculated values of are included. The equation adopted is:

The coefficients for the equations are listed, in scientific notation, at the bottom of the page for the individual high- temperature tables. The equations are given only for those minerals for which the regression yielded a fit of better than 1 percent.

ADDITIONAL COMMENTS

Small numbers of some groups are presented with other groups for convenience and economy. Examples

include tellurides, selenides and arsenides that are included with sulfides and sulfosalts, and methane, cohenite, and ammonia that are included with the elements.

The data available in this publication are also available on diskette for a nominal fee through the Generic Mineral Technology Center for Pyrometallurgy at the University of Missouri at Rolla as a part of the FREED database. FREED is a thennodynamic database program for storing, retriev­ ing, editing, and manipulating thennodynamic data on a computer. FREED was developed with support from the U.S. Department of Interior's Mineral Institute Program, administered by the U.S. Bureau of Mines, and the U.S. Department of Energy through the Westinghouse Savannah River Plant.

Table 1. Atomic weights of the elements for 1985.

Element

Actinium .......................Silver.............................Aluminum.....................Americium ....................Argon............................Arsenic ..........................Astatine .........................Gold..............................Boron............................Barium ..........................

Beryllium ......................Bismuth.........................Bromine ........................Carbon...........................Calcium.........................Cadmium.......................Cerium ..........................Chlorine ........................Cobalt............................Chromium .....................

Cesium ..........................Copper...........................Dysprosium...................Erbium ..........................Europium ......................Fluorine.........................Iron.............................. .Francium .......................Gallium .........................Gadolinium ...................

Germanium ...................Hydrogen ......................Helium...........................Hafnium ........................Mercury..........................Holmium ........................Iodine.............................Indium...........................Indium ..........................Potassium.......................

Krypton .........................Lanthanum.....................Lithium ..........................Lutetium... .....................Magnesium ...................Manganese .....................Molybdenum..................Nitrogen .........................

Symbol

................ Ac

................ Ag

................ Al

................ Am

................ Ar

................ As

................ At

................ Au

................ B

................ Ba

................ Be

................ Bi

................ Br

................ C

................ Ca

................ Cd

................ Ce

................ Cl

................ Co

................ Cr

................ Cs

................ Cu

................ Dy

................ Er

................ Eu

................ F

................ Fe

................ Fr

................ Ga

................ Gd

................ Ge

................ H

................ He

................ Hf

................ Hg

................ Ho

................ I

................ In

................ Ir

................ K

................ Kr

................ La

................ Li

................ Lu

................ Mg

................ Mn

................ Mo

................ N

Atomic Weight

(227)107.868226.98154

(243)39.94874.92159

(210)196.96654

10.811137.327

9.01218208.98037

79.90412.01140.078

112.411140.11535.452758.933251.9961

132.9054363.546

162.50167.26151.96518.9984055.847

(223)69.723

157.25

72.611.007944.00260

178.49200.59164.93032126.90447114.82192.2239.0983

83.80138.9055

6.941174.96724.305054.9380595.9414.00674

Element

Sodium...........................Niobium .........................Neodymium....................Neon...............................Nickel.............................Neptunium......................Oxygen...........................Osmium..........................Phosphorus .....................Protactinium ...................

Lead................................Palladium .......................Polonium........................Promethium....................Praseodymium................Platinum.........................Plutonium.......................Radium...........................Rubidium........................Rhenium.........................

Rhodium.........................Radon.............................Ruthenium......................Sulfur..............................Antimony .......................Scandium........................Selenium ........................Silicon ............................Samarium.......................Tin..................................

Strontium........................Tantalum ........................Terbium ..........................Technetium.....................Tellurium........................Thorium..........................Titanium.........................Thallium.........................Thulium..........................Uranium .........................

Vanadium .......................Tungsten.........................Xenon.............................Yttrium...........................Ytterbium.......................Zinc ................................Zirconium.......................

Symbol

............... Na

............... Nb

............... Nd

............... Ne

............... Ni

............... Np

............... O

............... Os

............... P

............... Pa

............... Pb

............... Pd

............... Po

............... Pm

............... Pr

............... Pt

............... Pu

............... Ra

............... Rb

............... Re

............... Rh

............... Rn

............... Ru

............... S

............... Sb

............... Sc

............... Se

............... Si

............... Sm

............... Sn

............... Sr

............... Ta

............... Tb

............... Tb

............... Te

............... Th

............... Ti

............... Tl

............... Tm

............... U

... ........ . V............... W............... Xe............... Y............... Yb............... Zn............... Zr

Atomic Weight

22.9897792.90638

144.2420.179758.69

(237)15.9994

190.230.97376

231.03588

207.2106.42

(209)(145)140.90765195.08

(244)(266)

85.4678186.207

102.90550(222)101.0732.066

121.7544.9559178.9628.0855

150.36118.710

87.62180.9479158.92534(98)127.60232.0381

47.88204.3833168.93421238.0289

50.9415183.85131.2988.90585

173.0465.3991.224

Page 11: robie 1995

ELEMENTS

THERMODYNAMIC PROPERTIES OF ELEMENTS IN THEIR REFERENCE STATE AT 298.15 K

NAME AND FORMULA

SILVER (REFERENCE STATE)Ag

Ag* (AQUEOUS ION)STD. STATE, M » 1

ALUMINUM (REFERENCE STATE)Al

Al3* (AQUEOUS ION)STD. STATE, M = 1

ARSENIC (REFERENCE STATE)As

GOLD (REFERENCE STATE)All

BORON (REFERENCE STATE)B

BARIUM (REFERENCE STATE)Ba

Ba2* (AQUEOUS ION)STD. STATE, M = 1

BERYLLIUM (REFERENCE STATE)Be

BISMUTH (REFERENCE STATE)Bi

BROMINE (REFERENCE STATE)Br2 (LIQUID)

BROMINE (IDEAL GAS)Br2

Br~ (AQUEOUS ION)STD. STATE, M = 1

GRAPHITE (REFERENCE STATE)C

DIAMONDC

WEIGHT

g J

107.868

107.868

26.982

26.982

74.922

196.967

10.811

137.327

137.327

9.012

208.980

159.808

159.808

79.904

12.011

12.011

ENTROPY

S° mot-1 -IT1

42.550.21

73.450.40

28.300.08

-332

10

35.690.84

47.490.21

5.830.08

62.420.84

8.400.50

9.500.08

56.740.42

152.200.30

245.470.05

82.550.20

5.740.10

2.380.20

VOLUME

cJ

10.2720.002

9.9990.001

12.9630.020

10.2150.002

4.3860.007

38.210.02

4.8800.002

21.310.01

54.580.20

24789.70.2

5.2980.001

3.4170.001

ENTHALPY

M° kJ-mol 1

0.0

105.80.1

0.0

-538.41.5

0.0

0.0

0.0

0.0

-532.51.0

0.0

0.0

0.0

30.90.1

-121.40.2

0.0

1.90.0

FREEENERGY M°

kJ-mol 1

0.0

77.10.1

0.0

-489.41.4

0.0

0.0

0.0

0.0

-555.41.0

0.0

0.0

0.0

3.10.3

-103.80.2

0.0

2.90.1

LOG(K)

0.00

-13.500.02

0.00

86.110.79

0.00

0.00

0.00

0.00

97.300.18

0.00

0.00

0.00

-0.550.05

18.180.04

0.00

-0.510.02

REFERENCES

S H/G C

85

85 85

6792

85 85170 330

361

361

6785

361

54 54

8567

361

85

85 85

85 85

85

419 419

85

9267

361

6785

361

8567

361127

67

67

85

419

Page 12: robie 1995

THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF ELEMENTS IN THEIR REFERENCE STATE AT 298.15 K

NAME AND FORMULA

CALCIUM (REFERENCE STATE)Ca

Ca2* (AQUEOUS ION)STD. STATE, * = 1

CADMIUM (REFERENCE STATE)Cd

Cd2* (AQUEOUS ION)STD. STATE, M - 1

CERIUM (REFERENCE STATE)Ce

CHLORINE (REFERENCE STATE)C12 (IDEAL GAS)

Cl" (AQUEOUS ION)STD. STATE, M = 1

COBALT (REFERENCE STATE)Co

CHROMIUM (REFERENCE STATE)Cr

CESIUM (REFERENCE STATE)Cs

Cs* (AQUEOUS ION)STD. STATE, M = 1

COPPER (REFERENCE STATE)Cu

Cu* (AQUEOUS ION)STD. STATE, n = 1

Cu2* (AQUEOUS ION)STD. STATE, M = 1

FLUORINE (REFERENCE STATE)F2 (IDEAL GAS)

F" (AQUEOUS ION)STD. STATE, M = 1

WEIGHT

g J

40.078

40.078

112.411

112.411

140.115

70.905

35.453

58.933

51.996

132.905

132.905

63.546

63.546

63.546

37.997

18.998

ENTROPY

S° moi-'-r1

42.900.10

-56.21.0

51.800.15

-72.81.5

72.04.0

223.080.01

56.600.20

30.040.42

23.620.21

85.230.40

132.10.5

33.140.03

40.600.40

-98.04.0

202.790.02

-13.80.8

VOLUME

V° c.3

26.190.04

13.0050.003

20.770.02

24789.70.2

6.6700.002

7.2310.001

69.730.40

7.1130.003

24789.70.2

ENTHALPY

A,H°

kJ-mol 1

0.0

-543.01.0

0.0

-75.90.6

0.0

0.0

-167.10.1

0.0

0.0

0.0

-258.00.5

0.0

71.70.1

64.91.0

0.0

-335.40.7

FREEENERGY A.G'

kJ-mol 1

0.0

-553.6

0.0

-77.60.6

0.0

0.0

-131.20.1

0.0

0.0

0.0

-291.51.0

0.0

50.00.1

65.10.1

0.0

-281.50.7

LOG(K) REFERENCES

S H/G C

0.00 360

96.99 85

0.00 85

-13.59 850.11

0.00 419

0.00 6785

22.99 85

0.00 361

0.00 67

0.00 85

51.07 850.18

0.00 365

-8.76 4190.02

-11.40 850.02

0.00 6785

49.32 850.12

117

85419

85

85

361

6785

85

361

67

85

44367

419

85

6785

85

Page 13: robie 1995

ELEMENTS

THERMODYNAMIC PROPERTIES OF ELEMENTS IN THEIR REFERENCE STATE AT 298.15 K

NAME AND FORMULA

IRON (REFERENCE STATE)Fe

Fe2* (AQUEOUS ION)STD. STATE, M = 1

Fe3* (AQUEOUS ION)STD. STATE, M = 1

GERMANIUM (REFERENCE STATE)Ge

HYDROGEN (REFERENCE STATE)H2 (IDEAL GAS)

H* (AQUEOUS ION)STD. STATE, M = 1

MERCURY (REFERENCE STATE)Hg (LIQUID)

Hg2* (AQUEOUS ION)STD. STATE, M = 1

Hgf* (AQUEOUS ION) STD. STATE, M = 1

IODINE (REFERENCE STATE)'2

IODINE (IDEAL GAS)'2

I~ (AQUEOUS ION)STD. STATE, m = 1

POTASSIUM (REFERENCE STATE)K

K* (AQUEOUS ION)STD. STATE, M * 1

LITHIUM (REFERENCE STATE)Li

Li* (AQUEOUS ION)STD. STATE, M = 1

WEIGHT ENTROPY VOLUME

S° V°g J-n»r1 'ir1 a?

55.847 27.09 7.0920.13 0.004

55.847 -107.12.0

55.847 -280.013.0

72.61 31.09 13.6300.15 0.005

2.016 130.68 24789.70.02 0.2

1.008 0.00 0

200.59 75.90 14.8220.12 0.002

200.59 -36.20.8

401.18 65.74 0.80

253.809 116.14 51.290.30 0.06

253.809 260.69 24789.70.02 0.2

126.904 106.450.30

39.098 64.67 45.360.20 0.09

39.098 101.200.20

6.941 29.09 13.0170.20 0.007

6.941 12.240.15

ENTHALPY

AfH°

kJ-mol 1

0.0

-91.13.0

-49.95.0

0.0

0.0

0.0

0.0

170.20.2

166.9 0.5

0.0

62.40.1

-56.80.1

0.0

-252.10.1

0.0

-278.50.1

FREEENERGY M°

kJ-mol 1

0.0

-90.02.0

-16.72.0

0.0

0.0

0.0

0.0

163.50.2

153.6 0.5

0.0

19.30.1

-51.70.1

0.0

-282.50.1

0.0

-292.90.1

LOG(K)

0.00

15.770.35

2.930.35

0.00

0.00

0.00

0.00

-28.640.04

-26.91 0.09

0.00

-3.390.01

9.060.02

0.00

49.480.01

0.00

51.310.01

REFERENCES

S H/G C

9067

411

411

85

6785

85

85

85

85

67

85

8567

85

67

85

9067

411

411

361

6785

361

85

85

67 67

67

85

8567

85

6785

85

Page 14: robie 1995

THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF ELEMENTS IN THEIR REFERENCE STATE AT 298.15 K

NAME AND FORMULA

MAGNESIUM (REFERENCE STATE)Mg

Mg2* (AQUEOUS ION)STD. STATE, m = 1

MANGANESE (REFERENCE STATE)Mn

Mn2* (AQUEOUS ION)STD. STATE, m = 1

MOLYBDENUM (REFERENCE STATE)Mo

NITROGEN (REFERENCE STATE)"2

SODIUM (REFERENCE STATE)Na

Ma* (AQUEOUS ION)STD. STATE, M = 1

NICKEL (REFERENCE STATE)Ni

Ni 2* (AQUEOUS ION)STD. STATE, m = 1

OXYGEN (REFERENCE STATE)02 (IDEAL GAS)

PHOSPHORUS (REFERENCE STATE)P (WHITE)

LEAD (REFERENCE STATE)Pb

Pb2* (AQUEOUS ION)STD. STATE, M * 1

PLATINUM (REFERENCE STATE)Pt

SULFUR (REFERENCE STATE)S ORTHORHOMBIC

WEIGHT

g J

24.305

24.305

54.938

54.938

95.94

28.013

22.990

22.990

58.69

58.69

31.999

30.974

207.2

207.2

195.08

32.066

ENTROPY

S° nol-'-lf1

32.670.10

-137.04.0

32.010.08

-73.601.00

28.660.21

191.610.02

51.460.20

58.450.15

29.870.08

-128.92.0

205.150.02

41.090.25

64.80.5

18.51.0

41.630.21

32.050.05

VOLUME

V° cm3

13.9960.007

7.3540.007

9.3870.005

24789.70.2

23.810.01

6.5880.003

24789.70.2

17.30.3

18.2670.006

9.0910.004

15.5110.005

ENTHALPY

A,H°

kJ-mol 1

0.0

-467.00.6

0.0

-220.80.5

0.0

0.0

0.0

-240.30.1

0.0

-54.00.9

0.0

0.0

0.0

0.90.3

0.0

0.0

FREE ENERGY M°

kJ-mol 1

0.0

-455.40.6

0.0

-228.10.5

0.0

0.0

0.0

-261.50.1

0.0

-45.60.9

0.0

0.0

0.0

-24.20.2

0.0

0.0

LOG(K)

0.00

79.780.11

0.00

39.960.09

0.00

0.00

0.00

45.810.01

0.00

7.990.15

0.00

0.00

0.00

4.240.04

0.00

0.00

REFERENCES

S H/G C

8567

85

91

419

91

6785

6785

85

67

419

6785

85

67

85

361

6785

85

85

91

419

91

6785

6785

85

67

419

6785

85

67

85

361

67

Page 15: robie 1995

ELEMENTS

THERMODYNAMIC PROPERTIES OF ELEMENTS IN THEIR REFERENCE STATE AT 298.15 K

NAME AND FORMULA

SULFURS NONOCLINIC

S2" (AQUEOUS ION)STD. STATE, M « 1

DIATOMIC SULFURS2 (IDEAL GAS)

ANTIMONY (REFERENCE STATE)Sb

SELENIUM (REFERENCE STATE)Se

SILICON (REFERENCE STATE)Si

H4Si04° (AQUEOUS ION) STD. STATE, M * 1

TIN (REFERENCE STATE)Sn (UNITE, TET.)

STRONTIUM (REFERENCE STATE)Sr

Sr2* (AQUEOUS ION)STD. STATE, M = 1

TELLURIUM (REFERENCE STATE)Te

THORIUM (REFERENCE STATE)Th

TITANIUM (REFERENCE STATE)Ti

URANIUM (REFERENCE STATE)U

VANADIUM (REFERENCE STATE)V

TUNGSTEN (REFERENCE STATE)U

WEIGHT

g J

32.066

32.066

64.132

121.75

78.96

28.086

96.115

118.710

87.62

87.62

127.60

232.038

47.88

238.029

50.942

183.85

ENTROPY

S° mol-1 -*-1

33.030.05

-14.61.0

228.170.02

45.520.21

42.270.05

18.810.08

180.0 4.2

51.180.08

55.690.20

-31.52.0

49.710.20

51.830.50

30.760.10

50.20.2

28.940.42

32.650.10

VOLUME

a?

24789.70.2

18.1780.009

16.420.01

12.0560.002

16.290.01

33.920.02

20.480.01

19.790.01

10.630.01

12.500.02

8.3500.004

9.5450.004

ENTHALPY

M° kJ-mol 1

0.30.1

33.11.0

128.60.3

0.0

0.0

0.0

-1460.0 1.7

0.0

0.0

-550.90.5

0.0

0.0

0.0

0.0

0.0

0.0

FREE ENERGY

W kJ-mol'1

0.0

85.81.0

79.70.3

0.0

0.0

0.0

-1307.5 2.1

0.0

0.0

-563.80.8

0.0

0.0

0.0

0.0

0.0

0.0

LOG(K) REFERENCES

S H/G C

0.00 67

-15.03 4190.18

-13.96 670.05

0.00 361

0.00 62

0.00 6785

229.12 0.37

0.00 85

0.00 39

98.78 550.14

0.00 361

0.00 319

0.00 67

0.00 85

0.00 67

0.00 67

419 67

419

67 67

361

126

67

179 422 285 414

85

67

55

361

319

67

85

67

67

Page 16: robie 1995

10 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF ELEMENTS IN THEIR REFERENCE STATE AT 298.15 K

NAME AND FORMULA

ZINC (REFERENCE STATE)Zn

Zn2* (AQUEOUS ION)STD. STATE, M = 1

ZIRCONIUM (REFERENCE STATE)Zr

METHANE (IDEAL GAS)CH4

COHENITEFejC

AMMONIA (IDEAL GAS)Nil;

NH4* (AQUEOUS ION) STD. STATE, = 1

WEIGHT ENTROPY

g J-mol'-K 1

65.39 41.630.15

65.39 -109.80.5

91.224 38.870.20

16.043 186.260.21

179.552 104.43.4

17.031 192.770.03

18.039 111.17 0.40

VOLUME

cJ

9.1620.007

14.0160.007

24789.70.2

23.230.01

24789.70.2

ENTHALPY

M" kJ-mol 1

0.0

-153.40.2

0.0

-74.80.3

24.91.3

-45.90.4

-133.30.3

FREE ENERGY A**

kJ-mol 1

0.0

-147.30.2

0.0

-50.70.4

19.71.7

-16.40.4

-79.4 0.3

LOG(K)

0.00

25.790.04

0.00

8.880.07

-3.450.30

2.870.06

13.91 0.05

REFERENCES

S H/G C

67 6785

85 85

67 67

419 419 6767 67

361 361 361

67 67 67

85 85

Page 17: robie 1995

SULFIDES AND SULFOSALTS 11

THERMODYNAMIC PROPERTIES OF SULFIDE MINERALS AT 298.15 K

NAME AND FORMULA

ACANTHITE (ARGENTITE)Ag2s

REALGARAsS

ORPIMENT**zh

BISMUTHINITEB12h

TELLUROBISMUTHITEBi 2Te3

OLDHAMITECaS

GREENOCKITECdS

CATTIERITECoS2

LINNAEITEC°3S4

COVELLITECuS

ANILITE^LTS8

DIGENITECU1.80S

DJURLEITECU1.95S

CHALCOCITECUgS

CHALCOPYRITECuFeS2

BORNITEClIeFeS,

HEIGHT

g J

247.802

106.988

246.041

514.159

800.761

72.144

144.477

123.065

305.064

95.612

143.272

146.449

155.981

159.158

183.525

501.841

ENTROPY

S° or1 -if1

142.90.3

63.50.6

163.61.6

200.43.3

261.15.0

56.71.3

72.20.3

74.80.2

176.00.4

67.40.1

107.50.2

109.60.2

114.80.2

116.20.2

124.90.2

398.50.8

VOLUME

V° « *

34.190.04

29.800.24

70.510.25

75.520.04

101.850.09

27.720.09

29.930.02

25.520.01

62.550.02

20.420.02

25.790.02

25.630.05

26.890.02

27.480.02

43.920.02

98.730.05

ENTHALPY

kJ-mol 1

-32.01.0

-30.95.0

-91.64.2

-135.22.4

-78.72.1

-474.92.1

-149.61.3

-150.94.9

-347.57.3

-54.60.3

-73.30.3

-73.00.5

-78.80.4

-83.91.1

-194.91.6

-371.62.1

FREEENERGY

kJ-mol 1

-39.71.0

-29.65.0

-90.44.2

-132.42.6

-78.22.6

-469.52.1

-146.11.3

-145.14.9

-334.97.3

-55.30.3

-78.50.3

-78.30.5

-84.20.4

-89.21.1

-195.11.6

-394.72.1

LOG(K)

6.960.18

5.190.88

15.840.74

23.200.46

13.710.46

82.250.37

25.600.23

25.420.86

58.661.28

9.690.05

13.760.05

13.720.09

14.750.07

15.620.19

34.180.28

69.320.37

REFERENCES

S N/G C

141

429

372

372

201

67

38

399

399

109442

133

133

394

142109

371

369

12152

419270

50

52

279

67279

3

60376

6098

337

337140

337

337

36948

369371

369

141306

270

210

38

326

109442

133

133

394

109142

325369

325369

Page 18: robie 1995

12 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF SULFIDE MINERALS AT 298.15 K

NAME AND FORMULA

CUBAN ITE CuFe^

NUKUNOAMITECu5.5FeS6.5

TROILITEFeS

PYRRHOTITEFe.875S

PYRRHOTITEFe.90S

PYRITEFeS2

MARCASITEFeS2

LOELLINGITEFeAs2

FERROSELITEFeSe2

FROHBERGITEFeTe2

HYDROGEN SULFIDE (IDEAL GAS)H2S

HS" (AQUEOUS ION)STD. STATE, m = 1

CINNABARHgS

NETACINNABARHgS

NININGERITEMgs

ALABANDITEMnS

WEIGHT

g J

271.438

613.779

87.913

80.932

82.328

119.979

119.979

205.690

213.767

311.047

34.082

33.074

232.656

232.656

56.371

87.004

ENTROPY

S° or1 -*1

205.0 0.8

60.30.2

60.70.2

63.20.1

52.90.1

53.90.1

80.10.7

86.90.3

100.20.2

205.80.2

67.00.9

82.52.1

96.24.2

50.30.4

80.30.8

VOLUME

V° c*3

67.44 0.06

278.00.5

18.200.03

17.490.05

16.880.10

23.940.01

24.580.02

27.510.02

29.960.05

38.430.05

24789.700.20

28.420.02

30.170.02

21.170.02

21.460.01

ENTHALPY

M° kJ-mol 1

-101.01.5

-97.52.0

-97.62.0

-171.51.7

-169.52.1

-57.85.0

-72.44.2

-20.60.6

16.30.2

-54.32.1

-46.71.5

-345.74.2

-213.90.8

FREE ENERGY A.G"

kJ-mol 1

-564.53.4

-101.31.5

-98.92.0

-99.62.0

-160.11.7

-158.42.1

-52.35.0

-64.64.2

-33.40.6

44.80.3

-40.72.7

-43.30.8

-341.44.2

-218.70.9

LOG(K)

98.900.59

17.750.26

17.330.35

14.450.35

28.050.30

27.750.37

9.170.88

11.310.74

5.860.11

-7.860.05

7.130.47

7.590.15

59.810.74

38.310.17

REFERENCES

S H/G C

388

143347

143

135

138

139

332

138

437

8567

85

233

217

67

279

369

693

131

375

40967

139

25

279

8567

85

326279

120

67

3375

280

79131

131

135

79

139

8567

67

79203

Page 19: robie 1995

SULFIDES AND SULFOSALTS 13

THERMODYNAMIC PROPERTIES OF SULFIDE MINERALS AT 298.15 K

NAME AND FORMULA

HAUERITEMnS2

MOLYBDENITENoS2

MILLERITENiS

HEAZLEWOOOITENi3S2

PENTLANDITEMi4.5F«4.5S8

VIOLARITE<Mi .7Fe.3>3S4

GALENAPbS

CLAUSTHALITEPbSe

ALTAITEPbTe

COOPERITEPtS

STIBNITESbgSj

HERZENBERGITESnS

BERNDTITESnS2

TUNGSTEN I TEus2

SPHALERITEZnS

WURTZITEZnS

WEIGHT

g J

119

160

90

240

771

301

239

286

334

227

339

150

182

247

.070

.072

.756

.202

.944

.775

.266

.160

.800

.146

.698

.776

.842

.982

97.456

97.456

ENTROPY

99.90.1

62.60.2

53.00.4

133.20.3

91.70.7

102.52.1

110.02.1

55.10.1

182.03.3

77.00.8

87.50.2

67.80.3

58.70.2

58.80.2

VOLUME

V° « *

340

320

160

400

1550

630

310

340

400

220

730

290

400

320

230

230

.20

.01

.02

.02

.89

.01

.95

.02

.40

.20

.80

.30

.49

.01

.61

.01

.60

.01

.15

.01

.41

.04

.01

.02

.96

.02

.07

.02

.83

.01

.85

.01

ENTHALPY

AfH»

kJ-mol 1

-223.810.0

-271.84.9

-91.03.0

-216.33.0

-837.414.6

-378

11.8

-98.32.0

-100.12.3

-70.71.4

-82.43.4

-151.42.3

-106.51.5

-149.85.0

-241.62.5

-204.11.5

-203.81.5

FREEENERGY

kJ-mol 1

-224.610.0

-262.84.9

-63.93.0

-210.23.0

-96.82.0

-98.72.1

-69.41.5

-76.93.4

-149.92.1

-104.61.5

-141.55.0

-233.02.5

-199.61.5

-199.31.5

LOG(K)

39.351.75

46.040.86

14.970.53

36.830.53

16.960.35

17.300.37

12.150.27

13.460.59

26.260.37

18.330.26

24.790.88

40.820.44

34.970.26

34.920.26

REFERENCES

S H/G C

441

275

429

395

67326

279

217

136

234

229

229

304

398

398

279

305

58271

5867

59

59

397245

279

419

136

38253

347

326

303304

378

338

114

27198

107276

67326

21151

315

315

304

324

324

Page 20: robie 1995

14 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF SULFIDE MINERALS AT 298.15 K

NAME AND FORMULA

PROUST I TEAgjAsSj

SMITHITEAgA8S2

ENARGITECU3A8S4

ARSENOPYRITEFeA81 .08S0.92

LIVINGSTONITEHgSb4Sg

BERTHIERITEFeSb2S4

CHALCOSTIBITECuSbS2

Fe-TENNANTITE

Fe-TETRAHEDRITECu1QFe2Sb4Sl3

Zn-TENNANTITE

Zn-TETRAHEDRITE

PYRARGYRITEAgjSbSj

MIARGYRITEa-AgSbS2

MATILDITEB-AgBiS2

WEIGHT

g .

494.724

246.922

393.824

166.263

944.118

427.611

249.428

1463.698

1651.012

1482.784

1670.098

541.553

293.750

380.980

ENTROPY

S°l-mol"1 -*"1

303.70.5

150.50.2

257.60.6

68.80.4

470.51.5

245.01.0

149.23.8

1024.2

1061.0

1025.6

1062.4

VOLUME ENTHALPY FREE ENERGY

CM3 kJ-mol 1 kJ-mol 1

88.420.02

50.120.30

88.240.12

26.420.07

192.90 -373.2 -360.26.5 6.5

92.22 -256.2 -255.80.20 6.5 6.5

50.06 -130.8 -132.70.10 4.4 4.2

332.10

336.70

332.10

336.70

92.56 -131.50.04 3

52.03 -95.80.09 2.6

54.44 -165.30.10 8

LOG(K) REFERENCES

S H/G C

146

146

381

331

63.10 145 4541.14

44.82 97 382 3821.14

23.25 382 382 3820.74

380

380

380

380

51

51

52

Page 21: robie 1995

OXIDES AND HYDROXIDES 15

THERMODYNAMIC PROPERTIES OF OXIDE AND HYDROXIDE MINERALS AT 298.15 K

NAME AND FORMULA

CORUNDUMA12°3

BOEHMITEAIO(OH)

DIASPOREAIO(OH)

GIBBSITEAl(OH)3

ARSENOLITEA82°3

CLAUDE T I TEA82°3

DIBOROH TRIOXIDEB2°3

BARIUM MONOXIDEBaO

BROMELLITEBeO

B I SMITEBi 2°3

CARBON MONOXIDECO (IDEAL GAS)

CARBON DIOXIDECC^ (IDEAL GAS)

COj"" (AQUEOUS ION) STD. STATE, - 1

HCOj" (AQUEOUS ION) STD. STATE. = 1

H2COj (UN- I OH I ZED) STD. STATE. = 1

LINECaO

WEIGHT

g J-

101.961

59.988

59.988

78.004

197.841

197.841

69.620

153.326

25.012

465.959

28.010

44.010

60.009

61.017

62.025

56.077

ENTROPY

S"

50.90.1

37.20.1

35.30.2

68.40.1

107.40.1

113.30.1

54.00.3

72.10.4

13.80.1

151.52.1

197.30.0

213.80.0

-50.0 1.0

98.4 0.5

184.7 0.9

38.10.4

VOLUME

yo

<**

25.580.01

19.540.03

17.760.03

31.960.02

51.120.07

47.260.03

27.260.06

25.590.01

8.310.03

49.730.06

24789.700.20

24789.700.20

16.760.01

ENTHALPY

kJ-nol 1

-1675.71.3

-996.42.2

-1001.32.2

-1293.11.2

-657.01.7

-654.81.7

-1273.51.4

-548.12.1

-609.42.5

-573.91.3

-110.50.2

-393.50.1

-675.2 0.1

-689.9 0.2

-699.7 0.1

-635.10.9

FREE ENERGY

kJ not'1

-1582.31.3

918.42.2

922.72.1

-H154.91.2

576.01.9

575.61.1

-1194.41.4

520.42.1

580.12.5

493.51.5

-137.10.2

-394.40.2

-527.0 0.3

-586.8 0.3

-623.2 0.1

-603.10.9

LOG(K)

277.200.23

160.900.39

161.530.88

202.330.21

100.900.33

100.830.18

209.240.25

91.170.37

101.630.44

86.450.26

24.010.03

69.090.03

92.33 0.05

102.81 0.04

109.17 0.02

105.660.16

REFERENCES

S H/G C

9394

176

334230

178

61

61

85

85

85

419

67117

67117

85 36

85 36

419

67117

26885

17612

12176

171212

419

8567

77111

85

419269

67117

67117

8536

8536

419

67117

9457

178

67

85262

67418

319

67117

67117

67117

Page 22: robie 1995

16 IHERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMOOYNAHIC PROPERTIES OF OXIDE AND HYDROXIDE MINERALS AT 298.15 K

NAME AND FORMULA UEIGHT

9 J

PORTLAND I TE 74.093 Ca(OH)2

MONTEPONITE 128.400 CdO

CERIANITE 172.114 CeOj

COBALT MONOXIDE 74.933 CoO

TR I COBALT TETRAOXIDE 240.797 C°3°4

ESKOLAITE 151.990 Cr2°3

DICESIUM MONOXIDE 281.810 Cs20

TENOR I TE 79.545 CuO

CUPRITE 143.091

UUSTITE 68.887 Fe.947°

FERROUS OXIDE (STOICHIOMETRIC) 71.846 FeO

HEMATITE 159.692 Fe2°3

MAGNETITE 231.539

GOETHITE 88.854 FeO(OH)

WATER 18.015 H20 (LIQUID)

OH' (AQUEOUS IOH) 17.007 STD. STATE. = 1

ENTROPY

S-

83.4 0.4

54.8 1.5

62.3 0.1

52.8 0.3

109.3 0.3

81.2 1.3

146.9 . 0.4

42.6 0.2

92.4 0.3

56.6 0.4

60.6 1.7

87.4 0.2

146.1 0.4

60.4 0.6

70.0 0.1

-10.7 0.2

VOLUME

yo

<**

33.06 0.02

15.59 0.01

23.850.03

11.64 0.02

39.77 0.02

29.09 0.03

59.62 0.07

12.22 0.03

23.44 0.02

12.04 0.04

12.00 0.05

30.27 0.01

44.52 0.01

20.82 0.04

18.07 0.00

ENTHALPY

kJ-mor1

-986.1 1.3

-258.4 0.4

-1088.7 1.5

-237.9 1.3

-918.8 2.0

-1134.7 8.4

-346.0 1.2

-156.1 2.0

-170.6 0.1

-266.3 0.8

-272.0 2.1

-826.2 1.3

-1115.7 2.1

-562.6 2.1

-285.8 0.1

-230.0 0.1

FREE ENERGY

kJ-nor1

-898.0 1.3

-228.7 0.6

-1025.4 1.9

-214.1 1.3

-802.2 2.0

-1053.1 8.4

-308.4 1.2

-128.3 2.0

-147.8 0.1

-244.9 0.8

-251.4 2.2

-744.4 1.3

-1012.7 2.1

-491.8 2.1

-237.1 0.1

-157.3 0.1

LOG(K)

157.33 0.23

40.07 0.11

179.64 0.34

37.52 0.23

140.54 0.35

184.49 1.47

54.02 0.21

22.48 0.35

25.89 0.02

42.91 0.14

44.05 0.38

130.41 0.23

177.42 0.37

86.16 0.12

41.55 0.01

27.56 0.02

REFERENCES

S H/G C

67 158

85

436

287

222

67

112

67

67 310

67 132

67 132

137 67

440 22

235

85

85

67 158

85267

14

308 45

319 307

67 267

384

67 272

190 272

198 148

67

161 310

161 310

221 18

85

85

67 117

227

319 125

319

67

112

272

272 67

83 67

67

83 130

161 134

117 67

Page 23: robie 1995

OXIDES AND HYDROXIDES 17

THERNOOYNAMIC PROPERTIES OF OXIDE AND HYDROXIDE MINERALS AT 298.15 K

NAME AND FORMULA

STEAMH20 (IDEAL GAS)

HAFNIUM DIOXIDEHf02

MONTROYDITEHgO

DIPOTASSIUM MONOXIDEK2°

POTASSIUM HYDROXIDEKOH

DILITHIUM MONOXIDELi 20

PERICLASEHgO

BRUCITEMg(OH>2

MANGANOSITEHnO

PYROLUSITEHn02

BIXBYITE"^

HAUSMANNITEMnj04

BRAUNITEMivSiO^

MOLYBDITEMoO;

NITROGEN DIOXIDEN02 (IDEAL GAS)

NOj" (AQUEOUS ION) STD. STATE. = 1

WEIGHT

g J<

18.015

210.489

216.589

94.196

56.106

29.881

40.304

58.320

70.937

86.937

157.874

228.812

604.645

143.938

46.006

62.005

ENTROPY

or1 -IT1

188.80.0

59.30.4

70.30.3

94.16.3

78.90.8

37.60.3

26.90.2

63.20.1

59.70.4

52.80.1

113.70.2

164.10.2

416.40.8

77.70.4

240.10.1

146.7 0.4

VOLUME

V° on3

24789.700.20

20.820.01

19.320.02

40.380.20

27.450.02

14.760.01

11.250.00

24.630.07

13.220.00

16.610.02

31.370.05

46.950.06

125.080.05

30.560.04

24789.700.20

ENTHALPY

kJ-mol 1

-241.80.0

-1117.61.3

-90.80.1

-363.22.1

-424.70.6

-597.92.1

-601.60.3

-924.50.4

-385.20.5

-520.00.7

-959.01.0

-1384.51.4

-4260.04.0

-745.20.4

33.10.4

-206.9 0.4

FREE ENERGY

kJ-nor1

-228.60.1

-1061.11.3

-58.50.1

-322.12.8

-378.90.6

-561.22.1

' -569.3

0.3

-833.50.4

-362.90.5

-465.00.7

-882.11.0

-1282.51.4

-3944.74.0

-668.10.4

51.20.4

-110.8 0.4

LOG(K)

40.050.02

185.900.23

10.250.01

56.430.49

66.390.11

98.310.37

99.740.05

146.020.07

63.580.09

81.470.12

154.530.18

224.680.25

691.080.70

117.040.07

-8.980.07

19.42 0.07

REFERENCES

S H/G C

85

319

85

67

67

319419

8567

419

319

357

357

357

367

85

67

85

85

256319

85415

67

67254

20967

85321

419193

419

357

357

357

367

85

67

85

67117

319

67

67

67

319

418117

228

391319

357

357

357

367

85200

67

Page 24: robie 1995

18 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES Of OXIDE AND HYDROXIDE MINERALS AT 298.15 1C

NAME AND FORMULA

DISODIUM MONOXIDEMa20

SODIUM HYDROXIDENaOH

BUNSENITENiO

PHOSPHORUS PENTOXIDEP2°5

P04~~~ (AQUEOUS ION) STD. STATE, * 1

LITHARGE (RED)PbO

MASSICOT (YELLOW)PbO

PLATTNERITEPb02

MINIUMPbj04

SULFUR DIOXIDESOg (IDEAL GAS)

SULFUR TR I OX IDESOj (IDEAL GAS)

SOj" (AQUEOUS ION) STD. STATE. * 1

S04" (AQUEOUS ION) STD. STATE. * « 1

VALENTINITESbfcOj

SILICON MONOXIDESiO (IDEAL GAS)

QUARTZSiOj

WEIGHT

9 J

61.979

39.997

74.689

141.945

94.971

223.199

223.199

239.199

685.598

64.065

80.064

80.064

96.064

291.498

44.085

60.084

ENTROPY

S-

75.30.8

64.40.8

38.00.2

114.40.4

-222.0 4.2

66.50.2

68.70.2

71.80.4

212.06.7

248.20.1

256.80.8

-29.0 4.2

18.5 0.4

123.02.5

211.60.8

41.50.1

VOLUME

yo

<**

25.880.08

18.780.06

10.970.02

59.400.20

23.910.05

23.150.03

25.010.01

76.810.09

24789.700.20

24789.700.20

50.010.05

24789.700.20

22.690.00

ENTHALPY

kJ-nol'1

-414.80.3

-425.80.1

-239.30.4

-1504.90.5

-1259.6 0.9

-219.00.8

-217.30.3

-277.42.9

-718.76.3

-296.80.2

-395.70.7

-635.5 0.9

-909.3 0.4

-708.62.9

-100.48.4

-910.71.0

FREE ENERGY

kJ-mor1

-376.00.4

-379.60.3

-211.10.4

-1361.60.5

-1001.6 0.9

-188.90.8

-187.90.3

-218.32.9

-601.66.6

-300.10.2

-371.00.7

-486.5 0.9

-744.0 0.4

-626.43.0

-127.38.4

-856.31.0

LOG(K)

65.870.07

66.500.05

36.990.07

238.540.10

175.47 0.15

33.100.14

32.920.06

38.250.51

105.401.16

52.570.04

64.990.12

85.23 0.15

130.34 0.07

109.750.53

22.301.47

150.010.18

REFERENCES

S H/G C

67

67

271419

31967

419

72419

419

319

67

85

41967

419

85

319

67

435317

302419

67419

161191

31967

419

419

15419

419

67419

85

41967

419

85

419

67

444419

67115

67

161319

319

319

319

67

67117

67

67

160341

Page 25: robie 1995

OXIDES AND HYDROXIDES 19

THERMODYNAMIC PROPERTIES OF OXIDE AND HYDROXIDE MINERALS AT 298.15 K

NAME AND FORMULA

H4Si04 (UN- IONIZED) STD. STATE. * 1

CRISTOBALITESi°2

TRIDYMITESIC,,

COESITESi02

STISHOVITESi02

SILICALITESi02

SILICA GLASSSi02

CASSITERITESn02

STRONTIUM OXIDESrO

TELLURITETe°2

THORIANITETh°2

RUTILETI02

ANATASETJ02

DITITANIUN TR I OX IDETfgOj

URANINITEU02

KARELIANITEV2°3

WEIGHT

g J-

96

60

60

60

60

60

60

150

103

159

264

79

79

143

270

149

.115

.084

.084

.084

.084

.084

.084

.709

.619

.599

.037

.879

.879

.758

.028

.881

ENTROPY

S- ol-'-lf1

180.0 4.2

43.40.1

43.90.4

38.51.0

27.80.4

46.30.2

48.51.0

49.00.2

55.50.4

70.40.3

65.20.2

50.60.6

49.90.3

77.31.0

77.00.2

98.11.3

VOLUME

V <**

25.740.03

26.530.20

20.640.01

14.010.01

33.290.5

27.270.10

21.550.03

20.690.01

27.750.02

26.370.01

18.820.01

20.520.03

31.430.02

24.620.01

29.850.03

ENTHALPY

kJ-»ol 1

-1460.0 1.7

-908.42.1

-907.52.4

-907.82.1

-861.32.1

-905.20.8

-901.62.1

-577.60.2

-591.31.0

-319.73.0

-1226.43.5

-944.00.8

-938.72.1

-1520.98.4

-1084.91.0

-1218.86.3

FREE ENERGY

kJ-nol 1

-1307.8 2.1

-854

2

-853

2

-852

2

-802

2

-852

0

-849

2

-515

0

-560

1

-264

3

-11693

-888

1

-883

2

-14338

-10311

-1139

.6

.1

.8

.4

.5

.1

.8

.1

.2

.8

.3

.1

.8

.2

.7

.0

.8

.1

.2

.5

.8

.0

.2

.1

.9

.4

.7

.0

.06.3

LOG(K)

229.12 0.37

149.710.37

149.580.43

149.350.37

140.650.37

149.300.14

148.790.37

90.360.04

98.220.18

46.390.54

204.840.61

155.700.14

154.740.37

251.211.47

180.750.18

199.551.11

REFERENCES

S H/G C

435404

361

6189

6189

213

341435

449

67

333

419

8567

67

67

199248

67

179 285

67341

6

189

213

341444

8516

4677

41978

419

85294

67419

67

419248

67

422 414

286341

286404

361423

361

341

85

67262

319

417389

6785

294

67294

113128

76

Page 26: robie 1995

20 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF OXIDE AND HYDROXIDE MINERALS AT 298.15 K

NAME AND FORMULA WEIGHT ENTROPY VOLUME ENTHALPY FREE LOG(K) REFERENCESENERGY

TUNGSTEN DIOXIDE*>2

TUNGSTEN TRIOXIDEWOj

ZINCITEZnO

BADDELEYITEZrO,

S-

215.849 500

231.848 751

81.389 430

123.223 500

r-

.6

.3

.9

.3

.2

.1

.4

.3

vo <**

20.030.05

31.610.10

14.340.01

21.150.01

M"

kJ-ml

-589

0

-842

0

-350

0

-11001

-i

.7

.9

.9

.8

.5

.3

.6

.7

A.G-

kJ-nol

-533.0.

-764.0.

-320.0.

-1042.1.

i

99

19

43

97

93.530.16

133.860.16

56.120.05

182.700.30

S

67

67

352

319419

H/G

67

67

85

196419

C

67

236

352319

82

Page 27: robie 1995

MULTIPLE OXIDES 21

THERMOOYNAHIC PROPERTIES OF MULTIPLE OXIDE MINERALS AT 298.15 K

NAME AND FORMULA

TIALITEAlgTiOs

CHRYSOBERYLBeAl204

CALCIUM FERRITECaFe204

D I CALCIUM FERRITECa2Fe2°5

PEROVSKITECaTiOj

HERCYNITEFeAl204

CHROMITEFeCr204

ILMENITEFeTiOj

ULVOSPINELFe2Ti04

PSEUDOBROOKITEFe2Tl"°5

SPINELMgAl 204

MAGNESIOCHROMITEMgcr2o4

MAGNESIOFERRITEMgFe204

GEIKIELITEHiTiOj

PYROPHANITEMnTJOj

TREVORITENiFe?0,

WEIGHT

g J

181

126

215

271

135

173

223

151

223

239

142

192

199

120

150

234

.840

.973

.770

.847

.956

.808

.837

.725

.572

.571

.266

.295

.997

.183

.816

.382

ENTROPY

S-

109.60.8

66.30.1

145.40.8

188.81.3

93.60.4

117.03.0

146.01.7

108.90.3

180.402.5

156.51.3

88.74.0

106.00.8

121.82.0

74.60.2

104.90.2

140.95.0

VOLUME

V cm3

48.750.05

34.320.02

44.980.05

67.180.10

33.630.01

40.750.05

44.010.10

31.690.08

46.820.05

54.530.05

39.710.03

43.560.05

44.570.05

30.860.07

32.770.05

43.650.05

ENTHALPY

M" kJ-nol 1

-2298.52.8

-1520.30.2

-2138.30.9

-1660.61.7

-1950.58.5

-1445.55.0

-1232.02.5

-1493.82.0

-2299.12.0

-1783.60.9

-1441.53.0

-1572.81.2

-1360.14.0

-1070.52.0

FREE ENERGY

kJ-nor'

-2176.2.

-1412.0.

-1999.0.

-1574.1.

-1838.10.

-1344.6.

-1155.2.

-1399.2.

-2176.2.

-1669.0.

28

42

99

88

10

50

55

91

63

19

-1329.63.

-1484.1.

-1280.4.

-965.2.

1

42

90

15

LOG(K)

381.30.5

247.40.0

350.40.2

275.90.3

322.01.8

235.51.1

202.40.4

245.30.4

381.30.4

292.40.1

232.90.5

260.10.2

224.40.7

169.10.4

REFERENCES

S H/G C

361

116164

419

419

419

373188

361

11

216312

6737

373

290

352

393

450

164

419

419

419

188

373

11

216

6764

373

373249

425

103102

271290

43

164

42

42

295

450

292

11295

43

43

44386

292

42

352295

103102

271

Page 28: robie 1995

22 IHERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMOOYNAHIC PROPERTIES OF MULTIPLE OXIDE MINERALS AT 298.15 K

NAME AND FORMULA

FRANKLINITEZnFe2°4

HETAEROLITEZnMn2°4

ZINC TITANIUM SPINELZruTiO/

WEIGHT ENTROPY

S-

g j-aor'-ic1

241.082 150.70.3

239.264 149.70.5

242.658 143.13.0

VOLUME

V <**

44.940.05

45.570.05

45.580.02

ENTHALPY

kJ-nol 1

-1188.14.0

-1337.04.0

-1652.12.0

FREEENERGY

kJ-»ol 1

-1082.14.0

-1227.84.0

-1538.42.0

LOG(K)

189.60.7

215.10.7

269.50.4

REFERENCES

S H/G

439 290

71 290

406 290

C

21

43

Page 29: robie 1995

HALIDES 23

THERMODYNANIC PROPERTIES OF HALIDE MINERALS AT 298.15 K

NAME AND FORMULA

BROMARGYRITE AgBr

POTASSIUM BROMIDE KBr

CHLORARGYRITE AgCl

HYDROPHILITE CaCl2

NANTOKITE CuC I

LAURENCITE FeCl 2

MOLYSITE FeClj

HYDROGEN CHLORIDE HCl (IDEAL GAS)

CALOMEL HgCl

SYLVITE KCl

CHLOROMAGNESITEMac 1 2

SCACCHITE

SALAMMONIAC NH4Cl

HALITE MaC I

NICKELOUS CHLORIDE NiCl2

COTUNNITE PbCl,

WEIGHT

9 J

187

119

143

110

98

126

162

36

236

74

95

125

53

58

129

278

.772

.002

.321

.983

.999

.752

.205

.461

.043

.551

.210

.844

.491

.442

.595

.105

ENTROPY

S-

107.1 0.4

95.9 0.2

96.2 0.2

104.6 1.3

86.2 2.0

118.0 0.4

142.3 0.4

186.9 0.0

95.8 0.4

82.6 0.2

89.6 0.8

118.2 0.2

94.6 0.4

72.1 0.2

98.2 0.2

136.0 2.1

VOLUME

yo

28 0

43 0

250

50 0

230

390

.99

.01

.28

.01

.73

.01

.75

.01

.92

.04

.46

.21

57.86 0.10

24789 0

320

370

40 0

42 0

350

27 0

36 0

47 0

.70

.20

.94

.08

.52

.00

.81

.10

.11

.17

.06

.05

.02

.00

.70

.07

.09

.05

ENTHALPY

kJ-mol 1

-100.4 0.2

-393.8 0.2

-127.1 0.1

-795.8 0.7

-137.2 10.0

-341.7 0.4

-399.50.4

-92.3 0.1

-132.7 0.2

-436.5 0.2

-641.3 0.7

-481.3 0.8

-314.4 0.3

-411.3 0.1

-304.9 2.0

-359.4 0.3

FREE ENERGY

kJ-mol'1

-97.0 0.2

-380.4 0.2

-109.8 0.1

-747.7 0.8

-119.9 10.0

-302.2 0.4

-334.0 0.4

-95.3 0.1

-105.2 0.2

-408.6 0.2

-591.8 0.7

-440.5 0.8

-202.9 0.3

-384.2 0.1

-258.8 2.0

-314.1 0.7

LOG(K)

16.99 0.03

66.65 0.03

19.24 0.02

130.99 0.14

21.01 1.75

52.950.07

58.51 0.07

16.70 0.02

18.43 0.04

71.58 0.04

103.68 0.13

77.17 0.14

35.550.05

67.30 0.02

45.33 0.35

55.03 0.12

REFERENCES

S H/G C

419

419

85

67

419

67

67

8567

85

117 85

67

73

419 67

419

67

67

419 320

419

85 320

67

419

67 250

250 419

85 67

85

117 85

320 85

250 419

419

419

67 419

67419

361 318

67 320

361 318

320 284

284 67

284

67 85

117 67

284

284

67

67 320

80

67 320

Page 30: robie 1995

24 IHERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERNOOYNAMIC PROPERTIES OF HALIDE MINERALS AT 298.15 K

NAME AND FORMULA

FLUOR I TECaF2

HYDROGEN FLUORIDEHF (IDEAL GAS)

SELLAITEMgF2

VILLIAUMITENaF

CRYOLITENa3AlF6

CHIOLITENa5Al3Fu

IODARGYRITEAgl

MARSH I TECul

COCCINITEHgl 2

WEIGHT ENTROPY

S-

v w HH/% ^

78.075 68.90.3

20.006 173.80.0

62.302 57.20.5

41.988 51.50.1

209.941 238.50.5

461.871 515.30.8

234.773 115.51.7

190.450 96.6

454.399 180.06.3

VOLUME

yo

«**

24.540.01

24789.700.20

19.610.01

14.980.01

70.810.20

154.080.10

41.300.04

33.350.02

71.840.10

ENTHALPY

kJ-mol 1

-1228.2.

-273.0.

-1124.1.

-573.0.

-3316.6.

-7546.20.

-61.

1.

-67.

5.

-105.1.

00

37

22

67

80

30

87

80

47

FREE ENERGY 4,6"

kJ-mol 1

-1175.2.

-275.0.

-1071.1.

-543.0.

-3152.6.

-7174.20.

-66.

1.

-69.

5.

-101.2.

30

47

12

47

10

70

28

40

76

LOG(K)

2050

480

1870

950

5521

12563

110

120

170

.90

.35

.25

.12

.64

.21

.20

.12

.22

.05

.95

.50

.60

.31

.16

.88

.82

.45

REFERENCES

S H/G C

117

8567

117

419

10

400

419

320

41967

11767

85

117

419

10301

400

419

320

41967

293117

67

117

30067

10300

400

320

108

67

Page 31: robie 1995

CARBONATES AND NITRATES 25

THERHOOYNAHIC PROPERTIES OF CARBONATE AND NITRATE MINERALS AT 298.15 K

NAME AND FORMULA

UITHERITEBaCOj

ARAGONITECaCOj

CALCITECaCOj

VATERITECaCOj

MONOHYDROCALCITECaCOj-H^

IKAITECaC03-6M2°

DOLOMITECaMo(C03)2

HUNTITECaMg3(C03)4

OTAVITECdCOj

MALACHITECU2(C03> (OH >2

AZURITECU3(OH>2(C03>2

SIDERITEFeCOj

MAGNESITEn£lAn

NESQUEHONITEMgCOj-SHgO

HYDROMAGNESITE4MgC03 -M9(OH)2.4H20

ARTINITEMg9(OH)9CO,-3H90

HEIGHT

g J

197.336

ENTROPY

112.12.1

100.087 88.00.2

100.087

100.

118.

208.

184.

353.

172.

221.

344.

115.

84.

138.

087

102

179-

401

030

419

116

671

856

314

360

467.638

196.680

91.70.

131.3.

370.5.

155.0.

299.0.

92.5.

166.2.

254.3.

95.0.

65.0.

195.0.

503.1.

232.0.

2

10

00

23

59

55

35

48

52

11

66

76

97

VOLUME

C-5

45.810.06

34.150.05

36.930.01

37.630.40

48.700.40

64.340.03

122.580.10

34.300.02

54.860.08

91.010.13

29.380.01

28.020.01

75.470.05

211.100.10

96.430.10

ENTHALPY

A.H* kJ-wol 1

-1210.92.2

-1207.41.4

-1207.41.3

-1498.31.2

-2954.15.0

-2324.51.5

-4529.61.6

-750.62.5

-1054.02.1

-1632.22.0

-755.95.5

-1113.31.3

-1977.30.3

-6514.91.1

-2920.60.7

FREEENERGYLfi*

kJ-wol 1

-1132.22.2

-1127.41.5

-1128.51.4

-1125.51.5

-1361.61.1

-2540.95.0

-2161.31.7

-4203.11.6

-669.42.6

-890.22.2

-1391.42.2

-682.85.5

-1029.51.4

-1723.80.5

-5864.21.1

-2568.40.8

LOG(K)

198.350.39

197.510.26

197.700.24

197.190.26

238.540.20

445.150.88

378.640.29

736.340.29

117.280.46

155.960.39

243.750.39

119.630.96

180.360.24

301.990.09

1027.370.19

449.950.13

REFERENCES

S H/G C

54

392

392

197

273

396

168

63

241

241

351

178

353

353

168

1

336

246336

336412

197

273

175

169253

41963

339

419

351

347

354

354

169

262

202

273

257

351

359

Page 32: robie 1995

26 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF CARBONATE AND NITRATE MINERALS AT 296.15 K

NAME AND FORMULA

RHODOCHROSITE MnCOv

NAHCOLITE NaHCOj

THERMONATRITE Ma2C03 -H20

TRONA Na2C03-NaHC03 *2H20

UEGSCHEIDERITE Na2C03-3»JaHC03

SODIUM CARBONATE

DAUSONITE NaAlC03(OH)2

GASPEITE NiCOj

CERUSSITE PbCOj

STROHTIANITE SrCOj

SMITHSONITE ZnCOj

NITROBARITE Ba(N03)2

CALCIUM NITRATE

NITER KMOj

MAGNESIUM NITRATE

AMMONIA-NITER NH'NO,

UEIGNT

g

114.947

84.007

124.004

226.026

358.010

105.989

143.995

118.699

267.209

147.629

125.399

261.337

164.088

101.103

148.315

80.043

ENTROPY

S°j -nor1 -if1

98.0 0.1

102.1 1.7

168.1 0.8

135.0 0.6

132.0 0.5

85.4 2.0

131.0 3.4

97.1 1.7

81.2 0.2

213.8 0.9

193.3 0.4

133.1 0.7

164.0 1.6

151.1 0.2

VOLUME

V° c-5

31.07 0.01

38.08 0.25

54.99 0.27

107.00 0.50

153.30 0.80

41.60

59.30 0.30

27.05 0.02

40.59 0.06

39.01 0.06

28.28 0.01

80.58 2.10

66.09 0.03

48.04 0.06

62.93 0.03

46.49 0.10

ENTHALPY

kJ-Hor1

-892.9 0.5

-949.0 0.2

-1429.7 0.4

-2682.1 0.4

-3984.0 0.8

-1129.2 0.3

-1964.0 2.9

-699.2 1.2

-1218.7 1.5

-817.0 3.1

-992.1 2.5

-938.4 1.5

-494.5 0.4

-790.6 1.3

-365.6 0.8

FREEENERGY A*'

-819.1 0.6

-851.2 0.6

-1286.1 0.5

-1045.3 0.4

-1786.0 3.0

-625.5 1.6

-1137.6 1.5

-735.3 3.1

-796.6 0.4

-742.6 1.8

-394.6 0.5

-589.2 1.4

-183.8 0.9

LOG(K)

143.50 0.10

149.12 0.10

225.32 0.09

183.13 0.06

312.89 0.52

109.58 0.27

199.29 0.26

128.82 0.54

139.55 0.08

130.10 0.31

69.13 0.08

103.22 0.25

32.20 0.15

REFERENCES

S H/G C

351

36

424 36

424 36

110

255

217

55

352

419

419

419

419

419

351

36

36

416

416

36

110

419 4

55

153

419

419

419

419

419

283

129

110

262

153

361

361

361

361

361

Page 33: robie 1995

CARBONATES AND NITRATES 27

THERHOOYMAMIC PROPERTIES OF CARBONATE AND NITRATE MINERALS AT 298.15 K

NAME AND FORMULA

SODA-NITERNaNOj

STRONTIUM NITRATESr<NO»),

HEIGHT ENTROPY

S-

g j-Hor'-r1

84.995 116.50.7

211.630 194.60.5

VOLUME

V c-5

37.600.02

70.930.04

ENTHALPY

M°kJ-HOl'1

-468.00.4

-978.21.0

FREEENERGYA*'

kJ-HOl'1

-367.10.4

-779.01.3

LOG(K)

64.320.07

136.470.23

REFERENCES

S H/G C

419 419 361

419 419 361

Page 34: robie 1995

28 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF SULFATE AND BORATE MINERALS AT 298.15 1C

NAME AND FORMULA

ALUMINUM SULFATEA12(S04 )3

BARITEBaS04

ANHYDRITECaS04

GYPSUMCaS04 '2H20

CHALCOCYANITECuS04

CHALCANTHITECuS04 '5H20

BROCHANTITECu4(S04)(OH)6

FERRIC SULFATEFe2(S04 )3

SZOMOLNOKITEFeS04 'H20

MELANTERITEFeS04 '7H20

SULFURIC ACID (LIQUID)H2S04

ARCANITEK2S04

K-Al SULFATEKAl(S04 )2

ALUNITEKA13(OH)6(S04 )2

LANGBEINITEK2Mg2(S04 )3

MAGNESIUM SULFATEMgSO,

WEIGHT

9 J

342.

233.

136.

172.

159.

249.

452.

399.

169.

278.

98.

174.

258.

414.

414.

154

391

142

172

610

686

292

885

926

018

080

260

207

214

997

120.369

ENTROPY

239.31.2

132.20.8

107.40.2

193.80.3

109.50.6

301.20.6

282.80.9

409.21.3

156.90.2

175.60.4

204.61.3

321.05.0

389.31.0

91.40.8

VOLUME

V° cm3

73.410.20

52.100.06

46.010.01

74.690.22

40.880.03

108.970.22

113.600.20

130.800.20

55.900.40

146.500.30

53.570.07

65.500.07

92.330.08

293.600.40

146.950.04

ENTHALPY

A.H"

kJ-HOl'

-3441.81.8

-1473.61.0

-1434.44.2

-2023.04.3

-771.41.3

-2279.73.4

-2581.92.9

-1244.30.5

-3014.30.6

-814.00.4

-1437.70.5

-2470.91.3

-5176.52.4

-4071.03.0

-1284.90.6

FREE ENERGY A*"

kJ-nor1

-3100.61.9

-1362. 51.3

-1321.84.

-1797.4.

-662.1.

-1880.3.

-1818.2.

-2254.3.

-2509.1.

-690.0.

-1319.0.

-2240.1.

-4663.2.

-3733.3.

-1170.0.

3

04

34

06

05

40

53

05

65

44

54

40

58

LOG(K)

543.200.33

238.700.23

231.570.75

314.820.77

116.030.25

329.360.63

318.490.44

394.960.52

439.640.23

120.880.08

231.180.09

392.500.24

817.000.42

654.050.52

205.070.14

REFERENCES

S H/G C

88

88

368

36888

10687

87

328

87

87

419

67

419

452

36840

67

88

88419

88419

88

4419

87419

26419

19

287

287

419124

67

419

452219

419

24788

88

88

368

106

328

38767

217

219

368

67

Page 35: robie 1995

SULFATES AND BORATES 29

THERMODYNAMIC PROPERTIES OF SULFATE AND BORATE MINERALS AT 298.15 K

NAME AND FORMULA

EPSOMITEMgS04 -7H20

MANGANESE SULFATENnS04

MASCAGNITE(NH4 )2S04

THENARDITENa2S04

MIRABILITENa2S04 '10H20

NICKELOUS SULFATENiS04

RETGERSITE (ALPHA, GREEN)NiS04 -6H?0

MORENOSITENiS04 -7H20

ANGLES I TEPbS04

CELESTITESrS04

ZINKOSITEZnS04

BIANCHITEZnS04-6H20

GOSLARITEZnS04 -7H20

BORAX

WEIGHT

9 J

246.

151.

132.

142.

322.

154.

262.

280.

303.

183.

161.

269.

476

002

141

043

196

754

845

861

264

684

454

545

287.561

381.372

ENTROPY

S° rnol-'-IC1

372.04.0

127.01.5

220.51.3

149.60.1

591.90.6

101.30.3

334.50.4

378.90.4

148.50.6

117.04.2

110.51.3

363.61.3

388.71.3

586.02.3

VOLUME

yo

c-5

146.800.20

43.620.04

74.680.09

53.330.06

219.800.40

38.570.03

126.600.20

143.800.50

47.950.06

46.250.06

41.570.07

130.200.50

145.800.10

222.700.20

ENTHALPY

kJ-Hor'

-3388.70.1

-1065.71.1

-1182.71.3

-1387.80.4

-4327.34.0

-873.21.0

-2683.40.5

-2976.50.5

-920.00.4

-1453.24.2

-980.10.8

-2777.81.0

-3077.50.1

-6288.68.5

FREE ENERGY A*'

2871 .20.9

-962

1

-903

1

-12690

-36453

-762

1

-22250

-24610

-813

0

-13394

-868

0

-23241

-25620

-55168

.1

.5

.5

.6

.8

.4

.8

.4

.7

.0

.1

.5

.9

.5

.1

.5

.6

.4

.7

.9

.6

.0

.3

.1

.2

.5

LOG(K)

503.010.15

168.560.26

158.290.28

222.460.07

638.710.59

133.61

389.820.09

431.300.09

142.440.09

234.690.77

152.200.16

407.260.18

448.890.02

966.391.49

REFERENCES

S H/G C

419

450

41988

88419

47

401

87

87

85

419

87

87

87

419

41988

87377

88419

88419

4781

4014

87419

87419

85

419129

874

87419

87419

419

88

87

387219

81

401

88

87192

Page 36: robie 1995

30 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF PHOSPHATE, MOLYBDATE AND TUNGSTATE MINERALS AT 298.15 K

NAME AND FORMULA

BERLINITEMP04

WHITLOCKITECa3(P04 )2

FLUORAPATITEC^(P04)3F

HYDROXYAPATITEC^<P04)3ON

STRENGITEFcP04 '2H20

POWELLITECaMo04

UULFENITEPbMo04

SCHEELITECaU04

FERBERITEFeW04

HUEBNERITENnU04

STOLZITEPbU04

SANMARTINITEznuo*

HEIGHT ENTROPY

g j-aor'-ir'

121.953 90.80.2

310.177 236.00.8

504.302 387.91.7

502.311 390.41.7

186.849 171.31.3

200.016 122.60.8

367.138 166.12.1

287.926 126.40.8

303.695 131.81.7

302.786 132.50.2

455.048 168.22.1

313.238 119.30.3

VOLUME

V° c*>

46.580.10

97.620.09

157.560.12

159.600.20

64.500.30

47.000.09

53.860.10

47.050.09

40.380.05

41.890.06

54.100.06

39.790.04

ENTHALPY

kJ-Hor1

-1733.85.0

4120.85.0

6872.05.0

-6738.55.0

1888.20.9

-1541.40.9

-1051.90.9

-1645.20.9

-1154.88.5

-1337.67.0

-1127.22.0

-1232.61.3

FREEENERGY

kJ-Hor'

-1617.95.0

-3883.65.0

-6489.75.0

-6337.15.0

-1657.51.0

-1434.70.9

-951.21.2

-1538.00.9

-1054.08.5

-1235.47.1

-1026.02.0

-1123.71.4

LOG(K)

283.440.88

680.380.88

1136.950.88

1110.220.88

290.370.18

251.340.15

166.650.20

269.510.16

184.641.49

216.441.24

179.740.35

196.860.25

REFERENCES

S H/G C

419

419

419

419

100

431

320

232

430265

304

428

260

419181

419

419

419

419

41912

41989

41917

4197

7

89

266

181

361

99

99

100

260266

Page 37: robie 1995

ORTHO AND RING STRUCTURE SILICATES 31

THERMQDYNAMIC PROPERTIES OF ORTHO AND RING STRUCTURE SILICATE MINERALS AT 296.15 K

NAME AND FORMULA

TOPAZAl2Si04F2

KYANITEAl2Si°5

ANDALUSITEAl^iOg

SILLIMANITEAljjSiOg

MULLITEAl6Si 2°13

DUMORTIERITEAl6.75"o.25si3B017.25<OH >.75

EUCLASEBeAlSi04(OH)

PHENAKITEBe2Si04

BERYLBe3Al2(Si6°18>

BERTRANDITEBe4Si 207(OH)2

EPIDOTECa2Al2FeSi 3012(OH)

LAUSONITECaAl2 [S1 207(OH)2]H20

GEHLENITECa^SiCV

ZOISITECa2Al3Si3°12(OH>

GROSSULARCa3Al2Si 3°12

GLASSCa,AUSi,0,7

WEIGHT

g J

184.043

162.046

162.046

162.046

426.052

565.938

145.084

110.107

537.502

238.230

483.223

314.238

274.200

454.357

450.446

450.446

ENTROPY

105.40.2

82.80.5

91.40.5

95.40.5

275.05.0

334.95.0

89.10.4

63.40.3

346.74.7

172.10.8

328.92.5

230.02.1

210.10.6

295.90.6

260.10.5

329.2+

VOLUME

51.530.03

44.150.05

51.520.05

49.860.05

134.550.07

168.40.4

46.860.06

37.180.02

203.30.1

91.80.1

138.10.6

101.320.12

90.150.02

136.50.4

125.280.05

158.80.3

ENTHALPY

A,H° kJ-mol 1

-3084.54.7

-2593.82.0

-2589.92.0

-2586.12.0

-6819.210.0

-9109.020.0

-2532.93.0

-2143.14.0

-9006.67.0

-4580.55.5

-4869.02.1

-3985.05.0

-6901.13.3

-6640.03.2

FREE ENERGY A.G-

kJ-mol 1

-2910.64.7

-2443.12.0

-2441.82.0

-2439.12.0

-6441.810.0

-8568.220.0

-2370.23.0

-2028.44.0

-8500.56.4

-4295.15.5

-4512.92.1

-3785.55.0

-6504.53.3

-6278.53.2

LOG(K)

509.90.8

428.00.4

427.80.4

427.30.4

1128.61.8

1501.13.5

415.20.5

355.40.7

1489.21.1

752.51.0

790.60.4

663.20.9

1139.50.6

1099.90.6

REFERENCES

S H/G C

24

355177

355177

355177

67329

163

164

164

164

164

147

33568

172420

335

157251

345

2324

177407

177407

177407

6786

163

164238

164379

164238

164238

68

66

239

68237

24

177322

177322

177322

67329

163

164

164

164

164

239243

335

323

335

258438

Page 38: robie 1995

32 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERNOOYNAMIC PROPERTIES OF ORTHO AND RING STRUCTURE SILICATE MINERALS AT 298.15 K

NAME AND FORMULA

DATOLITE CaB(Si04)(OH)

ILVAITE CaFe2Fe(Si 207)0(OH)

ANDRADITE Ca3Fe2Si3°12

MONT I CELL I TE CaMgSi04

AKERMANITE

MERUINITE Ca3Mg(Si04 >2

TITANITE (SPHENE) CaTiSiOj

LARNITE «-Ca2Si04

CALCIO-OLIVINE

HATURITE (ALITE) CajSiOj

RANKINITE Ca3Si2°7

ROSENHAHNITE Ca3Sf3°8(OH>2

SPURRITE Cas (Si04 )2C03

TILLEYITE Ca5Si207(C03)2

COBALT-OLIVINE Co2Si04

FAYALITE Fe2Si04

WEIGHT

9 J

159

408

508

156

272

328

196

172

172

228

.979

.793

.177

.466

.628

.705

.041

.239

.239

.317

288.401

366.500

444.565

488.575

209.950

203 .777

ENTROPY

110.2 0.6

292.30.6

316.4 2.0

108.1 0.3

212.5 0.4

253.1 2.1

129.2 0.8

127.6 0.8

120.5 0.8

168.6 0.3

210.6 2.9

281.8 3.0

331.0 2.0

394.0 4.0

142.6 0.2

151.0 0.2

VOLUME

V° cm3

53.32 0.05

101.07 0.10

132.04 0.05

51.3 0.1

92.54 0.02

98.5 0.1

55.74 0.07

51.60 0.30

58.01 0.04

72.74 0.05

96.51 0.05

126.46 0.05

146.97 0.30

170.5 0.3

44.49 0.01

46.31 0.01

ENTHALPY

kJ-Hor'

-2477.8 2.3

-3692.8 5.0

-5771 5

-2251 3

-3864 2

-4536 3

-2596 3

-23061

-2316

2

-2933 2

.0

.9

.0

.0

.8

.0

.2

.0

.6

.0

.7

.5

.5

.5

.1

.5

-3949.0 10.0

-5198.1 3.0

-5840.2 5.7

-6372.2 5.7

-1412.0 2.0

-1478.2 1.3

FREEENERGY

kJ-mol 1

-2318.1 2.3

-3437.0 5.0

-5427.0 5.9

-2132.8 3.1

-3667.5 2.0

-4307.7 3.0

-2454.6 3.2

-2191.2 1.5

-2198.9 2.5

-2786.5 2.5

-3748.1 10.0

-4882.1 3.0

-5525.6 5.9

-6013.5 6.0

-1308.7 2.0

-1379.1 1.3

LOG(K)

406.1 0.4

602.1 0.9

950.8 1.0

373.6 0.5

642.5 0.4

754.7 0.5

430.0 0.6

383.9 0.3

385.2 0.4

488.2 0.4

656.6 1.8

855.3 0.5

968.0 1.0

1053.5 1.1

229.3 0.3

241.6 0.2

REFERENCES

S H/G C

448

349

348

385

165 427

427

406

225

149 405

149 405

149

68

450 188

450

364

350

383

349

281 242

49 385

165 49

49

37 188

149

149

410

410

68

188 410

188410

215 308

350 309

274 5

349

348 244

385

165 323

323

361

84 149

149 84

149

149

68

450

450

363

350 314

Page 39: robie 1995

ORTHO AND RING STRUCTURE SILICATES 33

THERHOOYNAHIC PROPERTIES OF ORTHO AND RING STRUCTURE SILICATE MINERALS AT 298.15 K

NAME AND FORMULA

ALNANDINEF«3Al2Si3°12

STAUROLITEF«4Al 18Si8°46(OH >2

OSUMILITEKMg^ljKi^lgOjoJ.HgO

CORDIERITEMg2Al3(AlSi5018)

SAPPHIRINEN^Z*Wf°4>

FORSTERITEMg2Si04

PYROPEMgjAlgSijO^

GLASSMg3Al2Si3012

PYROPE-GROSSULAR 88.<H»1.8Ca1.2>Al2Si3°12

GLASS(M»1.5Ca1.5>Al2Si3°12

TEPHROITEMn2Si04

LIEBENBERGITEMi2Si04

Ni 2Si04-SPINEL Ni2Si04

UILLEMITEZn2Si04

ZIRCONZrSi04

HEIGHT

g J

497.753

1703.727

1001.468

584.953

344.616

140.693

403.127

403.127

422.055

426.787

201.959

209.463

209.463

222.863

183.307

ENTROPY

342.61.4

985.04.0

407.23.8

197.52.0

94.10.1

266.30.8

346.312.0

268.3+0.5

311.8+0.6

155.90.5

128.10.2

124.1 0.4

131.40.8

84.01.3

VOLUME

V°C-5

115.320.04

445.91.7

379.20.3

233.220.22

98.90.7

43.650.03

113.120.15

146.10.2

118.350.05

152.50.2

48.990.03

42.570.02

39.81 0.01

52.420.08

39.260.07

ENTHALPY

A,H°

-5264.73.0

-9161.55.9

-2173.02.0

-6285.04.0

-6163.015.0

-1731.53.0

-1396.53.0

-1389.7 3.5

-1636.75.0

-2034.23.1

FREE ENERGY A.G'

kJ-wol 1

-4942.03.3

-8651.15.9

-2053.62.0

-5934.54.0

-5836.315.0

-1631.03.0

-1288.93.0

-1280.9 3.5

-1523.15.0

-1919.73.1

LOG(K)

865.80.6

1515.61.0

359.80.4

1039.70.7

1022.52.6

285.70.5

225.80.5

224.4 0.6

266.80.9

336.30.5

REFERENCES

S H/G C

9 69 447277 445 151

172 172

180

427 297 323

186

364 364 364240 119

157 188 453298

402 402 402

157 298

345

364 364 364

363 363 363308

363 363 423

405 223

361 101 361379

Page 40: robie 1995

34 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF CHAIN AND BAND STRUCTURE SILICATE MINERALS AT 298.15 K

NAME AND FORMULA

UOLLASTONITE CaSi&j

PSEUDOUOLLASTONITE CaSiOg

GLASS CaSiOg

Ca-Al PYROXENE CaAl2Si06

GLASS CaAl2Si06

FERROBUSTAMITECaFeSi 206

HEDENBERGITECaFeSi206

GLASSCaFeSi 206

DIOPSIDECaMgSi^

GLASSCaMgSi^

FERROSILITEFeSiOj

a-SPODUMENELiAlSi 206

B-SPOOUHENELiAlSi 206

ENSTATITENgSiOj

GLASSMgSiOj

CLINOENSTATITEMgSiOj

WEIGHT ENTROPY

116.162 81.7 0.1

116.162 87.2 0.9

116.162 94.8 3.0

218.123 141.0 2.0

218.123 155.3+ 0.3

248.092 180.50.3

248.092 174.20.3

248.092 185.7+0.4

216.550 142.70.3

216.550 166.03.0

131.931 94.60.3

186.090 129.30.8

186.090 154.41.2

100.389 66.30.1

100.389 74.10.2

100.389 67.90.4

VOLUME

V° cm3

39.90 0.03

40.08 0.14

40.13 0.15

63.57 0.01

78.13 0.08

73.000.02

67.950.01

66.090.10

76.090.20

33.000.02

58.370.02

78.250.04

31.310.02

36.600.25

31.280.02

ENTHALPY

M" kJ-mol 1

-1634.8 1.4

-1627.6 1.4

-1608.7 3.0

-3306.3 2.5

-2839.93.0

-3201.52.0

-3156.15.0

-1195.23.0

-3053.52.8

-3025.32.8

-1545.61.5

-1542.52.0

-1545.01.5

FREE ENERGY A*'

kJ-Hol'1

-1549.0 1.4

-1543.5 1.4

-1526.8 3.0

-3129.6 2.6

-2676.33.0

-3026.82.0

-2988.45.1

-1118.03.0

-2880.23.0

-2859.53.0

-1458.31.6

-1457.52.0

-1458.11.6

LOG(K)

271.4 0.2

270.4 0.2

267.5 0.5

548.3 0.5

468.90.5

530.30.4

523.50.9

195.90.5

504.60.5

501.00.5

255.50.3

255.30.4

255.50.3

REFERENCES

S H/G C

259 348 257 149

149 344 344 149

344 344

154 68 65

154

156

156 281156

156

259 165

343 340

41 41291

327 17120

327 17120

259 37408

345 345

361 296311

389 344

344 149

344

154 403

156

15629

257

343340

188423

32728

327

257188

361

Page 41: robie 1995

CHAIN AND BAND STRUCTURE SILICATES 35

THERMODYNAMIC PROPERTIES OF CHAIN AND BAND STRUCTURE SILICATE MINERALS AT 298.15 1C

NAME AND FORMULA

MgSiOj-PEROVSKITE MgSiOj

MgSiOj-ILMENITE MgSiOj

HYPERSTHENE(Mg 85Fe ,5)8103

RHODONITEMnSiOj

PYROXMANGITEMnSiOj

JADEITENaAlSi 206

GLASSNaAlSi 206

ACMITENaFeSi 206

TREMOLITECa2Mg5Si8022(OH)2

GRUNERITEFe7Si 8022(OH)2

ANTHOPHYLLITEMg7Si 8022(OH)2

RIEBECKITENa2Fe3Fe2Si 8022(OH)2

GLAUCOPHANENa2Mg3Al2Si8022(OH)2

PARGASITENaCa2Mg4Al(Al2Si6)022(OH)2

FLUOR -PARGASITENaCa5Mg,Al(AUSi,)055F,

WEIGHT

g J-

100

100

105

131

131

202

202

231

812

1001

780

935

783

835

839

.389

.389

.120

.022

.022

.139

.139

.004

.366

.614

.820

.900

.543

.825

.807

ENTROPY

63.6 3.0

60.4 3.0

69.00.2

100.51.0

99.42.0

133.51.3

170.50.4

170.60.8

548.91.3

725.07.0

534.53.5

691.06.0

541.23.0

582.04.0

583.05.0

VOLUME

V cm5

24.50 0.05

26.36 0.02

31.530.05

34.940.05

34.720.02

60.400.10

64.600.11

272.900.73

278.70.5

265.40.4

274.70.9

262.10.2

272.00.2

270.60.2

ENTHALPY

A,H-

kJ-mol 1

-1445.1 5.0

-1486.6 5.0

-1321.62.0

-1322.32.0

-3029.33.6

-2584.54.0

-12303.07.0

-9623.010.0

-12070.08.0

-11964.09.0

-12719.822.0

-12800.514.0

FREE ENERGY A,G»

kJ-mol 1

-1357. 5.0 0

-1397.5 5.0

-1244.2.

-1245.2.

-2850.4.

-2417.4.

-11574.7.

-8964.10.

72

04

60

22

60

82

-11343.48.5

-11230.10.

-11981.

80

519.0

-12102. 214.0

LOG<K>

237.7 0.9

244.8 0.9

218.00.4

218.10.4

499.40.7

423.50.7

2027.81.2

1570.61.8

1987.31.5

1967.61.8

2099.13.3

2120.22.5

REFERENCES

S H/G C

105

105

367

367

367

220

345

24833

370

264252

162

450

362

433186

450434

105

13 288

367289

36732

166184

31188

205426

2648

16270

188

188433

434

13

390224

220

31

257

25234

162

185118

Page 42: robie 1995

36 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF FRAMEWORK STRUCTURE SILICATE MINERALS AT 298.15 1C

NAME AND FORMULA

EOINGTONITE (ordered)BaAl2Si3010 '3H20

ANORTHITECaAljjSigCfc

HEXAGONAL ANORTHITECaAl2Si' 2Og

CaAl2$i 208-glass CaAl2Si208

STILBITECa1.02Ma0.14IC.01 (Al2.18Si6

HEULANDITECa0.59Sr0.18Ba0.06Na0.38IC0

UAIRAKITECaAl2Si4012-2H20

LAUMONTITECaAl2Si4012 '4H20

SCOLECITECaAl2Si3°1o'3H2°

LEONHAROITECa2Al4Si8°24' 7H2°

BICCHULITECa2Al2Si06(OH)2

MEIONITE (Al/Si ordered)Ca^Si^COj

OANBURITECaB2Si 208

CLINOPTILOLITE

WEIGHT ENTROPY

g J-raol-'-lf1

489.586

278.207

278.207

278.207

714.893.82°18) " 7- 33H2°

707.942.13AI2.16S!6.84°'

434.406

470.437

392.337

922.859

292.216

934.709

245.866

2701.506

434.81.5

199.30.3

214.81.3

237.3 2.5

805.91.6

767.2|8.6H20

440.010.0

367.40.7

922.210.9

213.15.0

715.21.0

155.30.4

2872.3+(Ma0.56IC0.98Ca1.50M8l.23><Al6.7Fe0.3)Si29°72' 22H20

POLLUCITE<C8.65Na .19Rb.03)Al2si4°12

MICROCLINEKAlSijOg

245.488 H20

278.332

207.20.4

214.20.4

VOLUME

V cm5

180.400.60

100.790.05

99.850.79

103.0 0.2

333.41.0

317.61.0

190.40.5

211.31.0

172.30.5

409.32.0

103.680.10

340.360.08

82.200.40

1267.67.0

83.02.0

108.720.10

ENTHALPY

A,H°

kJ-mol 1

-4234 .02.0

-4163 4

-110386

-1059410

-60495

-43415

-138816

.2

.0

.0

.6

.6

.2

.0

.0

.2

.0

.4

.2

-3902.82.9

-3974.6

3.9

FREEENERGY

kJ-mol 1

-4007.92.0

-3948 4

-101466

-977910

-67727

-55975

-4073

.4

.0

.0

.6

.0

.2

.0

.0

.6

.0

.05.0

-13131.86.2

-3677.02.9

-3749.33.9

LOG(K)

702.20.4

691.7 0.7

1777.51.2

1713.21.8

1186.41.2

980.70.9

713.60.9

2300.61.1

644.20.5

656.80.6

REFERENCES

S H/G C

27

36656

231

366

19574

208

159

207

231

68

282

448274

173214

30

313

15068

171

450

195

20874

195

207

68144

282

383

166

446258

258

208

68

450

5

167

Page 43: robie 1995

FRAMEWORK STRUCTURE SILICATES 37

THERMODYNAMIC PROPERTIES OF FRAMEWORK STRUCTURE SILICATE MINERALS AT 298.15 1C

NAME AND FORMULA

SANIDINEKAlSijOg

GLASSKAlSijOg

KALIOPHILLITE (KALSILITE)KAlSi04

LEUCITEKAlSijjOa

EUCRYPTITELiAlSi04

PETAL I TELiAlSi401Q

ALBITENaAlSi3Og

ANALBITENaAlSi3Og

GLASSNaAlSi3Og

NA-K FELDSPAR SS.<Ma0.85K0.15>AlSi3°8

NA-K FELDSPAR SS.<Na0.55-K0.45>AlSi3°8

NA-K FELDSPAR SS.<Na0.25K0.75>AlSi3°8

NEPHELINENaAlSi04

CARNEGIEITENaAlSi04

GLASSNaAlSi04

ANALCIMENaAlSi206'H20

WEIGHT

g J c

278.332

278.332

158.163

218.247

126.006

306.259

262.223

262.223

262.223

264.639

269.472

274.304

142.054

142.054

142.054

220.154

ENTROPY

S° ol-'-IC-1

232.80.5

261.61.8

133.31.2

200.21.7

103.80.8

233.20.6

207.40.4

225.60.4

251.91.5

231.30.4

237.00.4

237.40.4

124.41.3

118.70.3

134.50.5

227.70.3

VOLUME

yo

cm5

109.050.10

116.501.00

59.890.05

88.270.05

53.630.08

128.400.50

100.070.13

100.430.09

110.100.20

102.180.10

105.220.10

107.370.10

54.190.06

56.030.02

56.860.06

97.40.2

ENTHALPY

A,H- kJ-mol'1

-3965.64.1

-3920.84.2

-2124.73.1

-3037.82.7

-2123.32.0

-4886.56.3

-3935.02.6

-3923.62.6

-3875.53.7

-3932.14.0

-3945.14.0

-3954.54.0

-2090.43.9

-2104.34.0

-2089.04.0

-3310.13.3

FREE ENERGY i.G"

kJ-mol 1

-3745.84.1

-3709.64.2

-2008.83.1

-2875.12.7

-2009.22.0

-4610.76.3

-3711.62.6

-3705.62.6

-3665.33.7

-3715.24.0

-3728.74.0

-3737.14.0

-1975.83.9

-1988.04.0

-1977.44.0

-3090.03.3

LOG(K)

656.20.7

649.90.6

351.90.5

503.70.5

352.00.4

807.81.1

650.20.5

649.20.5

642.10.6

650.90.7

653.20.7

654.70.7

346.10.7

348.30.7

346.40.7

541.30.6

REFERENCES

S H/G C

313155

366

220

220

327

18035

313123

313155

366

155

155

155

220

346

346

206

166194

166421

188

188

17120

18028

166171

166171

421

155

155

155

188

450

346

206

167

258

317

317263

327

18035

167220

167

258

220183

220

346

206

Page 44: robie 1995

38 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF FRAMEWORK STRUCTURE SILICATE MINERALS AT 298.15 1C

NAME AND FORMULA

DEHYDRATED ANAL C I MENaAlSi 206

NATROLITENagAlgSi^Q^HgO

PHILLIPSITE<"a1.1K0.8>Al 1.9Si6.1°16-

MESOLITEMa0.68Ca0.66(Al 1 .99Si3.01

MORDENITE

WEIGHT

9 >

202.139

380.224

643.2366H20

388.050010)-2.65H20

441.880Ma0.36Ca0.29Al0.94s'"5.06012' 3-47H2°

DEHYDRATED MORDENITE 379.367Na0.36Ca0.29Al0.94Si5.06°12

MERLINOITENa/t otK/t ioAlSl« a/Oc no"

U.OI Mm IT I.TH JmOO

MERLINOITEIC0.80Na0.20AlSi 1 .94°5.88"

MERLINOITE^'"I.WOS.M' 1 -69^

MERLINOITENa0.81 IC0.19AlSi 1.8105.62"

MERLINOITE

*T) 91 0 09^ 1 81^5 &?*

MERLINOITEKAlSiimO,. A,M.69H,0

239.9672.13H20

244.0281.81H20

245.088

233.0572.18H20

237.6291.79H20

237.277

ENTROPY

Se

172.50.2

359.70.7

771.9+2.4

363.0+2.0

486.5+1.0

299.1+0.6

282.4+0.4

276.6+0.4

274.3+0.4

274.6+0.4

260.5+0.4

259.7+0.5

VOLUME

V of

169.20.2

303.08.0

171.10.4

209.81.2

150.60.5

152.20.5

151.20.5

153.60.5

151.50.5

149.80.5

ENTHALPY

A.H" kJ-mol 1

-2983.13.5

-5718.65.0

-5947.15.4

-6736.74.5

-5642.34.6

-3591.22.9

-3519.02.9

-3481.83.0

-3488.32.8

-3387.32.8

-3360.02.8

FREEENERGY 4,6"

kJ-mol 1

-2816.03.5

-5316.55.0

-5512.76.0

-6227.94.5

-5318.94.6

-3312.02.9

-3258.02.9

-3227.63.0

-3212.02.8

-3131.12.8

-3110.22.8

LOG<K>

493.40.6

931.40.9

965.81.1

1091.10.8

931.80.8

580.20.5

570.80.5

565.40.5

562.70.5

548.50.5

544.90.5

REFERENCES

S H/G C

206 206

207 207

173

207 207

212 212

212 212

95 9596

95 9596

95 9596

95 9596

95 9596

95 9596

317206

Page 45: robie 1995

SHEET STRUCTURE SILICATES 39

THERMODYNAMIC PROPERTIES OF SHEET STRUCTURE SILICATE MINERALS AT 298.15 1C

NAME AND FORMULA

DICKITEAl2Sf2°5(OH>4

KAOLINITEAl2Si205(OH)4

HALLOYSITEAl2Sf 2°5(OH>4

PYROPHYLLITEAl2Si4010(OH)2

ILLITEK3(Al7Mg)(Al2Si 14)040(OH)8

MARGARITECaAl2 [Al2Si 2010](OH)2

PREHNITECa2Al[AlSi3010](OH)2

MUSCOVITE (Al/Si disordered)KAl2 [AlSi3010](OH)2

MUSCOVITE (Al/Si ordered)KAl2 [AlSi3010](OH)2

ANNITEICFe3 [AlSi3010](OH)2

PHLOGOPITE (Al/Si disordered)KM93 CAlSi3010](OH)2

PHLOGOPITE (Al/Si ordered)KMg3 [AlSi301Q](OH)2

WEIGHT

9 J

258.160

258.160

258.160

360.314

1553.665

398.184

412.384

398.308

398.308

511.886

417.260

417.260

FLUORPHLOGOPITE (Al/Si disorder)421.242W^WlSijO^Fg

FLUORPHLOGOPITE (Al/Si ordered)KM93 CAlSi3010]F2

TALCH95Si4010(OH)2

CHRYSOTILE (ANTIGORITE)Mg^Si^OcCOH),

421.242

379.266

277.112

ENTROPY

197.11.3

200.40.5

203.01.3

239.40.4

1104.22.5

263.60.3

292.80.7

306.40.6

287.70.6

415.010.0

334.61.0

315.91.0

336.32.1

317.62.1

260.80.6

221.30.8

VOLUME

VC*3

98.560.04

99.340.01

128.100.08

577.0010.00

129.630.06

141.100.10

140.810.10

140.810.10

154.300.50

149.650.10

149.650.10

146.520.10

146.520.10

136.200.20

107.500.40

ENTHALPY

A,H°

kJ-mol 1

-4118.52.0

-4119.01.5

-4101.510.0

-5640.01.5

-6244.02.6

-6202.62.0

-5974.84.9

-5990.04.9

-5149.34.0

-6226.06.0

-6246.06.0

-6355.54.0

-6375.54.0

-5900.02.0

-4360.03.0

FREEENERGY

kJ-mol 1

-3796.02.1

-3797.51.5

-3780.710.0

-5266.21.5

-5858.92.6

-5824.72.0

-5598.84.9

-5608.44.9

-4798.34.0

-5846.06.0

-5860.56.0

-6015.74.2

-6030.14.2

-5520.22.1

-4032.43.1

LOG(K)

665.00.4

665.30.3

662.41.8

922.60.3

1026.40.5

1020.40.4

980.90.9

982.60.9

840.60.7

1024.21.0

1026.701.0

1053.90.7

1056.40.7

967.10.4

706.40.5

REFERENCES

S H/G C

230

358198

230

365

365

335

335

365432

365432

186174

356

356

218

218

370

226

171149

17968

171

25868

68

68

166152

166152

188

356

356

171434

356

162

171

149

179

258

335

335

258316

258316

188

356

356

218

218

257

226

Page 46: robie 1995

40 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THERMODYNAMIC PROPERTIES OF SHEET STRUCTURE SILICATE MINERALS AT 298.15 1C

NAME AND FORMULA

CLINOCHLOREMg5Al(AlSi 3010)(OH)8

PARAGON I TE (Al/Si disordered)NaAl2 [AlSi3010](OH)2

PARAGONITE (Al/Si ordered)NaAU[AlSi,Oin](OH),

WEIGHT ENTROPY

g J-«ol 1 -IC1

555.797 421.015.0

382.200 295.80.9

382.200 277.10.9

VOLUME

V° <**

211.000.50

132.10.1

132.10.1

ENTHALPY

M"kJ-mol 1

-8919.020.0

-5933.03.8

-5949.33.8

FREEENERGYA*°

kJ-mol 1

-8255.820.0

-5555.73.9

-5568.53.9

LOG(K)

1446.33.5

973.30.7

975.60.7

REFERENCES

S H/6 C

180 182 182204

356 356 356

356 356 35637

Page 47: robie 1995

ELEMENTS 41

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SELECTED ELEMENTS

NAME AND FORMULA

SILVER Ag (crystal)

ALUMINUM Al (crystal)

ARSENIC As

GOLD Au (crystal)

BORON B (crystal)

BERYLLIUM Be (crystal)

BISMUTH Bi

BROMINE Br2 (ideal gas)

GRAPHITE C (crystal)

DIAMOND C (crystal)

CALCIUM Ca (a- crystal)

CADMIUM Cd (crystal)

CERIUM Ce (crystal)

CHLORINE C12 (ideal gas)

COBALT Co (crystal)

CHROMIUM Cr (ci rstal)

ENTROPY A1 A2 A3 A4 AS J-mol-'-lf1 (T) (T z) (f0*) (T2)

42.55 1.126E+01 1.169E-02 -2.124E+05 2.253E+02 0.21

28.30 4.132E+01 -1.988E-02 -1.265E+05 -1.816E+02 1.93E-05 0.08

35.69 2.0845E+01 6.3265E-03 -9.8777E+04 5.2398E+01 0.84

47.49 4.197E+01 -1.770E-02 -2.161E+02 1.123E-05 0.21

5.83 4.758E+01 -5.227E-03 -5.903E+04 -5.899E+02 1.372E-06 0.08

9.50 1.8735E+01 9.293E-03 -4.502E+05 0.08

56.74 2.6852E+01 -1.7289E-02 4.1802E-05 0.42

249.34 4.211E+01 -2.470E-03 -3.021E+04 -8.739E+01 9.370E-07 0.05

5.74 6.086E+01 -1.024E-02 7.139E+05 -9.922E+02 1.669E-06 0.10

2.38 9.845E+01 -3.655E-02 1.217E+06 -1.659E+03 1.098E-05 0.20

42.90 -2.659E+01 5.236E-02 -4.877E+05 7.442E+02 -9.772E-06 0.10

51.80 -3.8115E-02 -1.3402E+05 3.0044E+02 -1.4336E-05 0.15

72.00 1.4017E+01 1.9292E-02 -1.0802E+05 1.4469E+02 4.00

223.08 4.591E+01 -3.699E-03 -4.094E+04 -1.811E+02 1.009E-06 0.02

30.04 4.1844E-02 -1.5646E+05 2.6875E+02 -1.6498E-05 0.42

23.62 -1.625E+01 2.293E-02 -1.222E+06 8.032E+02 1.232E-06 0.21

T range T^ A^H0 K 1C kJ-Mol'1

298 1234.9 11.95 1235

298 933.5 10.70 933.5

298 875

298 1337.3 12.36 1337.3

2982350

2981550

298544.52

332.52200

2982500

298 1800

298 716

298 594.18

298 999

298 2500

298 700

298 2100

Page 48: robie 1995

42 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SELECTED ELEMENTS

NAME AND FORMULA

COPPER Cu (crystal)

COPPER Cu (liquid)

FLUORINE F2 (ideal gas)

GERMANIUM Ge (crystal)

HYDROGEN H2 (ideal gas)

MERCURY Hg (liquid)

MERCURY Hg (ideal gas)

IODINE I 2 (ideal gas)

MAGNESIUM Mg (crystal)

MAGNESIUM Mg (liquid)

MAGNESIUM Mg (ideal gas)

MANGANESE Mn (a-crystal)

MOLYBDENUM Mo (crystal)

NITROGEN N2 (ideal gas)

SODIUM Na (liquid)

SODIUM Na (ideal gas)

ENTROPY A1 A2 A3 A4 AS J-mol'-lf1 (T) (T 2) (r06) (T2)

33.14 6.084E+01 -2.875E-02 3.331E+05 -5.671E+02 1.420E-05 0.03

83.95 3.280E+01 0.50

202.79 4.057E+01 1.792E-03 -1.004E+05 -1.489E+02 -4.836E-07 0.02

31.09 2.4033E+01 3.049E-03 -1.5714E+05 0.84921E+00 -2.5E-08 0.15

130.68 4.783E+00 1.335E-02 -5.617E+05 4.583E+02 -1.825E-06 0.02

75.90 1.6815E+01 3.623E-03 -7.956E+04 1.860E+02 2.168E-06 0.12

174.97 2.079E+01 0.02

116.14 1.3122E+01 9.111E-03 -1.0131E+06 5.3419E+02 -1.5E-07 0.30

32.67 4.1345E-02 -2.7217E+05 3.1329E+02 -1.3745E-05 0.10

73.23 3.431E+01 0.15

148.65 2.079E+01 0.02

32.01 4.1345E-02 -2.7217E+05 3.1329E+02 -1.3745E-05 0.08

28.66 4.167E+01 -9.165E-03 1.082E+05 -2.882E+02 4.904E-06 0.21

191.61 2.479E+01 9.648E-03 1.459E+05 -2.003E-06 0.02

64.92 3.7482E+01 -1.9183E-02 1.0644E-05 0.20

153.72 2.079E+01 0.02

T range T^ A^H0 K 1C kJ-mol 1

298 1357.8 13.14 1357.8

1357.8 2500

2982500

2981211.4

2982500

298 59.2 629

298 629 1800

457.7 1800

298 923 8.48 923

923 1366

298 2000

298 980

298 2500

2982500

371 1170.5

298 2500

Page 49: robie 1995

ELEMENTS 43

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SELECTED ELEMENTS

NAME AND FORMULA

NICKEL Ni (crystal)

OXYGEN 02 (ideal gas)

PHOSPHORUS P (liquid)

LEAD Pb (crystal)

PLATINUM Pt (crystal)

SULFUR S (ortho-crystal)

SULFUR S2 (ideal gas)

ANTIMONY Sb (crystal)

SILICON Si (crystal)

SILICON Si (liquid)

TIN Sn (crystal)

STRONTIUM Sr (crystal)

TELLURIUM Te (crystal)

Thorium TH (crystal)

TITANTIUM Ti (a-crystal)

URANIUM U (crystal)

ENTROPY A1 A2 A3 A4 AS J-niol'-IC1 (T) (T 2) (r08) (T2)

29.87 1.5121E+02 -2.049E-01 -1.3746E+03 1.742E-04 0.08

205.15 5.658E+01 -5.255E-03 6.856E+05 -5.780E+02 1.113E-06 0.02

42.58 2.632E+01 0.25

64.80 2.266E+01 1.0089E-01 -8.717E+04 4.0666E+01 0.30

41.63 2.0046E+01 7.415E-03 -1.298E+05 8.738E+01 -4.798E-07 0.20

32.05 2.270E+01 0.05

228.17 3.751E+01 2.173E-03 -1.645E+05 -6.575E+01 -7.275E-08 0.02

45.52 5.2603E+01 -3.2904E-02 1.2617E+05 -3.6512E+02 2.4691E-05 0.21

18.81 2.431E+01 3.003E-03 -3.185E+05 -2.831E+01 2.330E-07 0.08

91.56 2.720E+01 0.5

51.18 -6.8705E+01 7.2961E-02 -1.2938E+06 1.53013E+03 0.08

55.69 2.3369E+01 1.066E-02 2.233E+04 0.03

49.71 1.9124E+01 2.2061E-02 0.20

51.83 2.27467E+01 9.338E-03 -3.00023E+03 1.27357E+01 -9.09E-08 0.50

30.76 2.01595E+02 -1.4675E-01 1.97328E+06 -2.7691E+03 6.28E-05 0.10

50.20 3.2944E+01 -7.800E-03 -9.500E+01 2.860G-05 0.20

T range T^ A^H" 1C K kJ-nol'1

298 600

2982500

317.3 1000

298 600.6 4.81 600.6

298 1800

298

2982500

298904

298 1685 50.02 1685

1685 2500

298505.1

298 820

298 723

298 1650

298 1166

298942

Page 50: robie 1995

44 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SELECTED ELEMENTS

NAME AND FORMULA

VANADIUM V (crystal)

TUNGSTEN U (crystal)

ZINC Zn (crystal)

ZINC Zn (liquid)

ZINC Zn (ideal gas)

ZIRCONIUM Zr (o-crystal)

ZIRCONIUM Zr (0-crystal)

METHANE CH4

COHENITE Fe3C

AMMONIA NH3

ENTROPY Al A2 A3 A4 AS J-MOl-'-lf1 (T) (T 2) (T*6) (T2)

28.94 3.440E+00 1.334E-02 -6.971E+05 4.369E+02 2.020E-07 0.42

32.65 3.814E+01 -5.430E-03 2.183E+05 -2.568E+02 2.552E-06 0.10

41.63 2.909E+01 -3.507E-03 -6.366E+01 1.161E-05 0.15

75.16 3.138E+01 0.30

160.99 2.079E+01 0.03

38.87 -2.585E+01 3.6755E-02 -9.032E+05 8.778E+02 -6.585E-06 0.20

79.48 2.1943E+01 -6.37E-03 -1.1452E+06 2.7991E+02 4.81E-06

186.26 1.194E+02 2.055E-02 2.814E+06 -2.090E+03 -5.000E-06 0.04

104.40 1.073E+02 1.253E-02 3.40

192.77 5.139E+01 2.660E-02 7.584E+05 -5.480E+02 -4.900E-06 0.03

T range T^ A^H0 K 1C kJ-mol 1

2982200

2982500

298 692.7 7.30 692.7

692.7 1180.2

1180.2 2500

298 1135 4.02 1135

1135 2000

2981800

2981800

2981800

Page 51: robie 1995

SULFIDES AND SULFOSALTS 45

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SULFIDE AND SULFOSALT MINERALS

NAME AND FORMULA

ACANTHITE (ARGENT I TE)Ag2s

REALGAR AsS

GREENOCKITE CdS

CATTIERITE CoS2

COVELLITE CuS

CHALCOCITE

CHALCOPYRITE CuFeS2

ISS (intermediate ss) CuFeS,

ENTROPY A1 A2 A3 A4 AS J-mol'-IC1 (T) (T 2) (T'06) (T2)

142.9 7.531E+01 0.3

63.5 4.702E+01 0.6

72.2 3.538E+01 1.503E-02 -5.333E+05 2.357E+02 -2.400E-06 0.3

74.8 6.582E+01 3.032E-02 -5.870E+05 0.2

67.4 4.3049E+01 2.023E-02 -1.39938E-05 4.35838E-01 0.2

116.2 7.684E+01 0.1

124.9 -5.8753E+02 3.7073E-01 -1.4721E+07 1.275E+04 0.2

250.5 -1.01845E+03 1.358E+00

T range T^, A^H0 K K kJ-mol 1

298

298

2981100

2981000

298780

298

298820

820 930

BORNITE

TROILITE

FeS

398.5 2.429E+02

0.8

60.3 5.049E+01

0.2

298

298

PYRRHOTITE

Fe.875

PYRRHOTITE

Fe >89S

PYRRHOTITE

Fe.90S

PYRRHOTITE

Fe .98S

PYRITE

FeSo

60.7 4.988E+01

0.2

5.084E+01

63.2 5.123E+01

0.1

5.095E+01

298

298

298

298

52.9 -2.032E+01 5.030E-02 -3.200E+06 1.787E+03 298

0.1 1015

HARCASITE

FeS2

53.9 3.832E+02 -3.173E-01 1.676E+06 -4.488E+03 1.676E-04 298

0.1 700

Page 52: robie 1995

46 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SULFIDE AND SULFOSALT MINERALS

NAME AND FORMULA

HYDROGEN SULFIDE H2S (IDEAL GAS)

ALABANDITE MnS

MOLYBDENITE MoS2

MILLERITE NiS

HEAZLEUOODITE Ni3S2

GALENA PbS

STIBNITE

HERZENBERGITE SnS

HERZENBERGITE SnS

BERNDTITE SnS2

TUNGSTEN I TEws2

SPHALERITE ZnS

WURTZITE ZnS

BERTHIERITE

CHALCOSTIBITE CuSbS2

ENTROPY A1 A2 A3 A4 AS J-mol'-IC1 (T) (r2) (T* 6) <T2)

205.8 2.636E+01 2.650E-02 2.660E+05 -4.356E+01 -6.024E-06 0.2

80.3 1.353E+02 -5.775E-02 1.169E+06 -1.435E+03 2.087E-05 0.8

62.6 1.045E+02 -4.812E-03 -6.291E+03 -6.817E+02 0.2

53.0 4.711E+01 0.4

133.2 1.057E+03 -8.988E-01 8.139E+06 -1.388E+04 4.660E-04 0.3

91.7 4.460E+01 1.640E-02 0.7

182.0 1.705E+02 -4.860E-03 7.539E+05 -9.978E+02 3.3

77.0 -1.559E+02 1.219E-01 -3.548E+06 3. 604 E +03 0.8

135.1 2.672E+01 3.035E-02 1.0

87.5 2.004E+01 3. 823 E- 02 - 9. 60 2 E +05 8. SUE +02 0.2

67.8 7.633E+01 5.561E-04 -1.137E+06 1.408E-06 0.3

58.7 6.151E+01 7.631E-04 -7.963E+04 -2.604E+02 0.8

58.8 4.191E+01 7.619E-03 -6.603E+05 1.577E+02 0.2

245.0 1.000E+01 7.930E-02 -6.416E+06 3.691E+03 1.0

149.2 8.810E+01 4.040E-02 3.8

T range Tw A^M0 K K kJ-mol 1

298 1800

298 1800

2981200

298

298 840

298 900

298 829

298 875

875 1153

2981000

2981500

298 1300

298 1300

298 836

298 826

Page 53: robie 1995

OXIDES AND HYDROXIDES 47

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR OXIDE AND HYDROXIDE MINERALS

NAME AND FORMULA

CORUNDUM A12°3

BOEHMITE AIO(OH)

DIASPORE AIO(OH)

GIBBSITE Al(OH)3

D I BORON TRIOXIDE B2°3

D I BORON TRIOXIDE B2°3 ^ llclu' c|)

BARIUM MONOXIDE BaO

BROMELLITE BeO

B I SMITE Bi2°3

CARBON MONOXIDE CO (ideal gas)

CARBON DIOXIDE C02 (ideal gas)

LIME CaO

PORTLAND I TE Ca(OH)2

CERIANITE Ce02

COBALT MONOXIDE CoO

TR I COBALT TETROXIDE Co»0,

ENTROPY A1 A2 A3 A4 AS J-mor'-IC1 (T) (T 2) (T* 6) (T2)

50.9 1.612E+02 -1.352E-03 -1.815E+06 -1.059E+03 5.381E-07 0.1

37.2 2.057E+02 -3.492E-02 1.027E+06 -2.635E+03 0.1

35.3 5.333E+01 0.2

68.4 9.170E+01 0.1

54.0 1.847E+02 7.108E-03 6.441E+05 -2.270E+03 0.3

160.9 1.297E+02 0.5

72.1 5.722E+01 5.370E-03 -1.669E+05 -1.668E+02 0.4

13.8 8.274E+01 -7.301E-03 -4.158E+05 -8.718E+02 1.845E-06 0.2

151.5 1.036E+02 3.336E-02 2.1

197.3 3.976E+01 3.188E-03 5.292E+05 -3.013E+02 -8.078E-07 0.0

213.8 8.811E+01 -2.698E-03 7.232E+05 -1.007E+03 0

38.1 5.185E+01 2.444E-03 -9.340E+05 0.4

83.4 1.867E+02 -2.191E-02 -1.600E+03 0.4

62.3 8.029E+01 5.699E-03 -7.294E+05 -2.099E+02 0.1

52.8 -3.0A7E+01 2.946E-02 -4.166E+06 1.932E+03 0.3

109.3 1.316E+02 6.602E-02 -2.480E+06 0.3

T range T., A...H0 K K kJ-wol 1

298 2345 2250

298 600

298

298

298 723

723 2200

298 1800

298 2000

298 800

298 2500

298 2200

2982500

298 700

298 1800

2981800

298 1000

Page 54: robie 1995

48 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR NEAT CAPACITY EQUATIONS FOR OXIDE AND HYDROXIDE MINERALS

NAME AND FORMULA

ESKOLAITE Cr2°3

TENORITE CuO

CUPRITECu2o

UUSTITE Fe.947°

FERROUS OXIDE FeO (fictive)

HEMATITE Fe2°3

HEMATITE Fe2°3

MAGNETITE Fe3°4

MAGNETITE Fe3°4

STEAM H20 (ideal gs)

DIPOTASSIUM MONOXIDE

DILITHIUM MONOXIDE Li 20

PERICLASE MgO

BRUCITE Mg(OH)2

MANGANOSITE MnO

PYROLUSITE MnO,

ENTROPY A1 A2 A3 A4 AS J-mor'-IC1 (T) (T 2) (r06) (T2)

81.2 1.190E+02 9.496E-03 -1.442E+06 -3.405E+00 1.2

42.6 3.097E+01 1.374E-02 -1.258E+06 3.693E+02 0.2

92.4 4.260E+02 -2.508E-01 4.898E+06 -6.078E+03 9.244E-05 0.3

56.6 -1.930E+01 3.017E-02 -2.533E+06 1.501E+03 0.4

60.6 3.908E+01 8.574E-03 -7.325E+05 2.466E+02 1.7

87.4 1.50147E+03 -1.2146E+00 1.4123E+07 -2.1493E+04 5.690E-04 0.2

243.8 -1.0957E+03 2.7267E-01 -1.0239E+08 3.396E+04 1.0

146.1 2.65911E+03 -2.5215E+00 2.0734E+07 -3.6455E+04 1.3677E-03 0.4

369.1 9.6823E+01 5.2733E-02 5.6413E+07 0.6

188.8 2.7057E+01 1.7584E-02 2.7696E+05 -2.7656E+01 -2.5097E-06 0.04

94.1 7.450E+01 3. 965 E- 02 -2.346E+05 6.3

37.6 6.133E+01 3.568E-02 -1.168E+06 -7.050E+01 -7.318E-06 0.8

26.9 6.653E+01 -6.143E-03 -6.093E+05 -3.592E+02 2.451E-06 0.2

63.2 1.022E+02 1.511E-02 -2.617E+06 0.1

59.7 6.028E+01 3.510E-03 -2.975E+02 0.1

52.8 2.904E+02 -1.442E-01 2.012E+06 -3.787E+03 4.541E-05 0.1

T range T^, A^H0 K K kJ-«ol'

2981800

2981400

2981500

2981652

298 1800

298 950 1.24 950

950 1800

298800

900 1800

298 2500

2982000

2982000

298 2500

298 900

2982000

298 850

Page 55: robie 1995

OXIDES AND HYDROXIDES 49

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR OXIDE AND HYDROXIDE MINERALS

NAME AND FORMULA

BIXBYITE

HAUSMANNITE

BRAUNITE

MOLYBOITE MoOj

NITROGEN DIOXIDE N02

DISODIUM MONOXIDE Na20

BUN SEN I TE NiO

BUNSENITE NiO

LITHARGE PbO

PLATTNERITE Pb02

MINIUM

SULFUR DIOXIDE S02 (IDEAL GAS)

SULFUR TRIOXIDE $03 (IDEAL GAS)

SILICON MONOXIDE SiO (IDEAL GAS)

QUARTZ Si02

QUARTZ Si02

ENTROPY A1 A2 A3 A4 AS J-mor'-IC1 (T) (T 2) (T"06) (T2)

113.7 1.624E+02 1.211E-02 1.046E+06 -1.317E+03 3.462E-06 0.2

164.1 -7.432E+00 9.487E-02 -6.712E+06 3.396E+03 0.3

416.4 4.301E+02 1.110E-01 -7.325E+06 0.8

77.7 6.433E+00 6.278E-02 -2.460E+06 1.337E+03 0.4

240.1 1.018E+02 -1.121E-02 1.218E+06 -1.300E+03 1.461E-06 0.1

75.3 1.1397E+02 7.4857E-03 -8.1335E+02 0.8

38.0 4.1107E+03 -5.3024E+00 2.43067E+07 -5.3039E+04 3.5206E-03 0.2

67.7 -8.776E+00 4.223E-02 3.607E+06 7.873E+02 -7.526E-06 0.5

66.5 5.102E+01 1.027E-02 -7.387E+05 0.2

71.8 7.312E+01 7.484E-03 -1.261E+06 0.4

212.0 1.779E+02 3.326E-02 -2.926E+06 6.7

248.2 9.890E+01 -1.161E-02 8.465E+05 -1.127E+03 1.788E-06 0.1

256.8 1.478E+02 -1.898E-02 1.079E+06 -1.794E+03 2.763E-06 0.8

211.6 5.686E+01 -5.616E-03 4.922E+05 -5.335E+02 8.5943E-07 0.8

41.5 8.1145E+01 1.828E-02 -1.810E+05 -6.985E+02 5.406E-06 0.1

104.6 5.796E+01 9.330E-03 1.835E+06 0.2

T range T*, A^H0 K K kJ-nol'1

3251400

2981400

298 1500

298 1074 1074

2982500

298 1000

298 519

519 1800

298 1000

2981200

2981800

2982500

298 2500

2982500

298 844

844 1700

Page 56: robie 1995

50 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR OXIDE AND HYDROXIDE MINERALS

NAME AND FORMULA

CRISTOBALITE Si02

CRISTOBALITE Si02

COESITE Si02

STISHOVITE Si02

SILICA GLASS Si02

CASSITERITE Sn02

STRONTIUM MONOXIDE SrO

THORIANITE Th02

RUTILE

ANATASE

URANINITEuo2

KARELIANITE V2°3

TUNGSTEN DIOXIDE

Z INCITE ZnO

BADDELEYITE

BADDELEYITE ZrOj,

ENTROPY A1 A2 A3 A4 AS J-mol'-IC1 (T) (T 2) <r° 6) (T2)

43.4 -4.160E+03 2.548E+00 -6.286E+07 7.168E+04 0.1

76.3 7.275E+01 1.300E-03 -4.132E+06 1.0

38.5 2.331E+02 -7.777E-02 2.604E+06 -3.375E+03 1.924E-05 1.0

27.8 1.474E+02 -4.027E-02 -2.834E+05 -1.559E+03 1.203E-05 0.4

48.5 7.464E+01 -7.259E-03 -3.114E+06 5.570E-06 1.0

49.0 7.604E+01 7.364E-03 -2.224E+06 0.1

55.5 5.365E+01 5.982E-03 -3.666E+05 -1.019E+02 0.4

65.2 7.138E+01 7.556E-03 -1.053E+06 0.2

50.6 8.462E+01 5.990E-04 -1.101E+06 -2.957E+02 0.2

49.9 4.396E+01 1.374E-02 -2.595E+06 6.294E+02 0.3

77.0 5.845E+01 1.606E-02 -1.867E+06 3.689E+02 0.2

98.1 5.799E+01 4.120E-02 -3.872E+06 1.351E+03 1.3

50.6 6.638E+01 1.326E-02 -1.294E+06 0.3

43.2 4.350E+01 7.658E-03 -7.573E+05 5.456E+01 0.1

50.4 1.073E+02 -5.011E-03 -2.203E+05 -8.141E+02 0.3

167.1 7.448E+01 1.5

T range T^, A^H' K K kJ'Ml'1

298 523

523 1800

298 1800

298 1800

2981700

2981500

298 2500

2981200

298 2100

298 1300

2981800

2981800

298 2500

298 1800

298 1478 8.08 1478

1478 2000

Page 57: robie 1995

MULTIPLE OXIDES 51

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR MULTIPLE OXIDE MINERALS

NAME AND FORMULA

TIALITE

CHRYSOBERYL

CALCIUM FERRITE CaFe204

D I CALCIUM FERRITE

PEROVSKITECaTiO

3

HERCYNITE FeAl 204

CHROMITE FeCr204

ILMENITE FeTiOj

ULVOSPINEL Fe2Ti04

PSEUDOBROOKITE Fe2Ti05

SPINELMgAl 2o4

MAGNESIOCHROMITE MgCr204

MAGNESIOFERRITE MgFe204

MAGNESIOFERRITE MgFe204

GEIKIELITE MgTiOj

PYROPHANITE MnTiOj

ENTROPY A1 A2 A3 A4 AS J-aor'-IC1 (T) <T'2) (T"06) (T2)

109.6 2.111E+02 1.461E-02 -3.625E+06 -6.610E+02 0.8

66.3 3.627E+02 -8.353E-02 -6.798E+04 -4.034E+03 2.248E-05 0.1

145.4 9.588E+01 4.666E-02 -3.360E+06 1.410E+03 0.8

188.8 2.223E+02 9.728E-03 -5.661E+06 5.420E+02 1.3

93.6 1.250E+01 4.516E-02 -6.302E+06 2.462E+03 0.4

116.0 2.247E+02 4.480E-03 -1.581E+06 -1.370E+03 3.0

146.0 3.018E+02 -4.157E-02 4.877E+05 -2.803E+03 1.147E-05 1.7

108.9 2.627E+02 -7.999E-02 3.827E+05 -2.538E+03 3.388E-05 0.3

168.9 -1.026E+02 1.425E-01 -9.145E+06 5.271E+03 2.5

156.5 2.136E+02 1.625E-02 -2.3A5E+06 -4.795E+02 1.3

84.5 2.229E+02 6.127E-03 -1.686E+06 -1.551E+03 0.04

106.0 1.961E+02 5.398E-03 -3.126E+06 -6.169E+02 0.8

123.8 1.782E+02 1.275E-02 0.8

379.2 1.066E+02 5.716E-02 3.0

74.6 2.225E+02 -5.274E-02 - 6. 092 E +05 -1.8746E+03 1.878E-05 0.2

104.9 1.217E+02 9.288E-03 -2.188E+06 0.3

T range T^ A^M0 K K kJ-«ol 1

298 1800

298 1800

298 1510

298 1750

298 1530

2981200

298 1800

298 1000

298 1800

298 1800

298 1800

298 1800

665 1230

1230 1800

2981800

2981600

Page 58: robie 1995

52 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR NEAT CAPACITY EQUATIONS FOR MULTIPLE OXIDE MINERALS

NAME AND FORMULA ENTROPY A1 A2 A3 A4 AS T range TM A^N0j-aoi-'-ir1 (T> <r2> <r° 6> <T2> K ic kj-aor1

TREVORITE 165.0 9.559E+01 1.705E-01 3.9927E+04 2983.0 1000

FRANKLINITE 150.7 1.995E+02 3.045E-02 -1.352E+06 298ZnFe204 0.3 600

ZINC TITANIUM SPINEL 143.1 2.613E+02 -5.138E-03 -4.317E+05 -2.095E+03 298Zn2Ti04 0.3 1800

Page 59: robie 1995

HALIDES 53

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR HALIDE MINERALS

NAME AND FORMULA

BROMARGYRITE AgBr

POTASSIUM BROMIDE KBr

CHLORARGYRITE AgCl

HYDROPHILITE CaCl2

HYDROPHILITE CaCl2 (liquid)

LAURENCITE FeCl2

MOLYSITE FeCl3

HYDROGEN CHLORIDE HCl (ideal gas)

SYLVITE KCl

CHLOROMAGNESITE MgCl2

SCACCHITE MnCl2

SALAMMONIAC NH4Cl

HALITE NaCl

HALITE NaCl (liquid)

NICKELOUS CHLORIDE NiCl2

COTUNNITE PbCU

ENTROPY A1 A2 A3 A4 AS J-Bol'-IC1 (T) (T 2) (T* 6) <TZ)

107.1 3.317E+01 6.443E-02 0.4

95.9 -4.392E+01 5.855E-02 -1.839E+06 1.717E+03 0.2

96.2 5.996E+01 7.620E-03 -1.017E+06 0.2

104.6 -4.725E+00 4.504E-02 -2.037E+06 1.5036*03 1.3

230.2 1.025E+02 5.0

118.0 -1.123E+02 8.951E-02 -5.115E+06 3.790E+03 0.4

142.3 -2.56E+02 1.1755E+00 7.89E+06 -9.738E-04 0.4

186.9 1.738E+01 1.165E-02 -7.597E+03 1.477E+02 -2.052E-06 0.03

82.6 -2.452E+01 4.852E-02 -1.605E+06 1.371E+03 0.2

89.6 7.690E+01 8.496E-03 - 7. 463 E +05 0.8

118.2 7.626E+01 1.191E-02 -6.048E+05 0.2

95.0 8.410E+01 0.4

72.1 4.515E+01 1.797E-02 0.2

170.3 7.2008E+01 -3.2228E-03 2.2

97.7 -5.078E+01 5.748E-02 -4.064E+06 2.608E+03 0.2

136.0 1 .229E+02 -8.585E+02 2.1

T range T,., A...H0 K K kJ-wol'1

298 703

2981000

298 728

298 1045 28.54 1045

1045 1800

298 950

298 577

298 2500

2981043

298 987

298 923

298

2981074

1074 1791

2981303

298 768

Page 60: robie 1995

54 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR HALIDE MINERALS

NAME AND FORMULA

FLUOR I TE CaF2

HYDROGEN FLUOR IDE HF (ideal gas)

SELLAITE MgF2

VILLIAUMITE NaF

CRYOLITE

CRYOLITE

CRYOLITE

CHIOLITE

IODARGYRITEAgl

MARSHITE Cul

ENTROPY A1 A2 A3 A4 AS J-mol-'-r1 (T) (T 2) (T-06) (T2)

68.9 2.033E+03 -1.436E+00 2.988E+07 -3.312E+04 5.040E-04 0.3

173.8 6.845E+00 1.301E-02 -4.108E+05 4.007E+02 -1.911E-06 0.04

57.3 9.474E+01 1.595E-04 -7.328E+05 -4.322E+02 0.4

51.5 -2.612E+00 3.347E-02 -1.402E+06 9.542E+02 0.1

238.5 4.04227E+03 -3.8582E+00 3.4071E+07 -5.5876E+04 2.004E-03 0.5

512.4 2.3669E+02 4.7986E-02 2.5

605.5 3.0041E+02 2.5

515.3 5.099E+02 8.768E-02 -7.301E+06 0.8

115.5 2.4351E+01 1.0083E-02 1.7

96.6 -1.6941E+03 1.0046E+00 -2.8543E+07 3.0558E+04 0.5

T range K

298 1400

298 2500

2981536

2981269

298 836

8361153

1153 1290

2981010

298 423

298 643

K kJ-nol'1

1536 58.16

1269 33.14

836 8.20

1153 1.8

1290 113.75

1010 80.83

Page 61: robie 1995

CARBONATES AND NITRATES 55

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR CARBONATE AND NITRATE MINERALS

NAME AND FORMULA

WITHER I TE BaCO;

ARAGONITE CaCOj

CALCITE CaCC^

DOLOMITE

SIDERITE FeCOj

MAGNESITE MgCOj

RHOOOCHROSITE MnCOj

THERMONATRITE

DAUSONITE NaAlC03(OH)2

STRONTIANITE SrCOj

SMITHSONITE ZnCOj

NITROBARITE

CALCIUM NITRATE Ca(N03)2

MAGNESIUM NITRATE

SODA NITER NaNOj

STRONTIUM NITRATE Sr(NO,),

ENTROPY A1 A2 A3 A4 AS J-niol'-lf1 (T) (T 2) (T*6) (T2)

112.1 -9.936E+01 1.258E-01 -6.274E+06 3.760E+03 2.1

88.0 8.153E+01 4.567E-02 -1.141E+06 0.2

91.7 9.972E+01 2.692E-02 -2.158E+06 0.2

155.2 5.479E+02 -1.676E-01 2.840E+06 -6.548E+03 7.708E-05 0.3

95.5 2.574E+02 -4.620E-02 1.523E+06 - 3. 082 E +03 0.2

65.1 8.112E+01 5.225E-02 -1.832E+06 0.1

98.0 1.497E+02 1.876E-02 1.417E+05 -1.3142E+03 0.1

168.1 7.240E+01 2.607E-01 -1.258E+05 0.8

132.0 3.441E+01 3.347E-04 7.464E+02 0.5

97.1 -1.618E+02 1.2795E-01 -9.018E+06 5.294E+03 1.7

81.2 1.4838E+02 2. 835 E- 02 4.796E+05 -1.419E+03 0.2

213.8 1.255E+02 1.497E-01 -1.670E+06 0.8

193.3 7.815E+01 1.734E-01 -2.778E+06 8.722E+02 0.4

164.0 5.8417E+01 2.7292E-01 1.8949E+05 0.8

116.5 2.570E+01 2.237E-01 1.161E+01 0.7

194.6 1.3389E+03 -3.79E-01 2.5757E+07 -2.3582E+04 0.5

T ranee T^ A^H* K K kJ-mol 1

298 1079

298 1000

298 1200

298 1100

298 600

298 1000

298 600

298 380

298 500

298 1197 18.82 1197

298 1200

298 800

298 800

298 600

298549

298900

Page 62: robie 1995

56 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SULFATE AND PHOSPHATE MINERALS

NAME AND FORMULA

ALUMINUM SULFATE A12(S04)3

BARITE BaS04

ANHYDRITE CaS04

CHALCOCYANITE CuS04

FERRIC SULFATE Fe2(S04)3

ARCANITE

ARCANITE

K-Al SULFATE KAl(S04)2

ALUNITE KA13(OH)6(S04 )2

LANGBEINITE

MAGNESIUM SULFATE MgS04

MANGANOUS SULFATE MnS04

NASCAGNITE (NH4 )2S04

THENARDITE Na2S04 (hexagonal)

THENARDITE Na2S04 (liquid)

NICKELOUS SULFATE NiSO,

ENTROPY A1 A2 A3 A4 AS J-mol-'-lf1 (T) (T 2 ) (r° B) (T2)

239.3 7.877E+02 -9.899E-02 -8.615E+03 1.2

132.2 1.412E+02 -3.507E+06 0.8

107.4 3.728E+02 -1.574E-01 1.695E+06 -4.3308E+03 7.99E-05 0.2

109.5 1.615E+02 4.796E-02 -3.192E+06 0.6

282.8 2.553E+02 2.269E-01 -4.260E+06 0.8

175.6 1.2037E+02 9.958E-02 -1.782E+06 0.4

360.9 -8.445E+02 6.845E-01 3.499E+08 1.0

204.6 2.370E+02 7.828E-02 -5.988E+06 1.3

321.0 5.145E+03 1.1375E-01 -1.5635E+07 5.0

389.3 5.359E+02 1.101E-01 -1.020E+06 -4.040E+03 -4.909E-05 0.8

91.4 1.056E+02 4.717E-02 -2.129E+06 0.8

127.0 1.203E+02 3.999E-02 -2.818E+06 2.0

220.5 1.0436E+02 2.788E-01 1.3

239.7 1.2193E+02 8.141E-02 1.0

424.6 2.011E+02 -3.941E-03 2.0

101.3 1.240E+02 3.062E-02 -3.150E+06 0.2

T range TU, A^H*

298 1100

298 1300

298 1000

298 1200

298 800

298 856

8561342

298 1000

298700

298 1000

298 1400

298 1000

298 600

514 1155

1155 1800

298 1200

Page 63: robie 1995

SULFATES AND PHOSPHATES 57

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SULFATE AND PHOSPHATE MINERALS

NAME AND FORMULA

ANGLE SITE PbS04

ZINKOSITE ZnS04

BERLINITE AlP04

UHITLOCKITE

FLUORAPATITE Ca5(P04)3(F)

HYDROXYAPATITE Cas(P04)3(OH)

ENTROPY

148.5 0.6

110.5 1.3

90.8 0.2

236.0 0.8

387.9 1.7

390.4 1.7

A1 A2 A3 A4 (T) (T 2) <r° 6>

4.683E+01 1.278E-01 1.724E+06

4.019E+01 1.243E-01 2.389E+06

1.9833E+03 -1.64948E+00 2.0607E+07 -2.93193E+04

1.929E+02 1.742E-01 -1.174E+06

7.543E+02 -3.026E-02 - 9. 084 E +05 -6.201E+03

3.878E+02 1.186E-01 -1.270E+07 1.811E+03

AS T range T^ A^H0 (T2) K K kJ-aol'1

298 1100

298 1100

7.72E-04 298 830

298 1373

298 1600

298 1500

Page 64: robie 1995

58 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR ORTNO AND RING STRUCTURE SILICATE MINERALS

NAME AND FORMULA

TOPAZ Al2Si04F2

KYANITE Al2Si05

ANDALUSITE Al2Si05

SILLIMANITE Al2Si05

MULLITE Al6Si2°13

DUMORTIERITE

PHENAKITE Be2Si04

BERYL

BERTRANDITE Be4Si207(OH)2

EUCLASE BeAlSi04(OH)

EPIDOTE

LAWSONITE CaAl2Si207(OH)2H20

GEHLENITE Ca2Al2Si07

ZOISITE

GROSSULAR

GLASS Ca3M2Si3°12

ENTROPY A1 A2 A3 A4 AS J-Bor'-IT1 (T) <T 2> <r° 6> <T2)

105.4 4.714E+02 -8.165E-02 1.270E+06 -5.486E+03 0.2

82.8 2.794E+02 -7.124E-03 -2.056E+06 -2.289E+03 0.5

91.4 2.77306E+02 -6.588E-03 -1.9141E+06 -2.2656E+03 0.1

95.4 2.8019E+02 -6.900E-03 -1.376E+06 -2.399E+03 0.6

275.0 7.546E+02 -2.943E-02 -3.454E+06 -6.576E+03 5.0

334.9 1.43871E+03 -2.427E-01 3.860E+06 -1.682E+04 4. 884 E- 05 )H) .75 5>0

63.4 4.2849E+02 -9.958E-02 2.083E+06 -5.6705E+03 1.989E-05 0.3

346.7 1.625E+03 -4.252E-01 6. 825 E +06 -2.018E+04 1.203E-04 4.7

172.1 8.253E+02 -9.965E-02 3.662E+06 -1.057E+04 0.8

89.1 5.329E+02 -1.507E-01 2.198E+06 -6.726E+03 4.122E-05 0.4

328.9 3.676E+02 2.5

230.0 2.7732E+02 2.341E-01 -6.389E+06 0.4

210.1 4.057E+02 -7.099E-03 -1.188E+06 -3.174E+03 0.6

295.9 1.134E+03 -4.523E-01 -1.157E+04 2.391E-04 0.3

260.1 1.5293E+03 -6.990E-01 7.443E+06 -1.894E+04 2.530E-04 0.5

329.9+ 3.392E+02 0.7

T range T,., A^N' K K kJ-mol 1

298 1000

298 2000

298 2000

298 2000

298 1800

298 1800

298 1800

2981800

298 1400

298 1800

298

298 600

298 1800

298750

298 1200

298

Page 65: robie 1995

ORTHO AND RING STRUCTURE SILICATES 59

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR ORTHO AND RING STRUCTURE SILICATE MINERALS

NAME AND FORMULA

DATOLITE CaB(Si04)(OH)

ILVAITE CaFejCSi^OCOH)

ANDRADITE

MONT I CELL I TE CaMgSi04

AKERMANITE Ca^gSi^

MERUINITE Ca3Mg(Si04 )2

TITANITE (Sphene) CaTiSiOj

LARNITE a-Ca2Si04

BREDIGITE a'-Ca2Si04

CALCIO-OLIVINE Y~Ca2Si04

HATURITE (ALITE) CajSiOj

RANKINITE Ca3Si 207

ROSENHAHNITE Ca3Si3°8(OH>2

SPURRITE Cas(Si04)2C03

TILLEYITE Ca5Si207(C03)2

COBALT-OLIVINE Co2Si04

ENTROPY A1 A2 A3 A4 A5 J'Bor'-lf' (T) (T 2) <r° 6> (T2)

110.2 1.9446E+02 1.8447E-01 4.0191E+05 -2.0305E+03 -1.01E-04 0.6

292.3 8.569E+03 -5.2407E+00 9.6449E+07 -1.3456E+05 0.6

316.4 8.092E+02 -7.025E-02 -6.789E+05 -7.403E+03 2.0

108.1 2.314E+02 -8.531E-04 -1.247E+06 -1.623E+03 -1.333E-06 0.3

212.5 7.8146E+01 1.6573E-01 -6.7905E+06 2.8646E+03 -3.3437E-05 0.4

253.1 6.508E+02 -1.816E-01 -6.053E+03 7.036E-05 2.1

129.2 1.767E+02 2.385E-02 -3.991E+06 0.8

127.6 2.487E+02 -8.315E-04 -9.077E+04 -2.052E+03 0.8

314.2 1.3456E+02 4.611E-02 1.0

120.5 1.327E+02 5.251E-02 -1.905E+06 0.8

168.6 3.339E+02 -4.651E-03 -6.526E-KK -2.766E+03 0.3

210.6 4.732E+02 -4.207E-02 3.397E+05 -4.319E+03 2.9

281.8 3.650E+02 5.419E-02 -8.161E+06 3.0

331.0 6.141E+02 -3.508E-03 -2.493E+06 -4.168E+03 2.0

394.0 7.417E+02 -5.345E-03 -1.435E+06 -5.879E+03 4.0

142.6 3.0583E+02 -3.195E-02 2.693E+05 -2.865E+03 0.2

T range T^, A^H0 1C K kJ-mol 1

298 1000

290 376

298 1000

2981000

298 357.9 0.68 1731

2981600

298 1670

298970

970 1710

298 1200

2981800

298 1400

2981800

2981300

298 1200

2981100

Page 66: robie 1995

60 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR ORTHO AND RING STRUCTURE SILICATE MINERALS

NAME AND FORMULA

FAYALITE Fe2Si04

ALMANDINE

STAUROLITE

Fe4Al 18Si8046(OH)2

OSUMILITE

CORDIERITE

FORSTERITE

Mg2Si04

PYROPE Mg3Al2Si3o12

GLASS

GLASS

Mg3Al2Sl* 3012

ENTROPY A1 A2 A3 A4 AS

J-mol-'-IT1 (T) (T 2) (T^ 6) (T2)

151.0 1.7602E+02 -8.8086-03 -3.889E+06 2.471E-05 0.2

342.6 8.629E+02 -8.288E-02 1.697E+06 -8.875E+03 1.4

985.0 2.7986+03 7.921E-02 -9.952E+06 -2.474E+04 4.0

5.842E+02 1.2766+00 -3.967E+06 -1.556E+03 -6.497E-04 0

407.2 8.123E+02 4.334E-02 -8.211E+06 -5.000E+03 3.8

94.1 8.7366+01 8.717E-02 -3.699E+06 8.4366+02 -2.237E-05 0.1

266.3 8.730E+02 -1.374E-01 4.500E+03 -8.794E+03 3.341E-05 0.8

346.3 5.1386+02 7.119E-02 -5.857E+05 -2.439E+03 12.0

6. 3006+02 3.50E-02

T range T^ A^H* 1C K kJ-mol'1

298 1490 1490

298 1200

298 1000

298 1000

298 1700

2981800

298 1570 241.0 1570

2981020

1083 1863

PYROPE-GROSSULAR ss

GLASS

(Mg, 5Ca1>5 )Al2Si3012

TEPHROITE

LIEBENBERGITE

Ni2Si04

Ni 2Si04-SPINEL Ni 2Si04

UILLEMITE Zn2Si04

ZIRCON

268.3+ 3.2806+02 0.5

311.8+ 3.329E+02 0.6

155.9 2.613E+02 -1.3786-02 0.5

-2.218E+03

ZrSiO4

128.1 2.897E+02 -2.402E-02 1.310E+05 -2.779E+03 0.2

124.1 1.654E+02 1.412E-02 -4.345E+06 0.4

131.4 1.233E+02 0.8

84.0 2.370E+02 -1.788E-02 -1.496E+05 -2.268E+03 1.3

298

298

2981600

2981300

350800

298

2981600

Page 67: robie 1995

CHAIN AND BAND STRUCTURE SILICATES 61

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR CHAIN STRUCTURE SILICATE MINERALS

NAME AND FORMULA

UOLLASTONITE CaSiOj

PSEUDOUOLLASTONITE CaSiOj

GLASS CaSiOj

Ca-Al PYROXENE CaAl2Si06

GLASS CaAl2Si06

FERROBUSTAMITE CaFeSigOg

HEDENBERGITE CaFeSi2Og

GLASS CaFeSi206

DIOPSIDE CaMgSi206

GLASS CaMgSi^

FERROSILITE FeSiOj

a-SPODUMENE LiAlSi206

B-SPODUMENE LiAlSi206

ENSTATITE MgSiOj

GLASS MgSiOj

CLINOENSTATITE MgSiOj

ENTROPY A1 A2 A3 A4 AS J-aor'-lf1 (T) (T 2) <r° 6> (T2)

81.7 2.0078E+02 -2.589E-02 -1.579E+05 -1.826E+03 7.434E-06 0.1

87.2 1.578E+02 -1.045E-03 -6.396E+05 -1.077E+03 0.9

94.8 9.689E+01 3. 425 E- 02 -1.804E+06 3.0

141.0 4.652E+02 -7.838E-02 6.729E+05 -4.941E+03 1.934E-05 2.0

155.3 1.661E+02 0.3

180.5 4.038E+02 -4.444E-02 -3.757E+03 1.597E-05 0.3

174.2 3.1046E+02 1.257E-02 -1.846E+06 -2.040E+03 0.3

185.7+ 1.732E+02 0.4

142.7 4.7025E+02 -9.864E-02 2.454E+05 -4.823E+03 2.813E-05 0.3

166.0 1.041E+03 -6.358E-01 6.677E+06 -1.351E+04 2.724E-04 3.0

94.6 1.243E+02 1.454E-02 -3.3786+06 0.3

129.3 4.212E+02 -2.401E-02 1.910E+06 -4.776E+03 0.8

154.4 3.628E+02 -3.684E-03 - 3. 435 E +03 1.2

66.3 3.507E+02 -1.472E-01 1.769E+06 -4.296E+03 5.826E-05 0.1

74.1 8.205E+01 0.2

67.9 2.056E+02 -1.280E-02 1.193E+06 -2.298E+03 0.4

T range 1C

2981400

2981821

298 1821

298 1000

298

298 1600

298 1300

298

2981700

2981400

298 800

298 1200

298 1700

298 1000

298

298 1600

T«, A^N" 1C kJ-nol'1

1398 5.93

1821 . 57.30

1668 137.70

1834 73.20

Page 68: robie 1995

62 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR CHAIN STRUCTURE SILICATE MINERALS

NAME AND FORMULA

MgSi03-ILMEMITE MgSiOj

HYPERSTHENE(Hg.85Fe.15 )Si°3

RHODONITEMnSiOj

JADEITENaAlSi206

GLASSNaAlSi 206

ACMITENaFeSi 206

TREMOLITECa2Mg5Si8022(OH)2

GRUNERITEFe7Si8022(OH)2

ANTHOPHILLITEMg7Si8022(OH)2

RIEBECKITENa2Fe3Fe2Si8022(OH)2

GLAUCOPHANENa,Mg,Al,SiftO,3<OH>,

ENTROPY A1 A2 A3 A4 AS j-nor'-lf' (T) (T 2) (T^ 6) (T2)

60.4 6.912E+01 7.330E-02 1.037E+06 3.0

69.0+ 2.079E+02 -1.489E-02 1.921E+05 -2.135E+030.2

100.5 9.904E+01 1.915E-02 -3.041E+06 2.745E+021.0

133.5 3.011E+02 1.014E-02 -2.239E+06 - 2. 05 5 E +031.3

170.5 1.663E+020.4

170.6 1.994E+02 6.197E-02 -4.267E+060.8

548.9 6.131E+03 -4.189E+00 5.139E+07 -8.566E+04 1.757E-031.3

725.0 7.555E+02 3.620E-01 -1.621E+077.0

534.5 1.260E+03 1.888E-02 -1.164E+07 -8.127E+033.5

691.0 7.721E+02 2.827E-01 -1.598E+076.0

541.2 1.718E+03 -1.21 IE-01 7.075E+06 -1.927E+043.0

T range T^, A^H0 1C K kJ-mol 1

298700

2981000

2981500

2981300

298

2981300

2981100

298900

2981200

2981000

2981200

Page 69: robie 1995

FRAMEWORK SRUCTURE SILICATES 63

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR FRAMEWORK STRUCTURE SILICATE MINERALS

NAME AND FORMULA

EDINGTONITE (ordered)

ANORTHITE

CaAl2Si' 2Og-glass

BICCHULITE

MEIONITE (ordered)

DAN BUR I TE CaB2Si 2°8

POLLUCITE (Cs 65Na 19Rb 03)Al2Si

MICROCLINE KAlSi308

SANIDINE KAlSi 308

GLASS KAlSijOg

KALIOPHILLITE KAlSi04

LEUCITE KAlSi 206

LEUCITE KAlSi^

EUCRYPTITE LiAlSi04

PETAL I TE LiAlSi401Q

ALBITE NaAlSijOg

ENTROPY A1 A2 A3 A4 AS J-niol'-lf1 (T) (T 2) (T* 6) (T2)

434.8 4.220E+02 1.5

199.3 5.168E+02 -9.249E-02 -1.408E+06 -4.589E+03 4.188E-05 0.3

237.3 3.752E+02 3.197E-02 -2.815E+06 -2.459E+03 2.5

213.1 2.803E+02 8.204E-02 -5.679E+06 5.0

715.2 9.103E+02 1.9435E-01 -2.300E+07 1.0

155.3 1.488E+02 2.173E-01 -3.280E+06 0.4

207.2 1.128E+02 1.876E-01 4.556E+05 4°12' H2° °' 4

214.2 7.595E+02 -2.171E-01 4.746E+06 -9.527E+03 6.433E-05 0.4

232.8 6.934E+02 -1.717E-01 3.462E+06 -8.305E+03 4.919E-05 0.5

261.6 6.295E+02 -1.084E-01 2.496E+06 -7.210E+03 -1.928E-05 1.8

133.3 1.889E+02 5.519E-02 -1.479E+03 1.2

200.2 1.4842E+02 1.343E-01 -2.165E+06 1.7

450.1 1.9647E+02 2.7666E-02 1.2261E+07 2.0

103.8 2.470E+02 -1.290E+06 -2.058E+03 0.8

233.2 8.763E+02 -2.079E-01 4.033E+06 -1.069E+04 5.301E-05 0.6

207.4 5.839E+02 -9.285E-02 1.678E+06 -6.424E+03 2.272E-05 0.4

T range T^ 1C K

298

2981800

298 1830 1500

2981800

2981000

2981000

298700

2981400

298 1500 1400

2981300

298 810 810

298955

955 1800

2981300

2981300

298 1400

r,

133.0 4.0

54.0

0.5

Page 70: robie 1995

64 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR FRAMEWORK STRUCTURE SILICATE MINERALS

NAME AND FORMULA

ANALBITE NaAlSijOg

GLASS NaAlSijOg

NEPHELINE NaAlSi04

NEPHELINE NaAlSi04

NEPHELINE NaAlSi04

CARNEGIEITE NaAlSi04

CARNEGIEITE NaAlSi04

GLASS NaAlSi04

NEPHELINE <Ma.78K.22>AlSi°4

ANALCIME NaAlSi 206 'H20

DEHYDRATED ANALCIME NaAlSi,0A

ENTROPY A1 A2 A3 A4 AS J-Bor'-lf1 (T) <r2) <T"° 6> <T2)

225.6 6.714E+02 -1.467E-01 3.174E+06 -7.974E+03 3.659E-05 0.4

251.9 9.180E+02 -3.824E-01 5.280E+06 -1.151E+04 1.474E-04 1.5

124.4 2.774E+01 2.954E-01 1.3

1.1209E+02 6.71 IE-02

338.3 1.720E+02 5.520E-03 2.0

118.7 1.1613E+02 8.595E-02 -2.000E+06 0.3

311.1 1.5232E+02 2.883E-02 1.5

134.5 3.171E+02 -4.320E-02 4.163E+05 -3.244E+03 0.5

1.121E+02 6.711E-02

227.7 1.3438E+02 2.5415E-01 1.845E+05 0.3

172.5 1.9211E+02 8. 0735 E- 02 - 4. 723 E +06 0.2

T range T^ A..H8 K 1C kJ-nol'1

298 1393 64.5 1400

2981200

298457

457 1180

1180 1525

273 966 8.5 966

966 1700

272 1033

467 1180

298700

2981000

Page 71: robie 1995

SHEET STRUCTURE SILICATES 65

COEFFICIENTS FOR NEAT CAPACITY EQUATIONS FOR SHEET STRUCTURE SILICATES

NAME AND FORMULA ENTROPY A1 A2 A3 (T 2)

A4 (T^06)

AS (Ta)

T range

KT,., K kJ-M>r

DICKITE

Al2Si 205(ON)4

KAOLINITE

Al2Si2°5(OH>4

HALLOTSITE

A12S1*2°5(OH>4

PYROPHYLLITE

Al2Si4010(OH)2

ILLITE

K3(Al7Mg)(Al2Si 14)040(OH)8

MARGARITE CaAl 2 [Al 2Si201Q](OH)2

PREHNITE

MUSCOVITE (disordered) KAl2 [AlSi3010l(OH)2

MUSCOVITE (ordered) KAl2 [AlSi3010HOH)2

ANNITE KFe3 [AlSi301Q](OH)2

PHLOGOPITE (disordered) KMg3 [AlSi3010](OH)2

PHLOGOPITE (ordered) KMg3 CAlSi3010](OH)2

197.11.3

200.40.5

203.01.3

239.40.4

1104.22.5

263.60.3

292.80.7

306.40.6

287.70.6

415.010.0

334.61.0

315.91.0

9.084E+02 -2.113E-01 3.804E+06 -1.120E+04

1.4303E+03 -7.885E-01 8.334E+06 -1.852E+04 3.034E-04

2.463E+02

7.468E+02 -5.345E-02

1.291E+03

8.265E+02 -5.040E-01

-7.578E+03 1.986E-05

-8.7274E+03

FLUORPHLOGOPITE (disordered) 336.3

KMg3 [AlSi301Q]F2 2.1

FLUORPHLOGOPITE (ordered) 317.6

2.1

260.8

0.6

221.3

0.8

TALC

M93Si4°10(OH>2

CHRYSOTILE

Mg3Si205(OH)4

9.460E+02 -1.1506E-01 2.755E+06 -1.056E+04

9.177E+02 -8.111E-02 2.834E+06 -1.035E+04

9.177E+02 -8.111E-02 2.834E+06 -1.035E+04

6.366Ef02 8.208E-02 -4.860E+06 -3.731Ef03

8.639E+02 -7.6076E-02 3.5206E+05 -8.470E+03

8.639E+02 -7.6076E-02 3.5206E+05 -8.470E+03

4.9288E+02 4.910E-02 -6.599E+06 -1.569E+03

4.9288E+02 4.910E-02 -6.599E+06 -1.569E+03

5.654E+03 -5.272E+00 4.021E+07 -7.693E+04 2.729E-03

8.996E+02 -1.448E-01 4.500E+06 -1.093E+04

298

1000

298

800

298

298

800

298

298

1200

2981200

2981000

2981000

2981000

2981000

2981000

2981670

2981670

298800

298900

Page 72: robie 1995

66 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COEFFICIENTS FOR HEAT CAPACITY EQUATIONS FOR SHEET STRUCTURE SILICATES

NAME AND FORMULA ENTROPY A1 A2 A3 A4 AS T range tmJ-iiol-'-ir1 (T) (T 2) (t06) (T2) 1C K

CLINOCHLORE 421.0 9.47951E+03 -7.8834E+00 8.31194E+07 -1.3594E+05 3.6206E-03 298Mg5Al(AlSi3010)(OH)8 15.0 800

PARAGON I TE (disordered) 295.8 6.6844E+02 3.627E-02 -1.860E-K)6 -5.816E-»-03 298MaAl2 [AlSi3010](OH)2 0.9 800

PARAGON I TE (ordered) 277.1 6. 6844 E +02 3.627E-02 -1.860E+06 -5.816E+03 298NaAl2 [AlSi3010](OH)2 0.9 800

Page 73: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 67

Thermodynamic Properties at High Temperature of Individual Phases

SILVER (REFERENCE STATE) Formula wt 107.868

Ag: Face-centered cubic crystals 298.15 to melting point 1234.9 K; liquid 1234.9 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.153004005006007008009001000110012001234.91234.9130014001500160017001800

Melting T

AtaH*

CP

25.4025.4125.8726.3326.8827.5228.2429.0329.8630.7331.6431.9633.4733.4733.4733.4733.4733.4733.47

1234.

11.94

ST

42.5542.7150.0855.9060.7564.9468.6672.0375.1478.0280.7381.7390.8892.5295.0097.3199.47101.50103.41

9 K

kJ

<HT-H$98)/T

J-mol'^K"1 -

0.000.166.53

10.4413.1415.1416.7318.0619.1920.2021.1221.4130.5730.7130.9131.0831.2331.3631.48

-(GT-H|98)/T

42.5542.5543.5545.4647.6249.8051.9353.9855.9457.8259.6260.3260.3161.8164.0966.2368.2470.1471.93

A£H°

-1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A^H°

Molar VolUO UO C *t A C 1» T298 0 /4d KJ

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

. 110

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

.0272 J-bar'1

.272 cm3

6/18/92

Page 74: robie 1995

68 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ALUMINUM (REFERENCE STATE) Formula wt 26.982

Al: Face-centered cubic crystals 298.15 to melting point 933.5 K. Liquid 933.5 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900933.5933.5

100011001200130014001500160017001800

Melting T

AtoH°

H298~H6

CP

24.2124.2525.7626.8427.9029.1230.5732.3032.9631.7531.7531.7531.7531.7531.7531.7531.7531.7531.75

933.

10.71

ffOST

28.3028.4535.6541.5246.5050.8954.8758.5759.7471.2173.4076.4379.1981.7384.0886.2788.3290.2592.06

5 K

kJ

(HT-H$98)/T

--1 -1

0.000.156.38

10.3713.2015.3817.1918.7719.2630.7330.8130.8930.9631.0031.0831.1231.1631.1931.23

-(Gf-H298)/T

28.3028.3029.2731.1533.3135.5137.6939.8040.4840.4842.5945.5448.2350.7353.0055.1557.1659.0660.83

AfH°

kJ«mol""*

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A^H°

Molar Vol.4.565 kJ

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

09

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

.9999 J-bar'1

.999 cm3

4/22/92

Page 75: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 69

ARSENIC (REFERENCE STATE) Formula wt 74.922

As: Rhombohedral crystals 298.15 to sublimation point 875 K. 1800 K.

Ideal tetratomic gas 875 to

Temp.

298.15300400500600700800875875900100011001200

CP ST

FORMATION FROM THE ELEMENTS

(H$-H2gg)/T -(6T-H^98 )/T AfH° AfG° Log Kf

T.__ .1 ~l-«r l 1.T- .1 "I

24.6524.6725.3825.9626.5127.0527.6028.0320.6020.6120.6420.6720.69

35.6935.8443.0448.7753.5557.6861.3363.82103.62104.14106.31108.28110.08

0.000.156.37

10.2312.9014.8816.4317.3157.1156.1452.5949.6847.26

35.6935.6936.6638.5440.6542.8044.8946.5146.5148.0053.7258.5962.81

0.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

kJ

5.130 kJ

Boiling T

Molar Vol.

875 K

34.828 kJ

1.2963 J-bar'1

12.963 cm3

6/10/92

Page 76: robie 1995

70 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GOLD (REFERENCE STATE) Formula wt 196.967

Au: Face-centered cubic crystals 298.15 to melting point 1336.15 K.

Temp.

298.15300400500600700800900

10001100120013001336.151336.1514001500160017001800

CP CO /UO_CTO V /(It _//iO_tTQ \ It*om \**T *»298'' \**T 298''

FORMATION FROM THE ELEMENTS

A£H° AfG° Log Kf

1.Y.«.~.1 ~1

25.1825.1925.8826.2626.5726.9127.3627.9328.6729.5730.6631.9532.4733.5432.7531.4930.8130.8130.81

47.4947.6555.0060.8265.6369.7673.3876.6379.6182.3885.0087.5188.5597.9499.34

101.54103.54105.39107.15

0.000.166.51

10.4313.0915.0416.5517.7818.8319.7720.6321.4521.8031.2031.2331.2831.2531.2131.19

47.4947.4948.4950.3952.5454.7156.8358.8560.7862.6264.3766.0666.7466.7468.1170.2672.2974.1875.96

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H2*98~H6

1336.15 K

12.55 kJ

6.017 kJ

Boiling T

Molar Vol.

K

kJ

1.0215 J'bar'1

10.215 cm3

01/07/93

Page 77: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 71

BORON (REFERENCE STATE) Formula wt 10.811

B: Rhombohedral crystals 298.15 to melting point 2350 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

°p

11.3211.4215.8418.6920.6922.1823.3324.2525.0125.6626.2126.7127.1627.5727.9628.3328.69

COST

5.835.909.8413.7117.3020.6123.6526.4529.0531.4633.7235.8337.8339.7241.5143.2244.85

(Hf-H298)/T

J-mol^-K"1 -

0.000.073.516.288.5210.3711.9213.2414.3815.3816.2617.0417.7518.3918.9819.5220.02

-<GT-H298)/T

5.835.836.347.438.7810.2411.7213.2114.6616.0817.4618.7920.0821.3322.5323.7024.83

AfH°

kJ-mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG-

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H2*98~H6

2350 K

22.55 kJ

1.22 kJ

Boiling T

Molar Vol

K

kJ

0.4386 J-bar'1

4.386 cm3

6/10/93

Page 78: robie 1995

72 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BARIUM (REFERENCE STATE) Formula wt 137.327

Ba: a-crystals (body-centered cubic) 298.15 to lambda-anomaly in heat capacity at 582 K. p-crystals 582 to second-order lambda-anomaly in heat capacity at 768.13 K. y-cryatals 768.13 to melting point 1002 K. Liquid 1002 to boiling point 2169 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500582582600700768768800900

10001002100211001200130014001500160017001800

CP

28.0928.1433.2343.7454.4332.4733.9442.3648.1039.0739.0739.0739.0739.0740.6240.3740.1239.8639.6139.3639.1038.8538.60

Sf

62.4262.5971.2479.7286.7187.1388.1694.0298.0298.3499.81

104.41108.52109.34117.07120.60124.20127.44130.38133.08135.58137.92140.13

(HT-H§98 )/T

J-mol'^K"1 -

0.000.177.68

13.7818.1918.6119.1821.8923.6423.9624.5626.1727.4627.8735.6136.1336.5736.8637.0837.2037.3037.3737.44

-(Gf-H§98 )/T

62.4262.4263.5665.9468.5268.5268.9772.1374.3874.3875.2478.2481.0681.4681.4684.4887.6490.5893.3095.8898.28

100.55102.69

AfH°

kJ-mol'1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298"H6

1002 K

7.749 kJ

6.912 kJ

Boiling T

Molar Vol

K

kJ

3.821 J-bar' 38.21 cm3

6/12/92

Page 79: robie 1995

THERMODYNAMIC PROPERTIES AT fflGH TEMPERATURE OF INDIVIDUAL PHASES 73

BERYLLIUM (REFERENCE STATE) Formula wt 9.012

Be: Hexagonal close-packed crystals 298.15 to 1550 K; beta crystals 1550 to melting point 1560 K; liquid 1560 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.153004005006007008009001000110012001300140015001550155015601560160017001800

Melting T

Afo.H0

H298-H5

<%

16.4416.5219.6421.5823.0624.3225.4726.5427.5828.5929.5730.5531.5232.4732.9530.0030.0030.0030.0030.0030.00

12

ST

9.509.6014.8319.4323.5027.1530.4733.5436.3939.0641.5944.0046.3048.5149.5850.9451.1359.2059.9661.7863.50

1560 K

.21 kJ

1.95 kJ

(H*-H598)/T

.-1-1

0.000.104.647.84

10.2612.1813.7715.1316.3217.3918.3719.2720.1120.9021.2822.6422.6830.7630.7430.7030.66

-<GT-H298 )/T

9.509.5010.1911.5913.2414.9716.7118.4120.0721.6723.2324.7326.1927.6128.3028.3028.4528.4429.2231.0832.84

AfH°

kJ- I"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A^o

Molar Vol

A£6°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

t

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

0.488 J'bar'14 . 88 cm3

6/18/92

Page 80: robie 1995

74 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BISMUTH (REFERENCE STATE) Formula wt 208.980

Bi: Rhombohedral crystals 298.15 to melting point 544.5 K. Liquid 544.5 to 1800 K.

Temp.

298.15300400500544.52544.52600700800900100011001200130014001500160017001800

Melting T

CPT--.~l 1. V~l

FORMATION FROM THE ELEMENTS

AfH° AfG° Log Kf

25.4125.4326.6228.6629.8330.4829.6128.6128.0227.6727.4527.3127.2427.1927.1727.1727.1827.1927.21

56.7456.9064.3670.5073.4094.1596.64

101.13104.90108.18111.08113.69116.07118.25120.26122.13123.89125.54127.09

544.52 K

0.000.166.61

10.8012.3933.1432.7632.2431.7431.3130.9330.6130.3330.0929.8829.7029.5429.4129.28

56.7456.7457.7559.7061.0161.0163.8868.8973.1676.8780.1583.0885.7488.1690.3892.4394.3596.1497.81

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

AV«H°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

1835

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJA^H0 11.299 kJ

H298~H5 6.43 kJMolar Vol.

212.131 J-bar'1.31 cm3

4/23/92

Page 81: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 75

BROMINE (REFERENCE STATE) Formula wt 159.808

Br2 : Liquid 298.15 to boiling point 332.5 K; ideal diatomic gas, P to 2200 K.

1 bar, 332.5

FORMATION FROM THE ELEMENTS

Temp.

298.15300332.5332.5400500600700800900100011001200130014001500160017001800

°p

75.6775.6075.3036.3336.7137.0837.3137.4837.6037.7037.7837.8737.9538.0438.1438.2438.3638.4938.63

Sf

152.20152.67160.43249.34256.09264.33271.11276.87281.89286.32290.30293.90297.20300.24303.06305.70308.17310.50312.70

(Hf-HS98 )/T

.1-1

0.000.477.79

96.7086.5576.6270.0565.3961.9159.2157.0655.3153.8652.6451.6050.7149.9349.2648.66

-(Gf-H298 )/T

152.20152.20152.64152.64169.54187.71201.06211.49219.98227.11233.23238.59243.34247.60251.46254.99258.24261.24264.04

A£H°

kJ-mol'1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 265.9 K

10.57 kJ

24.51 kJ

Boiling T

Molar Vol.

332.5 K

29.56 kJ

5.458 J'bar'1 54.58 cm3

4/23/92

Page 82: robie 1995

76 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GRAPHITE (REFERENCE STATE) Formula wt 12.011

C: Hexagonal crystals 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

cp

8.528.5911.8814.6416.7918.4719.7720.8021.6322.2922.8323.2723.6423.9524.2224.4624.67

COST

5.745.798.72

11.6814.5517.2719.8222.2124.4526.5428.5130.3532.0933.7335.2936.7638.17

<H*-H598,/T

-1-1

0.000.052.604.756.588.179.54

10.7311.7812.7113.5314.2614.9215.5116.0516.5416.98

-(Gf-H298 )/T

5.745.746.126.937.979.10

10.2911.4812.6713.8314.9816.0917.1718.2219.2420.2321.18

AfH°

kJ«mol~*

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

kJ

1.05 kJ

Boiling T K

A«pH° kJ

Molar Vol. 0.5298 J'bar'1 5.298 cm3

4/23/92

Page 83: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 77

DIAMOND Formula wt 12.011

C: Cubic crystals 298.15 to 1600 K.

Temp.

298.15300400500600700800900

1000110012001300140015001600

CP S$ i

FORMATION FROM THE ELEMENTS

(HT-H298 )/T -(GT-H$98 )/T AfH° AfG° Log Kf

T -«»-»! 1 -1^ 1 1. T .« »,«. 1 1

6.146.21

10.2413.6016.1218.0219.4820.6521.6322.5223.3624.2025.0826.0427.08

2.382.424.767.43

10.1412.7715.2817.6419.8721.9823.9725.8727.7029.4631.18

0.000.042.094.075.887.488.9010.1411.2412.2313.1213.9414.7015.4316.12

2.382.382.673.354.265.296.387.508.639.75

10.8511.9313.0014.0415.05

1.91.91.71.61.51.41.41.31.31.41.41.51.61.82.0

2.92.93.33.74.14.65.05.55.96.46.87.37.78.28.6

-0.51-0.51-0.43-0.38-0.36-0.34-0.33-0.32-0.31-0.30-0.30-0.29-0.29-0.28-0.28

Melting T

H298"H5

K

kJ

0.523 kJ

Boiling T K

A^0 kJ

Molar Vol. 0.3417 J-bar'1 3.417 cm3

A= 1.37E+00 B= 0.453E-02 C* 1.547E+04

11/18/92

Page 84: robie 1995

78 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CALCIUM (REFERENCE STATE) Formula wt 40.078

Ca: a-crystale (face-centered cubic) 298.15 to 716 K. 0-crystals (body-centered cubic) 716 to melting point 1115 K. Liquid 1115 to boiling point 1755 K. Ideal monatomic gas, P * 1 bar, 1774 to 1800 K.

Temp.

298.15300400500600700716716800900

1000110011151115120013001400150016001700177417741800

Melting T

CP

25.7725.7926.9528.4830.3432.4132.7431.5033.8236.7139.7142.7643.2335.0035.0035.0035.0035.0035.0035.0035.0020.8420.84

COST

42.9043.0650.6356.8062.1666.9867.7369.0372.6576.8080.8284.7585.3392.9995.5598.36100.95103.37105.63107.75109.23193.25193.55

1115 K

(HT-H298 )/T

J-mol"1 ^"1 -

0.000.166.71

10.9013.9816.4616.8318.1319.6521.3923.0724.7224.9632.6232.7932.9633.1133.2433.3533.4433.50

117.52116.12

-(Gf-H«,98 )/T

42.9042.9043.9345.9048.1750.5250.9050.9052.9955.4157.7560.0360.3760.3262.7665.4067.8470.1372.2874.3175.7375.7377.43

FORMATION FROM THE ELEMENTS

AfH° AfG° Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

1774

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

A^0 330.915 kJAft.H0

H298"H8

8.54 kJ

5.707 kJMolar Vol. 2.

26.

619 J'bar'119 cm3

6/12/92

Page 85: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 79

CADMIUM (REFERENCE STATE) Formula wt 112.411

Cd: Hexagonal close packed crystals 298.15 to melting point 594.18 K. boiling point 1039 K. Ideal monatomic gas 1039 to 1800 K.

Liquid 594.18 to

Temp.

298.15300400500594.18594.18600700800900

10001039103911001200130014001500160017001800

°p

25.9826.0027.1428.3729.5329.7129.7129.7129.7129.7129.7129.7120.7920.7920.7920.7920.7920.7920.7920.7920.79

ST

51.8051.9659.5965.7870.7981.2181.4886.0690.0393.5396.6697.97193.90194.88196.69198.35199.89201.33202.67203.93205.12

(Hf-H298 )/T

J-mol'^K"1 -

0.000.166.76

10.9513.8124.2324.2825.0525.6426.0926.4526.52122.45116.81108.81102.0496.2391.2086.8082.9279.47

FORMATION FROM THE ELEMENTS

-(GT-H$98 )/T AfH° AfG° Log Kf

kJ-mol""1

51.8051.8052.8354.8256.9856.9857.1961.0064.3967.4470.2171.4471.4478.0687.8896.31103.65110.12115.86121.01125.65

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 594.18 K

6.19 kJ

6.25 kJ

Boiling T 1039 K

99.667 kJ

Molar Vol. 1.3005 J-bar'1 13.005 cm3

6/10/92

Page 86: robie 1995

80 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CERIUM (REFERENCE STATE) Formula wt 140.115

Ce: a-crystale (face-centered cubic) 298.15 to 999 K. |J-crystals 999 to melting point 1071 K. Liquid 1071 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090099999910001071107111001200130014001500160017001800

Melting T

Aft»H°

H298"H8

°P

26.9326.9628.2929.7031.2032.7734.4036.0737.7637.6137.6137.6137.7037.7037.7037.7037.7037.7037.7037.7037.70

ST

72.0072.1780.1086.5792.1197.04

101.52105.67109.35112.46112.55115.19120.29121.24124.52127.53130.33132.93135.36137.65139.80

1071 K

5.46 kJ

7.28 kJ

<Hf-H298 )/T

J-mol"1^"1 -

0.000.177.03

11.4214.5917.0719.1420.9322.3425.4525.5226.3231.4131.5832.0932.5332.8933.2133.4933.7433.96

-<Gf-H298 )/T

72.0072.0073.0775.1477.5279.9682.3884.7487.0187.0187.0388.8888.8889.6692.4395.0097.4499.72101.87103.91105.84

AfH°

kJ-mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A uOo _ n

Molar Vol.

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

2.20.

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

077 J'bar177 cm3

6/17/92

Page 87: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 81

CHLORINE (REFERENCE STATE) Formula wt 70.905

C12 : Ideal diatomic gas 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

°p

33.9533.9835.2836.0536.5536.8937.1337.3137.4537.5737.6737.7637.8537.9438.0338.1338.24

ST

223.08223.29233.26241.22247.84253.50258.45262.83266.77270.34273.62276.64279.44282.05284.50286.81288.99

<HT-H298 )/T

J»mol~*«K~* -

0.000.218.8314.2017.8920.5822.6324.2625.5726.6527.5728.3529.0229.6130.1430.6131.03

-(Gf-H$98 )/T

223.08223.08224.43227.02229.95232.92235.81238.58241.20243.69246.05248.29250.41252.44254.37256.21257.97

AfH°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

A£6°

_-l

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 172.16 K

6.406 kJ

3ft 9.18 kJ

Boiling T 239.1 K

A^0 20.41 kJ

Molar Vol. 2478.97 J-baT1 24789.7 cm3

6/18/92

Page 88: robie 1995

82 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COBALT (REFERENCE STATE) Formula wt 58.933

Co: a-crystals (hexagonal close packed) 298.15 to 700 K. 700 to melting point 1768 K. Liquid 1768 to 1800 K.

p-crystals (face-centered cubic) Curie point at 1394 K.

Temp.

298.15300400500600700700800900

100011001200130013941400150016001700176817681800

CO CO /tlO_UO % /IP //~«O tlO \ /T p Srp (Hfp-H^98)/T -(GT-H298 )/T

FORMATION FROM THE ELEMENTS

AfH° AfG° Log Kf

1. T-.«~ 1 1

24.81

24.8526.5628.1929.7031.0530.5132.5834.5536.8539.7743.5248.2653.7044.2239.7538.2837.7837.7440.5040.50

30.0430.1937.5843.6848.9653.6454.2758.5062.4566.2069.8473.4677.1280.6780.8883.7286.2388.5390.0099.1699.98

0.000.156.54

10.7113.7516.1316.7818.6320.2821.8223.3124.8326.4528.1528.2429.1229.7330.2130.5039.6639.68

30.0430.0431.0432.9735.2137.5137.4939.8842.1744.3846.5348.6350.6752.5252.6454.6156.5058.3259.5059.5060.30

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298~H8

1768 K

16.19 kJ

4.766 kJ

Boiling T

Molar Vol.

K

kJ

0.667 J»bar" 6.67 cm3

Page 89: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 83

CHROMIUM (REFERENCE STATE) Formula wt 51.996

Cr: Body-centered cubic crystals 298.15 to melting point 2130 K. Neel temperature 311.5 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300311.50400500600700800900100011001200130014001500160017001800

cp

23.4723.5323.8125.6426.5627.3528.2729.3730.6532.0933.6735.3837.1939.1141.1143.1945.3547.57

Sf

23.6223.7724.6630.8836.7141.6245.9049.7553.2856.5859.7162.7165.6268.4471.2173.9376.6179.27

<Hf-H298)/T

J .mnl ~1 V~l IDOJ. *JX

0.000.140.986.3110.2713.0515.1616.8618.3219.6320.8321.9723.0724.1525.2126.2727.3328.39

-<GT-H298)/T

23.6223.6223.6424.5826.4428.5730.7532.8934.9636.9638.8840.7542.5544.3046.0047.6649.2850.88

AfH°

kJ«mol"^

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

A£G°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 2130 K

16.933 kJ

4.058 kJ

Boiling T 2945 K

A^H« 344.31 kJ

Molar Vol. 0.7231 J'bar'1 7.231 cm3

5/26/93

Page 90: robie 1995

84 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CESIUM (REFERENCE STATE) Formula wt 132.905

" ssrssr « - - ->-1

Temp.

K . _

298.15300301.55301.55400500600700800900947.96947.96100011001200130014001500160017001800

« . ____

i

°P

Sf (»T-H298)/T -<Gf-H298 )/T

FORMATION

AfH°

V.T . m<*\

- -

FROM THE ELEMENTS

AfG° Log Kf

i-l ___ *»** -*UWA

- ______________________ ..

32.1932.3532.5032.3931.5131.1530.9930.9430.9330.9530.9720.7820.7820.7820.7920.7920.8120.8420.8820.9521.04

.

85.2385.4385.6092.52

101.54108.53114.20118.97123.10126.75128.36199.73200.84202.82204.63206.29207.84209.27210.62211.89213.09

-^^_____

i -

0.000.160.337.25

13.3416.9419.2920.9622.2123.1823.5794.9591.0984.7079.3774.8671.0067.6664.7362.1659.87

_

85.2385.2785.2785.2788.2091.5994.9098.01100.89103.57104.78104.78109.75118.12125.26131.43136.83141.61145.88149.73153.22

____ ^ *_^

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

__^__

- .__

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

____

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298~H8

301.55 K

2.09 kJ

7.71 kJ

Boiling T 942 K

67.71 kJ

Molar Vol. 6.973 J'bar'1 69.73 cm3

6/11/92

Page 91: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 85

COPPER (REFERENCE STATE) Formula wt 63.546

Cu: Face-centered cubic crystals 298.15 to melting point 1357.8 K. Liquid 1357.8 to 1800 K.

Temp.

298.1530040050060070080090010001100120013001357.81357.814001500160017001800

CP S O /UO_ttQ \ /ip /*"*<> Hfi \ Irn T (HT-HJJgg)/T -(GT-H2g3)/T

24.4324.4525.3425.9926.4826.9227.4027.9728.6929.5730.6531.9332.7732.8032.8032.8032.8032.8032.80

33.14

33.2940.4546.1850.9655.0858.7061.9664.9467.7270.3472.8474.2583.9484.9587.2189.3291.3293.19

0.000.156.34

10.2112.8814.8516.3917.6518.7119.6620.5321.3521.8231.5131.5531.6331.7031.7731.82

33.1433.1434.1135.9738.0840.2242.3144.3146.2348.0649.8151.4852.4352.4353.4055.5857.6259.5561.37

FORMATION FROM THE ELEMENTS

AfH° AfG° Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 1357.8 K

13.14 kJ

ift 5.00 kJ

Boiling T

Molar Vol

K

kJ

0.7113 J* bar1 7.113 cm3

5/28/93

Page 92: robie 1995

86 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

FLUORINE (REFERENCE STATE) Formula wt 37.997

F2 : Ideal diatomic gas at P » 1 bar 298.15 to 2500 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP ST i

FORMATION FROM THE ELEMENTS

(HT-H£9g)/T -(GT-H298 )/T AfH° AfG° Log Kf

r.^.^.1 *~1 .tr*"! i. T --. .1 "!

31.3131.3533.1434.2835.1135.7536.2736.7037.0737.3837.6637.8938.1038.2838.4438.5738.69

202.79202.98212.27219.80226.12231.59236.40240.69244.58248.13251.39254.42257.23259.87262.34264.68266.89

0.000.198.2313.3316.8919.5421.6023.2624.6225.7726.7527.6028.3429.0029.5830.1130.58

202.79202.79204.04206.47209.23212.04214.79217.43219.96222.36224.64226.82228.89230.87232.76234.57236.31

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 53.48 K

0.51 kJ

8.82 kJ

Boiling T

Molar Vol.

84.95 K

6.54 kJ

2478.97 J-bar'1

24789.7 cm3

6/03/93

Page 93: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 87

IRON (REFERENCE STATE) Formula wt 55.847

Fe: Body-centered cubic crystals 298.15 to 1185 K. Curie point 1043 K; face-centered cubic crystals 1185 to 1667 K; body-centered cubic crystals 1667 to melting point 1809 K.

Temp.

K

298.15300400500600700800900

10001043110011851185120013001400150016001667166717001800

Melting T

Afi»H°

HS98"H6

CP

25.0825.1327.4329.6432.0134.6237.9243.1654.4683.7744.3540.0033.7833.9034.8135.7536.6937.6338.2640.4041.4544.65

13

S*

27.0927.2434.8041.1546.7651.8956.7261.4666.5069.1471.9175.0175.7776.1978.9481.5684.0686.4588.0188.5289.3291.78

1809 K

.81 kJ

4.51 kJ

FORMATION FROM THE ELEMENTS

(HT-H^98 )/T -(6T-H^98 )/T A fH° AfG° Log Kf

0.000.166.69

11.0614.3517.0619.4521.7624.3925.9727.3128.3329.1029.1629.5629.9730.3830.8131.0931.6031.7832.41

27.0827.0828.1030.0932.4134.8337.2739.7042.1143.1844.6046.6746.6747.0449.3851.5953.6755.6556.9256.9257.5459.37

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

Av^H 0

Molar Vol.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

0.7092 J'bar*1 7.092 cm3

4/29/92

Page 94: robie 1995

88 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GERMANIUM (REFERENCE STATE) Formula wt 72.61

Ge: Face-centered cubic crystals (diamond structure) 298.15 to 1211.4 K. boiling point 3107 K.

Liquid 1211.4 to

Temp.

298.15300400500600700800900

1000110012001211.41211.4130014001500160017001800

CP S o /uo__uo \ /n» / r* o _ uo \ /*P m ( **m *»298'' l**T **298''

FORMATION

AfH°

FROM THE ELEMENTS

AfG° Log Kf

23.2223.2524.3124.9625.4525.8726.2426.5926.9327.2527.5727.6127.6027.6027.6027.6027.6027.6027.60

31.0931.2338.0843.5848.1852.1355.6158.7261.5464.1266.5166.7797.3499.29101.33103.24105.02106.69108.27

0.000.146.069.78

12.3614.2615.7316.9217.9018.7419.4619.5450.1148.5747.0745.7844.6443.6442.75

31.0931.0932.0233.8035.8237.8839.8841.8043.6445.3947.0547.2347.2350.7254.2657.4660.3863.0565.52

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 1211.4 K

37.03 kJ

4.64 kJ

Boiling T 3107 K

330.92 kJ

Molar Vol. 1.363 J-bar'1 13.63 cm3

6/12/92

Page 95: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 89

HYDROGEN (REFERENCE STATE) Formula wt 2.016

Ideal diatomic gas at P - 1 bar 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600171800

CP

28.8228.8429.2429.2529.2929.4129.6229.9030.2430.6131.0131.4331.8632.2932.7133.1233.53

ST

130.68130.86139.23145.76151.09155.61159.55163.06166.23169.13171.81174.31176.65178.86180.96182.96184.86

<Hf-H298 )/T

_! _!

0.000.187.4111.7814.6916.7818.3819.6420.6821.5722.3423.0223.6424.2024.7225.2025.65

-<Gf-H298 )/T

130.68130.68131.82133.98136.40138.83141.18143.42145.54147.56149.47151.28153.01154.66156.24157.75159.21

AfH°

kJ'mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 13.80 K

0.117 kJ

8.468 kJ

Boiling T 20.27 K

0.904 kJ

Molar Vol. 2478.97 J'bar'1 24789.7 cm3

4/29/92

Page 96: robie 1995

90 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MERCURY (REFERENCE STATE) Formula wt 200.59

Hg: Liquid 298.15 to boiling point 629.0 K. Ideal monatonic gas at P * 1 bar, 629.0 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600629.0629.0700800900

100011001200130014001500160017001800

CP

27.9627.9527.4127.1727.1427.1720.7920.7920.7920.7920.7920.7920.7920.7920.7920.7920.7920.7920.79

**

75.9076.0784.0390.1295.0796.35190.49192.71195.48197.93200.12202.10203.91205.58207.12208.55209.89211.15212.34

<H*-H398)/T

-1 _1

0.000.177.04

11.0913.7614.38

108.5299.6289.7782.1075.9770.9666.7863.2460.2157.5855.2853.2551.45

-<Gf-H298 )/T

75.9075.9076.9979.0381.3181.9781.9793.09105.71115.83124.15131.14137.14142.34146.91150.97154.61157.90160.89

AfH°

kJ-mol~l

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log K£

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 234.32 K

2.297 kJ

9.343 kJ

Boiling T 629.0 K

59.214 kJ

Molar Vol. 1.4822 J-bar'1 14.822 cm3

01/07/93

Page 97: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 91

IODINE (REFERENCE STATE) Formula wt 253.809

I2 : Crystals 298.15 to melting point 386.8 K; liquid 386.8 to boiling point 457.7 K; ideal diatomic gas, P-l bar, 457.7 to 2200 K.

Temp.

298.15300386.8386.8400457.7457.7500600700800900

100011001200130014001500160017001800

Melting T

CP

54.4454.5163.5480.6780.6780.6737.3937.4837.5337.5537.6237.7637.9638.2338.5638.9339.3439.7940.2740.7841.31

386.

ST

116.14116.48131.22171.34174.06184.93276.61279.93286.77292.56297.58302.01306.00309.63312.97316.07318.97321.70324.29326.74329.09

8 K

FORMATION FROM THE ELEMENTS

(HT-H£98 )/T -(GT-H298 )/T AfH° AfG° Log Kf

0.000.3413.3253.4454.3557.67

149.35139.88122.82110.63101.5094.4188.7584.1580.3477.1474.4272.1070.0968.3566.84

116.14116.14117.90117.90119.71127.26127.26140.06163.96181.93196.08207.61217.25225.48232.64238.94244.55249.61254.19258.39262.25

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

457.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

7 K

A^0 41.96 kJAfa.H0 15.52 kJ

Molar Vol.^298~"^0 13.20 kJ

5.51.

129 J'bar'129 cm3

4/29/92

Page 98: robie 1995

92 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

POTASSIUM (REFERENCE STATE) Formula wt 39.098

K: Crystals 298.15 to melting point 336.4 K; liquid 336.4 to boiling point 1039.5 K; ideal monatomic gas, P=l bar, 1039.5 to 1800 K.

Temp.

298.15300336.4336.4400500600700800900

10001039.51039.511001200130014001500160017001800

Melting T

CP

29.5029.5734.5732.1431.5030.7030.1429.8229.7629.9430.3630.6020.7920.7920.7920.7920.7920.8020.8120.8420.87

336

ST

64.6764.8568.3775.3180.8287.7693.3197.92

101.90105.41108.59109.77186.30187.48189.28190.95192.49193.92195.27196.53197.72

.4 K

<Hf-H298 )/T

0.000.183.49

10.4313.8317.2819.4720.9722.0722.9323.6523.91100.4496.0789.7884.4879.9375.9972.5469.5066.80

FORMATION FROM THE ELEMENTS

""(Gm H§gQ ) /T AfH° AfG° Log K«

, ,...., l- -r - - 1 ~1

64.6764.6764.8864.8866.9970.4873.8476.9579.8382.4884.9485.8685.8691.4199.50

106.47112.56117.93122.73127.03130.92

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

1039.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

5 K

A,^H0 79.92 kJAft.H0 2.33 kJ

H2*98~H6 7. 09 kJMolar Vol. 4.

45.

536 J-bar'136 cm3

4/29/92

Page 99: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 93

LITHIUM (REFERENCE STATE) Formula wt 6.941

Li: Crystals 298.15 to melting point 453.2 K; liquid 453.7 K to boiling point 1620 K; ideal monatomic gas, P*l bar, 1620 to 1800 K.

Temp.

298.15300400453.7453.7500600700800900

10001100120013001400150016001620162017001800

°p e°ST (HT-H$98)/T

.T.m/il l.lf 1

-(Gf-H298)/T

FORMATION FROM THE ELEMENTS

AfH° AfG° Log Kf

1. T. ^l 1

24.6224.6727.6129.3930.3930.1329.5428.9928.9428.8928.8428.7928.7428.7028.6228.5428.4528.4320.7920.8020.81

29.0929.2436.7040.2946.9049.8455.2859.7963.6667.0770.1172.8575.3677.6679.7881.7583.5983.95173.97174.97176.16

0.000.156.629.2115.8217.1619.2720.7021.7322.5323.1623.6724.1024.4524.7525.0125.2325.27115.30110.85105.85

29.0929.0830.0831.0831.0832.6936.0139.1041.9344.5446.9549.1851.2653.2055.0256.7458.3658.6858.6764.1270.31

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298"H8

453.2 K

3.00 kJ

4.62 kJ

Boiling T 1620 K

145.84 kJ

Molar Vol. 1.3017 J-bar'1 13.017 cm3

4/29/92

Page 100: robie 1995

94 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MAGNESIUM (REFERENCE STATE) Formula wt 24.305

Mg: Hexagonal close-packed crystals 298.15 to melting point 923 K. Liquid 923 to boiling point 1366.1 K. Ideal monotomic gas, P « 1 bar, 1366.1 to 1800 K.

Temp.

298.15300400500600700800900923923

10001100120013001366.11366.114001500160017001800

°p

24.8724.9026.1427.1828.2029.2930.5131.9032.2434.3134.3134.3134.9134.3134.3120.7920.7920.7920.7920.7920.79

COST

32.6732.8240.1746.1151.1655.5859.5763.2564.0573.2375.9879.2582.2484.9886.69180.29180.80182.23183.57184.83186.02

/UO MUO \ /rn\ Aim **O Q Q j f X

0.000.156.50

10.5413.3915.5917.3718.9119.2328.4228.8729.3629.7830.1230.33123.93121.43114.72108.85103.6799.07

-(GT-H298 )/T

32.6732.6733.6635.5837.7640.0042.2044.3444.8244.8247.1149.8952.4654.8656.3656.3659.3467.4974.7281.1686.95

FORMATION

AfH°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

FROM THE ELEMENTS

AfG° Log Kf

1""

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298~H8

923 K

8.477 kJ

5.00 kJ

Boiling T

Molar Vol

1361.1 K

127.87 kJ

1.3996 J'bar'1 13.996 cm3

4/29/92

Page 101: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 95

MANGANESE (REFERENCE STATE) Formula wt 54.938

Mn: a-crystals 298.15 to 980 K. ^-crystals 980 to 1360 K. y-crystals 1360 to 1410 K. A- crystals 1410 to melting point 1517 K. Liquid 1517 to boiling point 2335 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900980980

100011001200130013601360140014101410150015171517160017001800

cp

26.1926.2328.3030.1631.8933.4934.9336.1837.0437.5937.6838.1138.5438.9739.1542.4143.4343.5145.2345.9746.1146.0246.0246.0246.02

S*

32.0132.1740.0146.5352.1857.2261.7965.9869.0571.4072.1275.7379.0782.1784.0184.9786.7587.0788.4191.2191.8699.81

102 . 13104.92107.55

(Hf-H298 )/T

J-mol'^K'1 -

0.000.166.9511.4014.6817.2519.3721.1722.3524.7024.9626.1427.1528.0428.5229.4830.4730.5631.8932.7232.8740.8141.0841.3841.63

-(Gf-H298 )/T

32.0132.0133.0735.1337.5039.9742.4244.8146.7046.7047.1649.5951.9254.1355.4955.4956.2856.5156.5258.4959.0059.0061.0563.5565.92

AfH°

kJ-mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 1517 K Boiling T 2335 K

kJAfo.H 0 12.06 kJ

^29'B~"^8 4.996 kJMolar Vol. 0.7354 J-bar'1

7.354 cm3

1/31/92

Page 102: robie 1995

96 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MOLYBDENUM (REFERENCE STATE) Formula wt 95.94

Mo: Body-centered cubic crystals 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

A^H'

H598~H8

CP

23.9023.9225.0525.8626.4726.9927.4627.9228.4028.9229.4930.1130.8031.5632.4033.3134.30

32.

4

ST

28.6628.8135.8641.5446.3150.4354.0657.3260.2963.0265.5667.9570.2072.3574.4276.4178.34

2890 K

54 kJ

.594 kJ

<Hf-H298 )/T

J-mol"1-^1

0.000.156.24

10.0912.7714.7616.3217.5818.6419.5520.3621.0821.7522.3822.9823.5624.13

-<G*-HJ98 ,/T

28.6628.6629.6131.4533.5435.6637.7439.7441.6543.4745.2046.8648.4549.9751.4452.8554.21

AfH°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

AV*H°

Molar Vol.

AfG° Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

4912 K

598.07 kJ

0.9387 J

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

bar'1

9.387 cm3

4/29/92

Page 103: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 97

NITROGEN (REFERENCE STATE) Formula wt 28.013

N2 : Ideal diatomic gas at P = 1 bar 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

cp

29.1329.1329.2429.7030.2630.8631.4532.0332.5833.1033.5834.0334.4534.8235.1635.4535.71

ST

191.61191.79200.17206.74212.21216.91221.07224.81228.22231.35234.25236.95239.49241.88244.14246.28248.31

(HT-H298 )/T

J«mol"~*»K""* -

0.000.187.42

11.8314.8517.0918.8520.2921.4922.5223.4224.2224.9425.5826.1726.7127.20

-<Gf-H298 )/T

191.61191.61192.75194.92197.35199.82202.22204.53206.73208.83210.83212.73214.55216.30217.97219.57221.11

AfH°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

-1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log K£

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H§98"H8

63.14 K

0.720 kJ

8.669 kJ

Boiling T 77.35 K

5.586 kJ

Molar Vol. 2478.97 J«bar'1 24789.7 cm3

6/19/92

Page 104: robie 1995

98 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SODIUM (REFERENCE STATE) Formula wt 22.990

Na: Body-centered cubic crystals 298.15 to melting point 371 K; liquid 371 to fictive boiling point 1170.5 K. Ideal monotomic gas, P=l bar, 1170.5 to 1800 K.

Temp.

298.15300371371400500600700800900

100011001170.51170.51200130014001500160017001800

Melting T

CP

28.1528.2031.8331.8331.5130.5529.8129.2728.9428.8428.9429.2629.6120.7920.7920.7920.7920.7920.7920.7920.79

COST

51.4651.6357.9064.9267.3074.2279.7384.2888.1691.5694.6197.3899.21182.09182.61184.28185.82187.25188.59189.85191.04

371 K

(Hf-H298 )/T

0.000.175.80

12.8214.1817.5419.6621.0622.0622.8223.4323.9424.28107.16105.0498.5693.0188.1983.9780.2676.96

-(Gf-H298 )/T

51.4651.4652.1052.1053.1256.6860.0763.2266.1068.7471.1873.4474.9374.9377.5785.7292.8199.06

104.62109.59114.08

FORMATION FROM THE ELEMENTS

AfH° AfG° Log Kf

kJ-mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

1170.5

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

A^0 97.610 kJAft»H°

H298-H6

2. 598 kJ

6.460 kJMolar Vol. 2.381

23.81

J»bar~lcm3

4/29/92

Page 105: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 99

NICKEL (REFERENCE STATE) Formula wt 58.69

Ni: Face-centered cubic crystals (magnetic) to Curie point 631 K; nonmagnetic 631 to melting point 1728 K; liquid 1728 to 1800 K.

FORMATION FROM THE

Temp.

298.15300400500600631700800900

10001100120013001400150016001700172817281800

Melting T

AjJH0

H298-H5

cp

25.9926.0528.3830.8234.8539.8330.7931.0031.5932.2232.9333.6834.5235.4036.3237.2838.2838.5438.9138.91

17

ST

29.8730.0337.8744.4550.3952.2655.5859.1063.3866.7469.8572.7475.4778.0680.5382.9185.2085.8395.7597.34

1728 K

.16 kJ

4.79 kJ

(HT-H298 )/T

J-mol"1 ^'1 -

0.000.166.95

11.4615.0016.0817.6319.2920.6221.7522.7323.6124.4225.1725.8826.5727.2327.4137.3437.40

-(Gf-H298 )/T

29.8729.8730.9232.9935.4036.1937.9439.8142.7644.9947.1149.1351.0552.8954.6556.3457.9758.4258.4259.94

AfH°

«1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

AV*H°

Molar Vol

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.6.

ELEMENTS

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

6588 J-bar'588 cm3

4/29/92

Page 106: robie 1995

100 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

OXYGEN (REFERENCE STATE) Formula wt 31.999

Ideal diatomic gas at P « 1 bar 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

29.3529.3530.0431.1232.1433.0033.7234.3334.8535.2935.6736.0036.3136.5836.8437.0837.32

ST

205.15205.33213.85220.67226.43231.45235.91239.92243.56246.90249.99252.86255.54258.05260.42262.66264.79

(Hf-H298 )/T

_ ,-!_-!

0.000.187.54

12.1515.4017.8519.7921.3722.7023.8224.7925.6426.3927.0627.6728.2128.71

-<Gf-H298 )/T

205.15205.15206.31208.52211.04213.60216.12218.54220.86223.08225.20227.22229.14230.99232.75234.45236.08

AfH°

,

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

1-1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298~H8

54.35 K

0.444 kJ

8.682 kJ

Boiling T 90.18 K

6.816 kJ

Molar Vol. 2478.97 J-bar'1 24789.7 cm3

4/29/92

Page 107: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 101

PHOSPHORUS (REFERENCE STATE) Formula wt 30.974

P: Crystals (white, a) 298.15 to melting point 317.3 K, 1180 K. Ideal diatomic gas 1180 to 1800 K.

Liquid 317.3 to sublimation point

Temp.

298.15300317.3317.3400500600700800900

10001100118011801200130014001500160017001800

CP

T-_«- .1 ~l-«r l

-(GT-H|98 )/T

23.8223.8724.3526.3226.3226.3226.3226.3226.3226.3226.3226.3226.3218.5418.5518.6018.6418.6818.7218.7518.77

41.0941.2242.5744.6550.7556.6261.4265.4868.9972.0974.8777.3879.22

133.23133.54135.03136.41137.70138.91140.04141.11

0.000.141.453.538.2411.8614.2715.9917.2818.2919.0919.7520.1974.2073.2769.0765.4662.3459.6257.2155.08

41.0841.0841.1241.1242.5144.7647.1549.4951.7153.8055.7857.6359.0359.0360.2765.9670.9575.3679.2982.8386.03

FORMATION FROM THE ELEMENTS

AfH° AfG° Log Kf

kJ-mol'1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 317.3 K

0.659 kJ

5.36 kJ

Boiling T

Molar Vol.

1180 K

63.84 kJ

1.73 J«bar 17.3 cm3

6/18/92

Page 108: robie 1995

102 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

LEAD (REFERENCE STATE) Formula wt 207.2

Pb: Face-centered cubic crystals 298.15 to melting point 600.6 K. point 2021 K.

Liquid 600.6 to boiling

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600600.6600.6700800900

100011001200130014001500160017001800

Melting T

CP

26.6526.6727.7928.7829.7429.7430.6330.3129.9829.6629.3729.1728.9028.7328.6028.5128.4628.4528.48

S£ (HT-H^9g)/T -(GT-H298 )/T AfH° AfG° Log Kf

64.8064.9672.8079.1084.4484.4792.4897.15

101.17104.68107.79110.58113.10115.41117.54119.50121.34123.07124.70

600.65 K

J-mol"1 ^'1

0.000.166.9411.2114.2214.2322.2423.4124.2524.8725.3425.6925.9726.1926.3626.5126.6326.7426.84

64.8064.8065.8667.8970.2270.2470.2473.7476.9279.8182.4584.8987.1389.2291.1892.9994.7196.3397.86

kJ-mol"1 -

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

2021

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

A^H0 177.7 kJAtoH°

HS98-H6

4.81 kJ

6.870 kJMolar Vol. 1.8267

18.267

J'bar'1 cm3

6/17/92

Page 109: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 103

PLATINUM (REFERENCE STATE) Formula wt 195.08

Ft: Face-centered cubic crystals 298.15 to melting point 2042 K.

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

Aft»H0

H298~H8

CP

25.8125.8326.4927.0227.5328.0428.5629.0829.6130.1530.6931.2231.7632.2932.8233.3433.86

19.

Sf <Hf-H298)/T

41.6341.7949.3255.2960.2664.5468.3271.7174.8077.6580.3082.7885.1187.3289.4291.4293.34

2042 K

648 kJ

5.724 kJ

* UIW4. *V

0.000.166.67

10.6813.4515.5017.1018.4019.4920.4421.2722.0222.6923.3123.8924.4324.94

»(GT-H298 )/T

41.6341.6342.6544.6046.8149.0451.2253.3155.3157.2159.0360.7662.4264.0065.5366.9968.40

FORMATION FROM THE

AfH° AfG°

kJ-mol'1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A^H°

Molar Vol.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0 9

ELEMENTS

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

.9091 J-bar'1

.091 cm3

01/07/93

Page 110: robie 1995

104 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SULFUR (REFERENCE STATE) Formula wt 32.066

S: Orthorhombic crystals 298.15 to 368.3 K; monoclinic crystals 368.3 to melting point 388.36 K? liquid 388.36 K to fictive boiling point 882.1 K. Ideal diatomic gas, P-l bar, 882.1 to 1800 K.

Temp.

298.15300368.3368.3388.36388.36400500600700800882.1882.1900100011001200130014001500160017001800

CP ST <HT-H298)/T -(Gf-H298 )/T

22.7022.7424.2424.7725.1731.0632.1637.9834.3132.6831.7031.6618.4718.5118.6818.8519.0019.1519.2819.4219.5519.6719.79

32.0532.1937.0138.1039.4343.8644.7953.5360.0865.2469.5372.62

133.08133.45135.41137.20138.85140.37141.80143.13144.39145.58146.71

0.000.144.475.566.57

11.0011.6017.1320.2522.1423.3924.1684.6183.2976.8271.5567.1663.4660.3057.5755.1953.1051.24

32.0532.0532.5432.5432.8632.8633.1936.4039.8243.1046.1448.4748.4750.1658.5965.6571.6976.9181.5085.5689.2092.4895.46

FORMATION FROM THE ELEMENTS

AfH° A£6° Log Kf

kJ'mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298"H8

388.36 K

1.72 kJ

4.412 kJ

Boiling T

Molar Vol.

882.1 K

53.32 kJ

1.5511 J«bar'1 15.511 cm3

6/18/92

Page 111: robie 1995

THERMODYNAMIC PROPERTIES AT fflGH TEMPERATURE OF INDIVIDUAL PHASES 105

S2 (gas) Formula wt 64.132

S2 : Ideal diatomic gas, P = 1 bar, 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft.H°

HJ98-H8

CP

32.4932.5334.0534.9835.6536.1736.6237.0137.3737.6938.0038.2938.5738.8439.0939.3439.59

9.

ST

228.17228.37237.96245.66252.10257.64262.50266.84270.75274.33277.62280.68283.53286.20288.71291.09293.34

K

kJ

124 kJ

(HT-H298 )/T

1~1. K'1

0.000.208.49

13.7017.3119.9722.0223.6625.0226.1627.1327.9828.7229.3929.9930.5331.03

-(GT-H298 )/T

228.17228.17229.47231.96234.80237.67240.48243.17245.74248.18250.49252.70254.80256.81258.72260.56262.32

A fH°

kJ-mol'1

128.6128.6122.7118.3114.7111.6108.8

0.00.00.00.00.00.00.00.00.00.0

Boiling T

Av*H°

Molar Vol

AfG°

79.779.463.449.035.522.610.00.00.00.00.00.00.00.00.00.00.0

. 2478.24789.

Log K£

-13.96-13.82-8.27-5.12-3.09-1.68-0.660.00.00.00.00.00.00.00.00.00.0

K

kJ

97 J'bar'17 cm3

11/18/92

Page 112: robie 1995

106 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ANTIMONY (REFERENCE STATE) Formula wt 121.75

Sb: Rhombohedral crystals 298.15 to melting point 904 K. Liquid 904 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900904904

100011001200130014001500160017001800

CP

25.2525.2725.9126.4827.1728.0929.3230.9230.9931.3831.3831.3831.3831.3831.3831.3831.3831.3831.38

COST

45.5245.6953.0458.8863.7768.0271.8575.3975.5497.53

100.68103.67106.40108.91111.24113.40115.41117.33119.12

<HT-H298 )/T

J-mol"1 ^"1

0.000.166.52

10.4513.1815.2416.9218.3818.4140.4239.5538.8138.1937.6637.2236.8336.4936.1835.92

-<GT-H298 >/T

45.5245.5246.5248.4350.5952.7854.9357.0157.1157.1161.1264.8668.2171.2474.0276.5778.9481.1483.20

A£H°

kJ-mol""1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 904 K

19.874 kJ

5.870 kJ

Boiling T

Molar Vol.

1860 K

86.525 kJ

1.8178 J-bar*1

18.178 cm

6/10/92

Page 113: robie 1995

THERMODYNAMC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 107

SELENIUM (REFERENCE STATE) Formula wt 78.96

Se: Crystals 298.15 to melting point 494 K. diatomic gas 957 to 1800 K.

Liquid 494 to boiling point 957 K. Ideal

Temp.

298.15300400494494500600700800900957957

100011001200130014001500160017001800

CP Sf (Hf-H§98 )/T

T . _^1 ~1 - «r~l

-<Gf-H298 )/T

25.0625.0626.4427.3035.9535.8534.3733.5433.2933.9334.7819.2719.3119.4119.5219.6219.7319.8319.9420.0420.15

42.2742.4249.8355.5167.9768.3874.7980.0384.4888.4390.50

146.44147.29149.13150.82162.39153.84155.21156.49157.70158.85

0.000.156.56

10.4522.9123.0625.0726.3427.2127.9228.3084.2881.4875.8371.1467.1763.7860.8458.2856.0354.03

42.2742.2743.2745.0645.0645.3249.7253.6957.2760.5162.1962.1965.8173.3079.6885.2290.0694.3798.21101.67104.82

FORMATION FROM THE ELEMENTS

A£H° A£6° Log Kf

kJ-mol'1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298~H5

494 K

6.16 kJ

5.52 kJ

Boiling T

Molar Vol.

957 K

53.57 kJ

1.642 J-bar'1

16.42 cm3

12/14/92

Page 114: robie 1995

108 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SILICON (REFERENCE STATE) Formula wt 28.086

Si: Cubic crystals 298.15 to melting point 1685 K; liquid 1685 to 1800 K.

Temp.

K

298.15300400500600700800900

10001100120013001400150016001685168517001800

Melting T

CP

20.0020.0622.1423.3324.1624.8125.3625.8626.3326.7827.2127.6328.0528.4728.8829.2227.2027.2027.20

CO ;ST i

18.8118.9325.0230.1034.4338.2141.5644.5747.3249.8552.2054.4056.4658.4160.2661.7591.5591.7993.35

1685 K

J-mol'^K"1 -

0.000.125.408.87

11.3613.2314.7115.9316.9417.8218.5819.2619.8720.4320.9521.3551.1550.9449.62

FORMATION FROM THE ELEMENTS

-(G|-H298 )/T AfH° AfG° Log Kf

1- <r - .1 ~1

18.8118.8119.6321.2323.0824.9726.8428.6530.3832.0433.6235.1336.5837.9839.3140.4040.4040.8543.73

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A H«

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJAtoH0 50.2 kJ

H598-H8 3.218 kJMolar Vol. 1.2056 J'bar*1

12.056 cm3

6/19/92

Page 115: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 109

TIN (REFERENCE STATE) Formula wt 118.710

Sn: Crystals 298.15 to melting point 505.1 K. Liquid 501 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500505.1505.1600700800900

100011001200130014001500160017001800

f o1ft

27.1127.1528.9031.0331.1629.4228.6628.2528.0427.9627.9527.9828.0428.1328.2328.3428.4628.5828.70

ST

51.1851.3559.4066.0666.3880.6385.6290.0093.7697.06

100.00102.67105.10107.35109.44111.39113.22114.95116.59

(HT-H298 )/T

J-mol'^K'1 -

0.000.177.13

11.6911.8826.1326.5826.8527.0127.1227.2027.2727.3327.3927.4427.5027.5627.6127.67

-i(Gf-H298 )/T

51.1851.1852.2754.3754.5054.5059.0463.1566.7569.9472.8075.4077.7779.9682.0083.8985.6687.3488.92

A£H°

kJ«mol""*

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

AfG°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 505.1 K Boiling T 2876 K

295.77 kJAfi,H°

H2*98~H5

7.195 kJ

6.323 kJMolar Vol. 1.

16.62929

J-bar'1cm3

6/17/92

Page 116: robie 1995

110 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

STRONTIUM (REFERENCE STATE) Formula wt 87.62

Sr: a-crystals (face-centered cubic) 298.15 to 820 K; y-crystals (body-centere cubic) 820 to melting point 1050 K; liquid 1050 to boiling point 1685.5 K; ideal monatomic gas, P-l bar, 1685.5 to 1800 K.

Temp.

K

298.153004005006007008008208209001000105010501100120013001400150016001685.51685.517001800

<p

26.7926.8127.7728.7829.8230.8731.9332.1529.7930.1330.4530.7539.4639.4639.4639.4639.4639.4639.4639.4620.8420.8420.88

00ST

55.6955.8663.7070.0075.3480.0284.2185.0186.0388.8192.0193.51

100.58102.42105.85109.01111.94114.66117.20119.26200.65200.83202.02

(HT-H298)/T

J-mol"1 ^"1

0.000.176.94

11.2114.2316.5318.3918.7219.7420.6521.6222.0529.1229.5930.4231.1131.7132.2332.6833.02

114.41113.62108.46

-(Gf-H298 )/T

FORMATION FROM THE ELEMENTS

AfH° A£G° Log Kf

1, T- 1 1

55.6955.6956.7558.7961.1263.4965.8266.2866.2968.1770.3971.4671.4672.8275.4477.9080.2382.4384.5386.2486.2487.2193.56

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T 1050 K

7.42 kJ

6.36 kJ

Boiling T

Molar Vol.

1685 K

137.18 kJ

3.392 J-bar'1

33.92 cm3

6/19/92

Page 117: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 111

TELLURIUM (REFERENCE STATE) Formula wt 127.600

Te: Crystals 298.15 to melting point 723 K. Liquid 723 to boiling point 1261 K. Ideal diatomic gas 1261 to 1800 K.

Temp.

298.15300400500600700723723800900

100011001200126112611300

CP ST (HT-H298 )/T -<GT-H298 )/T

25.7025.7427.9530.1532.3634.5735.0737.6637.6637.6637.6637.6637.6637.6618.6618.66

49.7149.8757.5864.0569.7474.9076.43

100.62104.04108.48112.44116.03119.31121.18161.10161.67

0.000.166.83

11.2714.6017.3017.8642.0541.6341.1940.8340.5440.3040.1880.1078.25

49.7149.7150.7552.7855.1457.6058.5758.5762.4167.2971.6075.4879.0181.0081.0083.41

FORMATION FROM THE ELEMENTS

A£H° A£6° Log K£

kJ-mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H2*98~H5

723 K

17.489 kJ

6.121 kJ

Boiling T

Molar Vol.

1261 K

50.341 kJ

2.048 J'bar'1

20.48 cm3

6/17/92

Page 118: robie 1995

112 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

THORIUM (REFERENCE STATE) Formula wt 232.038

Th: a-crystals (face-centered cubic) 298.15 to 1650 K. 1650 to melting point 2023 K.

p-crystals (body-centered cubic)

Temp.

298.15300400500600700800900

10001100120013001400150016001650165017001800

Melting T

AH,H°

H298~H8

CP

26.2326.2427.0927.9528.8329.7130.6031.5032.3933.2934.1935.0835.9836.8837.7738.2035.4236.0237.21

ST <Hf-H298 )/T

51.8051.9959.6665.7970.9775.4879.5083.1686.5289.6592.5995.3697.99

100.51102.91104.08106.21107.27109.36

2023 K

kJ

6.350 kJ

/ - UIWA *x

0.000.166.79

10.9313.8416.0517.8119.2820.5521.6722.6723.5924.4425.2425.9926.3528.4828.6929.13

-(Gf-H298 )/T

51.8351.8352.8754.8657.1259.4361.6963.8865.9867.9969.9271.7773.5575.2676.9277.7377.7378.5880.23

FORMATION FROM THE

A£H° AfG°

V Trmi-kl ""1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

AV*H°

Molar Vol.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

119

ELEMENTS

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

.979 J'bar'1

.79 cm3

6/12/92

Page 119: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 113

TITANIUM (REFERENCE STATE) Formula wt 47.88

Ti: a-crystals (hexagonal close packed) 298.15 to 1166 K, 1166 to melting point 1939.

p-crystals (body-centered cubic)

Temp.

K

298.15300400500600700800900

10001100116611661200130014001500160017001800

Melting T

Aft»H 0

HJ98-H5

CP

T-___l 1 . V~l

FORMATION FROM THE ELEMENTS

AfH° AfG° Log K£

25.2525.2726.8227.9828.5929.0129.5730.5232.0534.3036.2229.2429.4630.1831.0232.0033.1234.3635.74

14

30.7630.9238.3944.5149.6754.1158.0261.5564.8468.0070.0673.6474.4876.8679.1381.3083.4085.4587.45

1939 K

.15 kJ

4.83 kJ

0.000.166.62

10.7913.7115.8717.5418.9220.1621.3322.1225.7025.8026.1026.4326.7627.1227.5227.93

30.7630.7631.7733.7235.9638.2540.4842.6344.6946.6647.9447.9448.6850.7652.7054.5456.2857.9359.52

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

AV*H°

Molar Vol.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

1.10.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

063 J'bar'163 cm3

6/17/9

Page 120: robie 1995

114 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

URANIUM (REFERENCE STATE) Formula wt 238.029

U: a-crystals (orthorhombic) 298.15 to 942 K. ^-crystals (tetragonal) 942 to 1049 K. y- crystals (body-centered cubic) 1049 to melting point 1408 K. Liquid 1408 to 1800 K.

Temp.

K

298.15300400500600700800900942942

1000104910491100120013001400140814081500160017001800

Melting T

Afl.H 0

H298"H8

C£ ST (Hf-H298 )/T -(Gf-H298 )/T

FORMATION FROM THE

AfH° AfG°

ELEMENTS

Log Kf

27.6627.6929.6531.9534.6837.9141.6545.9247.8842.4042.4042.4038.3038.3038.3038.3038.3038.3047.7447.9148.1248.3648.60

8.

50.2050.3758.6065.4671.5177.1082.4087.5489.6992.6495.1797.20

101.71103.52106.86109.92112.76112.98119.17122.20125.30128.22130.99

1408 K

720 kJ

6.364 kJ

0.000.177.29

11.9915.5318.4921.1523.6624.6927.6428.5029.1533.6633.8734.2434.5534.8234.8441.0341.4541.8642.2342.58

50.2050.2051.3153.4755.9858.6061.2563.8865.0065.0066.6768.0568.0569.6572.6275.3777.9478.1478.1480.7583.4485.9988.41

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

AV*H°

Molar Vol.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

112

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

.250 J-bar'1

.50 cm3

6/11/92

Page 121: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 115

VANADIUM (REFERENCE STATE) Formula wt 50.942

V: Body-centered cubic crystals 298.15 to 2175 K,

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

Afi»H0

H298~H5

CP ST (HT-H^99)/T -(GT-H29g)/T

24.9024.9426.3026.9127.4227.9728.6029.3130.1030.9631.8732.8333.8334.8835.9537.0638.19

20.

28.9429.0936.4942.4347.3851.6555.4258.8361.9664.8767.6070.1972.6675.0377.3179.5281.67

2175 K

928 kJ

4.64 kJ

0.000.156.55

10.5713.3315.3816.9918.3219.4620.4721.3822.2223.0123.7724.5025.2025.89

28.9428.9429.9431.8634.0536.2638.4340.5142.5044.4046.2247.9749.6451.2652.8154.3255.78

FORMATION FROM THE ELEMENTS

AfH° A£6° Log K£

kJ-mol"1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A^o

Molar Vol.

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

0.835 J-bar'18.35 cm3

4/30/92

Page 122: robie 1995

116 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TUNGSTEN (REFERENCE STATE) Formula wt 183.85

W: Body-centered cubic crystals 298.15 to 2500 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

cp S O /IT°_H9 \ /T /r10 Ufi \ /T m 1 tlm IlOQO ) / J. ( V»m tlOQO / / !

FORMATION FROM THE ELEMENTS

AfH° A£G° Log K£

1.T--.-1 1

24.3324.3424.9025.4525.9226.3326.6927.0327.3627.6928.0428.4028.7929.2029.6530.1330.65

32.6532.8039.8845.4950.1854.2057.7460.9163.7766.3968.8271.0873.2075.2077.1078.9180.64

0.000.156.27

10.0512.6614.5816.0717.2718.2619.1119.8420.4821.0621.5922.0822.5422.97

32.6532.6533.6135.4537.5239.6241.6743.6445.5147.2948.9850.6052.1453.6155.0256.3757.67

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T

H298~H5

3680 K

35.397 kJ

4.979 kJ

Boiling T

Molar Vol

K

kJ

0.9545 J-bar'1 9.545 cm3

4/30/92

Page 123: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 117

ZINC (REFERENCE STATE) Formula wt 65.390

Zn: Hexagonal close-packed crystals 298.15 to melting point 692.7 K. Liquid 692.7 to boiling point 1180.2 K. Ideal monatomic gas 1180.2 to 2000 K.

Temp.

K

298.15300400500600692.7692.7700800900

100011001180.21180.21200130014001500160017001800

CP

25.3925.4126.3627.3928.5729.8131.3831.3831.3831.3831.3831.3831.3820.7920.7920.7920.7920.7920.7920.7920.79

eoST

41.6341.7949.2355.2260.3164.5075.0775.4079.5983.2986.5989.5891.79

189.50189.84191.51193.05194.48195.82197.08198.27

(HT-H298 )/T

0.000.166.59

10.6413.5315.6226.1926.2426.8927.3927.7828.1128.33126.04124.29116.33109.51103.5998.4193.8589.79

-(GT-H|98 )/T

41.6341.6342.6444.5746.7848.8848.8849.1652.7055.9058.8161.4763.4663.4665.5575.1883.5490.8997.41103.23108.48

FORMATION FROM THE ELEMENTS

AfH° A£G° Log K£

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Melting T Boiling T 1080.2 K

115.30 kJ

H298"H5

7.32 kJ

5.648 kJMolar Vol. 0.9162 J'bar'1

9.162 cm3

4/30/d:

Page 124: robie 1995

118 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ZIRCONIUM (REFERENCE STATE) Formula wt 91.224

Zr: a-crystals (hexagonal close packed) 298.15 to 1135 K. cubic) 1135 to melting point 2125 K.

0-crystals (body-centered

FORMATION FROM THE

Temp.

K

298.15300400500600700800900

10001100113511351200130014001500160017001800

Melting T

Aft.H0

H298-H6

°P

25.2025.2326.0426.5227.1627.9928.9630.0431.1832.3332.7428.3328.5128.8829.3529.9330.6231.4132.31

ST

38.8739.0346.4252.2857.1761.4265.2268.6971.9174.9375.9479.4881.0683.3685.5187.5689.5191.3993.21

2125 K

kJ

5.497 kJ

(Hf-H298 )/T

0.000.166.55

10.4913.2115.2616.9118.3119.5420.6521.0224.5624.7625.0725.3525.6425.9326.2326.54

-(Gf-H298 )/T

38.8738.8739.8741.7943.9646.1548.3050.3852.3754.2954.9254.9256.3058.2960.1661.9263.5865.1666.67

AfH°

kJ-mol'1

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Boiling T

A^H°

Molar Vol

A£6°

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

1.14.

ELEMENTS

Log Kf

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

K

kJ

4016 J-bar'1 016 cm3

11/30/92

Page 125: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES

METHANE Formula wt 16

119

i

.043

CH4 : Ideal gas, P - 1 bar, 298.15 to 1800 K

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

Afi»H°

CP

35.7035.7239.9146.2152.4258.0863.1467.6571.6775.2678.4881.3683.9586.2688.3390.1791.80

QOsT

186.26186.48197.22206.79215.77224.29232.38240.08247.42254.43261.11267.51273.64279.51285.14290.56295.76

K

kJ

<H*-HJ98 )/T

J-mol"1^"1 -

0.000.229.52

16.2221.7426.5430.8034.6538.1641.3744.3347.0749.6151.9854.1956.2558.18

-(GT-H$98 )/T

186.26186.26187.70190.57194.03197.75201.58205.43209.27213.05216.78220.44224.02227.53230.95234.30237.57

AfH°

kJ-mol'1

-74.8-74.9-78.0-80.8-83.3-85.4-87.2-88.6-89.8-90.7-91.5-92.0-92.4-92.7-92.9-92.9-93.0

Boiling

A^o

AfG°

-50.7-50.6-42.0-32.7-22.8-12.5-2.08.819.730.741.752.964.075.286.497.6

108.8

T

Molar Vol. 2478H298-H6 10 .025 kJ 24789

Log Kf

8.888.805.483.411.980.930.13

-0.51-1.03-1.45-1.82-2.12-2.39-2.62-2.82-3.00-3.16

K

kJ

.97 J-bar'1

.7 cm3

2/25/94

Page 126: robie 1995

120 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COHENITE Formula wt 179.552

Fe3C: Orthorhombic crystals 298.15 to 1800 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft.H0

H298"H5

CP

111.04111.06112.31113.57114.82116.07117.32118.58119.83121.08122.34123.59124.84126.10127.35128.60129.85

COST

104.40105.09137.21162.40183.22201.01216.59230.49243.04254.52265.11274.95284.16292.82300.99308.75316.14

K

kJ

kJ

(Hf-H298 )/T

J-mol"1^'1 -

0.000.68

28.4345.3456.8165.1971.6376.7781.0284.6087.6990.4192.8295.0096.9898.80

100.49

FORMATION FROM THE ELEMENTS

-(GT-H£98 )/T AfH° AfG° Log Kf

104.40104.40108.77117.07126.41135.83144.97153.71162.03169.92177.42184.55191.34197.82204.01209.95215.64

24.924.927.228.629.229.027.925.621.013.88.98.68.17.46.52.70.2

Boiling T

AVIPHO

Molar Vol.

19.719.717.615.012.29.36.64.11.90.4

-0.7-1.5-2.3-3.0-3.6-4.2-4.5

2.23.

-3.45-3.43-2.29-1.56-1.06-0.70-0.43-0.24-0.10-0.020.030.060.080.100.120.130.13

K

kJ

323 J-bar'123 cm3

01/06/93

Page 127: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 121

AMMONIA Formula wt 17.031

NH3 : Ideal gas, P » 1 bar, 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afo.H °

cj

35.6835.7238.5941.9945.3248.4451.3454.0356.5258.8260.9662.9464.7766.4568.0069.4270.71

ST

192.77192.99203.63212.60220.56227.78234.44240.65246.47251.96257.18262.13266.87271.39275.73279.90283.90

K

kJ

<HT-H$98 )/T

J» 1~1«K""1

0.000.229.43

15.6020.2824.0827.3130.1332.6534.9237.0138.9340.7142.3743.9245.3846.75

-<0*-H598 >/T

192.77192.77194.20197.01200.28203.70207.13210.51213.82217.04220.17223.21226.16229.03231.81234.52237.15

AfH°

]_. ,-;

-45.9-45.9-48.1-49.9-51.4-52.6-53.6-54.4-55.0-55.4-55.8-55.9-56.0-56.0-55.9-55.7-55.5

Boiling

A^o

A£6°

L

-16.4-16.2-5.9

4.815.927.238.750.361.973.785.497.2109.0120.8132.5144.3156.1

T

Molar Vol. 2478H298~H5 10. 045 kJ 24789

Log Kf

2.872.820.78

-0.50-1.38-2.03-2.53-2.92-3.24-3.50-3.72-3.91-4.07-4.21-4.33-4.43-4.53

K

kJ

.97 J-bar*1

.7 on3

11/18/92

Page 128: robie 1995

122 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ACANTHITE (ARGENTITE) Formula wt 247.802

Ag2S: Monoclinic crystals 298.15 to 451.3 K; cubic crystals (argentite) 451.3 to 865 K. y phase 865 to 1000 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

75.3175.3980.4787.2686.0384.8084.6980.3880.57

eoST

142.89143.35165.67193.79209.59222.75234.05244.84253.28

<Hf-H298 )/T

J-mol"1^"1 -

0.000.4619.7841.0848.6753.9157.7561.5363.38

-<GT-H298 )/T

142.89142.89145.89152.71160.92168.84176.30183.31189.90

AfH°

kJ

-32.0-32.0-34.0-30.5-30.7-31.0-31.3-84.1-83.8

AfG°

mol"1

-39.7-39.7-42.2-44.7-47.5-50.3-53.0-54.7-51.5

Log Kf

6.956.925.524.674.143.753.463.172.69

Melting T

H298~H8

kJ

17.132 kJ

Boiling T

Molar Vol.

K

kJ

3.419 J-bar'1 34.19 cm3

9/30/92

Page 129: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 123

REALGAR Formula wt 106.988

AsS: Monoclinic crystals 298.15 to melting point 580 K; liquid 580 to 800 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800

CP ST <Hf-H298 )/T

*r - _1 1 - «r 1

-<Gf-H298 )/T

47.0247.0849.3251.1867.1271.4877.50

63.5063.8077.6888.88

110.35121.00130.90

0.000.2912.2919.8836.8441.4645.57

63.5063.5165.3969.0073.5179.5485.33

AfH° AfG°

kJ-mol"1

Log Kf

-30.9-30.9-33.2-34.6-28.7-27.8-26.3

-29.6-29.6-29.1-27.9-26.7-26.4-26.3

5.195.163.802.922.331.971.72

Melting T

Aft.H'

580 K

6.668 kJ

kJ

Boiling T

Molar Vol.

K

kJ

2.980 J-bar'1 29.80 cm3

9/30/92

Page 130: robie 1995

124 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GREENOCKITE Formula wt 144.477

CdS: Cubic crystals 298.15 to 1100 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100

cp

47.3047.3649.4650.7051.6852.5553.3754.1654.9355.67

cOST

72.1872.4786.4297.60106.93114.96122.03128.37134.11139.38

<HT-H298 )/T

J-mol"1 -*"1 -

0.000.29

12.3519.9025.1228.9831.9834.4036.4138.13

-<GT-H298 )/T

72.1872.1874.0777.6981.8185.9990.0693.9797.70101.25

AfH°

1. T

-149.6-149.6-152.0-153.7-161.2-162.3-163.2-217.1-216.5-314.8

AfG°

-146.1-146.1-144.8-142.8-140.5-136.9-133.2-128.4-118.5-102.9

Log Kf

25.6025.4418.9114.9212.2310.228.707.456.194.89

Melting T

H298~H5

kJ

8.818 kJ

Boiling T

Molar Vol

K

kJ

2.993 J-bar'1 29.93 cm3

9/30/92

Page 131: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 125

CATTIERITE Formula wt 123.065

0082: Cubic crystals 298.15 to 1000 K. Reference state for sulfur is orthorhombic sulfur,

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP

68.2668.3974.2878.6382.3885.8589.1692.3895.55

COST

74.8075.2295.76

112.82127.50140.46152.14162.83172.72

(HT-H298 )/T -(GT-H$98 )/T AfH°

J-mol"1 ^""1

0.000.42

18.2029.8738.3144.8650.1954.7058.63

74.8074.8077.5682.9689.1895.60101.95108.13114.10

kJ

-150.9-150.9-155.5-158.5-160.5-161.8-163.1-269.8-267.7

AfG°

mol'1

-145.1-145.1-143.0-139.5-135.5-131.2-126.7-120.0-103.5

Log Kf

25.4225.2618.6714.5711.809.798.276.975.41

Melting T K

kJ

12.301 kJ

Boiling T

Molar Vol

K

kJ

2.552 J-bar'1 25.52 cm3

9/30/9!

Page 132: robie 1995

126 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COVELLITE Formula wt 95.612

CuS; Hexagonal crystals 298.15 to 800 K. Reference state for sulfur is orthorhombic sulfur,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800

CP

47.5347.5950.2952.6254.8256.9459.03

COST

67.4067.6981.7793.24

103 . 03111.64119.38

<HT-H298 )/T

J-aiol"1 -*'1 -

0.000.2912.4720.2725.8430.1433.62

-<Gf-H298 )/T

67.4067.4069.3072.9877.1981.5185.77

A£H°

kJ

-54.6-54.6-56.8-58.1-59.0-59.4-59.5

AfG°

-55.3-55.3-55.4-54.9-54.2-53.3-52.4

Log Kf

9.689.627.235.744.723.983.42

Melting T 7801 K

kJ

9.45 kJ

Boiling T

Molar Vol.

K

kJ

2.042 J-bar'1 20.42 cm3

9/30/92

Page 133: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES

CHALCOCITE Formula wt 159 .158

Orthorhombic crystals 298.15 to 376 K; hexagonal crystals 376 to 710 K; cubic crystals 710 to melting point 1403 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

cp

76.8477.0198.8395.3192.3089.7982.7682.5085.0285.0285.0285.0285.02

ST

116.20116.67151.07172.84189.93203.97216.94226.66235.65243.77251.17257.95264.23

(H*-HJ98,/T

J»mol "K

0.000.4731.1444.3352.5658.0662.8565.0467.0268.6870.0371.7172.15

-<GT-H298 )/T

116.20116.20119.93128.51137.37145.91154.09161.62168.63175.09181.14186.24192.08

A£H°

UT

-83.9-83.9-81.1-80.5-79.9-79.5-78.5-132.1-131.1-130.3-129.7-128.7-155.6

A£G°

mol"1

-89.2-89.2-91.3-93.9-96.7-99.5

-102.5-104.5-101.5-98.6-95.7-92.2-89.2

Log Kf

15.6215.5311.929.818.427.436.696.065.304.684.173.713.33

Melting T

H298~H8

1403 K

kJ

15.80 kJ

Boiling T

Molar Vol

K

kJ

2.748 J-bar^ 27.48 cm3

9/30/92

Page 134: robie 1995

128 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CHALCOPYRITE Formula wt 183.525

CuFeS2 : Tetragonal crystals 298.15 to 820 K; tetragonal crystals 820 to 930 K; cubic crystals 930 to 1200 K. Reference state for sulfur is orthorhombic sulfur. Above 820 K, the phase is called ISS (intermediate solid solution).

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200

flOcp

95.8096.24106.26109.15114.53123.84136.83203.75172.49172.49172.49

COST

124.90125.49155.01179.02199.34217.64234.99264.70285.00301.44316.45

<H*-HS98,/T

0.000.59

26.1542.4553.9763.2471.5991.48

101.42107.88113.27

-<GT-H298 )/T

124.90124.90128.86136.57145.38154.41163.40173.22183.58193.56203.18

A£H°

1. T

-194.9-194.9-199.0-201.5-203.2-204.0-203.8-298.0-290.2-285.3-279.8

AfG°

-195.1-195.1-195.0-193.8-192.1-190.1-188.2-185.0-173.0-161.5-150.6

Log Kf

34.1833.9725.4720.2416.7214.1912.2910.749.047.676.55

Melting T K Boiling T K

kJAft.H 0 kJ

H298~H8 18.34 kJMolar Vol. 4.392 J'bar"1

43.92 cm3

9/30/92

Page 135: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 129

BORNITE Formula wt 501.841

Cu5FeS4 : Orthorhombic crystals 298.15 to 470 K; cubic crystals 470 to 535 K; cubic crystals 535 to 1200 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

242.90243.20260.60369.45327.89323.50325.20327.30332.90340.00348.30

ST

398.50400.00472.40549.41615.63665.90709.20747.53782.29814.34844.27

(H*-H298,/T

--I -1

0.001.50

64.09121.22161.33184.73202.19215.89227.29237.21246.12

-<GT-H298 )/T

398.50398.50408.31428.19454.30481.17507.01531.64555.00577.13598.15

A£H°

kJ-m

-371.6-371.6-379.9-376.3-370.6-368.2-365.8-576.1-569.5-563.5-556.7

A£G°

ol~

-394.7-394.8-402.3-407.9-414.9-422.6-430.5-434.4-419.1-404.3-390.1

Log Kf

69.1568.7552.5442.6236.1231.5328.1125.2121.8919.2016.98

Melting T

H298~H6

kJ

53.011 kJ

Boiling T

Molar Vol

K

kJ

9.873 J-bar4 98.73 cm3

9/30/92

Page 136: robie 1995

130 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TROILITE Formula wt 87.913

FeS: Hexagonal crystals (NiAs structure) 298.15 to a complex transition at 411 K and a Neel temperature at 590 K; paramagnetic 590 to melting point at 1468 K; liquid 1468 to 1800 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft»H°

H2*98~H6

CP

50.4950.6470.0272.0667.3358.1357.7358.6560.6462.0062.9963.9964.9971.1371.1371.1371.13

32.

9

ST

60.3060.6276.87

102.86116.98126.32134.00140.86147.13152.82158.17163.32168.22194.95199.51203.82207.88

1468 K

34 kJ

.351 kJ

(Hf-H298 )/T

J-mol'^K'1 -

0.000.31

14.4434.2941.5244.2345.9047.2748.4949.5250.5251.5652.6075.2074.9474.7274.52

-<GT-H2 98 )/T

60.3060.3162.4368.5775.4682.0988.1093.5998.64

103.30107.65111.76115.62119.75124.57129.10133.36

AfH°

-102.6-102.6-104.1-99.5-98.4-99.1

-100.1-154.6-155.3-156.8-157.5-156.5-155.3-121.7-120.3-119.8-119.0

AfG°

I 1

-102.9-102.9-103.0-103.6-104.5-105.5-106.3-106.0-100.6-95.0-89.3-83.7-78.2-73.4-70.2-67.1-64.0

Boiling T

AV*H°

Molar Vol. 1.18.

Log Kf

18.0317.9213.4610.839.107.876.946.155.254.513.893.362.922.562.292.061.86

K

kJ

820 J-bar'120 cm3

2/17/93

Page 137: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 131

PYRRHOTITE Formula wt 80.932

Fe .875S: Monoclinic crystals 298.15 to combined structural and magnetic transition at 590 K; hexagonal crystals (Ni-As-type) 590 to 1000 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

c° CP

49.8850.0156.2463.5667.3565.3057.4257.1958.38

ST

60.7060.7076.2889.57104.51114.53122.64129.39135.46

(HT-H298 )/T -(GT-H298 )/T AfH°

J-mol^-K"1

0.000.31

13.5322.7632.4737.3740.2842.1743.71

60.7060.3962.7566.8172.0477.1682.3687.2291.75

UT

-97.5-97.4-99.0-99.5-97.7-97.2-97.6

-151.6-151.9

A£G°

mol""1

-98.9-98.8-99.4-99.5-99.8

-100.0-100.3-99.6-93.8

Log Kf

17.3317.2112.9810.398.697.466.555.784.90

Melting T

H298"H8

kJ

9.21 kJ

Boiling T K

Av^H0 kJ

Molar Vol. 1.749 J'bar'1 17.49 cm3

1/13/93

Page 138: robie 1995

132 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PYRITE Formula wt 119.979

FeS2 : Cubic crystals 298.15 to 1000 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

K

CP ST (HT-H298 )/T -<GT-H298 )/T AfH° AfG° Log Kf

298.153004005006007008009001000

62.1762.3969.1571.9573.9375.9078.1080.5783.29

52.9053.2972.3488.10

101.39112.94123.21132.55141.18

0.000.38

16.8827.6435.2040.8745.3849.1552.43

52.9052.9055.4560.4566.2072.0777.8383.4088.75

-171.5-171.6-176.7-180.4-183.3-185.9 ,-188.2-296.8-297.1

-160.1-160.1-155.9-150.3-144.0-137.3-130.2-120.6-101.1

28.0527.8720.3615.7012.5410.248.507.005.28

Melting T

H298~H8

1015i K

kJ

9.63 kJ

Boiling T

Molar Vol

K

kJ

2.394 J-bar'1 23.94 cm3

9/30/92

Page 139: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 133

MARCASITE Formula wt 119.979

PeS2 : Orthorhombic crystals 298.15 to 700 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700

°p

62.4362.6069.1772.4474.5977.00

COST

53.9054.2973.3189.13102.53114.20

<HT-H298 )/T

J-mol^-K"1 -

0.000.3916.8627.6835.3241.10

-(GT-H298 )/T

53.9053.9056.4561.4567.2173.11

A£H°

kJ

-169.5-169.5-174.7-178.3-181.2-183.7

AfG°

mol"1

-158.4-158.3-154.3-148.8-142.6-136.0

Log Kf

27.7527.5620.1515.5412.4110.14

Melting T

kJ

9.74 kJ

Boiling T

Molar Vol

K

kJ

2.458 J-bar 1 24.58 cm3

3/6/92^

Page 140: robie 1995

134 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HYDROGEN SULFIDE Formula wt 34.082

H2S: Ideal gas at p sulfur.

1 bar, 298.15 to 1800 K. Reference state for sulfur La orthorhombic

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A^0

CP

34.2034.2135.4837.2239.0540.8542.5844.2145.7247.1348.4149.5850.6251.5552.3553.0453.60

COST

205.80206.01216.01224.11231.05237.21242.78247.89252.63257.05261.21265.13268.84272.37275.72278.92281.96

K

kJ

/tlO__UQ V /fit^ *lm tin QQ / / A

J-mol'^-K'1 -

0.000.218.8514.3518.3121.4023.9426.1127.9929.6731.1832.5533.8034.9636.0237.0037.91

-(G*-H298)/T

205.80205.80207.15209.76212.74215.81218.83221.78224.63227.38230.03232.58235.04237.41239.70241.91244.06

AfH°

kJ-mol"1

-20.6-20.6-24.7-27.9-30.6-32.9-34.9-89.7-90.1-90.4-90.6-90.7-90.8-90.8-90.8-90.8-90.7

Boiling

Av*H°

AfG°

-33.4-33.5-37.5-40.3-42.5-44.3-45.8-46.0-41.1-36.2-31.3-26.3-21.4-16.4-11.5-6.5-1.6

T

Molar Vol. 2478H298-H& 9.96 kJ 24789

Log Kf

5.865.844.894.213.703.312.992.672.151.721.361.060.800.570.370.200.05

K

kJ

.97 J«bar'!

.7 cm3

9/30/92

Page 141: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 135

ALABANDITE Formula wt 87.004

MnS: Cubic crystals 298.15 to 1800 K. Reference state for sulfur is orthorhombic sulfur,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft»H°

°P

49.9849.9951.1052.1452.8353.2553.5553.8454.2154.7355.4456.3957.6059.1060.9163.0465.51

Sf

80.3080.6195.13

106.65116.22124.40131.53137.85143.55148.74153.53158.00162.22166.24170.11173.87177.54

K

kJ

(Hf-H2 98 )/T

J-mol'^K""1 -

0.000.31

12.8620.6225.9329.8132.7635.0836.9838.5639.9441.1742.3043.3644.4045.4346.48

-<Gf-H2 98 )/T

80.3080.3082.2786.0490.2994.5998.78

102.77106.57110.17113.59116.83119.93122.88125.71128.43131.06

A £H°

-213.9-213.9-216.2-217.9-219.3-220.6-221.9-276.3-278.7-278.9-279.1-279.3-281.7-284.2-296.9-297.3-297.4

Boiling

Av*H°

AfG°

1

-218.7-218.8-220.3-221.2-221.7-222.0-222.1-220.9-214.7-208.3-201.9-195.5-188.9-182.2-174.7-167.0-159.4

T

Molar Vol. 2.H598-H8 kJ 21.

Log Kf

38.3238.0928.7723.1019.3016.5614.5012.8211.229.898.797.857.056.345.705.134.62

K

kJ

146 J'bar'146 cm3

9/30/92

Page 142: robie 1995

136 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MOLYBDENITE Formula wt 160.072

t Hexagonal crystals 298.15 to 1200 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

63.5163.6368.4571.5873.7775.3576.5477.4478.1278.6579.04

ST

62.6062.9982.0197.65

110.90122.40132.54141.61149.81157.28164.14

(Hf-H298)/T

-1-1

0.000.3916.8527.5035.0440.6945.1048.6551.5654.0056.07

-<Gf-H298)/T

62.6062.6065.1670.1475.8681.7087.4492.9698.24103.28108.07

AfH°

1_ T

-271.8-271.8-276.8-280.2-282.7-284.6-286.2-393.7-392.5-391.3-390.1

A£6°

mol'1

-262.8-262.7-259.5-254.7-249.4-243.7-237.7-229. 5-211.3-193.2-175.3

Log Kf

46.0445.7533.8826.6121.7118.1815.5213.3211.039.177.63

Melting T

H298~H8

kJ

8.82 kJ

Boiling T

Molar Vol.

K

kJ

3.202 J'bar'1 32.02 cm3

9/30/92

Page 143: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 137

MILLERITE Formula wt 90.756

NiS: Rhombohedral crystals 298.15 to 623 K; hexagonal crystals 623 to melting point 1066 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100

CP

47.1147.2450.7953.6856.2759.4562.5565.6568.7471.13

ST

52.9753.2667.3679.0489.04102.68110.79118.37125.44159.58

(H*-H298>/T

0.000.2912.5520.4226.2234.9138.1841.0543.6872.73

-<Gf-H298 )/T

52.9752.9754.8158.6262.8267.7772.6177.3281.7686.85

AfH°

1. T

-91.0-91.0-93.4-95.1-96.4-94.4-94.6

-147.6-145.9-114.7

A£6°

mol"1

-88.3-88.3-87.3-85.6-83.6-81.7-80.3-77.0-69.2-62.5

Log Kf

15.4715.3811.408.947.276.105.244.473.612.97

Melting T 1066 K Boiling K

kJ

H§98~H8

kJ

8.47 kJMolar Vol. 1.689 J-bar'1

16.89 cm3

9/30/92

Page 144: robie 1995

138 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HEAZLEWOODITE Formula wt 240.202

Ni3S2 : Hexagonal crystals 298.15 to 834 K; cubic crystals 834 K to incongruent melting point 1064 K; liquid 1064 to 1400 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400

Melting T

A*.**'

cp

118.24118.45129.01136.05141.59148.35158.39189.15191.81189.12189.12189 . 12189.12

19

ST

133.20133.93169.52199.12224.42246.72267.14355.52375.52411.84428.28443.42457.44

1064 K

.66 kJ

(Hf-H298 )/T

_ ,-1 _-l

0.000.7331.5451.7966.2977.5186.95159.38162.41182.56183.11183.57183.97

-<Gf-H298 )/T

133.20133.20137.98147.34158.12169.22180.20196.14213.11229.28245.17259.85273.47

A£H°

k_ .-

-216.3-216.3-221.3-224.7-227.8-230.1-230.5-278.4-272.8-247.9-242.7-237.9-233.3

Boiling

AfG°

1

-210.2-210.1-207.8-204.1-199.7-194.8-191.1-187.1-177.3-168.7-161.7-155.1-148.9

T

Molar Vol. 4.H2*98~H8 21.50 kJ 40.

Log Kf

36.8236.5927.1421.3217.3814.5312.4810.869.268.017.036.235.56

K

kJ

095 J'bar'195 cm3

9/30/92

Page 145: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 134

GALENA Formula wt 239.26

PbS: Cubic crystals 298.15 to 900 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

CP

49.4949.5251.1652.8054.4456.0857.7259.36

COST

91.7092.01106.48118.07127.84136.36143.95150.84

<Hf-H298 )/T

J-mol'^K"1 -

0.000.3112.8120.6526.1430.3033.6336.40

-<Gf-H298 )/T

91.7091.7093.6697.42101.70106.05110.32114.45

AfH°

1. T

-98.3-98.3

-100.6-102 . 1-103.3-109.0-109.5-162.9

AfG°

-96.8-96.8-96.1-94.9-93.3-90.8-88.1-84.3

Log Kf

16.9516.8512.559.918.126.775.754.90

Melting T

H (fusion)

H298~H8

1400 K

kJ

11.51 kJ

Boiling T K

kJ

Molar Vol. 3.149 J'bar'f31.49 cm*

9/30/9:

Page 146: robie 1995

140 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

STIBNITE Formula wt 339.698

Sb2S3 : Orthorhombic crystals 298.15 to 900 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

CP

119.75119.81123.38126.46128.94130.92132.51133.80

0OST

182.00182.74217.70245.58268.86288.89306.48322.17

<HT-H298)/T

J-mol'^K"1 -

0.000.74

30.9649.7662.7672.3679.7885.72

-<Gf-H298 )/T

182.00182.00186.74195.82206.10216.53226.70236.45

AfH°

kJ

-151.4-151.4-158.1-162.7-166.0-168.6-170.8-332.2

A£6°

mol"1

-149.8-149.8-149.0-146.3-142.7-138.6-134.1-126.2

Log Kf

26.2526.0919.4615.2812.4210.348.767.33

Melting T 829 K

kJ

H298~H8 kJ

Boiling T

Molar Vol.

K

kJ

7.341 J-bar' 73.41 cm3

10/1/92

Page 147: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 141

HERZENBERGITE Formula wt 150.776

SnS: Orthorhombic crystals 298.15 to 875 K; cubic crystals 875 to melting point 1153 K. Liquid 1153 to 1300 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000110012001300

Melting T

H298~H8

CP

49.2549.3250.8752.0254.5158.4063.5054.0457.0760.1175.6175.61

31

ST

77.0077.3091.76

103.22112.91121.50129.71137.47143.32148.90181.98188.03

1153 K

.59 kJ

kJ

<Hf-H298)/T

1-1--1

0.000.3012.8120.5225.9630.3034.1237.8139.5941.3269.6470.10

-<Gf-H298 )/T

77.0077.0078.9582.7086.9591.2095.5999.66103.73107.58112.34117.93

A£H° A£G°

V TfmrO ""1

-106.5 -104.6-106.5 -104.6-108.9 -103.9-110.6 -102.5-119.0 -99.3-119.6 -96.0-119.5 -92.7-171.8 -88.1-170.9 -78.9-169.7 -69.7-136.3 -62.0-133.5 -55.9

Boiling T

Molar Vol. 229

Log K£

18.3318.2213.5710.708.657.166.055.114.123.312.702.25

K

kJ

.901 J'bar'1

. 01 cm3

10/1/92

Page 148: robie 1995

142 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BERNDTITE Formula wt 182.842

SnS2 : Hexagonal crystals 298.15 to 1000 K. sulfur.

Reference state for sulfur is orthorhombic

FORMATION FROM THE ELEMENTS

Temp.

K

298.153004005006007008009001000

CP

70.1270.1772.0573.5275.1977.1379.3381.7484.33

ST

87.5087.93108.41124.64138.19149.92160.36169.84178.59

(Hf-H298 )/T

_1 -1

0.000.43

18.1329.0636.6042.2546.7550.5053.75

-(Gf-H$98 )/T

87.5087.5090.2895.58

101.59107.67113.61119.34124.84

AfH°

1. T

-149.8-149.8-154.7-158.2-168.1-170.0-171.4-278.6-276.9

AfG°

mol"1

-141.5-141.5-138.4-134.0-127.5-120.6-113.5-104.0-84.7

Log Kf

24.7924.6318.0814.0011.109.007.416.044.42

Melting T

H2*98~H8

kJ

kJ

Boiling T

Molar Vol

K

kJ

4.096 J-bar'1 40.96 cm3

10/1/92

Page 149: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 143

TUNGSTENITE Formula wt 247.982

WS2 : Hexagonal crystals 298.15 to 1500 K. sulfur.

Reference state for sulfur is orthorhombic

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500

CP

63.8363.9969.6772.4174.0175.0975.9076.5777.1677.7178.2478.7679.2979.83

ST

67.8068.2087.50103.37116.72128.22138.30147.28155.38162.76169.54175.82181.68187.17

J-mol'^K"1 -

0.000.3917.1027.9235.4841.0645.3748.8051.6153.9555.9657.6959.2160.57

-(GT-H|98 )/T

67.8067.8070.3975.4581.2587.1592.9398.48

103.77108.80113.58118.13122.47126.60

AfH°

1. T

-241.6-241.6-246.5-249.8-252.2-254.1-255.6-363.1-361.9-360.6-359.4-358.2-357.0-355.8

AfG°

mol'1

-233.0-232.9-229.8-225.2-220.0-214.5-208.8-200.7-182.7-164.9-147.1-129.5-111.9-94.5

Log Kf

40.8140.5530.0023.5319.1616.0113.6311.659.547.836.405.204.183.29

Melting T

H298~H8

K

kJ

11.01 kJ

Boiling T K

A^0 kJ

Molar Vol. 3.207 J 32.07 cor

10/1/92

Page 150: robie 1995

144 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SPHALERITE Formula wt 97*456

ZnS: cubic crystals 298.15 K to 1300 K. Reference state for sulfur is orthorhombic sulfur,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300

CP

45.7645.8248.3049.9351.1252.0452.7953.4253.9654.4354.8555.23

Sf

58.7058.9872.5383.5092.71

100.66107.66113.92119.57124.74129.49133.90

(HT-H298)/T

_1 «1

0.000.2812.0019.4324.6228.4731.4733.8735.8537.5238.9540.19

-<GT-H298 )/T

58.7058.7060.5364.0668.0972.1976.1980.0483.7287.2290.5493.71

AfH°

1_T

-204.1-204.1-206.6-208.3-209.6-218.0-219.1-273.2-272.8-272.4-387.1-385.6

AfG°

mol'1

-199.6-199.6-198.0-195.6-193.0-190.1-186.0-180.7-170.4-160.2-148.1-128.2

Log Kf

34.9734.7525.8520.4416.8014.1812.1410.498.907.616.455.15

Melting T K

kJ

8.82 kJ

Boiling T

Molar Vol.

K

kJ

2.383 J'bar'1 23.83 cm3

10/1/92

Page 151: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 145

WURTZITE Formula wt 97.456

ZnS: Hexagonal crystals 298.15 to 1300 K, sulfur.

Reference state for sulfur is orthorhombic

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000110012001300

CP

45.8945.9648.7250.1351.0951.8652.5553.2153.8654.5055.1555.80

8}

58.8059.0872.7483.7793.00

100.94107.91114.13119.77124.94129.71134.15

<HT-H298)/T

J-mol'^K'1 -

0.000.28

12.0919.5724.7528.5731.5233.9035.8637.5238.9740.24

-(Ofr.HJ9,)/l

58.8058.8060.6464.2068.2572.3776.3880.2483.9187.4190.7493.91

AfH°

kJ

-203.8-203.8-206.2-207.9-209.2-217.7-218.8-272.9-272.5-272.1-386.8-385.2

A£6°

mol"1

-199.4-199.3-197.7-195.4-192.8-189.8-185.8-180.6-170.3-160.1-148.0-128.2

Log Kf

34.9334.7125.8220.4116.7814.1712.1310.488.907.606.445.15

Melting T K

kJ

8.85 kJ

Boiling T K

A^0 kJ

Molar Vol. 2.385 J-bar'1 23.85 cm3

10/1/92

Page 152: robie 1995

146 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BERTHIERITE Formula wt 427.611

FeSb2S4 : Orthorhombic crystals 298.15 to 836 K. Reference state for sulfur is orthorhombic sulfur.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

°p

175.23175.60186.17189.05190.44191.92193.91196.48

Sf

245.00246.09298.40340.31374.90404.37430.12453.10

(Hf-H$98 )/T

1-1. K'1

0.001.08

46.3374.6493.83

107.73118.37126.91

-(GT-H$98 )/T

245.00245.00252.06265.67281.07296.63311.74326.20

AfH°

kJ

-256.2-256.2-264.1-269.1-272.9-276.0-279.0-494.4

AfG°

mol"1

-255.8-255.8-255.4-252.8-249.1-244.9-240.2-230.9

Log K£

44.8144.5433.3626.4021.6918.2715.6813.40

Melting T

kJ

kJ

Boiling T

Molar Vol.

K

kJ

9.222 J'bar'1 92.22 cm3

2/17/93

Page 153: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 147

CHALCOSTIBITE Formula wt 249.428

CuSbS2 : Orthorhombic crystals 298.15 tO 826 K. sulfur.

Reference state for sulfur is orthorhombic

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

CP

100.15100.22104.26108.30112.34116.38120.42124.46

ST

149.20149.82179.20202.90223.01240.63256.43270.85

(Hf-H298)/T

J-mol"1 ^'1 -

0.000.62

26.0242.0753.4562.1569.1875.10

-<GT-H298 )/T

149.20149.20153.18160.83169.56178.48187.25195.75

A£H°

kJ

-130.8-130.8-134.8-137.2-138.7-139.3-139.5-245.5

A£6°

-132.7-132.7-133.3-132.6-131.5-130.3-129.0-125.5

Log Kf

23.2523.1117.4013.8511.459.728.427.29

Melting T 826 K

kJ

H2*98~H6 kJ

Boiling T

Molar Vol

K

kJ

5.006 J*bar'! 50.06 cm3

2/17/93

Page 154: robie 1995

148 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ACANTHITE (ARGENTITE) Formula wt 247.802

Ag2S: Monoclinic crystals 298.15 to 451.3 K; cubic crystals (argentite) 451.3 to 865 K. y phase 865 to 1000 K. Reference state for sulfur is ideal S2 gas at p = 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

cp

75.3175.3980.4787.2686.0384.8084.6980.3880.57

COST

142.89143.35165.67193.79209.59222.75234.05244.84253.28

<H*-H298)/T

J-mol'^K'1 -

0.000.46

19.7841.0848.6753.9157.7561.5363.38

-<Ofr.HS98 )/T

142.89142.89145.89152.71160.92168.84176.30183.31189.90

AfH°

kJ-

-96.3-96.3-95.3-89.6-88.1-86.7-85.7-84.1-83.8

AfG°

mol"1

-79.5-79.4-73.9-69.2-65.3-61.6-58.1-54.7-51.5

Log Kf

13.9313.839.657.235.684.603.793.172.69

Melting T

H2*98~H8

kJ

17.132 kJ

Boiling T

Molar Vol

K

kJ

3.419 J-bar'1

34.19 cm3

A« -8.355E+01 B* 3.273E-02 O -5.14E+05

9/24/92

Page 155: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 149

REALGAR Formula wt 106.988

AsS: Monoclinic crystals 298.15 to melting point 580 K; liquid 580 to 800 K. Reference state for sulfur is ideal 82 gas at p = 1 bar.

Temp.

298.15300400500600700800

CP eo /uo_uo * /*!* _//"*o_uo \ /«P om {iim **298 » » \^*T 298''

FORMATION FROM THE ELEMENTS

A£H° A£G° Log Kf

47.0247.0849.3251.1867.1271.4877.50

63.5063.8077.6888.88110.35121.00130.90

0.000.29

12.2919.8836.8441.4645.57

63.5063.5165.3969.0073.5179.5485.33

-95.2-95.2-94.5-93.8-86.0-83.6-80.7

-69.5-69.3-60.8-52.4-44.5-37.7-31.4

12.1712.077.945.483.872.822.05

Melting T

H298~H5

580 K

6.668 kJ

kJ

Boiling T

Molar Vol

K

kJ

2.980 J-bar1 29.80 cm3

-84.07 B= 0.06734 C« -4.98E+05

3/25/9:!

Page 156: robie 1995

150 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GREENOCKITE Formula wt 144.477

CdS: Cubic crystals 298.15 to 1100 K. Reference state for sulfur is ideal S2 gas at p = 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100

°P

47.3047.3649.4650.7051.6852.5553.3754.1654.9355.67

ST i

72.1872.4786.4297.60

106.93114.96122.03128.37134.11139.38

(Hf-H298 ,/T

.-!_-!

0.000.2912.3519.9125.1228.9831.9834.4036.4138.13

-<GT-H298)/T

72.1872.1874.0777.6981.8185.9990.0693.9797.70101.25

AfH°

1r T

-213.9-213.9-213.4-212.8-218.6-218.1-217.6-217.1-216.5-314.8

A£6°

mol"1

-186.0-185.8-176.5-167.4-158.2-148.2-138.3-128.4-118.5-102.9

Log Kf

32.5832.3523.0517.4813.7811.069.037.456.194.89

Melting T

H2*98~H5

kJ

8.81 kJ

Boiling T

Molar Vol

K

kJ

2.993 J-bar'1 29.93 cm3

-2.177E+02 B= 9.880E-02 C= 2.109E+05

9/24/92

Page 157: robie 1995

THERMOD YNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 151

CATTIERITE Formula wt 123.065

CoS2 : Cubic crystals 298.15 to 1000 K. Reference state for sulfur is ideal S2 gas at p - 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP

68.2668.3974.2878.6382.3885.8589.1692.3895.55

ST

74.8075.2295.76

112.82127.50140.46152.14162.83172.72

(HT-H§98)/T

J«mol"~*«K~* -

0.000.4218.2029.8738.3144.8650.1954.7058.63

-<GT-H298 )/1

74.8074.8077.5682.9689.1895.60

101.95108.13114.10

AfH°

.... kJT

-279.5-279.5-278.2-276.8-275.1-273.4-271.9-269.8-267.7

AfG°

mol"1

-224.8-224.5-206.3-188.5-171.0-153.8-136.8-120.0-103.5

Log Kf

39.3839.0826.9419.6914.8911.488.936.975.41

Melting T

H598~H8

kJ

12.30 kJ

Boiling T

Molar Vol

K

kJ

2.552 J-bar'1

25.52 cm3

A» -2.710E+02 B» 1.682E-01 O -3.57E+05

3/26/92

Page 158: robie 1995

152 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COVELLITE Formula wt 95.612

CuS: Hexagonal crystals 298.15 to 800 K. Reference state for sulfur is ideal 82 gas at p « 1 bar.

FORMATION FROM THE ELEMENTS

Temp. cP sf (Hf-H298 )/T -(GT-H2* 98 )/T AfH°

kJ-mol"1

A£6° Log Kf

298.15300400500600700800

47.5347.5950.2952.6254.8256.9459.03

67.4067.6981.7793.24103.03111.64119.38

0.000.2912.4720.2725.8430.1433.62

67.4067.4069.3072.9877.1981.5185.77

-118.9-118.9-118.1-117.3-116.3-115.2-113.9

-95.1-95.0-87.1-79.4-71.9-64.6-57.5

16.6616.5311.378.306.264.823.75

Melting T

H298"H5

7801 K

kJ

9.45 kJ

Boiling T

Molar Vol

K

kJ

2.042 J-bar'1 20.42 cm3

A« -1.148E+02 B» 7.208E-02 O -1.60E+05

3/26/92

Page 159: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 153

CHALCOCITE Formula wt 159.158

Cu28: Orthorhombic crystals 298.15 to 376 K; hexagonal crystals 376 to 710 K; cubic crystals 710 to melting point 1403 K. Reference state for sulfur is ideal S2 gas at p = 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

CP

76.8477.0198.8395.3192.3089.7982.7682.5085.0285.0285.0285.0285.02

ST

116.20116.67151.07172.84189.93203.97216.94226.66235.65243.77251.17257.95264.23

(Hf-HJ98 )/T

-1-1

0.000.4731.1444.3352.5658.0662.8565.0467.0268.6870.0371.7172.15

-(OJ-HJ98 )/1

116.20116.20119.93128.51137.37145.91154.09161.62168.63175.09181.14186.24192.08

AfH°

1> T

-148.2-148.2-142.5-139.7-137.3-135.3-132.9-132.1-131.1-130.3-129.7-128.7-155.6

AfG°

mol"1

-129.1-129.0-123.0-118.5-114.5-110.8-107.6-104.5-101.5-98.6-95.7-92.2-89.2

Log Kf

22.6122.4516.0612.389.978.277.026.065.304.684.173.713.33

Melting T

H298~H8

1403 K

kJ

15.80 kJ

Boiling T

Molar Vol.

K

kJ

2.748 J'bar'1 27.48 cm3

A« -1.304E+02 B- 2.957E-02 0 -6.73E+05

01/13/9]

Page 160: robie 1995

154 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CHALCOPYRITE Formula wt 183.525

CuFeS2 : Tetragonal crystals 298.15 to 820 K; tetragonal crystals 820 to 930 K; cubiccrystals 930 to 1200 K. Reference state for sulfur is ideal S2 gas at p = 1 bar, Above 820 K, phase is called ISS (intermediate solid solution).

FORMATION FROM THE ELEMENTS

Temp.

K

cp ST (Hf-H298 )/T -(GT-H298 )/T AfH° AfG°

kJ-mol"1

Log Kf

298.15300400500600700800900

100011001200

95.8096.24

106.26109.15114.53123.84136.83203.75172.49172.49172.49

124.90125.49155.01179.02199.34217.64234.99264.70285.00301.44316.45

0.000.59

26.1542.4553.9763.2471.5991.48101.42107.88113.27

124.90124.90128.86136.57145.38154.41163.40173.22183.58193.56203.18

-323.5-323.5-321.7-319.8-317.9-315.6-312.6-298.0-290.2-285.3-279.8

-274.8-274.5-258.4-242.8-227.6-212.7-198.2-185.0-173.0-161.5-150.6

48.1447.7933.7425.3719.8115.8712.9410.749.047.676.55

Melting T

H298"H8

kJ

18.34 kJ

Boiling T

Molar Vol

K

kJ

4.392 J'bar'1 43.92 cm3

A= -2.9995E+02 1.2712E-01 O -1.19E+06

3/26/92

Page 161: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 155

BORNITE Formula wt 501.841

Cu5FeS4 : Orthorhombic crystals 298.15 to 470 K; cubic crystals 470 to 535 K; cubiccrystals 535 to 1200 K. Reference state for sulfur is ideal $2 gas at p « 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

242.90243.20260.60369.45327.89323.50325.20327.30332.90340.00348.30

ST

398.50400.00472.40549.41615.63665.90709.20747.53782.29814.34844.27

/tlO tjO \ Iff \tlrn **298 ' 1

_1 _1

0.001.50

64.09121.22161.33184.73202.19215.89227.29237.21246.12

-(Gf-H298 )/T

398.50398.50408.31428.19454.30481.17507.01531.64555.00577.13598.15

A£H°

1. T

-628.8-628.7-625.3-612.9-600.0-591.4-583.4-576.1-569.5-563.5-556.7

A£G°

mol"1

-554.1-553.6-529.1-506.0-485.9-467.7-450.6-434.4-419.1-404.3-390.1

Log K£

97.0796.3969.0952.8642.3034.9029.4225.2121.8919.2016.98

Melting T

H298~H8

kJ

53.01 kJ

Boiling T

Molar Vol

K

kJ

9.873 J-bar'1 98.73 cm3

-5.714B-t-02 B- 1.542E-01 C= -2.625B+06

3/26/92

Page 162: robie 1995

156 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TROILITE Formula wt 87.913

FeS: Hexagonal crystals (NiAs structure) 298.15 to a complex transition at 411 K and a Neel temperature at 590 K; paramagnetic 590 to melting point at 1468 K; liquid 1468 to 1800 K. Reference state for sulfur is ideal 82 gas at p = 1 bar.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A&.H 0

cp

50.4950.6470.0272.0667.3358.1357.7358.6560.6462.0062.9963.9964.9971.1371.1371.1371.13

32.

S o / T (

J

60.3060.6276.87

102.86116.98126.32134.00140.86147.13152.82158.17163.32168.22194.95199.51203.82207.88

1468 K

34 kJ

Hf-H598 )/T

mol^-lT1

0.000.3114.4434.2941.5244.2345.9047.2748.4949.5250.5251.5652.6075.2074.9474.7274.52

-<G*-H298 >/1

60.3060.3162.4368.5775.4682.0988.1093.5998.64103.30107.65111.76115.62119.75124.57129.10133.36

FORMATION

J AfH°

-166.9-166.9-165.5-158.7-155.8-154.9-154.5-154.6-155.3-156.8-157.5-156.5-155.3-121.7-120.3-119.8-119.0

Boiling

Av*H°

FROM THE ELEMENTS

A£6°

-1

-142.8-142.6-134.7-128.1-122.3-116.8-111.4-106.0-100.6-95.0-89.3-83.7-78.2-73.4-70.2-67.1-64.0

T

Molar Vol. 1.820H298~H8 9

A-

.351 kJ

-1.488E+02 B* 4.910E-02

18.20

Log Kf

25.0124.8317.5913.3910.658.717.276.155.254.513.893.362.922.562.292.061.86

K

kJ

J-bar'1cm3

O -8.05E+05

2/17/93

Page 163: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 157

PYRRHOTITE Formula wt 80.932

Fe .875S: Monoclinic crystals 298.15 to combined structural and magnetic transition at 590 K; hexagonal crystal (NiAs-type) 590 to 1000 K. Reference state for sulfur is ideal S2 gas at p « 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

cp

49.8850.0156.2463.5667.3565.3057.4257.1958.38

ST

60.7060.7076.2889.57

104.51114.53122.64129.39135.46

/IlO_tlO \ /IP _/f O_tlQ \ /IP A HO(HT-H298//T -(Gip-HJgsJ/T AfH

J-mol'^-K"1

0.00

0.3113.5322.7632.4737.3740.2842.1743.71

60.7060.3962.7566.8172.0477.1682.3687.2291.75

i, T

-161.8-161.7-160.4-158.6-155.0-153.0-151.9-151.6-151.9

AfG°

mol"1

-138.8-138.5-131.1-124.0-117.5-111.2-105.4-99.6-93.8

Log Kf

24.3124.1217.1212.9510.238.306.885.784.90

Melting T

H298"H8

kJ

9.21 kJ

Boiling T

Molar Vol

K

1.749 J-bar'1 17.49 cm3

A- -1.513E+02 B- 5.811E-02 0 -4.30E+05

01/13/93

Page 164: robie 1995

158 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PYRITB Formula wt 119.979

FeS2 : Cubic crystals 298.15 to 1000 K. Reference state for sulfur is ideal S2 gas at p 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

f o1ft

62.1762.3969.1571.9573.9375.9078.1080.5783.29

S o / T

52.9053.2972.3488.10101.39112.94123.21132.55141.18

IH*-HJ98) /T

0.000.3816.8827.6435.2040.8745.3849.1552.43

-(GT-H298 )/T

52.9052.9055.4560.4566.2072.0777.8383.4088.75

A£H°

kJ

-300.1-300.1-299.5-298.7-298.0-297.4-297.0-296.8-297.1

AfG°

mol'1

-239.8-239.4-219.3-199.3-179.5-159.8-140.2-120.6-101.1

Log Kf

42.0141.6928.6420.8215.6311.939.157.005.28

Melting T

H298"H8

10151 K

kJ

9.63 kJ

Boiling T

Molar Vol

K

kJ

2.394 J-bar"1 23.94 cm3

A= -2.967E+02 B= 1.958E-01 C= -1.36E-05

9/25/92

Page 165: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 159

MARCASITE Formula wt 119.97$

Orthorhombic crystals 298.15 to 700 K. Reference state for sulfur is ideal 82 gas a' p » 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700

CP

62.4362.6069.1772.4474.5977.00

ST

53.9054.2973.3189.13102.53114.20

(Hf-H298 ,/T

.-1-1

0.000.3916.8627.6835.3241.10

-(GT-H298 )/T

53.9053.9056.4561.4567.2173.11

AfH°

1. T

-298.1-298.1-297.4-296.6-295.9-295.2

A£G°

mol'1

-238.1-237.7-217.7-197.8-178.1-158.5

Log Kf

41.7141.3928.4220.6615.5011.83

Melting T

kJ

9.74 kJ

Boiling T

Molar Vol 2.458 J'bar 24.58 cm3

'1

A- -2.952E+02 B= 1.955E-01 O -1.08E-f05

9/25/92

Page 166: robie 1995

160 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HYDROGEN SULFIDE Formula wt 34.082

Ideal gas at p « 1 bar, at p * 1 bar.

298.15 to 1800 K. Reference state for sulfur L0 ideal S2 gas

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

34.2034.2135.4837.2239.0540.8542.5844.2145.7247.1348.4149.5850.6251.5552.3553.0453.60

**

205.80206.01216.01224.11231.05237.21242.78247.89252.63257.05261.21265.13268.84272.37275.72278.92281.96

(HT-H298 )/T

J-mol"1-^1

0.000.218.85

14.3518.3121.4023.9426.1127.9929.6731.1832.5533.8034.9636.0237.0037.91

-(Gf-H298 )/T

205.80205.80207.15209.76212.74215.81218.83221.78224.63227.38230.03232.58235.04237.41239.70241.91244.06

AfH°

IrT

-84.9-84.9-86.0-87.0-87.9-88.7-89.2-89.7-90.1-90.4-90.6-90.7-90.8-90.8-90.8-90.8-90.7

A£G°

mol"1

-73.3-73.2-69.1-64.8-60.3-55.6-50.8-46.0-41.1-36.2-31.3-26.3-21.4-16.4-11.5-6.5-1.6

Log Kf

12.8412.759.036.775.254.153.322.672.151.721.361.060.800.570.370.200.05

Melting T

H298"H8

K

kJ

9.96 kJ

Boiling T K

kJ

Molar Vol. 2478.97 J«bar'1 24789.7 cm3

A« -9.067E+01 B= 4.942E-02 O 2.447E+05

3/26/92

Page 167: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES

ALABANDITE Formula wt 87.004

MnS: Cubic crystals 298.15 to 1800 K. Reference state for sulfur is ideal S2 gas at p bar.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afo.H0

CP

49.9849.9951.1052.1452.8353.2553.5553.8454.2154.7355.4456.3957.6059.1060.9163.0465.51

COST

80.3080.6195.13

106.65116.22124.40131.53137.85143.55148.74153.53158.00162.22166.24170.11173.87177.54

K

kJ

(HT-H298 )/T

»1 _1

0.000.3112.8620.6225.9329.8132.7635.0836.9838.5639.9441.1742.3043.3644.4045.4346.48

-(Gf-H|98 )/T

80.3080.3082.2786.0490.2994.5998.78102.77106.57110.17113.59116.83119.93122.88125.71128.43131.06

FORMATION

AfH°

kJ*mol

-278.2-278.2-277.5-277.0-276.6-276.4-276.3-276.3-278.7-278.9-279.1-279.3-281.7-284.2-296.9-297.3-297.4

Boiling

A«pH°

FROM THE ELEMENTS

A£G°

-1

-258.6-258.5-252.0-245.7-239.4-231.3-227.1-220.9-214.7-208.3-201.9-195.5-188.9-182.2-174.7-167.0-159.4

T

Molar Vol. 2.146HJ98-H8

A-

kJ

-2 . 807E+02 B* 6.621E-02 0 2.

21.46

459E+05

Log Kf

45.3045.0032.9125.6620.8417.4114.8312.8211.229.898.797.857.056.345.705.134.62

K

kJ

J*bar*cm3

3/26/92

Page 168: robie 1995

162 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MOLYBDENITE Formula wt 160.072

MoS2 : Hexagonal crystals 298.15 to 1200 K. p = 1 bar.

Reference state for sulfur is ideal S gas at

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

°p Sf (Hf-H298 )/T

T- ~l l_«r 1

-(GT-H298 )/T AfH° AfG«

1, T..«_1 1

63.5163.6368.4571.5873.7775.3576.5477.4478.1278.6579.04

62.6062.9982.0197.65110.90122.40132.54141.61149.81157.28164.14

0.000.3916.8527.5035.0440.6945.1048.6551.5654.0056.07

62.6062.6065.1670.1475.8681.7087.4492.9698.24103.28108.07

Log K£

-400.4-400.4-399.6-398.5-397.4-396.2-395.0-393.7-392.5-391.3-390.1

-342.5-342.1-322.8-303.8-284.9-266.3-247.8-229.5-211.3-193.2-175.3

60.0059.5742.1631.7324.8019.8716.1813.3211.049.177.63

Melting T K

kJ

8.818 kJ

Boiling T

Molar Vol

K

kJ

3.202 J-bar'1 32.02 cm3

A= -3.933E+02 B« 1.822E-01 C« -3.21E+05

3/26/92

Page 169: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 163

MILLERITE Formula wt 90.756

NiS: Rhombohedral crystals 298.15 to 623 K; hexagonal crystals 623 to melting point at 1066 K. Reference state for sulfur is ideal $2 gas at p * 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100

CP

47.1147.2450.7953.6856.2759.4562.5565.6568.7471.13

COST

52.9753.2667.3679.0489.04102.68110.79118.37125.44159.58

(HT-H298 )/T

__1 -1

0.000.2912.5520.4226.2234.9138.1841.0543.6872.73

-(GT-H298 )/T

52.9752.9754.8158.6262.8267.7772.6177.3281.7686.85

AfH°

kJ

-155.3-155.3-154.8-154.2-153.8-150.2-149.0-147.6-145.9-114.7

AfG°

,__i 1

-128.2-128.0-119.0-110.1-101.3-93.0-85.4-77.0-69.2-62.5

Log Kf

22.4522.2915.5311.508.826.945.574.473.612.97

Melting T

H298"H8

1066 K

kJ

53.01 kJ

Boiling T

Molar Vol

K

kJ

1.689 J-bar'1 16.89 cm3

A* -1.434E+02 7.351E-02 O -6.29B+05

4/1/92^

Page 170: robie 1995

164 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HEAZLEWOODITE Formula wt 240.202

Ni3S2 : Hexagonal crystals 298.15 to 834 K; cubic crystals 834 K to incongruent meltingpoint 1064 K; liquid 1064 to 1400 K. Reference state for sulfur is ideal S2 gas at p = 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

CP

118.24118.45129.01136.05141.59148.35158.39189.15191.81189.12189.12189.12189.12

**

133.20133.93169.52199.12224.42246.72267.14355.52375.52411.84428.28443.42457.44

<H*-H298) /T

0.000.7331.5451.7966.2977.5186.95

159.38162.41182.56183.11183.57183.97

-<Gf-H298 )/T

133.20133.20137.98147.34158.12169.22180.20196.14213.11229.28245.17259.85273.47

AfH°

-344.9-344.9-344.0-343.0-342.5-341.7-339.3-278.4-272.8-247.9-242.7-237.9-233.3

AfG°

mol'1

-289.9-289.5-271.2-253.1-235.2-217.3-201.1-187.1-177.3-168.7-161.7-155.1-148.9

Log Kf

50.7850.4135.4126.4420.4716.2213.1310.869.268.017.046.235.56

Melting T

H298~H8

1064 K

19.66 kJ

21.501 kJ

Boiling T

Molar Vol

K

kJ

4.095 J'bar'1 40.95 cm3

-2.815E+02 B« 1.016E-01 O -3.71B+06

4/1/92

Page 171: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 165

GALENA Formula wt 239.266

PbS: Cubic crystals 298.15 to 900 K. Reference state for sulfur is ideal S2 gas at p = 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

cp

49.4949.5251.1652.8054.4456.0857.7259.36

ST i

91.7092.01106.48118.07127.84136.36143.95150.84

\ **fp""**l*S Qfl / / *

1 * IDOl * K *

0.000.3112.8120.6526.1430.3033.6336.40

-(GT-H298 )/1

91.7091.7093.6697.42101.70106.05110.32114.45

AfH°

kJ

-162.6-162.6-161.9-161.3-160.6-164.8-163.9-162.9

AfG°

mol"1

-136.6-136.4-127.8-119.4-111.0-102.0-93.1-84.3

Log K£

23.9323.7616.6912.479.677.616.084.90

Melting T 1400 K

kJ

Boiling T K

kJ

Molar Vol. 3.149 J-bar'1 31.49 cm3

A* -1.640E+02 B- 8.830E-02 0 9.946E+04

9/25/92

Page 172: robie 1995

166 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

STIBNITE Formula wt 339.698

Orthorhombic crystals 298.15 to 900 K. at p * 1 bar.

Reference state for sulfur is ideal 82 gas

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

CP

119.75119.81123.38126.46128.94130.92132.51133.80

COST

182.00182.74217.70245.58268.86288.89306.48322.17

(HT-H298 )/T

J-mol"1 -*"1 -

0.000.74

30.9649.7662.7672.3679.7885.72

-(GT-H298 )/T

182.00182.00186.74195.82206.10216.53226.70236.45

AfH°

kJ

-344.3-344.3-342.2-340.1-338.0-335.9-334.0-332.2

A£6°

mol'1

-269.4-269.8-244.1-219.8-195.9-172.4-149.2-126.2

Log Kf

47.1946.8231.8822.9617.0612.879.747.33

Melting T

H2*98~H6

829 K

kJ

kJ

Boiling T

Molar Vol

K

kJ

7.341 J-bar'1 73.41 cm3

A = -3.338E+02 B - 2.315E-01 C - -4.19E+05

4/1/92

Page 173: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 167

HERZENBERGITE Formula wt 150.776

SnS: Orthorhombic crystals 298.15 to 875 R; cubic crystals 875 to melting point 1153 K. Liquid 1153 to 1300 R. Reference state for sulfur is ideal S2 gas at p » 1 bar.

Temp.

R

298.15300400500600700800900

1000110012001300

Melting T

AH»H O

H298~H5

CP

49.2549.3250.8952.0354.5258.4163.5054.0457.0760.1175.6175.61

31

A*

S o / T I

j

77.0077.3091.76

103.22112.91121.50129.71137.47143.32148.90181.98188.03

1153 R

.59 kJ

kJ

-1.696E+02

mol"1 ^

0.000.30

12.8120.5225.9630.3034.1237.8139.5941.3269.6470.10

FORMATION FROM THE ELEMENTS

/T -(GT-H298 )/T AfH° AfG° Log Rf

-1 1-T- 1-1

77.0077.0078.9682.7086.9591.2095.5999.66

103.73107.58112.34117.93

-170.8-170.8-170.2-169.8-176.4-175.4-173.9-171.8-170.9-169.7-136.3-133.5

Boiling

Av*H°

-144.5-144.3-135.6-127.0-117.1-107.3-97.7-88.1-78.9-69.7-62.0-55.9

T

Molar Vol. 2.901 29.01

B* 8. 9 4 IE-02

25.3125.1317.7113.2610.198.006 ^A wo

5.114.123.312.702.25

R

kJ

J-bar'1 cm3

0 -1.74E+05

4/1/92

Page 174: robie 1995

168 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BERNDTITE Formula wt 182.842

SnS2 : Hexagonal crystals 298.15 to 1000 K. p = 1 bar.

Reference state for sulfur is ideal S2 gas at

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP

70.1270.1772.0573.5275.1977.1379.3381.7484.33

Sf

87.5087.93108.41124.64138.19149.92160.36169.84178.59

(HT-H298 )/T

-1-1

0.000.4318.1329.0636.6042.2546.7550.5053.75

-(GT-H298 )/T

87.5087.5090.2895.58101.59107.67113.61119.34124.84

AfH°

1. T

-278.4-278.4-277.4-276.6-282.8-281.6-280.2-278.6-276.9

AfG°

mol"1

-221.2-220.8-201.8-183.0-163.1-143.2-123.5-104.0-84.7

Log K£

38.7538.4526.3519.1214.1910.698.066.044.42

Melting T

H2*98"H5

K

kJ

kJ

Boiling T

Molar Vol

K

kJ

4.096 J-bar'1 40.96 cm3

A- -2.818E+02 1.973E-01 C= 1.613E+05

4/1/92

Page 175: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 169

TUNGSTENITE Formula wt 247.982

WS2 : Hexagonal crystals 298.15 to 1500 K. Reference state for sulfur is ideal S2 gas at p 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500

CP

63.8363.9969.6772.4174.0175.0975.9076.5777.1677.7178.2478.7679.2979.83

ST

67.8068.2087.50103.37116.72128.22138.30147.28155.38162.76169.54175.82181.68187.17

(HT-H$98 )/T

-1-1

0.000.3917.1027.9235.4841.0645.3748.8051.6153.9555.9657.6959.2160.57

-,G5-HJ98 )/1

67.8067.8070.3975.4581.2587.1592.9398.48103.77108.80113.58118.13122.47126.60

AfH°

kJ

-370.2-370.2-369.3-368.1-366.9-365.6-364.4-363.1-361.9-360.6-359.4-358.2-357.0-355.8

AfG°

mol"1

-312.7-312.3-293.1-274.2-255.6-237.1-218.8-200.7-182.7-164.9-147.1-129.5-111.9-94.5

Log Kf

54.7754.3738.2828.6522.2517.6914.2911.659.547.836.405.204.183.29

Melting T

H298~H5

K

kJ

11.01 kJ

Boiling T 239.1 K

A^0 20.41 kJ

Molar Vol. 3.207 J-bar'1 32.07 cm3

A* -3.610E+02 B= 1.782E-01 C« -4.51E+05

4/l/d2

Page 176: robie 1995

170 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SPHALERITE Formula wt 97.456

ZnS: Cubic crystals to 1300 K. Wurtzite is the stable form of ZnS above 1300 K. Reference state for sulfur is ideal S2 gas at p » 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300

cp

45.7645.8248.3049.9351.1252.0452.7953.4253.9654.4354.8555.23

ST

58.7058.9872.5383.5092.71100.66107.66113.92119.57124.74129.49133.90

(HT-H$98 )/T -(GT-H298 )/T AfH°

J-mol"1 ^"1

0.000.2812.0019.4324.6228.4731.4733.8735.8537.5238.9540.19

58.7058.7060.5364.0668.0972.1976.1980.0483.7287.2290.5493.71

kJ

-268.4-268.4-267.9-267.4-266.9-273.8-273.5-273.2-272.8-272.4-387.1-385.6

AfG°

mol"1

-239.5-239.3-229.7-220.2-210.7-201.3-191.0-180.7-170.4-160.2-148.1-128.2

Log Kf

41.9541.6629.9923.0018.3515.0212.4710.498.907.616.455.15

Melting T

H298~H8

kJ

8.82 kJ

Boiling T

Molar Vol

K

kJ

2.383 J'bar'1 23.83 cm3

A* -2.821E+02 B- 1.131E-01 0 8.609E+05

01/06/93

Page 177: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES

WURTZITE Formula wt 97.456

ZnS: Hexagonal crystals 298.15 to 1300 K. Reference state for sulfur is ideal S2 gas at p 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300

cp

45.8945.9648.7250.1351.0951.8652.5553.2153.8654.5055.1555.80

ST

58.8059.0872.7483.7793.00100.94107.91114.13119.77124.94129.71134.15

/UO _U O \ / T\ T 2 9 8 » '

J»mol~*»K~* -

0.000.2812.0919.5724.7528.5731.5233.9035.8637.5238.9740.24

-(GT-H$98 )/T

58.8058.8060.6464.2068.2572.3776.3880.2483.9187.4190.7493.91

A£H°

kJ

-268.1-268.1-267.6-267.1-266.6-273.5-273.2-272.9-272.5-272.1-386.8-385.2

AfG°

mol"1

-239.2-239.0-229.4-219.9-210.5-201.2-190.9-180.6-170.3-160.1-148.0-128.2

Log Kf

41.9141.6229.9622.9718.3315.0112.4610.488.907.606.445.15

Melting T

H298"H5

K

kJ

8.85 kJ

Boiling T K

A^0 kJ

Molar Vol. 2.385 J-bar 23.85 cm3

i

A= -2.8172E+02 B- 1.1284E-01 C- 8.613E+06

01/06/93

Page 178: robie 1995

172 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BERTHIERITE Formula wt 427.611

Orthorhombic crystals 298.15 to 836 K. Reference state for sulfur is ideal 82 gas at p = 1 bar.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

cp

175.23175.60186.17189.05190.44191.92193.91196.48

COST

245.00246.09298.40340.31374.90404.37430.12453.10

(HT-H298 )/T

J-mol'^K""1 -

0.001.08

46.3374.6493.83107.73118.37126.91

-(GT-H298 )/T

245.00245.00252.06265.67281.07296.63311.74326.20

AfH°

kJ*m

-513.4-513.3-509.5-505.8-502.3-499.2-496.6-494.4

AfG°

Q i 1

-415.2-414.6-382.2-350.8-320.1-290.0-260.3-230.9

Log Kf

72.7572.1849.9136.6527.8721.6417.0013.40

Melting T K

kJ

kJ

Boiling T

Molar Vol

K

kJ

9.222 J'bar' 92.22 cm3

A- -4.957E+02 B- 2.954E-01 0 -6.84E+05

2/17/93

Page 179: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 173

CHALCOSTIBITE Formula wt 249.428

Orthorhombic crystals 298.15 to 826 K. at p = 1 bar.

Reference state for sulfur is ideal $2 gas

Temp,

K

CP ST (HT-H$98 )/T

J-mol"1^'1

FORMATION FROM THE ELEMENTS

Log KfAfH° AfG°

kJ*mol"1

298.15300400500600700800900

100.15100.22104.26108.30112.34116.38120.42124.46

149.20149.82179.20202.90223.01240.63256.43270.85

0.000.6226.0242.0753.4562.1569.1875.10

149.20149.20153.18160.83169.56178.48187.25195.75

-259.4-259.4-257.5-255.5-253.3-250.9-248.3-245.5

-212.4-212.1-196.6-181.6-167.0-152.9-139.0-125.5

37.2136.9325.6818.9714.5411.419.087.29

Melting T

AK..H'

826 K Boiling T

kJMolar Vol

kJ

K

kJ

5.006 J-bar 50.06 cm3

A= -2.486E+02 B= 1.377E-01 C» -4.38E+05

2/17/9J3

Page 180: robie 1995

174 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CORUNDUM Formula wt 101.961

A12°3 : Rhombohedral crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200130014001500160017001800

CP

79.1079.5396.45106.04112.31116.79120.19122.88125.08126.93128.52129.91131.13132.23133.23134.14134.99

ST

50.9251.4176.8799.51

119.43137.10152.93167.24180.31192.32203.43213.78223.45232.53241.10249.21256.90

<HT-H298 )/T

J-mol'1 ^"1 -

0.000.49

22.6038.4050.2359.4366.8272.9178.0282.3886.1689.4892.4195.0397.3999.52

101.47

-<GT-H298 )/'

50.9250.9254.2861.1169.2177.6786.1094.34

102.29109.93117.27124.30131.04137.51143.72149.68155.43

r AfH°

-1675.7-1675.7-1676.3-1676.0-1675.3-1674.4-1673.5-1672.7-1693.4-1692.3-1691.2-1690.0-1688.8-1687.4-1686.0-1684.5-1683.0

AfG°

_1

-1582.3-1581.7-1550.2-1518.7-1487.3-1456.1-1424.9-1393.9-1361.5-1328.3-1295.3-1262.3-1229. 5-1196.8-1164.1-1131.5-1099.0

Log Kf

277.20275.39202.43158.66129.48108.6593.0480.9071.1263.0856.3850.7245.8741.6738.0034.7731.89

Melting T

H2*98~H6

2345 K

kJ

10.016 kJ

A- -1.686E+03

Boiling T

B* 3.257E-01

Molar Vol.

C- 6.538E+05

K

kJ

2.558 J-bar1 25.58 cm3

4/4/92

Page 181: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 175

BOEHMITE Formula wt 59.988

AIO(OH): Orthorhombic crystals 298.15 to 600 K.

Temp. C» ST (HT-H298 )/T -(GT-H298 )/T

K J-mol"1^"1

298.15 54.24 37.20 0.00 37.20 300 54.50 37.54 0.34 37.20 400 66.40 54.95 15.46 39.49 500 74.51 70.70 26.51 44.19 600 80.03 84.80 35.00 49.80

Melting T K

A^H0 kJ

H298~H5 8.83 kJ

A~ -9.976E+02 B« 2.646E-01

FORMATION FROM THE ELEMENTS

A£H° A£6° Log Kf

kJ-mol"1

-996.4 -918.4 160.90 -996.4 -917.9 159.82 -997.3 -891.6 116.43 -997.3 -865.2 90.38 -997.0 -838.8 73.02

Boiling T K

A^0 kJ

Molar Vol. 1.954 J-bar'1 19.54 cm3

C« 2.644E+04

8/27/92

Page 182: robie 1995

176 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

DIBORON TRIOXIDE Formula wt 69.620

B2°3 : Hexagonal crystals 298.15 to melting point 723 K.

FORMATION FROM THE

Temp.

K

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afc.H0

CP

62.6062.9378.0789.3198.08105.19129.70129.70129.70129.70129.70129.70129.70129.70129.70129.70129.70

24.

ST

54.0054.3974.6893.37

110.46126.13175.88191.16204.83217.19228.47238.86248.47257.42265.79273.65281.06

723 K

07 kJ

<HT-H$98)/T

J-mol'^K"1 -

0.000.3918.0231.2041.6550.2389.5594.0297.58100.51102.94105.00106.76108.29109.63110.81111.86

-<6T-H§98 )/T

54.0054.0056.6762.1768.8175.9086.3397.14107.25116.68125.53133.86141.71149.13156.16162.84169.20

A£H°

1. T.

-1273.5-1273.5-1273.6-1273.3-1272.6-1271.6-1244.7-1241.6-1238.7-1236.1-1233.6-1231.3-1229.2-1227.1-1225.2-1223.5-1221.8

AfG°

ntol"1

-1194.4-1193.9-1167.3-1140.8-1114.3-1088.0-1064.5-1042.1-1020.1-998.4-976.9-955.6-934.5-913.5-892.6-871.9-851.2

Boiling T

^1°

Molar Vol. 2H298-H8

A*

9.30 kJ

-1.240E+03 - 2.148E-01 C« -2.

27

28E+06

ELEMENTS

Log Kf

209.24207.87152.43119.1797.0181.1969.5060.4853.2847.4142.5238.3934.8631.8129.1426.7924.70

K

kJ

.722 J-bar'1

.22 cm3

9/9/92

Page 183: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 177

BARIUM MONOXIDE Formula wt 153.326

BaO: Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

47.2847.3549.9851.7853.1754.3355.3656.2957.1557.9658.7359.4860.1960.8961.5862.2562.90

COST

72.0772.3686.3797.73

107.30115.58122.91129.48135.46140.94146.02150.75155.18159.36163.31167.07170.64

(HT-H$98 )/T

J-mol'^KT1 -

0.000.2912.4120.1125.5129.5532.7135.2837.4239.2540.8542.2543.5144.6445.6846.6347.52

-(Gf-H298 )/T

72.0772.0773.9677.6281.7986.0490.2094.2098.03101.69105.17108.50111.68114.72117.63120.43123.12

AfH°

-548.1-548.1-547.7-548.0-548.9-549.0-549.5-549.5-549.5-557.8-557.8-557.8-557.6-557.2-556.8-556.3-555.8

AfG-

-1

-520.4-520.2-511.0-501.8-492.5-483.1-473.6-464.1-454.6-444.3-434.0-423.7-413.4-403.1-392.9-382.6-372.4

Log Kf

91.1790.5866.7352.4242.8736.0530.9226.9423.7521.1018.8917.0215.4214.0412.8311.7610.81

Melting T 2286 K

kJ

9.98 kJ

- -5.518E+02

Boiling T

B= 9.893E-02

Molar Vol.

C« 2.781E-01

K

kJ

2.559 J-bar" 25.59 cm3

8/27/92

Page 184: robie 1995

178 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BROMELLITE Formula wt 25.012

BeO: Hexagonal crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

25.5625.7633.9338.9042.2844.7346.6148.0949.3050.3151.1851.9452.6253.2453.8254.3754.90

ST

13.7713.9322.5730.7138.1244.8350.9356.5161.6466.3970.8174.9378.8182.4685.9189.1992.32

(HJ-H298 )/T

J-mol^-K"1 -

0.000.167.68

13.4618.0021.6524.6627.1829.3331.2032.8334.2735.5536.7137.7738.7339.61

-<Gf-H298 )/T

13.7713.7714.8917.2520.1223.1826.2829.3332.3135.1937.9840.6643.2545.7548.1550.4752.71

AfH°

-609.4-609.4-609.7-609.6-609.4-609.0-608.6-608.2-607.7-607.3-606.9-606.6-606.3-606.0-620.3-619.7-619.1

A£6°

mol"1

-580.1-579.9-570.0-560.1-550.2-540.4-530.6-520.9-511.2-501.6-492.0-482.4-472.9-463.4-453.5-443.1-432.7

Log Kf

101.63100.9774.4458.5147.9040.3234.6430.2326.7023.8221.4119.3817.6416.1414.8013.6112.56

Melting T

H2§98~H6

2681 K

kJ

2.88 kJ

-6.089E+02

Boiling T

B= 9.754E-02

Molar Vol

O -4.08E-02

K

kJ

0.8309 J-bar' 8.309 cm3

8/27/92

Page 185: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 179

BISMITE Formula wt 465 .959

Bi2O3 : Monoclinic crystals 298.15 to melting point 1098 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

°p ST (Hf-H298 )/T

T- .1 l-*r 1

-(GT-H$98 )/T AfH« AfG«

1.*- > 1

113.55113.61116.94120.28123.62126.95130.29133.62136.96

151.50152.20185.34211.80234.02253.33270.50286.03300.29

0.000.7029.3447.2059.6669.0376.4882.6487.91

151.50151.50156.00164.60174.36184.30194.02203.39212.38

Log Kf

-573.9-573.9-572.0-570.2-591.3-589.5-587.3-584.7-581.9

-493.5-493.0-466.3-440.1-411.9-382.2-352.7-323.5-294.7

86.4585.8360.8945.9835.8628.5223.0318.7815.39

Melting T 1098 K

kJ

H2*98~H8 kJ

Boiling T

Molar Vol

kJ

4.973 J-barf1 49.73 cm3

A= -5.909E+02 B= 2.957E-01 O 8.426E+05

8/27/9J

Page 186: robie 1995

180 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CARBON MONOXIDE Formula wt 28.010

CO: Ideal gas at p = 1 bar, 298.15 to 2200 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afc.H 0

CP

29.1429.1329.1529.7930.5531.2931.9732.5833.1433.6434.0934.5034.8635.1835.4735.7235.94

0.

ST

197.27197.45205.80212.37217.87222.64226.86230.66234.12237.31240.25243.00245.57247.98250.26252.42254.47

68.05 K

837 kJ

/ W O M»1J 5 . \ / *F\ um *lo OQ j I A

J-mol'^K'1 -

0.000.187.39

11.8114.8717.1618.9720.4521.6922.7523.6824.5025.2225.8826.4727.0127.50

-<H-HS9e) /i

197.27197.27198.41200.57203.00205.48207.89210.21212.43214.55216.57218.50220.34222.11223.80225.42226.97

FORMATION

! AfH°

-110.5-110.5-110.1-110.0-110.2-110.5-110.9-111.4-112.0-112.6-113.2-113.9-114.6-115.3-116.0-116.7-117.4

Boiling

A«pH°

FROM THE ELEMENTS

A£6°

-1

-137.1-137.2-146.2-155.2-164.2-173.2-182.2-191.0-199.9-208.6-217.3-226.0-234.6-243.1-251.6-260.1-268.5

T

Molar Vol. 2478.H298-H6

-

8.67 kJ

-1.131E+02 B= -8.667E-02

24789.

Log Kf

24.0123.8919.0916.2214.3012.9311.8911.0910.449.919.469.088.758.478.217.997.79

K

kJ

97 J-bar*17 cm3

C= 1.858E+05

4/4/92

Page 187: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 181

CARBON DIOXIDE Formula wt 44.010

CO2 : Ideal gas at p = 1 bar, 298.15 to 2200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

AfcjH0

CP

37.1237.2041.2044.6247.3949.6451.4853.0154.2955.3856.3157.1057.7958.3858.9059.3559.74

COST

213.79214.02225.28234.85243.24250.72257.47263.63269.28274.51279.37283.90288.16292.17295.95299.54302.94

K

kJ

(HT-H|§98)/T

J-mol'^K'1

0.000.239.9816.5821.4925.3628.5131.1533.4035.3537.0638.5739.9241.1342.2343.2244.13

-(Gf-H°, 98 )/T

213.79213.79215.30218.28221.75225.37228.96232.48235.88239.16242.31245.34248.25251.04253.73256.32258.82

AfH°

-393.5-393.5-393.6-393.7-393.8-394.0-394.2-394.4-394.6-394.8-395.0-395.2-395.5-395.7-395.9-396.1-396.3

Boiling

A**H°

A£6°

1

-394.4-394.4-394.7-394.9-395.2-395.4-395.6-395.7-395.9-396.0-396.1-396.1-396.2-396.3-396.3-396.3-396.3

T

Molar Vol. 2478H2*98~H5

9.36 kJ

-3.944E+02 - -1.248E-03

24789

Log Kf

69.0968.6751.5441.2634.4029.5025.8322.9720.6818.8017.2415.9214.7813.8012.9412.1811.50

K

kJ

.97 J-bar'1

.7 cm3

C= 5.480E-02

12/17/91

Page 188: robie 1995

182 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

LIME Formula wt 56.077

CaO: Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

°p

42.0742.2146.9949.3450.7251.6552.3552.9053.3653.7754.1354.4754.8055.1055.4055.6855.96

ST (H

j.

38.1038.3651.2562.0171.1479.0385.9892.1897.78102.88107.58111.92115.97119.76123.33126.69129.88

*-HS98)/T

1-1. K-l

0.000.2611.4318.8024.0127.9030.9133.3235.3136.9738.3839.6140.6841.6342.4843.2543.95

-<GT-H298 )/T

38.1038.1039.8343.2247.1351.1455.0758.8562.4765.9169.1972.3275.2978.1380.8483.4485.94

AfH°

IrT

-635.1-635.1-634.7-634.2-633.7-633.4-634.0-634.0-634.2-634.7-643.3-643.1-643.0-642.8-642.6-642.4-790.9

AfG°

mol'1

-603.1-602.9-592.2-581.6-571.2-560.8-550.3-539.9-529.4-518.9-507.7-496.4-485 . 1-473.8-462.6-451.3-437.9

Log Kf

105.66104.9777.3360.7649.7241.8435.9331.3327.6524.6422.1019.9518.1016.5015.1013.8712.71

Melting T 3200 K

kJ

6.75 kJ

* -6.395E+02

Boiling T

B= 1.105E-01

Molar Vol.

C= 3.497E+05

K

kJ

1.676 J-bar1 16.76 cm3

8/27/92

Page 189: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 183

PORTLANDITE Formula wt 74.093

Ca(OH) 2 : Hexagonal crystals 298.15 to 700 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700

CP

87.5187.7597.94

104.19108.23110.89

ST

83.4083.94110.71133.29152.67169.57

<Hf-H298)/T

J-mol""1*^1 -

0.000.54

23.7339.2450.4358.89

-<GT-H298 )/T

83.4083.4086.9894.05102.24110.68

AfH°

1. T

-986.1-986.1-985.3-983.9-982.3-980.7

AfG°

mol'1

-898.0-897.5-868.1-838.9-810.1-781.5

Log Kf

157.33156.27113.3687.6470.5258.32

Melting T

kJ

14.16 kJ

Boiling T

Molar Vol

K

kJ

3.306 J-bar'1 33.06 cm3

A= -9.810E+02 B= 2.857E-01 -1.98E-I-05

4/8/92

Page 190: robie 1995

184 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CERIANITE Formula wt 172.114

CeO2 : Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

61.6361.7867.5270.8373.1174.8676.2977.5278.6279.6380.5681.4582.2983.0983.8884.6485.38

eoST

62.3062.6881.3396.78109.91121.31131.40140.46148.69156.23163.20169.68175.75181.45186.84191.95196.81

<HT-H298 )/T

1""1 "*1

0.000.38

16.5227.0834.5740.2144.6348.2251.2053.7455.9457.8759.5861.1262.5263.8064.98

-<Gf-H298 )/T

62.3062.3064.8069.7075.3381.1186.7792.2597.48

102.49107.26111.81116.17120.33124.32128.15131.83

AfH°

kJ«

-1088.7-1088.7-1087.9-1086.9-1085.9-1085.0-1084.1-1083.4-1085.7-1090.5-1089.8-1089.1-1088.3-1087.4-1086.5-1085.6-1084.5

AfG°

.-1

-1024.6-1024.2-1002.9-981.7-960.7-940.0-919.3-898.7-878.3-857.4-836.2-815.2-794.1-773.1-752.2-731.3-710.5

Log Kf

179.51178.33130.96102.5683.6470.1460.0252.1645.8740.7136.4032.7529.6326.9224.5622.4720.62

Melting T

H2*98~H5

K

kJ

10.37 kJ

A= -1.0865E+03

Boiling T

B- 2.088E-01

Molar Vol

C= -5.536E-02

K

kJ

2.385 J'bar'1 23.85 cm3

8/27/92

Page 191: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 185

COBALT MONOXIDE Formula wt 74.933

CoO: Cubic crystals 298.15 to 1800 K.

Temp.

K

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft»H 0

CP

43.3443.6251.8854.0054.5154.6754.9055.3055.9256.7557.7658.9560.2861.7563.3465.0366.81

8T

52.8353.1067.0478.9088.8097.22

104.53111.02116.87122.24127.22131.89136.30140.51144.55148.44152.21

2078 R

kJ

<HT-H298 )/T

J-wol"1 -*"1 -

0.000.27

12.3720.5326.1630.2233.2935.7137.7039.3940.8842.2243.4644.6345.7546.8447.90

-<Gf-H298 )/T

52.8352.8354.6858.3762.6466.9971.2475.3079.1782.8586.3489.6792.8495.8898.80

101.60104.31

FORMATION

AfH°

-237.9-237.9-237.1-236.0-235.1-234.3-234.1-233.6-233.4-233.3-233.5-234.1-235.1-234.9-234.4-233.6-249.0

Boiling

Av*H°

FROM THE

AfG°

-1

-214.1-214.0-206.1-198.5-191.0-183.8-176.5-169.4-162.3-155.2-148.0-140.9-133.8-126.6-119.4-112.2-104.6

T

Molar Vol. 1H298-H6

-

9.45 kJ

-2.336B+02 B- 7.152E-02

11

ELEMENTS

Log Rf

37.5137.2526.9120.7316.6313.7111.539.838.487.376.445.664.994.413.903.453.04

R

kJ

.164 J-bar1

.64 cm3

C= -1.63B+05

9/9/92

Page 192: robie 1995

186 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TRICOBALT TETROXIDE Formula wt 240.797

Co3O4 : Cubic crystals 298.15 to 1000 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

123.39123.85142.51154.69164.32172.75180.54187.96195.14

ST

109.30110.06148.50181.68210.76236.73260.31282.01302.18

<HT-H398 ,/T

_1 _1

0.000.76

34.0857.0574.1587.6498.77108.27116.60

-<GT-H298 )/T

109.30109.30114.42124.63136.61149.09161.54173.74185.58

AfH°

1.T

-918.8-918.8-919.0-918.5-917.5-916.3-916.2-914.6-913.1

AfG°

mol"1

-802.2-801.5-762.3-723.1-684.1-645.4-606.5-567.9-529.5

Log Kf

140.54139.5499.5475.5459.5648.1639.6032.9627.66

Melting T

H298"H5

K

kJ

18.13 kJ

Boiling T

Molar Vol

K

kJ

3.977 J-bar'1 39.77 cm3

A« -9.157B+02 B= 3.866E-01 0 -1.61B+05

9/9/92

Page 193: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 187

ESKOLAITE Formula wt 151.990

Cr2O3 : Rhombohedral crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

105.41105.63113.62117.83120.55122.58124.22125.65126.95128.15129.30130.40131.47132.52133.55134.56135.57

ST

81.2081.85113.48139.32161.06179.80196.28211.00224.30236.46247.66258.05267.76276.86285.45293.58301.29

<H*-H598 )/T

J-mol"1 -*'1 -

0.000.6528.0245.6057.8766.9874.0379.6984.3588.2891.6594.5997.1999.51101.60103.51105.26

-<GT-H$98 )/T

81.2081.2085.4693.73103.19112.82122.25131.31139.95148.18156.01163.46170.57177.36183.85190.06196.03

AfH°

-1134.7-1134.7-1133.1-1131.3-1129.5-1127.8-1126.2-1124.8-1123.7-1122.7-1122.1-1121.7-1121.7-1122.0-1122.6-1123.6-1125.0

AfG°

.-1

-1053.1-1052.6-1025.4-998.7-972.4-946.3-920.5-894.9-869.4-844.1-818.7-793.5-768.2-743.0-717.7-692.4-666.9

Log Kf

184.49183.26133.90104.3384.6570.6260.1051.9445.4140.0835.6431.8828.6625.8723.4321.2719.35

Melting T 2603 K

kJ

9.45 kJ

Boiling T

Molar Vol.

K

kJ

2.909 J-bar*1 29.09 cm3

A* -1.1225E+03 B= 2.533E-01 C« -5.635E-01

10/1/92

Page 194: robie 1995

188 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TENORITE Formula wt 79.545

CuO: Monoclinic crystals 298.15 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

cp

42.3042.4447.0749.3250.8051.9853.0554.0955.1356.1857.2558.3359.43

ST

42.6042.8655.8066.5775.7083.6290.6396.94102.69108.00112.93117.56121.92

/ tl O _ V Q _\ /rn \ V OQft/ /

J«mol~l«K~^

0.000.26

11.4718.8324.0427.9531.0233.5335.6437.4639.0640.5041.81

-(GT-H$98 )/T

42.6042.6044.3347.7451.6555.6759.6163.4167.0670.5473.8777.0580.10

A£H°

1. T

-156.1-156.1-155.6-154.8-154.0-153.2-152.3-151.4-150.5-149.6-148.7-147.9-160.2

AfG°

-128.3-128.2-118.9-109.9-100.9-92.2-83.5-74.9-66.5-58.1-49.9-41.7-33.1

Log Kf

22.4822.3215.5311.488.796.885.454.353.472.762.171.671.23

Melting T K

kJ

7.10 kJ

Boiling T

Molar Vol

K

kJ

1.222 J'bar'1 12.22 cm3

A- -1.506E+02 8.412E-02 O -2.64E+05

8/28/92

Page 195: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 189

CUPRITE Formula wt 143.091

Cu20: Cubic crystals 298.15 to 1509 K.

FORMATION FROM THE

Temp.

298.15300400500600700800900100011001200130014001500

Melting T

cp

62.5462.5967.1871.4974.2776.0077.2878.6080.3382.7686.1090.5196.12103.03

ST

92.4092.79

111.37126.85140.16151.74161.98171.15179.52187.29194.62201.68208.59215.45

1509 K

kJ

(HT-H$98 )/T

J-mol^-K'1

0.000.39

16.4727.0734.7240.5045.0248.6851.7554.4656.9559.3561.7764.28

-<Gf-H298 )/T

92.4092.4094.9099.79

105.43111.24116.95122.48127.77132.83137.68142.33146.82151.16

AfH° AfG°

-170.6-170.6-170.6-170.3-169.8-169.3-168.7-168.2-167.6-167.0-166.4-165.6-191.0-189.4

kJ-mol"1

-147.8-147.7-140.0-132.4-124.9-117.4-110.0-102.7-95.5-88.3-81.2-74.1-66.2-57.4

Boiling T

Molar Vol. 2H598~H8

-

kJ

-1 . 690E+02 B- 7.367E-02 C«

23

-6.26E+04

ELEMENTS

Log Kf

25.8925.7118.2813.8310.878.767.185.964.994.193.532.982.472.00

K

kJ

.344 J-bar"1

.44 cm3

8/26/92

Page 196: robie 1995

190 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

WUSTITE Formula wt 68.887

Fe .947O: Rhombohedral crystals 298.15 to melting point 1652 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600

Melting T

Aft.H'

H$98~H5

cp

48.1348.2751.9952.7853.0453.3853.9554.7655.8057.0558.4860.0561.7663.5865.51

COST

56.6056.9071.4383.1392.78100.98108.14114.54120.36125.74130.76135.51140.02144.34148.50

1652 K

kJ

kJ

-2 . 632E+02

<HT-H§98)/T

J-mol'-'-'K"1

0.000.3012.8720.7926.1530.0132.9735.3437.3339.0740.6242.0643.4044.6945.93

B=

-(Gf-H$98)/T

56.6056.6058.5662.3466.6470.9775.1879.2083.0386.6790.1493.4596.6299.65

102.58

6.455E-02

AfH° AfG°

-266.3-266.3-265.2-264.2-263.4-262.8-262.6-262.7-263.4-264.9-265.6-264.7-263.7-262.7-261.6

O

kJ»mol"~^

-244.9-244.8-237.8-231.1-224.6-218.1-211.8-205.4-199.0-192.5-185.9-179.3-172.8-166.3-159.9

Boiling T

AV*H°wmf

Molar Vol. 112

-8.06E+04

Log Kf

42.9142.6231.0524.1419.5516.2813.8311.9210.409.148.097.206.455.795.22

K

kJ

.204 J'bar'1

.04 cm3

2/5/93

Page 197: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 191

FERROUS OXIDE (Fictive) Formula wt 71.846

PeO: Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A^0

H598-H5

CP

47.6847.7550.2651.4752.2652.9153.5154.1154.7255.3455.9856.6357.3057.9858.6859.3860.10

A-

COST

60.6060.9075.0386.3995.84103.95111.05117.39123.12128.37133.21137.72141.94145.91149.68153.26156.67

K

kJ

kJ

-2.719E+02

<HT-H$98 )/T

J-mol"1 -*"1

0.000.2912.5220.2025.4829.3532.3334.7236.6938.3639.8041.0742.2043.2344.1845.0545.87

B=

-(GT-H$98 )/T AfH° AfG°

60.6060.6062.5166.1970.3674.6078.7282.6786.4390.0193.4196.6599.73

102.68105.50108.21110.81

6.634E-02

-272.0-272.0-271.2-270.5-269.9-269.6-269.6-270.0-271.0-273.0-274.1-273.7-273.3-273.0-272.7-273.4-273.6

C*

kJ-mol""1

-251.4-251.3-244.5-237.9-231.5-225.1-218.7-212.3-205.9-199.3-192.5-185.7-179.0-172.3-165.6-158.8-152.1

Boiling T

Av^H0

Molar Vol. 112

7.599E+04

ELEMENTS

Log Kf

44.0543.7531.9324.8520.1516.7914.2812.3210.759.468.387.466.686.005.404.884.41

K

kJ

.200 J-bar'1

. 00 cm3

2/24/94

Page 198: robie 1995

192 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HEMATITE Formula wt 159.692

Fe2O3 : Rhombohedral crystal 298.15 to Neel temperature 950 K. 1800 K.

Hexagonal crystals 950 to

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900950950

100011001200130014001500160017001800

CP

104.05104.32120.29131.72139.33146.52156.12170.22179.45151.69148.49143.55140.74140.07141.42144.64149.58156.06163.95

COST

87.4088.04120.27148.44173.16195.17215.32234.47243.91244.58252.27266.18278.53289.76300.18310.03319.52328.77337.91

<Hf-H§98 )/T

J*mol~*-K~* -

0.000.64

28.5948.1662.7574.1983.7992.5796.8997.54100.16104.32107.45109.98112.16114.21116.26118.40120.71

-(GT-H298 )/T

87.4087.4091.68100.28110.41120.98131.53141.90147.03147.03152.11161.86171.08179.78188.02195.82203.26210.37217.20

A£H°

1. T

-826.2-826.2-824.6-822.3-819.6-816.9-814.0-810.9-809.3-807.9-808.9-810.8-811.9-810.1-808.5-806.9-805.2-804.9-803.1

A£G°

mol"1

-744.4-743.9-716.6-689.9-663.6-637.8-612.4-587.4-575.3-575.3-562.8-538.0-513.2-488.4-463.8-439.2-414.7-390.3-366.0

Log Kf

130.41129.5193.5872.0757.7747.5939.9934.0931.6531.6529.4025.5522.3419.6217.3015.2913.5411.9910.62

Melting T

H298~H8

1895 K

kJ

65.10 kJ

Boiling T

Molar Vol.

K

kJ

3.027 J-bar 30.27 cm3

A= -8.089E+02 B- 2.466E-01 -8.423E+05

9/9/92

Page 199: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 193

MAGNETITE Formula wt 231.539

Fe3°4- Cubic (ferrimagnetic) crystals 298.15 to Neel temperature 845.5 K. crystals (paramagnetic) 845.5 to 1800 K.

Cubic

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800845.5900

100011001200130014001500160017001800

Melting T

AH»H O

CP

150.90151.40176.18192.90207.91228.68260.76330.50213.93205.97201.45199.28198.76199.43201.00203.23205.99209.15

Sf

146.14147.07194.21235.43271.89305.38337.86354.00369.13391.22410.62428.04443.96458.71472.52485.56497.96509.82

(HT-H£98 )/T -(GT-H$98 )/T AfH° AfG°

J-1.--1

0.000.9341.8170.4592.08110.00126.70135.66142.05148.81153.78157.65160.82163.55165.99168.24170.38172.45

146.14146.14152.40164.98179.81195.38211.16218.34227.08242.41256.84270.39283.14295.16306.53317.32327.58337.37

-1115.7-1114.6-1113.0-1109.2-1104.8-1099.5-1092.7-1087.8-1085.1-1085.5-1089.1-1091.0-1088.6-1086.5-1084.6-1082.9-1084.1-1083.7

1870 K

kJ

kJ-mol'1

-1012.7-1012.1-977.9-944.5-912.0-880.3-849.4-835.3-819.5-790.0-760.3-730.4-700.4-670.6-641.0-611.5-582.0-552.4

Boiling T

AV*H°

Molar Vol. 4H298"H8 102.

A« -1

80 kJ

.086E+03 B** 2.969E-01 c+ -1

44

.437E+06

Log Kf

177.42176.21127.7098.6779.4065.6955.4651.6047.5641.2736.1031.7928.1425.0222.3219.9617.8816.03

K

kJ

.452 J'bar'1

.52 cm3

9/9/92

Page 200: robie 1995

194 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

STEAM Formula wt 18.015

H2O: Ideal gas at p 1 bar, 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afi«H0

c° CP

33.5933.5934.0435.0936.3437.6638.9740.2741.5342.7643.9445.0746.1547.1948.1849.1250.01

ST

188.84189.05198.75206.45212.96218.66223.77228.44232.75236.76240.53244.10247.48250.70253.77256.72259.56

K

kJ

(HT-H298 )/T

J-mol"1^"1

0.000.218.59

13.7817.4320.2322.4924.3926.0427.5128.8330.0331.1532.1833.1534.0634.93

-,Gf-H598 )/T

188.84188.84190.16192.67195.52198.43201.28204.05206.70209.26211.71214.06216.33218.51220.62222.66224.63

AfH°

kJ-mol~

-241.8-241.8-242.9-243.9-244.8-245.7-246.5-247.2-247.8-248.4-248.9-249.4-249.8-250.2-250.5-250.7-251.0

Boiling

Ava|H o

A fG°

1

-228.6-228.5-223.9-219.0-214.0-208.8-203.5-198.0-192.6-187.0-181.4-175.7-170.1-164.4-158.6-152.9-147.1

T

Molar Vol. 2478H298"*H8 kJ

A» -2.4896E+02 B= 5.632E-02

24789

Log K£

40.0539.7929.2422.8818.6315.5813.2811.4910.068.887.907.066.355.725.184.704.27

K

kJ

.97 J'bar'1

.7 cm3

C- 3.354E+05

8/26/92

Page 201: robie 1995

THERMODYNAMIC PROPERTIES AT fflGH TEMPERATURE OF INDIVIDUAL PHASES 195

DIPOTASSIUM MONOXIDE Formula wt 94.196

K20: Cubic crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

°p

83.6883.7988.8993.3997.64101.78105.85109.90113.92117.92121.92

S O ,

T

94,1094,62

119,45139.77157.17172.54186.39199.10210.88221.93232.36

(H*-HJ98)/T

J-1--1

0.000.52

21.9935.8345.7853.4859.7765.1269.8073.9977.82

-<Gf-H§98 )/T

94.1094.1097.45103.94111.40119.05126.62133.98141.08147.94154.54

AfH°

kJ

-363.2-363.2-367.0-365.6-363.7-361.4-358.6-355.5-352.0-506.2-500.2

AfG°

mol"1

-322.1-321.9-307.3-292.6-278.1-264.0-250.3-237.0-224.0-202.1-174.7

Log Kf

56.4356.0440.1330.5624.2119.7016.3413.7511.709.607.61

Melting T K

kJ

kJ

Boiling T

Molar Vol

K

kJ

4.038 J'bar'1 40.38 cm3

A- -3.816E+02 B- 1.640E-01 1.032E+06

5/20/93

Page 202: robie 1995

196 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

DILITHIUM MONOXIDE Formula wt 29.881

Li2O: Cubic crystals 298.15 to melting point 1700 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400150016001700

Melting T

AtoH°

CP

54.1054.3363.6169.5273.9877.6780.8783.7286.2988.6390.7692.7094.4696.0597.4798.72

ST (1

37.6037.9454.9669.8382.9194.60

105.19114.88123.83132.17139.98147.32154.25160.83167.07173.02

1700 K

kJ

HT~H298

l~l.i

0.000.33

15.1025.4333.1639.2644.2748.5052.1555.3658.2260.8063.1565.2967.2569.07

,/T -(G*-H298 ,/1

r 1

37.6037.6039.8644.4049.7555.3460.9266.3871.6876.8181.7586.5191.1195.5499.82

103.95

? AfH°

-597.9-597.9-598.7-605.4-605.7-605.6-605.2-604.4-603.4-602.2-600.7-599.1-597.3-595.3-593.2-881.4

Boiling

Av*H°

AfG°

1

-561.2-561.0-548.5-535.3-521.2-507.1-493.1-479.1-465.3-451.5-437.9-424.4-411.0-397.7-384.6-357.3

T

Molar Vol. 1.H598~H8

A-

kJ

-6.086E+02 B- 1.425E-01

14.

Log K£

98.3197.6771.6355.9245.3837.8432.2027.8124.3021.4419.0617.0515.3313.8512.5610.98

K

kJ

476 J'bar'176 cm3

0 4.563E+06

12/7/92

Page 203: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 197

PERICLASE Formula wt 40.304

MgO: Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

37.2637.4042.7045.5747.3748.6149.5350.2650.8751.4051.9052.3652.8253.2853.7654.2554.76

ST

26.9027.1338.7048.5757.0564. ,4571.0076.8882.2187 0891.5795.7599.64103.30106.76110.03113.15

<HT-H298 )/T

.-1-1

0.000.23

10.2617.0621.9725.6928.6230.9832.9434.6036.0237.2638.3539.3340.2241.0341.78

-(GT-H$98 )/T

26.9026.9028.4431.5135.0738.7542.3845.8949.2652.4855.5658.4961.2963.9766.5469.0071.37

AfH°

1. T

-601.6-601.6-601.6-601.4-601.1-600.8-600.5-600.4-608.9-608.9-609.0-609.0-736.4-735.0-733.5-732.1-730.6

AfG°

mol"1

-569.3-569.1-558.3-547.4-536.7-526.0-515.3-504.7-493.3-481.8-470.2-458.6-443.9-423.1-402.3-381.7-361.1

Log Kf

99.7499.0972.9057.1946.7239.2533.6429.2925.7722.8820.4718.4316.5614.7313.1311.7310.48

Melting T

H298~H8

3125 K

kJ

5.17 kJ

Boiling T

Molar Vol

K

kJ

1.125 J«bar4 11.25 cm3

-6.373E+02 B- 1.449E-01 0 2.512E+06

8/26/92

Page 204: robie 1995

198 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BRUCITE Formula wt 58.320

Mg(OH) 2 : Hexagonal crystals 298.15 to 900 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP s* / V O _ ** O \ /ft* / S* O Zl O \ / IP(**T **298' ' (^*T 298' ' AfH° AfG° Log K£

298.15300400500600700800900

77.2777.6691.8999.29104.00107.44110.20112.57

63.2063.6888.23

109.60128.15144.45158.98172.10

0.000.48

21.7836.6147.4755.8062.4367.87

63.2063.2066.4573.0080.6888.6596.55104.23

-924.5-924.5-924.4-923.4-922.1-920.6-919.0-917.3

-833.5-832.9-802.4-772.0-741.8-711.9-682.1-652.6

146.02145.02104.7880.6464.5853.1244.5437.88

Melting T K

H2*98~H8

kJ

11.40 kJ

Boiling T

Molar Vol

K

kJ

2.463 J-bar'1 24.63 cm3

A- -9.195E+02 B« 2.971E-01 O -2.30E+05

4/9/92

Page 205: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 199

MANGANOSITE Formula wt 70.937

MnO: Cubic crystals 298.15 to 1800 K.

Temp.

K

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft.H 0

CP

44.1044.1646.8148.7350.2451.4952.5753.5254.3855.1755.9156.5957.2457.8758.4659.0359.59

ST (HJ

59.7159.9873.0783.7492.76

100.60107.55113.80119.48124.70129.53134.04138.26142.23145.98149.54152.93

2054 K

kJ

i-HJ98 )/T

1-1. XT-1

0.000.27

11.6018.8423.9527.8030.8333.3035.3737.1338.6740.0241.2342.3143.3144.2145.05

-<G*-H598 )/T

59.7159.7161.4864.9068.8172.8076.7280.5084.1287.5790.8794.0297.0399.91

102.67105.33107.88

FORMATION

AfH°

-385.2-385.2-384.9-384.5-384.3-384.1-384.0-383.9-386.2-386.2-386.3-386.3-388.6-391.1-403.8-404.4-404.9

Boiling

Av*H°

FROM THE ELEMENTS

AfG°

-1

-362.9-362.8-355.3-348.0-340.7-333.4-326.2-319.0-311.7-304.3-296.8-289.4-281.9-274.1-265.6-256.9-248.3

T

Molar Vol. 1HJ98-H8 kJ

A» -3.880E+02 B= 7.651E-02

13.

Log K£

63.5863.1646.4036.3529.6624.8821.3018.5116.2814.4512.9211.6310.529.548.677.897.20

K

kJ

.322 J-bar'122 cm3

O 2.398E+05

4/9/92

Page 206: robie 1995

200 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PYROLUSITE Formula wt 86.937

Mn02 : Crystals 298.15 to 850 K.

Temp.

298.15300400500600700800900

J-mol^-K"1

FORMATION FROM THE ELEMENTS

-<GT-H298 )/T AfH" AfG« Log Kf

1. T --.,-. I 1

54.7654.9463.2168.3471.2172.6873.3673.65

52.7553.0970.1184.8197.56

108.66118.41127.07

0.000.34

15.0925.2732.7238.3342.6746.10

52.7552.7555.0159.5464.8470.3275.7480.97

-520.0-520.0-519.8-519.1-518.4-517.7-517.2-516.8

-465.0-464.7-446.3-427.9-409.8-391.7-373.8-355.9

81.4780.9158.2744.7135.6729.2324.4020.65

Melting T

kJ

kJ

Boiling T

Molar Vol

K

kJ

1.661 J'bar'1 16.61 cm3

A= -5.172E+02 B« 1.795E-01 C- -1.20E+05

8/26/92

Page 207: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 201

BIXBYITE Formula wt 157.874

Mn203 : Cubic crystals 298.15 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

CP

101.81101.93108.49114.61120.05124.93129.38133.49137.37141.07144.63148.09151.47

COST

113.70114.33144.55169.43190.81209.69226.67242.15256.42269.68282.11293.82304.92

(HT-H598 )/T

J-mol"1 -*"1 -

0.000.<53

26.7743.7456.0165.5273.2279.6985.2790.1894.5798.55102.21

-(Of-HS98 ,/l

113.70113.70117.78125.69134.80144.18153.45162.45171.15179.51187.55195.27202.71

! AfH°

kJ-

-959.0-959.0-958.4-957.6-956.9-956.0-955.2-954.2-957.7-956.6-955.3-953.8-956.7

AfG°

mol"1

-882.1-881.6-855.9-830.3-804.9-779.7-754.5-729.5-704.5-679.3-654.1-629.0-604.0

Log Kf

154.53153.49111.7686.7470.0858.1849.2742.3436.8032.2628.4725.2722.54

Melting T Boiling T

kJ

17.56 kJMolar Vol.

K

kJ

3.137 J'bar'1 31.37 cm3

A- -9.550E+02 B- 2.508E-01 O -1.645E+05

8/27/92

Page 208: robie 1995

202 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HAUSMANNITE Formula wt 228.812

Mn3O4 : Tetragonal crystals 298.15 to 1400 K.

Temp.

298.1530040050060070080090010001100120013001400

Melting T

H298~H5

CP

142.02142.52158.37165.03169.49173.64178.04182.86188.12193.77199.78206.12212.72

24

ST

164.10164.98208.55244.68275.18301.61325.08346.33365.86384.05401.17417.41432.92

K

kJ

.78 kJ

<H*-H598 )/T

J-mol"1 ^'1 -

0.000.88

38.6263.3080.6493.63

103.90112.40119.71126.18132.06137.51142.65

-<Gf-H298 >/T

164.10164.10169.94181.38194.54207.99221.18233.93246.16257.87269.11279.90290.28

FORMATION

AfH°

-1384.5-1384.5-1383.4-1382.1-1381.0-1380.2-1379.5-1379.0-1385.1-1384.4-1383.3-1381.8-1386.7

FROM THE ELEMENTS

AfG°

-1

-1282.5-1281.8-1247.7-1214.0-1180.5-1147.1-1113.8-1080.7-1047.4-1013.7-980.0-946.5-912.9

Boiling T

Molar Vol. 4.

A» -1.3809E+03 B= 3.3405E-01

46.

Log Kf

224.68223.18162.93126.82102.7785.6072.7362.7254.7148.1442.6638.0334.06

K

kJ

695 J'bar'195 cm3

C* -9.874E+05

4/10/92

Page 209: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 203

BRAUNITE Formula wt 604.645

Mn7SiO12 : Tetragonal crystals 298.15 to 1500 K.

Temp.

298.15300400500600700800900

100011001200130014001500

Melting T

CP COST (HT-HJ|98 )/T -(GT-H298 )/T

FORMATION

AfH°

FROM THE ELEMENTS

AfG° Log Kf

380.79382.01428.72456.30476.35492.85507.45520.96533.78546.15558.21570.07581.76593.34

416.40418.76535.79634.62719.66794.36861.14921.70977.26

1028.711076.751121.901164.581205.11

K

kJ

0.002.35

103.74171.68220.85258,56288,78313 ,,8333 5, .19353, .81370 ,.34385, ,25398 ,,87411, ,45

416.40416.41432.05462.94498.81535.80572.37607.87642.07674.91706.41736.65765.71793.66

-4260.0-4260.0-4258.2-4254.9-4251.4-4247.8-4244.2-4240.7-4252.6-4248.9-4244.5-4239.4-4249.7-4260.6

Boiling

-3944.7-3942.8-3837.2-3732.3-3628.2-3524.6-3421.5-3318.8-3216.4-3112.9-3009.8-2907.1-2804.4-2700.4

T

Molar Vol. 12H§98~H5 65

A=

.68 kJ

-4.2437E+03 B- 1.0286E+00 O -6.

125

946E+05

691.09686.48501.08389.91315.86263.00223.40192.62168.00147.82131.01116.81104.6394.04

K

kJ

.508 J-bar"1

. 08 cm3

02/24/94

Page 210: robie 1995

204 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MOLYBDITE Formula wt 143.938

MoO3 : Orthorhornbic crystals 298.15 to melting point 1074 K; liquid 1074 to 1500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500

CP

74.9175.1383.0287.7891.8595.89100.08104.46109.03126.95126.95126.95126.95126.95

ST

77.7078.16

101.00120.06136.42150.89163.96176.00187.24197.87207.97217.67227.02236.09

<HT-H§98 )/T

,-1. .-1

0.000.46

20.2433.2942.7150.0256.0161.1565.7169.8573.7177.3680.8584.22

-<GT-H§98 )/T

77.7077.7080.7686.7793.71100.87107.95114.85121.53128.02134.26140.31146.17151.87

AfH°

-745.2-745.2-744.1-742.7-741.1-739.3-737.2-734.8-732.2-729.2-725.8-722.0-717.9-713.3

A£G°

mol"1

-668.1-667.6-641.9-616.5-591.4-566.6-542.0-517.8-493.8-470.1-446.7-423.6-400.8-378.3

Log Kf

117.04116.2483.8264.4051.4842.2835.3930.0525.7922.3219.4417.0214.9513.17

Melting T

H298~H5

1074 K

48.91 kJ

12.59 kJ

Boiling T K

Ay_H° IcJ

Molar Vol. 3.056 J-bar'1 30.56 cm3

A- -7.299E+02 B- 2.358E-01 C- -8.02E+05

8/27/92

Page 211: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 205

NITROGEN DIOXIDE Formula wt 46.006

NO2 : Ideal gas at p = 1 bar, 298.15 to 1800 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afi»H°

CP

37.0037.0540.1643.2945.9148.0249.7151.0652.1653.0553.7754.3654.8555.2555.5855.8656.09

sf (

240.10240.33251.39260.70268.83276.08282.60288.54293.98298.99303.64307.97312.01315.81319.39322.77325.97

K

kJ

uo_uo \ /m _/^o_tjo \ /if A no A oo "T 2 (38'' \**T 298'' Hfn Uf\»

l~l.|r-l

0.00

0.239. SI

16.2020.9424.6627.6930.2232.3634.2035.8037.2138.4539.5640.5541.4442.25

240.10240.10241.59244.50247.89251.41254.91258.32261.62264.79267.84270.76273.56276.26278.84281.33283.72

33.133.132.532.232.031.931.931.932.032.132.332.432.532.632.832.933.0

ItJ- ol""l

51.251.457.563.870.276.683.089.395.7

102.1108.4114.8121.1127.4133.7140.1146.4

Boiling T

Av*H°

Molar Vol. 2478HJ98-H8

A=

kJ

3.210E+01 * 6.353E-02 O

24789

1.451E+04

Log Kf

-8.98-8.94-7.51-6.67-6.11-5.71-5.42-5.18-5.00-4.85-4.72-4.61-4.52-4.44-4.37-4.30-4.25

K

kJ

.97 J'bar'1

.7 cm3

5/06/93

Page 212: robie 1995

206 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

DISODIUM MONOXIDE Formula wt 61.979

Na2O: Cubic crystals 298.15 to melting point 1193 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

69.1069.2676.3081.3485.2688.4791.2093.6095.74

Sf {

75.3075.7396.68114.27129.46142.85154.85165.73175.71

(H5-H598 ,/T

-1 «1

0.000.4318.5730.6439.4346.2151.6756.2060.05

-(Gf-H298 )/T

75.3075.3078.1183.6390.0396.64103.18109.53115.66

AfH°

kJ

-414.8-414.8-420.2-420.1-419.3-418.2-416.7-414.9-413.0

AfG°

-376.0-375.7-362.3-347.8-333.4-319.2-305.1-291.3-277.7

Log Kf

65.8765.4247.3136.3329.0323.8219.9216.9114.50

Melting T

H2*98~H8

1193 K

kJ

12.40 kJ

Boiling T

Molar Vol.

K

kJ

2.588 J'bar'1 25.88 cm3

A= -4.180E+02 1.407E-01 C* -5.93E+03

9/10/92

Page 213: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 207

BUNSENITE Formula wt 74.689

NiO: Rhombohedral (distorted cubic) crystals 298.15 to Neel temperature 519 K. crystals 519 to 1800 K.

Cubic

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500519600700800900100011001200130014001500160017001800

Melting T

AI^H*

CP

44.4944.7053.0064.9069.1556.0154.2253.6653.8354.4355.2956.2957.3758.4859.5760.6261.6162.52

S*

37.9938.2752.3865.2567.7476.0784.5591.7498.06103.76108.99113.84118.39122.68126.76130.63134.34137.89

2257 K

kJ

(Hf-H|9Q )/T

J»mol"" K '

0.000.2812.5221.5923.2527.8631.7334.5036.6338.3839.8841.2042.4043.5144.5545.5246.4447.30

-<GT-H298 )/T

37.9937.9939.8643.6644.4948.2152.8257.2461.4365.3869.1172.6475.9979.1782.2185.1187.9090.59

AfH° AfG°

-239.3-239.3-238.6-237.3-236.8-236.2-235.6-235.1-234.5-234.0-233.5-233.1-232.6-232.1-231.6-231.1-230.6-247.3

kJ-mol~l

-211.1-211.0-201.6-192.5-190.9-183.6-175.0-166.8-157.8-149.3-140.8-132.4-124.0-115.7-107.4-99.1-90.9-82.0

Boiling T

Av*H°

Molar Vol. 1.H598"H8

A=

6.69 kJ

-2.331E+02 B* 8.392E-02 O

10.

-2.85E+05

Log K£

36.9936.7326.3320.1119.2115.9913.0510.899.167.806.695.764.984.323.743.242.792.38

K

kJ

097 J'bar*197 cm3

9/9/92

Page 214: robie 1995

208 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

LITHARGE Formula wt 223.199

PbO: Tetragonal crystals (red) 298.15 to 1000 K.

Temp.

298.153004005006007008009001000

CP Sf <Hf-H298 )/T

FORMATION FROM THE ELEMENTS

-<Gf-H298 )/T AfH« AfG« Log Kf

1. T.-.-.1 1

45.7745.8950.5153.2055.1356.7058.0859.3560.55

66.5066.7880.6992.27102.15110.77118.43125.35131.66

0.000.2812.3320.2525.9130.2033.6036.3938.75

66.5066.5068.3772.0276.2480.5784.8388.9692.92

-219.0-219.0-218.4-217.5-216.6-220.5-219.4-218.3-216.9

-188.9-188.7-178.7-168.9-159.3-149.0-138.9-128.9-119.0

33.1032.8623.3417.6513.8711.129.077.486.22

Melting T

H298~H8

kJ

kJ

Boiling T

Molar Vol.

K

kJ

2.391 J'bar*1 23.91 cm3

A- -2.194E+02 B= 1.004E-01 C* 4.877E+04

9/9/92

Page 215: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 209

PLATTNERITE Formula wt 239.199

PbO2 : Tetragonal crystals 298.15 to 1200 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

f O O O / tj O 17 Q \ / T ^ / O O 17 Q \ / T A TI^ A *»f ®

, -1 -.1 , , .-I J*mol X »K x kJ*mol *

Log Kf

61.1761.3568.2371.8274.1175.7977.1478.3079.3480.3181.23

71.8072.1890.90106.54119.85131.41141.62150.77159.08166.69173.71

0.000.38

16.5927.3134.9340.6545.1348.7551.7654.3156.52

71.8071.8074.3179.2384.9290.7696.49102.02107.32112.37117.20

-277.4-277.4-276.6-275.4-274.2-277.8-276.5-275.1-273.7-272.1-270.5

-218.3-218.0-198.3-178.8-159.6-139.8-120.2-100.7-81.4-62.2-43.2

38.2537.9525.8918.6813.8910.437.855.844.252.961.88

Melting T K

kJ

36.78 kJ

Boiling T

Molar Vol.

K

kJ

2.501 J'bar'1 25.01 cm3

-2.752E+02 B* 1.937E-01 C» -7.72E+04

9/9/92

Page 216: robie 1995

210 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MINIUM Formula wt 685.598

Pb3O4 : Tetragonal crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A^H0

cp

154.90155.37172.92182.83189.73195.21199.94204.22208.23212.07215.78219.41222.97226.49229.97233.43236.86

ST

212.00212.96260.35300.08334.06363.73390.11413.91435.64455.66474.28491.69508.08523.59538.31552.36565.80

K

kJ

<HT-H298 )/T

0.000.96

42.0169.2588.78103.61115.36125.00133.12140.13146.28151.76156.72161.26165.44169.34173.00

-(GT-H298 )/T

212.00212.00218.35230.83245.27260.12274.75288.91302.51315.54328.00339.93351.36362.33372.87383.02392.80

AfH°

._ .-

-718.7-718.7-716.3-713.0-709.5-720.3-716.3-711.8-707.0-701.8-696.2-690.2-683.9-677.3-670.4-663.1-655.6

Boiling

Av*H°

AfG°

1

-601.6-600.9-562.0-523.7-486.2-446.9-408.1-369.8-332.1-294.9-258.1-221.9-186.1-150.7-115.8-81.4-47.4

T

Molar Vol. 7.H298"H8

-

kJ

-6.975E+02 B= 3.642E-01

76.

Log Kf

105.40104.6273.3854.7142.3333.3526.6521.4617.3514.0011.248.916.945.253.782.501.37

K

kJ

681 J'bar'181 cm3

C* -1.26E+06

8/21/92

Page 217: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 211

SULFUR DIOXIDE Formula wt 64.065

Ideal gas at p = 1 bar, 298.15 to 2500 K,

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

AftJH0

H298~H8

°P

39.8539.9243.4846.5348.9250.7852.2353.3854.2955.0155.6056.0756.4656.7957.0657.2957.49

A

ST

248.20248.45260.42270.47279.17286.86293.74299.96305.63310.84315.65320.12324.29328.20331.87335.34338.62

K

kJ

10.55 kJ

= -3.536E+02

<Hf-H298 )/T

1-l.v-l

0.000.2510.6117.5022.5526.4529.5932.1734.3436.1937.7839.1740.3941.4742.4443.3144.09

B=

-<GT-H298 )/T

248.20248.20249.81252.96256.62260.40264.15267.78271.29274.65277.87280.95283.90286.72289.43292.03294.53

6.628E-02

AfH° AfG°

-296.8-296.8-300.2-302.7-304.7-306.3-307.7-362.1-362.0-361.9-361.8-361.7-361.6-361.5-361.5-361.4-361.4

0

kJ- 1~1

-300.1-300.1-300.9-300.8-300.3-299.4-298.3-296.0-288.6-281.3-274.0-266.7-259.3-252.1-244.8-237.4-230.2

Boiling T

A^'

Molar Vol. 247824789

3.246E+06

Log Kf

52.5752.2539.3031.4326.1422.3419.4817.1815.0813.3611.9310.719.688.787.997.306.68

K

kJ

.97 J'bar'1

.7 can3

9/9/92

Page 218: robie 1995

212 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SULFUR TRIOXIDE Formula wt 80.064

SO3 : Ideal gas at p « 1 bar, 298.15 to 2200 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A^H0

CP

50.6350.7757.6963.0967.1670.2672.6474.4975.9377.0777.9678.6879.2579.7180.0880.3880.64

S o T

256.80257.11272.70286.18298.06308.66318.20326.87334.80342.09348.83355.10360.96366.44371.60376.46381.06

K

kJ

(Hf-H$98 )/T

«1 _-l

0.000.31

13.8223.1630.1735.6940.1643.8847.0249.7052.0254.0455.8257.4058.8160.0761.20

-(Gf-H298 )/T

256.80256.80258.88263.02267.89272.97278.04282.99287.78292.39296.82301.06305.13309.04312.79316.39319.86

AfH« AfG°

-395.7-395.7-399.3-401.8

kJ-mol"1

-371.0-370.8-362.2-352.6

-403.6 -342.6-405.0-406.0-460.0-459.6-459.0-458.5-458.0-457.4-456.9-456.3-455.8-455.3

-332.3-321.9-310.2-293.6-277.0-260.5-244.0-227.6-211.2-194.8-178.5-162.2

Boiling T

Av^°

Molar Vol. 2478.H298~H8

kJ

-4.504E+02 B= 1.580E-01 C*

24789.

3.103E+06

Log Kf

64.9964.5647.3036.8429.8324.8021.0218.0015.3413.1511.349.808.497.356.365.484.71

K

kJ

97 J'bar'17 cm3

4/9/92

Page 219: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 213

SILICON MONOXIDE Formula wt 44.085

SiO: Ideal gas at p = 1 bar, 298.15 to 1800 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

29.9029.9231.1532.3833.3934.1934.8235.3335.7236.0436.3036.5136.6736.8136.9337.0337.11

COST

211.60211.79220.55227.64233.64238.85243.45247.59251.33254.75257.90260.81263.52266.06268.44270.68272.80

(Hf-HJ98 ,/T

-1-1

0.000.187.77

12.5715.9618.5120.5122.1323.4724.6025.5626.4027.1327.7728.3428.8429.30

-(Gf-H298 )/T

211.60211.60212.79215.07217.68220.34222.95225.46227.86230.15232.33234.41236.40238.29240.10241.84243.50

AfHc

VT

-100.4-100.4-101.0-101.6-102.3-103.0-103.7-104.4-105.2-106.0-106.9-107.8-108.7-109.7-110.7-162.0-162.8

AfG°

mol"1

-127.3-127.5-136.4-145.2-153.8-162.4-170.8-179.2-187.4-195.6-203.7-211.8-219.7-227.6-235.5-242.8-247.5

Log Kf

22.3022.1917.8115.1713.3912.1211.1510.409.799.298.878.518.207.937.697.467.18

Melting T Boiling T

H2"98~H8

kJ

8.71 kJ

K

kJ

Molar Vol. 2478.97 J«bar'1 24789.7 cm3

A= -1.084E+02 B= -7.908E-02 C« 4.562E+05

4/10/92

Page 220: robie 1995

214 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

QUARTZ Formula wt 60.084

SiO2 : Trigonal crystals 298.15 to a-0 transition at 844 K. ^-crystals 844 to 1700. The melting point is estimated to be 1700 K. Liquid 1700 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

44.5944.7853.2759.6865.0469.8274.2568.6269.1269.7470.4371.1771.9672. 7773.6074.4581.37

ST

41.4641.7455.8568.4579.8290.2199.83

109.00116.25122.87128.96134.63139.93144.92149.65154.14164.31

(HT-H$98 )/T

J'mol'^K*1 -

0.000.2812.5221.3428.1833.8038.5842.9345.5247.6949.5651.1952.6553.9655.1656.2762.89

-<GT-H298 )/T

41.4641.4643.3347.1151.6456.4161.2566.0770.7375.1879.4083.4487.2890.9694.4997.87

101.42

AfH°

kJ

-910.7-910.7-910.9-910.5-909.8-908.8-907.4-905.6-904.8-904.1-903.3-902.5-901.8-901.0-900.2-949.6-938.5

AfG°

-856.3-855.9-837.7-819.4-801.2-783.2-765.3-747.7-730.2-712.8-695.4-678.1-660.9-643.7-626.6-609.0-589.6

Log Kf

150.01149.03109.3885.6069.7558.4449.9743.3938.1433.8530.2727.2524.6622.4120.4618.7117.11

Melting T Boiling T

H298~H8

kJ

6.916 kJMolar Vol.

K

kJ

2.269 J'bar'1 22.69 cm3

A« -9.047E+02 B- 1.744E-01 O -3.39E+05

01/06/93

Page 221: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 215

CRISTOBALITE Formula wt 60.084

SiO2 : Tetragonal crystals, a, 298.15 to 523 K. Cubic crystals, P, 523 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft»H°

H298-H8

CP

44.9545.1550.7368.5962.0665.2367.3468.8269.9270.7771.4472.0072.4772.8773.2273.5373.82

-

COST

43.4043.7057.9370.5684.6094.42103.28111.30118.61125.32131.50137.24142.60147.61152.32156.77160.98

1996 K

kJ

7.04 kJ

-9.029E+02

(HT-HJ98)/T

J'mol"1 ^'1

0.000.2812.6321.4829.9634.7838.7341.9944.7447.0749.0750.8152.3453.7054.9155.9956.98

B=

-(GT-H|98 )/T

43.4043.4245.3149.0854.6459.6464.5569.3173.8778.2682.4386.4390.2693.9197.41100.78104.00

1.719E-01

AfH° AfG°

-908.4-908.4-908.5-908.2-906.5-905.8-905.0-904.2-903.3-902.4-901.6-900.7-899.9-899.1-898.3-947.8-946.8

C-

kJ-mol"1

-854.6-854.2-836.1-818.1-800.7-783.1-765.7-748.3-731.0-713.8-696.7-679.7-662.7-645.8-628.9-611.7-591.9

Boiling T

A^H°

Molar Vol. 225

-2.62E+05

Log K«

149.71148.73109.1985.4669.7158.4449.9943.4338.1833.9030.3327.3124.7322.4920.5318.7917.18

K

kJ

.574 J-bar1

.74 cm3

01/06/93

Page 222: robie 1995

216 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

COESITE Formula wt 60.084

SiO2 : Monoclinic crystals 298.15 to 1800 K.

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

Aft»H°

H2*98~H5

CP

45.4645.5852.6058.5162.8165.8467.9469.4170.4571.2371.8672.4573.0673.7574.5675.5476.71

6

ST i

38.5038.7852.8565.2676.3386.2595.19

103.28110.65117.40123.63129.40134.79139.86144.64149.19153.54

K

kJ

.89 kJ

A* -9.036E+02

(HJ-HJ98 )/T -(G

-1-1

0.000.28

12.4821.1227.7332.9737.2240.7243.6446.1248.2450.0851.7053.1454.4655.6756.80

B« 1.799E-01

38.5038.5040.3744.1348.5953.2857.9762.5667.0171.2875.3979.3383.1086.7190.1993.5296.74

FORMATION

/T AfH°

-907.8-907.8-908.0-907.7-907.2-906.5-905.6-904.7-903.8-902.9-902.0-901.1-900.2-899.3-898.5-947.7-946.6

Boiling

AV*H°

Molar Vol

0 -2.39E+05

FROM THE

AfG°

-1

-852.5-852.2 833 . 6-815.0-796.5-778.1-759.8-741.6-723.6-705.6-687.7-669.9-652.1-634.4-616.8-598.8-578.2

T

220.

ELEMENTS

Log Kf

149.35148.37108.8585.1469.3458.0649.6143.0437.7933.5029.9326.9124.3322.0920.1418.4016.78

K

kJ

.064 J-bar'164 cm3

8/28/92

Page 223: robie 1995

THERMOD YNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 217

STISHOVITE Formula wt 60.084

SiO2 : Tetragonal crystals 298.15 to 1800 K,

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

Aft.H°

H2*98~H5

cp

42.9943.2453.5059.4263.1465.6067.3268.5869.5870.4271.2071.9772.7973.6874.6875.8077.06

A=

ST

27.7828.0542.0454.6765.8575.7884.6692.6799.95106.62112.78118.51123.87128.92133.71138.27142.64

K

kJ

7.74 kJ

-8.572E+02

(Hf-H|98 )/T

0.000.2712.4221.2827.9733.1837.3440.7543.5845.9948.0549.8651.4752.9254.2555.4856.65

-(GT-H29Q )/T

27.7827.7829.6233.3937.8942.6147.3251.9256.3660.6364.7268.6472.4076.0079.4682.7985.99

FORMATION

A£H°

kJ*mo

-861.3-861.3-861.5-861.2-860.6-859.8-859.0-858.2-857.4-856.5-855.7-854.9-854.0-853.2-852.3-901.6-900.3

FROM THE

A£G°

i-l

-802.8-802.4-782.8-763.1-743.6-724.1-704.8-685.6-666.4-647.4-628.4-609.5-590.6-571.8-553.1-534.0-512.4

Boiling T

B= 1.907E-01

A^H°

Molar Vol. 1.14.

ELEMENTS

Log Kf

140.65139.72102.2279.7264.7354.0346.0239.7934.8130.7427.3524.4922.0419.9118.0616.4114.87

K

kJ

4014 J'bar'1014 cm3

C- -2.28E+05

12/17/91

Page 224: robie 1995

218 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SILICA GLASS Formula wt 60.084

SiO2 : Glass 298.15 to estimated melting point 1700 K,

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400150016001700

CP

37.9438.3653.1759.9563.6465.9367.5368.7769.8470.8271.7972.7773.8174.9076.0777.32

ST

48.5048.7462.1174.7986.0796.07104.98113.01120.31127.01133.22139.00144.43149.56154.43159.08

(Hf-H298 )/T

J»mol »K -

0.000.2411.8920.9027.7433.0437.2640.6943.5645.9948.1049.9651.6353.1454.5455.84

-<GT-H298 )/T

48.5048.5050.2253.8958.3363.0267.7272.3176.7581.0285.1289.0492.8196.4299.90103.24

AfH°

k_

-901.6-901.6-902.0-901.7-901.0-900.2-899.4-898.6-897.7-896.8-895.9-895.0-894.1-893.1-892.1-941.2

A£G°

.-1

-849.3-849.0-831.3-813.7-796.1-778.7-761.4-744.2-727.1-710.1-693.2-676.3-659.5-642.8-626.1-609.1

Log Kf

148.79147.81108.5685.0069.3158.1149.7143.1937.9833.7230.1727.1724.6122.3820.4418.71

Melting T

H2*98~H5

1700 K

kJ

6.998 kJ

A* -8.966E+02

Boiling T

B- 1.694E-01

Molar Vol

C- -3.06E+05

K

kJ

2.727 J'bar1 27.27 cm3

2/25/93

Page 225: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 219

CASSITERITE Formula wt 150.709

SnO2 : Tetragonal crystals 298.15 to 1903 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500

CP

53.2253.5465.0970.8374.2876.6678.4679.9281.1882.3083.3384.3085.2186.10

ST

49.0249.3566.5681.7695.00106.64117.00126.32134.81142.60149.81156.52162.80168.71

(HT-H298 )/T

-1-1

0.000.3315.2725.8633.6639.6444.3948.2651.4954.2456.6258.7160.5762.25

-<GT-H298 )/T

49.0249.0251.2955.9061.3466.9972.6178.0783.3288.3693.1997.80102.22106.46

AfH°

kJ

-577.6-577.6-577.4-576.6-582.6-581.1-579.5-577.8-576.0-574.1-572.2-570.2-568.2-566.1

AfG°

mol"1

-515.8-515.4-494.7-474.1-452.3-430.8-409.4-388.2-367.3-346.5-325.9-305.4-285.1-265.0

Log Kf

90.3689.7464.6049.5339.3832.1426.7322.5319.1816.4514.1812.2710.649.23

Melting T

HJ98-H§

1903 K

kJ

8.38 kJ

Boiling T K

A^0 kJ

Molar Vol. 2.155 J-bar'1 21.55 cm3

A« -5.763E+02 B- 2.084E-01 O -1.755E+05

6/11/93

Page 226: robie 1995

220 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

STRONTIUM MONOXIDE Formula wt 103.619

SrO: Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

45.4145.4948.6650.6252.0653.2454.2655.1956.0456.8657.6358.3859.1159.8360.5361.2261.90

ST

55.5255.8069.3780.4589.8197.93105.10111.55117.41122.79127.77132.41136.76140.87144.75148.44151.96

(Hf-H298 )/T

J-mol"1 ^'1 -

0.000.2812.0219.5524.8628.8331.9534.4836.5938.4039.9741.3642.6043.7244.7545.7046.58

-<H-HJ98 )/I

55.5255.5257.3560.8964.9569.1073.1677.0780.8284.3987.8091.0694.1797.14100.00102.74105.38

? AfH°

-591.3-591.3-590.8-590.2-589.5-588.9-588.4-588.5-587.7-594.7-594.7-594.7-594.5-594.4-594.1-730.7-728.5

AfG°

-1

-560.7-560.5-550.3-540.2-530.3-520.5-510.7-501.0-491.3-481.3-471.0-460.7-450.4-440.1-429.8-418.4-400.1

Log Kf

98.2297.5971.8656.4346.1638.8433.3529.0725.6622.8620.5018.5116.8015.3314.0312.8611.61

Melting T Boiling T

H598~H8

kJ

8.675 kJMolar Vol.

K

kJ

2.069 J-bar'1 20.69 cm3

A« -5.956E+02 B- 1.047E-01 C= 3.940E+05

10/2/92

Page 227: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 221

THORIANITE Formula wt 264.037

Th02 : Cubic crystals 298.15 to 1200 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

CP

61.7961.9567.8270.9572.9974.5275.7876.8877.8878.8279.72

Sf

65.2065.5884.3199.81112.94124.31134.34143.34151.49158.96165.85

(Hf-H|98 )/T

1-1. K'1

0.000.3816.6027.1834.6640.2544.6148.1451.0653.5455.69

-<GT-H298 )/T

65.2065.2067.7272.6378.2884.0689.7395.20100.43105.41110.17

A£H°

kJ

-1226.4-1226.4-1225.5-1224.4-1223.2-1222.0-1220.8-1219.7-1218.6-1217.5-1216.5

A£G°

mol"1

-1169.2-1168.9-1149.8-1131.0-1112.5-1094.1-1075.9-1057.9-1040.0-1022.2-1004.5

Log Kf

204.84203.51150.15118.1596.8581.6470.2561.4054.3248.5443.72

Melting T

kJ

10.56 kJ

Boiling T

Molar Vol.

K

kJ

2.637 J'bar'1 26.37 cm3

A- -1.219E+03 B- 1.794E-01 0 -3.21E+05

9/10/92

Page 228: robie 1995

222 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

RUTILE Formula wt 79.879

TiO2 : Tetragonal crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

55.2955.4963.1967.2969.8571.6272.9273.9474.7775.4576.0476.5576.9977.3977.7678.0978.39

COST

50.6250.9668.1282.7095.21106.12115.77124.42132.25139.41146.00152.11157.80163.13168.13172.86177.33

<Hf-H298 )/T

J-mol"1 ^"1 -

0.000.3415.2125.2532.4937.9642.2545.7248.5850.9953.0654.8556.4157.8059.0360.1461.15

-<GT-H298 )/T

50.6250.6252.9157.4562.7268.1673.5278.7083.6788.4292.9597.26101.39105.33109.10112.71116.18

AfH°

1. T

-944.0-944.0-943.6-942.8-942.0-941.0-940.1-939.1-938.3-937.6-941.0-940.0-939.0-938.0-937.2-936.5-935.9

AfG°

mol~^

-888.8-888.4-869.9-851.6-833.4-815.4-797.5-779.8-762.1-744.5-726.9-709.1-691.4-673.7-656.1-638.5-621.0

Log Kf

155.70154.68113.6088.9672.5660.8552.0745.2639.8135.3531.6428.4925.7923.4621.4219.6218.02

Melting T 2103 K

kJ

8.67 kJ

Boiling T

Molar Vol.

K

kJ

1.882 J-bar'1 18.82 cm3

A- -9.385E+02 B« 1.766E-01 C« -2.66E+05

4/5/93

Page 229: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 223

ANATASE Formula wt 79.879

TiO2 : Tetragonal crystals 298.15 to 1300 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300

Melting T

H298~H5

CP

55.3255.5964.7168.6070.6972.0773.1574.1075.0175.9176.8277.74

A-

ST

49.9050.2467.6982.6095.31106.32116.01124.68132.54139.73146.37152.56

K

kJ

kJ

-9.331E+02

(HT-H298 )/T

_1 _1

0.000.3415.4725.7633.0938.5642.8246.2449.0751.4753.5555.37

B=

-<H-HS98 )/i

49.9049.9052.2256.8562.2267.7573.1978.4483.4688.2692.8397.19

1.767E-01

*i

-938-938-938-937-936-935-934-933-932-931-935-934

C

:H° A fG°

.7 -883.2

.7 -882.9

.2 -864.4

.3 -846.0

.3 -827.8

.3 -809.8

.3 -792.0

.3 -774.2

.5 -756.6

.8 -739.1

.2 -721.4

.0 -703.7

Boiling T

Molar Vol. 220

« -2.60E+05

Log K£

154.74153.72112.8788.3872.0760.4351.7144.9339.5235.0931.4028.27

K

kJ

.052 J'bar'1

.52 cm3

9/10/92

Page 230: robie 1995

224 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

URANINITE Formula wt 270.028

U02 : Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft»H°

H598~H6

CP

63.6063.8271.6575.5177.9679.8281.4282.9084.3185.7087.0788.4589.8491.2492.6494.0595.48

A

ST

77.0377.4297.01113.46127.45139.62150.38160.06168.87176.97184.48191.51198.11204.36210.29215.95221.37

3151 K

kJ

11.28 kJ

-1.083E+03

(H*-HJ98 )/T

I-mol"1 -*"1

0.000.39

17.3728.6436.6742.7147.4551.3154.5457.3159.7361.8963.8365.6167.2668.7970.24

B=

-<GT-H298 )/T

77.0377.0379.6584.8190.7896.91102.93108.75114.33119.66124.75129.62134.28138.74143.03147.16151.13

1.718E-01

AfH° AfG°

-1084.9-1084.9-1083.9-1082.7-1081.5-1080.5-1079.7-1079.3-1081.6-1085.3-1084.1-1082.7-1081.2-1089.3-1088.5-1087.7-1086.8

c-

-1031.7-1031.4-1013.7-996.3-979.2-962.2-945.4-928.6-911.7-894.5-877.2-860.0-843.0-825.4-807.8-790.3-772.8

Boiling T

A^H°

Molar Vol. 224

1.932E+04

ELEMENTS

Log K£

180.75179.58132.38104.0885.2471.8061.7253.8947.6242.4838.1834.5631.4528.7426.3724.2822.43

K

kJ

.4618 J-bar'1

.618 cm3

12/17/91

Page 231: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 225

KARELIANITE Formula wt 149.881

V2O3 : Rhombohedral crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

Aft.H°

CP

104.96105.33117.82123.52127.11129.99132.67135.32138.04140.84143.74146.73149.80152.95156.17159.46162.80

ST

98.1098.75131.04158.01180.86200.68218.21233.99248.39261.68274.05285.68296.66307.11317.08326.65335.85

K

kJ

<HT-H$98 )/T

J»mol »K

0.000.65

28.6247.0960.1469.9277.6083.8689.1493.7297.76101.41104.76107.87110.79113.55116.19

-<G*-HJ98 ,/'

98.1098.10

102.42110.92120.72130.76140.62150.13159.25167.96176.29184.26191.90199.24206.29213.09219.66

I AfH°

UT

-1218.8-1218.8-1217.1-1214.9-1212.6-1210.1-1207.7-1205.2-1202.6-1200.1-1197.4-1194.7-1192.0-1189.2-1186.2-1183.4-1180.4

AfG°

mol"1

-1139.0-1138.6-1112.0-1086.0-1060.4-1035.3-1010.5-986.0-961.7-937.8-914.1-890.5-866.3-844.1-821.3-798.5-775.9

Boiling T

^^°

Molar Vol. 2H298~H5

A=

kJ

-1.197E+03 - 2.355E-01 C--1.

29

14E+06

Log Kf

199.55198.23145.21113.4592.3277.2565.9757.2250.2444.5339.7935.7832.3629.3926.8124.5322.52

K

kJ

.985 J«bar!

.85 cm3

6/11/93

Page 232: robie 1995

226 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TUNGSTEN DIOXIDE Formula wt 215.849

WO2 : Monoclinic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

AtoH°

CP

55.7855.9863.6067.8370.7473.0274.9776.7278.3579.9081.3982.8584.2885.6987.0988.4789.85

ST (i_

50.6050.9568.2282.9195.54

106.62116.51125.44133.61141.15148.16154.74160.93166.79172.37177.69182.78

K

kJ

sT-H298

l~l.i

0.000.34

15.3225.4332.7538.3542.8146.4849.5852.2754.6356.7558.6660.4262.0463.5664.98

)/T ~(GT-H298 )/1

t *

50.6050.6052.9057.4862.7968.2873.7078.9684.0288.8893.5397.99

102.26106.37110.32114.13117.80

AfH°

kJ-mol"

-589.7-589.7-589.1-588.1-586.9-585.6-584.1-582.6-581.1-579.4-577.7-575.9-574.0-572.0-570.0-567.9-565.8

Boiling

AV*H°

AfG°

1

-533.9-533.5-514.9-496.4-478.2-460.2-442.4-424.8-407.3-390.0-372.9-355.9-339.1-322.3-305.8-289.3-273.0

T

Molar Vol. 2.H298"H8

A=

kJ

-5.776E+02 B- 1.702E-01

20.

Log Kf

93.5392.8967.2451.8641.6334.3428.8924.6521.2818.5216.2314.3012.6511.229.988.897.92

K

kJ

003 J-bar'103 cm3

C* -6.726E+05

9/10/92

Page 233: robie 1995

THERMODYNAMIC PROPERTIES AT fflGH TEMPERATURE OF INDIVIDUAL PHASES 227

ZINCITE Formula wt 81.389

ZnOt Hexagonal crystals 298.15 to 1800 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A^H 0

H298~H5

CP

40.4240.5344.5646.7448.2249.3850.3751.2852.1352.9453.7454.5255.2956.0656.8257.5858.34

FORMATION FROM THE ELEMENTS

S| (HT-H$98 )/T -(GT-H$g 8 )/T AfH° AfG° Log Kf

43.2043.4555.7365.9374.5982.1188.7794.76

100.20105.21109.85114.18118.25122.09125.74129.20132.52

2242 K

kJ

6.93 kJ

i - UIW4. - «v

0.000.25

10.8917.8622.8026.5229.4431.8133.8035.5136.9938.3139.5040.5741.5742.4943.35

43.2043.2044.8548.0751.7955.6059.3462.9466.4069.7172.8675.8778.7681.5284.1786.7289.17

-350.5-350.5-350.3-349.9-349.6-356.6-356.4-356.1-355.8-355.5-470.2-468.6-467.0-465.3-463.6-461.8-460.0

-320.4-320.2-310.1-300.1-290.2-280.2-269.4-258.5-247.7-236.9-224.2-203.7-183.4-163.1-143.0-123.0-103.3

Boiling T

Av*H°

Molar Vol.

56.1255.7540.4931.3525.2620.9117.5915.0012.9411.259.758.186.845.684.673.783.00

K

kJ

1.434 J-bar'114.34 cm3

10/7/92

Page 234: robie 1995

228 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BAODELEYITE Formula wt 123.223

ZrO2 : Monoclinic crystals 298.15 to 1478 K. Tetragonal crystals 1478 to 1800 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140014781500160017001800

r° CP

56.1856.3563.2167.5170.4572.5774.1675.3876.3277.0677.6378.0878.4178.6274.4874.4874.4874.48

ST

50.4050.7567.9982.5995.17106.20116.00124.80132.80140.11146.84153.07158.87163.13168.28173.09177.60181.86

(H*-H598 )/T

J-l. ,,-1

0.000.3515.2825.3332.6238.1842.5846.1649.1351.6453.7855.6457.2558.3762.6063.3464.0064.58

-(Gf-H29Q )/T

50.4050.4052.7057.2662.5568.0273.4178.6483.6688.4793.0597.43101.62104.75105.68109.75113.60117.28

A£H°

kJ«

-1100.6-1100.6-1100.1-1099.2-1098.2-1097.1-1095.9-1094.8-1093.7-1092.7-1095.5-1094.2-1092.9-1092.2-1085.8-1085.0-1084.4-1083.8

AfG°

.-1

-1042.9-1042.5-1023.2-1004.1-985.1-966.4-947.8-929.4-911.0-892.8-874.5-856.1-837.8-822.5-819.8-802.1-784.4-766.7

Log K£

182.70181.51133.61104.8985.7672.1161.8853.9447.5942.4038.0634.4031.2629.0728.5526.1824.1022.25

Melting T

H§98~H8

3123 K

kJ

8.75 kJ

Boiling T

Molar Vol.

K

kJ

2.115 J'bar'1 21.15 cm3

-1.0934E+03 B= 1.81734E-01 O -4.273.01E+05

9/9/92

Page 235: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 229

CHRYSOBERYL Formula wt 126.973

BeAl2O4 : Orthorhombic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft.H 0

H2"98~H8

CP

105.40106.01130.76145.88155.80162.63167.53171.18174.02176.33178.34180.18181.97183.80185.72187.80190.08

13

S|

66.2666.91

101.12132.05159.58184.14206.19226.15244.33261.03276.46290.81304.23316.85328.77340.09350.89

R

kJ

.09 kJ

-2.308E+03

(Hf-H29Q )/T

J-mol"1 ^"1

0.000.65

30.3652.0768.5881.5792.01

100.62107.82113.95119.23123.85127.94131.60134.92137.97140.80

-

-(Gf-H298 )/T

66.2666.2670.7679.9891.00

102.58114.18125.53136.51147.09157.23166.96176.29185.25193.85202.12210.09

4.208E-01

AfH° AfG°

-2298.5-2298.5-2299.3-2298.9-2297.8-2296.5-2295.1-2293.8-2314.0-2312.7-2311.3-2309.8-2308.5-2307.0-2320.1-2318.1-2316.1

-

kJ-mol'1

-2176,2-2175.5-2134.3-2093.0-2051.9-2011.1-1970.4-1929.9-1888.0-1845.5-1803.1-1760.7-1718.6-1676.5-1634.2-1591.3-1548.6

Boiling T

Av*H°

Molar Vol. 3.34.

5.946E+05

Log Rf

381.26378.78278.71218.66178.64150.07128.65112.0198.6287.6378.4870.7564.1258.3853.3448.8944.94

R

kJ

432 J«bar'!32 cm3

7/17/92

Page 236: robie 1995

230 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CALCIUM FERRITE Formula wt 215.770

CaFe2O4 : Orthorhombic crystals 298.15 to melting point 1510 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500

CP

153.65153.95164.04168.83172.11174.98177.81180.73183.77186.94190.24193.66197.17200.78

COST

145.40146.35192.25229.41260.50287.24310.79331.90351.10368.76385.17400.53415.01428.74

(HT-H§98 )/T

J*mol~ *K~ -

0.000.95

40.6565.8583.3096.19106.22114.33121.12126.96132.10136.70140.89144.77

-<«J-HJ98 )/!

145.40145.40151.59163.56177.20191.05204.58217.57229.98241.80253.07263.83274.12283.97

r A fH°

kJ

-1520.3-1520.3-1518.1-1516.0-1514.4-1513.4-1513.8-1514.3-1516.4-1520.3-1530.6-1529.0-1527.2-1525.4

AfG°

mol""1

-1412.4-1411.7-1375.8-1340.5-1305.6-1270.9-1236.1-1201.4-1166.6-1131.4-1095.3-1059.1-1023.0-987.1

Log Kf

247.44245.79179.66140.04113.6694.8380.7169.7360.9353.7247.6842.5538.1734.37

Melting T 1510 K

108.2 kJ

25.42 kJ

Boiling T

Molar Vol.

K

kJ

4.498 J-bar"1 44.98 cm3

-1.519E+03 B» 3.537E-01 C- 1.473E+05

5/15/92

Page 237: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 231

DICALCIUM FERRITE Formula wt 271.847

Orthorhombic crystals 298.15 to melting point 1750 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400150016001700

CP

192.91193.61217.91228.76234.54238.04240.40242.13243.51244.66245.69246.63247.52248.37249.20250.02

ST

188.80190.00249.55299.48341.74378.18410.13438.55464.13487.40508.73528.44546.74563.85579.91595.04

\ **T **O Q ft 9 /

J * rool K *

0.001.19

52.7987.02

111.17129.06142.84153.78162.69170.09176.35181.72186.39190.49194.13197.40

-<G*-H298 >/<

188.80188.80196.76212.45230.57249.12267.29284.77301.45317.31332.38346.72360.36373.36385.77397.64

T AfH°

k_

-2138.3-2138.3-2135.4-2131.9-2128.7-2126.1-2126.2-2125.7-2127.3-2131.2-2149.8-2148.0-2146.4-2144.9-2143.7-2144.4

AfG°

.-1 ___

-1999.9-1999.1-1953.1-1907.9-1863.4-1819.4-1775.5-1731.7-1687.8-1643.7-1598.0-1552.1-1506.4-1460.7-1415.1-1369.5

Log Kf

350.37348.06255.04199.31162.22135.76115.92100.5088.1678.0569.5662.3656.2050.8646.2042.08

Melting T

H2"98~H8

1750 K

31.65 kJ

25.42 kJ

A= -2.135E+03

Boiling T

B= 4.491E-01

Molar Vol.

1.854E+05

K

kJ

6.718 J-bar'1 67.18 cm3

7/22/92

Page 238: robie 1995

232 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PEROVSKITE Formula wt 135.956

CaTiO3 : Orthorhombic crystals 1530 K; cubic crystals 1530 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

CP

97.6598.17

114.28119.98122.60124.31125.83127.43129.21131.20133.39135.76138.31141.01134.01134.01134.01

ST

93.6494.25

125.13151.34173.47192.50209.20224.11237.62250.03261.54272.31282.46292.10302.46310.58318.28

2188 K

/tIO_tlQ V /I*' T 298 ' /

J*mol «K

0.000.60

27.3845.4258.0967.4374.6380.4185.2089.2992.8796.0899.00

101.71105.26106.95108.47

-<GT-H2 98 )/'

93.6493.6497.74

105.92115.38125.07134.56143.70152.43160.74168.67176.23183.46190.38197.20203.63209.81

I A fH°

kJ

-1660.6-1660.6-1659.5-1657.8-1656.2-1654.8-1654.4-1653.4-1652.7-1652.4-1664.1-1662.5-1660.8-1658.9-1655.3-1654.4-1802.2

AfG°

mol" 1

-1574.8-1574.3-1545.6-1517.4-1489.4-1461.7-1434.1-1406.7-1379.3-1352.0-1323.9-1295.6-1267.5-1239.4-1211.8-1184.1-1154.3

Boiling T

AM,H°

Log Kf

275.89274.10201.83158.51129.66109.0793.6481.6472.0464.2057.6352.0647.2943.1639.5636.3833.50

K

kJkJ

Molar Vol.H298~H8 kJ

3.36333.63

J-bar'1 cm3

A» -1.657B+03 B» 2.783E-01 C» -4.73E+04

5/15/92

Page 239: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 233

HERCYNITE Formula wt 173.808

FeAl2O4 : Cubic crystals 298.15 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.1530040050060070080090010001100120013001400

Melting T

H598~H8

CP

128.91129.38148.11159.35167.07172.83177.38181.11184.28187.01189.43191.59193.55

eoST

117.00117.80157.85192.20221.97248.18271.56292.68311.93329.62346.00361.25375.52

K

kJ

kJ

A= -1.955E+03

(Hf-H|98 )/T -(G

- J-mol'^K""1

0.000.80

35.5259.2476.6089.95100.61109.35116.69122.96128.40133.18137.42

B= 3.799E-01

-T-H2-98»

117.00117.00122.34132.96145.37158.22170.95183.33195.24206.66217.60228.07238.10

C-

"I AfH°

V T

-1950.5-1950.5-1950.1-1948.9-1947.5-1946.0-1944.7-1943.9-1965.2-1965.7-1965.2-1963.1-1961.0

Boiling T

Molar Vol.

3.842E+05

AfG°

- mol~l ... ,.,IIIW J. ^^^^^^

-1838.1-1837.4-1799.7-1762.3-1725.1-1688.1-1651.4-1614.7-1576.7-1537.8-1498.9-1460.1-1421.6

4.07540.75

Log Kf

322.03319.92235.02184.10150.18125.97107.8293.7182.3673.0265.2558.6753.04

K

kJ

J«bar-Icm3

7/17/92

Page 240: robie 1995

234 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CHROMITE Formula wt 223.837

FeCr2O4 : Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

AtoH°

f>0cp

133.58133.95149.91160.48167.91173.37177.55180.85183.55185.84187.86189.69191.42193.10194.77196.47198.22

eoST

146.00146.83187.72222.38252.33278.64302.08323.19342.39359.99376.25391.36405.48418.74431.26443.12454.40

K

kJ

<HT-H$98 )/T

J«mol~*«K~*

0.000.82

36.2560.1077.4990.81

101.40110.05117.27123.40128.69133.32137.40141.06144.37147.38150.16

-(Of-HJse)/!

146.00146.00151.47162.27174.84187.83200.67213.13225.11236.59247.56258.04268.08277.68286.89295.74304.24

T AfH°

kJ-

-1445.5-1445.5-1444.7-1443.4-1441.7-1440.1-1438.6-1437.5-1437.3-1438.0-1438.3-1437.3-1436.6-1436.3-1436.4-1437.8-1439.1

AfG°

mol'1

-1344.5-1343.9-1310.1-1276.6-1243.4-1210.5-1177.8-1145.3-1112.8-1080.4-1047.8-1015.3-982.9-950.5-918.1-885.7-853.2

Boiling T

^1°

Molar Vol. 4.401H§98~H8

kJ

-1.437E+03 B» 3.242E-01 C= -4.

44.01

01E+05

Log Kf

235.55233.99171.08133.36108.2590.3376.9066.4758.1351.3045.6240.8036.6733.1029.9727.2124.76

K

kJ

J'bar'1cm3

5/15/92

Page 241: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 235

ILMENITE Formula wt 151.725

FeTiO3 : Rhombohedral crystals 298.15 to 1640 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600

CP

99.1899.47

111.62119.20124.35128.16131.26134.02136.71139.50142.50145.81149.48153.58158.15

COST

108.90109.51139.94165.72187.94207.41224.73240.35254.61267.77280.03291.57302.51312.96323.01

<HT-H298 )/T

J"mol *K -

0.000.61

26.9744.7257.5867.4175.2081.5886.9691.6195.7299.45

102.89106.13109.23

-(Gf-H29Q )/T

108.90108.90112.97121.01130.36140.00149.53158.77167.65176.16184.31192.12199.62206.83213.78

A£H°

1. T

-1232.0-1232.0-1231.1-1229.7-1228.1-1226.6-1225.2-1224.1-1223.6-1224.1-1227.7-1225.1-1222.3-1219.4-1216.3

AfG°

mol"1

-1155.0-1155.0-1129.5-1104.2-1079.2-1054.6-1030.1-1005.8-981.5-957.3-933.0-908.5-884.2-860.2-836.3

Log Kf

202.43201.10147.49115.3593.9578.6967.2658.3751.2745.4640.6136.5032.9929.9527.30

Melting T Boiling T

kJ

16.992 kJMolar Vol

K

kJ

3.169 J«bar'1 31.69 cm3

A= -1.224E+03 B= 2.424E-01 0 -3.82E-01

5/15/92

Page 242: robie 1995

236 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ULVOSPINEL Formula wt 223.572

Fe2TiO4 : Cubic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

A^H0

CP

142.27142.86160.79167.80172.68177.71183.47190.06197.44205.52214.21223.43233.11243.18253.60264.33275.32

COST

180.40181.28225.33262.05293.08320.07344.16366.15386.55405.74423.99441.50458.41474.83490.86506.55521.97

K

kJ

<Hf-H298 )/T

0.000.88

39.0464.1781.8595.18

105.85114.83122.72129.87136.53142.86148.96154.90160.74166.52172.26

-<GT-H29Q )/T

180.40180.40186.29197.88211.22224.89238.32251.31263.83275.87287.45298.63309.45319.93330.11340.03349.71

A£H°

kJ»

-1493.8-1493.8-1492.2-1490.3-1488.6-1487.2-1485.9-1485.1-1485.4-1486.9-1490.4-1485.5-1480.1-1473.9-1467.1-1461.5-1454.1

A£G°

rool'1

-1399.9-1399.4-1368.1-1337.3-1306.8-1276.6-1246.6-1216.8-1187.0-1157.0-1127.0-1096.9-1067.2-1037.9-1009.0-980.6-952.5

Boiling T

^I*

Molar Vol. 4.H298"H8

-

kJ

-1.482E+03 B= 2.956E-01 C= -5.

46.

73E+05

Log Kf

245.26243.64178.65139.70113.7795.2681.4070.6262.0054.9449.0544.0739.8236.1432.9430.1327.64

K

kJ

682 J-bar'182 cm3

5/26/93

Page 243: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 237

SPINEL Formula wt 142.266

MgAl204 : Cubic crystals 298.15 to 1800 K,

FORMATION FROM THE

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

Afc.H 0

CP

115.94116.46137.26149.86158.57165.13170.33174.63178.29181.48184.31186.85189.17191.29193.27195.12196.85

Sf (1

88.7089.42126.06158.14186.28211.24233.64253.96272.55289.70305.61320.46334.40347.52359.93371.70382.91

K

kJ

Si-H598 )/I

-1-1

0.000.7232.5154.8171.4184.3594.78

103.42110.73117.02122.51127.37131.70135.60139.15142.38145.36

' -(Gf-H$98 )/T

88.7088.7093.56103.34114.87126.89138.85150.53161.82172.67183.10193.10202.70211.92220.79229.32237.54

AfH° AfG°

-2299.1-2299.1-2299.8-2299.5-2298.6-2297.5-2296.5-2295.3-2324.3-2323.0-2321.6-2320.0-2445.7-2442.3-2438.9-2435.3-2431.6

kJ'mol"1

-2176.6-2175.9-2134.6-2093.3-2052.1-2011.2-1970.3-1929.7-1886.9-1843.2-1799.7-1756.1-1709.8-1657.3-1605.1-1553.0-1501.2

Boiling T

Av*H°

Molar Vol. 3H298~H5

*

15.41 kJ

* -2.3446E+03 B= 4.598E-01 C=

39

3.114E+06

ELgMENTS

Log K£

381.32378.84278.74218.68178.65150.07128.65111.9998.5687.5278.3370.5663.7957.7152.4047.7243.56

K

kJ

.971 J-bar-1

.71 cm3

5/21/93

Page 244: robie 1995

238 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MAGNESIOCHROMITE (picrochromite) Formula wt 192.295

MgCr2O4 : Cubic crystals 298.15 to 1800 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A^H0

H298~H8

CP

126.82127.37147.88158.71165.47170.18173.72176.54178.86180.85182.60184.16185.57186.88188.09189.23190.31

Sf (1

106.00106.79146.60180.87210.44236.32259.29279.92298.64315.79331.60346.28359.98372.83384.93396.36407.21

K

kJ

kJ

-1.7945E+03

*-"39B>/«

l-l.v-1

0.000.78

35.3159.0076.2289.3299.66108.05115.02120.92125.99130.40134.29137.76140.86143.68146.24

.' -<Gf-H298 )/T

106.00106.00111.29121.87134.22147.00159.63171.87183.62194.87205.61215.87225.68235.07244.06252.69260.97

FORMATION

A£H°

kJ- 1

-1783.6-1783.6-1783.2-1781.8-1780.1-1778.2-1776.5-1774.9-1782.1-1781.2-1780.4-1779.9-1907.2-1905.9-1905.0-1904.5-1904.3

FROM THE

A£6°

i-l

-1669.1-1668.4-1630.0-1591.8-1554.0-1516.4-1479.2-1442.1-1404.5-1366.8-1329.1-1291.6-1250.9-1204.0-1157.2-1110.5-1063.8

Boiling T

B» 3.960E-01

Ay^H0

Molar Vol. 443

ELEMENTS

Log Kf

292.41290.48212.85166.29135.28113.1696.5883.7073.3664.9057.8551.8946.6741.9337.7834.1230.87

K

kJ

.356 J'bar'1

. 56 cm

O 1.0556E+00

5/20/92

Page 245: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 239

MAGNESIOFERRITE Formula wt 199.997

MgFe2O4 : Cubic (a) crystals 298.15 to 665 K. Cubic (0) crystals 665 to 1230 K. y-crystals 1230 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afa.H0

H298"H8

cp

143.72144.10164.30180.83196.01187.13188.40189.68190.95192.23193.50180.93186.64192.36198.07203.79209.50

-

ST

121.80122.62167.06205.54239.86269.98295.05317.31337.36355.62372.40388.05401.67414.74427.34439.52451.33

K

kJ

kJ

-1.464E+03

(H*-HJ98,/T

J-mol""1 ^"1

0.000.71

39.3566.0286.43102.86113.47121.87128.71134.43139.30143.60146.47149.34152.21155.07157.94

B=

-(Gf-H|98 )/T

121.80121.91127.71139.52153.43167.12181.58195.44208.65221.19233.10244.45255.20265.40275.13284.45293.39

3.886E-01

AfH° AfG°

-1441.5-1441.5-1439.7-1437.0-1433.4-1429.3-1427.4-1426.5-1435.8-1438.4-1439.6-1437.5-1564.3-1561.9-1559.3-1558.1-1555.6

C*

IcT-mol ""^

-1329.6-1328.9-1291.6-1254.9-1218.8-1182.7-1147.6-1112.7-1077.1-1041.0-1004.9-968.8-929.6-884.4-839.3-794.3-749.4

Boiling T

Av*H°

Molar Vol. 4.45744.57

1.938E+06

Log Kf

232.93231.38168.66131.09106.1088.2574.9364.5856.2649.4343.7438.9334.6830.8027.4024.4021.75

R

kJ

J«bar*1cm3

5/20/93

Page 246: robie 1995

240 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GEIKIELITE Formula wt 120.183

MgTiO3 : Rhombohedral crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

93.0393.37

106.87114.55119.39122.69125.10127.01128.65130.19131.72133.32135.06136.97139.09141.44144.04

ST

74.6475.22

104.13128.87150.22168.88185.43200.28213.75226.08237.47248.08258.02267.41276.31284.81292.97

(HT-H298)/T

J»mol~^»K~^ -

0.000.57

25.6442.7255.1264.5571.9877.9982.9787.2090.8494.0596.9199.52

101.93104.18106.32

-<GT-H298 )/T

74.6474.6478.4986.1695.10

104.33113.46122.29130.77138.89146.63154.03161.11167.89174.39180.63186.65

AfH°

UT

-1572.8-1572.8-1572.3-1571.2-1569.8-1568.4-1566.9-1565.5-1572.9-1572.0-1575.1-1573.7-1699.6-1696.7-1693.7-1690.7-1687.6

AfG°

-1484.4-1483.8-1454.2-1424.8-1395.7-1366.8-1338.1-1309.6-1280.5-1251.3-1222.0-1192.7-1160.3-1121.9-1083.6-1045.5-1007.7

Log Kf

260.05258.35189.90148.85121.50101.9987.3776.0066.8859.4253.1947.9243.2939.0735.3832.1229.24

Melting T Boiling T

H298~H5

kJ

13.64 kJMolar Vol.

K

kJ

3.086 J-bar'1 30.86 cm

A= -1.601E+03 B= 3.214E-01 O 2.118E+06

5/20/92

Page 247: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 241

PYROPHANITE Formula wt 150.816

MnTiO3 : Rhombohedral crystals 298.15 to 1600 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000110012001300140015001600

cp

99.86100.18111.74117.59121.20123.74125.71127.36128.80130.11131.33132.48133.59134.66135.71

ST

104.90105.52136.14161.76183.54202.43219.08233.99247.48259.82271.19281.75291.61300.86309.59

<HJ-H298 )/T

J-mol^-K'1 -

0.000.62

27.1444.7057.1766.5173.7979.6584.5088.5892.1095.1697.86100.28102.46

-<G*-HJ98 >/'

104.90104.90109.00117.06126.37135.92145.29154.34162.99171.24179.10186.59193.75200.58207.13

P AfH°

-1360.1-1360.1-1359.2-1358.0-1356.7-1355.5-1354.3-1353.4-1354.8-1354.2-1357.8-1356.8-1358.2-1359.8-1371.7

A£6°

-1

-1280.9-1280.4-1254.0-1227.8-1201.9-1176.2-1150.7-1125.3-1099.9-1074.5-1048.9-1023.2-997.6-971.7-945.2

Log Kf

224.41222.94163.75128.27104.6387.7775.1365.3157.4551.0245.6641.1137.2233.8430.86

Melting T Boiling T K

kJ

H298"H8

kJ

16.69 kJMolar Vol. 3.277 J«bar'1

32.77 cm3

A= -1.355B+03 B« 2.557E-01 C» -1.72E+05

2/24/94

Page 248: robie 1995

242 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TREVORITE Formula wt 234.382

NiFe204 : Cubic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

146.87147.18164.04181.00198.00215.02232.05249.09266.13

ST

140.90141.81186.46224.88259.38291.18321.01349.32376.45

(HT-H298 )/T

J-mol'i-K"1 -

0.000.91

39.5866.1786.72103.83118.80132.33144.86

-<GT-H298 )/T

140.90140.90146.88158.71172.66187.35202.21217.00231.59

AfH°

kJ-m

-1070.5-1070.5-1068.8-1066.4-1063.2-1059.0-1053.7-1047.6-1041.6

A£6°

Q! 1

-965.1-964.5-929.4-894.8-860.7-827.3-795.0-762.5-731.1

Log Kf

169.08167.93121.3693.4774.9361.7351.9144.2538.19

Melting T

HS98~H5

kJ

kJ

Boiling T

Molar Vol

K

kJ

4.365 J«bar'1 43.65 cm3

A= -1.053E+03 3.232E-01 C* -8.04E+05

5/26/93

Page 249: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 243

FRANKLINITE Formula wt 241.082

ZnFe2O4 : Tetragonal crystals 298.15 to 600 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP ST (Hf-H298 )/T -(Gf-H298 )/T A£H° AfG°

kJ'mol"1

Log Kf

298.15300400500600

193.37193.61203.23209.32214.01

150.70151.90209.05255.09293.68

0.001.19

50.6281.78103.44

150.70150.70158.43173.31190.24

-1188.1-1188.0-1181.9-1175.7-1169.9

-1082.1-1081.5-1046.9-1013.9-982.0

189.58188.30136.71105.9185.49

Melting T

kJ

H298~H8 kJ

Boiling T R

A^0 kJ

Molar Vol. 4.494 J-bar'1 44.94 cm3

A= -1.167E+03 B= 3.112E-01 O -7.364E-t-05

2/24/94

Page 250: robie 1995

244 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ZINC TITANIUM SPINEL Formula wt 242.658

Zn2TiO4 : Tetragonal crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft.H°

H298"H5

CP

133.58134.01151.80163.31171.49177.64182.45186.31189.48192.12194.36196.26197.90199.31200.54201.60202.54

-

COST

143.10143.93185.13220.32250.85277.77301.82323.54343.34361.52378.34393.97408.58422.28435.18447.37458.93

K

kJ

kJ

-1.751E+Q3

(Hf-H298 )/T

J-mol"1 ^"1

0.000.83

36.5360.8178.6192.33103.31112.32119.89126.34131.91136.79141.10144.93148.37151.47154.28

B-

-(GT-H§98 )/T

143.10143.10148.60159.51172.25185.44198.51211.21223.45235.19246.42257.18267.48277.35286.81295.90304.64

4.850E-01

AfH° A£6°

-1652.1-1652.1-1651.4-1649.9-1647.9-1660.3-1658.2-1655.8-1653.3-1650.9-1882.6-1877.3-1872.1-1866.8-1861.6-1856.4-1851.3

C=

kJ-mol"1

-1538.4-1537.7-1499.7-1461.9-1424.5-1387.3-1348.4-1309.8-1271.5-1233.5-1191.6-1134.2-1077.3-1020.7-964.4-908.5-852.9

Boiling T

AV*H°

Molar Vol. 4.45.

6.790E+06

Log K£

269.52267.74195.83152.72124.01103.5288.0476.0266.4258.5751.8745.5740.1935.5431.4827.9124.75

K

kJ

558 J«bar'158 cm3

9/11/92

Page 251: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 245

BROMARGYRITE Formula wt 187.772

AgBr: Cubic crystals 298.15 to melting point 703 K. Liquid 703 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700703800900

1000

CP

52.3852.5058.9465.3971.8378.2778.4662.3462.3462.34

ST

107.10107.42123.41137.25149.75161.30162.63182.76190.08196.65

(Hf-H§98 )/T

1-1. K'1

0.000.3214.1723.7731.2437.5037.7052.1453.2854.18

-(Gf-H298 )/T

107.10107.10109.24113.48118.50123.80124.93130.62136.80142.47

AfH°

IrT

-100.4-100.4-114.6-112.9-110.5-107.6-107.5-96.8-95.3-93.9

AfG°

-97.0-96.9-92.8-87.5-82.6-78.2-78.3-75.4-72.7-70.3

Log Kf

16.9916.8812.119.147.195.835.824.924.223.67

Melting T 703 K

9.16 kJ

kJ

Boiling T K

kJ

Molar Vol. 2.899 J-bar'1 28.99 cm3

A= -1.0054E+02 B= 3.173E-02 C- -5.577E+05

5/20/93

Page 252: robie 1995

246 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

POTASSIUM BROMIDE Formula wt 119.002

KBr: Cubic crystals 298.15 to melting point 1007 K. Liquid 1007 to boiling point 1671 K.

Temp.

298.153004005006007008009001000110012001300140015001600

Melting T

CP

52.2952.3453.8654.7956.2058.2160.7563.7467.0969.8769.8769.8769.8769.8769.87

FORMATION FROM THE ELEMENTS

S£ (H£-H§98 )/T ~(GT-H§98 )/T AfH° AfG° Log Kf

95.9096.22111.54123.65133.75142.56150.49157.82164.70196.66202.73208.32213.50218.32222.83

1007 K

im*d» *x

0.000.3213.5621.7127.3331.5935.0738.0940.8266.6266.8967.1267.3267.4967.64

95.9095.9097.98101.94106.42110.97115.42119.73123.89130.04135.84141.20146.18150.83155.19

-393.8-393.8-411.2-410.7-410.1-409.2-408.2-406.8-405.2-456.6-453.6-450.6-447.6-444.6-441.6

-380.4-380.3-372.3-362.6-353.0-343.6-334.3-325.1-316.1-305.1-291.4-278.0-264.9-251.9-239.2

Boiling T

66.6566.2248.6137.8830.7325.6421.8318.8716.5114.4912.6811.179.888.777.81

K

kJA^H0 25.5 kJ

Molar Vol. 4.328 J*bar'*HS98"H5

*

12.21 kJ

.- -4.330E+02 B= 1.198E-01 C=

43.28

1.642E+06

cm3

4/8/93

Page 253: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 247

CHLORARGYRITE Formula wt 143.321

AgCl: Cubic crystals 298.15 to melting point 728 K; liquid 728 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700728800900

1000

°P ST (HT-H298 )/T -<Gf-H298 )/T AfH' AfG*

t,T.«.-~ <| 1

50.7950.9556.6559.7061.7163.2263.8166.9466.9466.94

96.2396.54112.08125.08136.15145.78148.97172.34180.20187.27

0.000.31

13.7722.6829.0333.8134.9353.9255.3756.52

96.2396.2398.31102.40107.13111.98114.04118.42124.83130.75

Log K£

-127.1-127.1-125.9-124.5-122.9-121.2-120.7-106.4-104.4-102.5

-109.8-109.7-104.1-98.8-93.8-89.1-88.3-85.9-83.5-81.3

19.2419.1013.5910.328.176.656.335.614.844.25

Melting T

H298"H5

728 K

1289 kJ

12.033 kJ

Boiling T

Molar Vol

K

kJ

2.573 J-bar 25.73 cm3

A= -1.102E+02 B= 3.084E-02 O -8.08E+05

5/20/92

Page 254: robie 1995

248 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HYDROPHILITE Formula wt 110.983

CaCl2 : Orthorhombic crystals 298.15 to 1045 K. Liquid 1045 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

AU»H O

CP

72.8372.9375.7176.8678.0079.4581.2683.4085.81

102.53102.53102.53102.53102.53102.53102.53102.53

28

ST

104.60105.05126.50143.52157.63169.76180.48190.18199.09235.46244.37252.58260.17267.24273.86280.07285.93

1045 K

.54 kJ

/uo_uo \ /IP |Xlm **298 'I

J*mol *K

0.000.45

18.9930.4638.2844.0648.5952.3455.5685.1286.5787.8088.8589.7690.5691.2691.89

-(Gf-H298 )/T

104.60104.60107.51113.07119.35125.71131.89137.84143.53150.34157.80164.78171.32177.48183.30188.81194.04

A fH°

-795.8-795.8-794.4-793.1-792.0-790.9-790.8-789.8-788.9-758.7-764.4-761.4-758.4-755.4-752.5-749.5-895.3

Boiling

Av*H°

AfG°

1

-747.7-747.4-731.5-715.9-700.5-685.4-670.3-655.3-640.4-627.1-614.6-602.2-590.1-578.2-566.4-554.9-541.4

T

Molar Vol. 5.075H598-H8 15.27 kJ 50.75

Log Kf

130.99130.1395.5274.7860.9951.1443.7638.0333.4529.7826.7524.2022.0220.1318.4917.0515.71

K

kJ

J'bar'1cm3

A= -7.714E+02 B- 1.293E-01 C- -1.447E+06

3/04/94

Page 255: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 249

LAWRENCITE Formula wt 126.752

FeCl2 : Rhombohedral crystals 298.15 to 950 K; liquid 950 to 1300 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

1000110012001300

CP

76.3476.5481.0481.4981.9283.1785.3188.28

102.17102.17102.17102.17

H

117.95118.42141.27159.42174.30187.01198.25208.46263.64273.34282.21290.41

(H*-HS98 ,/T

J»mol «K

0.000.47

20.2332.4540.6546.6351.3255.25

102.17102.16102.16102.15

-<GT-H298 )/T

117.95117.95121.04126.96133.65140.39146.93153.21161.47171.18180.05188.26

AfH°

kJ»

-341.7-341.6-339.8-338.1-336.6-335.4-334.3-333.3-289.4-288.6-287.1-284.1

AfG°

--1

-302.2-302.0-289.1-276.6-264.4-252.5-240.7-229.1-219.8-212.8-206.0-199.4

Log K£

52.9552.5837.7528.8923.0218.8415.7213.3011.4810.118.978.01

Melting T

HS98"H5

950 K

43.01 kJ

16.27 kJ

Boiling T 1347 K

124.81 kJ

Molar Vol. 3.946 J-bar'1 39.46 cm3

A» -3.136E+02 9.168E-02 C* -1.52E+06

3/26/93

Page 256: robie 1995

250 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MOLYSITE Formula wt 162.205

FeCl3 : Crystals 298.15 to melting point 577 K; liquid 577 to boiling point 605 K; Ideal gas (dimer) 605 to 700 K.

FORMATION FROM THE ELEMENTS

Temp. C

K

>O COp ST (Hf-H298 )/T -(GT-H298 )/T AfH°

kJ'mol'1

AfG° Log Kf

298.15300400500600700

96.6796.67107.70119.86133.8971.13

142.26142.86171.86197.34294.42344.71

0.000.60

25.7243.46128.55154.70

142.26142.26146.14153.88165.87190.01

-399.2-359.4-396.9-393.7-346.8-324.5

-333.8-333.4-311.8-290.8-272.3-263.3

58.4758.0440.7130.3823.7119.64

Melting T 577 K Boiling T 605 K

21.88 kJ

H298~H5

43.10 kJ

19.71 kJMolar Vol. 5.786 J-bar1

57.86 cm3

A- -3.455E+02 B= 1.274E-01 C* -2.375E+06

5/21/92

Page 257: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 251

HYDROGEN CHLORIDE Formula wt 36.461

HC1: Ideal gas at p - 1 bar, 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

cp

29.1429.1329.0529.2729.6430.1030.6031.1231.6432.1632.6633.1533.6134.0534.4634.8335.17

ST

186.90187.08195.44201.94207.31211.91215.96219.60222.90225.94228.76231.40233.87236.20238.41240.51242.52

(H*-H298,/T

J . «»««1 1 . If 1 fflOl »IV

0.000.187.40

11.7514.7016.8618.5519.9221.0622.0522.9123.6824.3725.0025.5826.1226.61

-(GT-H298 )/T

186.90186.90188.04190.19192.61195.05197.41199.68201.84203.89205.85207 . 72209.50211.20212.83214.40215.90

AfH°

k_

-92.3-92.3-92.6-92.9-93.3-93.6-93.9-94.1-94.4-94.6-94.8-94.9-95.0-95.2-95.3-95.3-95.4

AfG°

,-1

-95.3-95.3-96.3-97.2-98.0-98.7-99.4

-100.1-100.8-101.4-102.0-102.6-103.2-103.8-104.4-104.9-105.5

Log K£

16.7016.6012.5710.158.537.376.495.815.264.824.444.123.853.613.413.223.06

Melting T Boiling T

kJ

8.64 kJ

K

kJ

Molar Vol. 2478.97 J'bar'1 24789.7 cm3

-9.476E+01 B= -6.043E-03 O 1.185E+05

3/04/93

Page 258: robie 1995

252 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SYLVITE Formula wt 74.551

KC1: Cubic crystals 298.15 to 1043 K, melting point; liquid 1043 to fictive boiling point 1475 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400

CP

51.2951.3653.4154.6356.1057.9960.2662.8765.7566.9466.9466.9466.94

ST

82.5982.9198.01110.06120.15128.93136.82144.07150.84182.80189.20195.10200.54

(H*-H598,/T

J»mol »K -

0.000.3213.3821.5127.1431.4134.8737.8340.4867.1967.7268.1868.56

-<G*-H298)/1

82.5982.5984.6488.5693.0097.52101.95106.23110.36115.61121.48126.92131.98

! AfH°

V T»

-436.5-436.5-438.4-437.9-437.2-436.4-435.3-434.0-432.4-482.9-479.5-476.1-472.7

AfG°

mnl-1

-408.6-408.4-398.6-388.8-379.0-369.3-359.8-350.5-341.3-329.1-315.2-301.7-288.4

Log Kf

71.5871.1052.0640.6132.9927.5623.4920.3417.8315.6313.7212.1210.76

Melting T

H298~H8

1043 K

26.28 kJ

11.37 kJ

Boiling T 1750 K

155.39 kJ

Molar Vol. 3.752 J'bar'1 37.52 cm3

A= -4.584E+02 B= 1.207E-01 C- 1.373E+06

3/26/93

Page 259: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 253

CHLORMAGNESITE Formula wt 95.210

MgCl2 : Rhombohedral crystals 298.15 to melting point 987 K. 1710 K.

Liquid 987 to boiling point

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400150016001700

CP

71.0471.1675.6378.1679.9281.3282.5383.6392.4792.4792.4792.4792.4792.4792.4792.47

ST

89.6090.04111.20128.37142.78155.21166.15175.94228.82237.65245.68253.09259.91266.31272.29277.90

<H*-H598,/T

J»mol*"*»K~*

0.000.4418.7430.3938.5144.5349.2052.9799.3798.7498.2297.7897.4097.0796.7896.53

-<G*-H298,/1

89.6089.6092.4697.98104.27110.68116.95122.97129.45138.28146.94154.87162.13168.91175.22181.12

? A fH°

kJ»m

-641.3-641.3-639.9-638.5-637.0-635.4-633.9-632.5-596.4-594.3-592.3-590.2-715.6-712.2-708.8-705.5

AfG°

Q! 1

-591.8-591.5-575.0-559.0-543.2-527.7-512.4-497.3-482.4-470.5-459.4-448.5-434.6-414.8-395.1-375.7

Log Kf

103.68102.9875.0958.4047.2939.3833.4628.8625.2022.3420.0018.0216.2214.4412.9011.54

Melting T

H298~H8

987 K

43.1 kJ

13.76 kJ

Boiling T

Molar Vol.

K

kJ

4.081 J-bar' 40.81 cm3

A= -6.293E+02 B= 1.445E-01 -4.868E+05

4/23/93

Page 260: robie 1995

254 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SCACCHITE Formula wt 125.844

MnCl2 : Rhombohedral crystals 298.15 to 923 K; liquid 923 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

Melting T

H298~H8

CP

73.0173.1177.2479.8081.7383.3684.8486.2394.5694.5694.5694.5694.56

37.

15

A*

ST (

J

118.24118.69140.35157.88172.60185.33196.56206.63257.19266.19274.43282.00288.99

923 K

53 kJ

.071 kJ

-4.505E+02

H£-H£98

mol~*»l

0.000.45

19.1931.0739.3645.5350.3554.2695.7395.6295.5495.4695.40

)/T -<Gf-H298 )/T

r""l

118.24118.24121.17126.81133.25139.80146.21152.37161.46170.57178.89186.54193.59

B* 9.437E-02

AfH° AfG°

-481.3-481.3-479.9-478.6-477.2-475.9-474.6-473.3-436.1-434.2-432.3-430.5-431.0

C-

kJ-mol"1

-440.5-440.2-426.8-413.6-400.8-388.1-375.7-363.4-354.4-346.3-338.4-330.6-322.9

Boiling T

Molar Vol. 4.21142.11

-1.734E+06

Log Kf

77.1776.6555.7343.2134.8928.9624.5321.0918.5116.4414.7313.2912.05

K

kJ

cm3

3/26/93

Page 261: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 255

HALITE Formula wt 58.442

NaCl: Cubic crystals 298.15 to 1073.8 K; liquid 1073.8 to fictive boiling point 1791 K,

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400150016001700

CP

50.5150.5452.3454.1455.9357.7359.5361.3263.1268.4668.1467.8267.5067.1766.8566.53

COST

72.1272.4387.2299.09109.12117.88125.70132.82139.37171.89177.83183.27188.29192.93197.26201.30

<HT-H298 )/T

J«mol «K -

0.000.3113.0921.1226.7731.0734.5137.3939.8767.9367.9667.9667.9467.9067.8567.78

-<GT-H298 )/T

72.1272.1274.1277.9782.3586.8191.1995.4399.50103.96109.87115.31120.35125.03129.41133.52

A£H°

IrT

-411.3-411.2-413.5-413.0-412.4-411.5-410.4-409.1-407.6-377.5-472.3-469.5-466.7-463.9-461.2-458.5

AfG°

-384.2-384.0-374.8-365.2-355.6-346.3-337.0-327.9-319.0-310.8-302.4-288.3-274.5-260.9-247.4-234.2

Log Kf

67.3066.8648.9438.1530.9625.8422.0019.0316.6614.7613.1611.5910.249.088.087.19

Melting T

H298-H5

1074 K

28.16 kJ

10.61 kJ

A- -4.283E+02

Boiling T

B- 1.1044E-01

Molar Vol

0 1.132E+06

K

kJ

2.702 J«bar 27.02 cm3

5/21/92

Page 262: robie 1995

256 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

NICKELOUS CHLORIDE Formula wt 129.595

Rhombohedral crystals 298.15 to melting point,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300

CP

71.6871.8877.2178.3478.8979.7481.0682.8785.1187.7290.6693.87

ST

98.2098.64120.25137.63151.96164.18174.91184.55193.40201.63209.39216.77

(HT-H298 )/T

J-mol'^K"1 -

0.000.4419.1430.8938.8444.6249.0952.7455.8658.6361.1863.57

-(GT-H|98 )/T

98.2098.20101.11106.74113.12119.56125.82131.82137.54143.00148.21153.20

AfH°

1. T

-304.9-304.9-303.6-302.3-301.3-300.4-299.2-297.8-296.4-294.7-292.9-290.9

AfG°

-258.8-258.5-243.2-228.3-213.6-199.0-184.6-170.3-156.2-142.3-128.5-114.9

Log Kf

45.3345.0031.7623.8518.5914.8512.059.898.166.765.594.62

Melting T 1303 K Boiling T K

kJ

H298"H5

77.17 kJ

14.43 kJMolar Vol 3.670 J-bar'1

36.70 cm3

A - -2.965E+02 B - 1.403E-01 C - -3.75B+05

4/8/93

Page 263: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 257

COTUNNITE Formula wt 278.105

PbCl2 : Orthorhombic crystals 298.15 to 768 K; liquid 768 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007007688009001000

CP

73.1873.3379.9884.5187.8590.4591.89113.80113.80113.80

ST

136.00136.45158.53176.89192.61206.35215.09250.41263.80275.77

<HT-H298)/T

i-l-l

0.000.4519.5632.1241.1548.0151.7283.9987.3189.96

-<GT-H298 )/T

136.00136.00138.97144.77151.46158.34163.37166.42176.49185.81

AfH°

1v T «AAJ

-359.4-359.4-357.9-356.0-354.0-356.6-355.0-329.7-325.0-320.3

AfG°

-i-l

-314.1-313.8-298.9-284.3-270.2-255.6-246.2-242.4-231.7-221.5

Log Kf

55.0354.6439.0329.7023.5219.0716.7415.8213.4511.57

Melting T

H298"H8

768 K

23.85 kJ

16.94 kJ

A- -3.405E+02 B« 1.218E-01

Boiling T

Molar Vol

0 -9.24E+05

K

kJ

4.709 J'bar'1 47.09 cm3

5/21/92

Page 264: robie 1995

258 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

FLUORITE Formula wt 78.075

CaF2 : Cubic crystals 298.15 K to transition at 1424 K.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

CP

67.6867.3869.9979.3583.7283.9282.4881.7383.5389.33100.22117.06140.52

COST

68.9069.3288.47105.16120.09133.05144.17153.82162.50170.70178.90187.54197.03

<H*-H298 >/T

J*mol «K

0.000.4216.9828.5837.4844.1349.0252.6855.6558.4161.4065.0069.51

-<«*-H598 )A

68.9068.9071.4976.5882.6288.9295.15101.14106.85112.29117.49122.54127.52

r AfH°

kJ-

-1228.0-1228.0-1227.2-1225.8-1224.0-1222.3-1221.8-1220.8-1220.0-1219.3-1225.8-1222.2-1216.7

AfG°

mol~l

-1175.3-1175.0-1157.4-1140.1-1123.1-1106.5-1089.9-1073.5-1057.1-1040.9-1024.1-1007.4-991.1

Log K£

205.90204.57151.14119.1097.7782.5671.1662.3055.2249.4344.5840.4836.98

Melting T

H598~H8

1691 K

kJ

11.64 kJ

Boiling T K

Av.pH 0 kJ

Molar Vol. 2.454 J-bar'1 24.54 cm3

A* -1.221E+03 1.643E-01 C= -2.93E+05

11/25/92

Page 265: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 259

HYDROGEN FLUORIDE Formula wt 20.006

HF: Ideal gas at p « 1 bar, 298.15 to 2500 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

cp

29.1429.1529.2129.1529.1829.3229.5529.8630.2030.5930.9931.4031.8132.2232.6333.0233.39

COST

173.78173.96182.36188.87194.19198.70202.63206.13209.29212.18214.86217.36219.70221.91224.00225.99227.89

<HT-H298 )/T

J»mol »K -

0.000.187.44

11.7914.6816.7618.3419.6120.6521.5322.3122.9923.6024.1724.6825.1625.61

~(GT-H298 )/1

173.78173.78174.93177.09179.51181.94184.28186.52188.64190.65192.56194.37196.10197.75199.32200.83202.28

? AfH°

kJ

-273.3-273.3-273.5-273.7-274.0-274.3-274.6-275.0-275.3-275.6-276.0-276.3-276.6-276.9-277.2-277.5-277.8

AfG°

mol~*

-275.4-275.4-276.1-276.7-277.3-277.9-278.3-278.8-279.2-279.6-279.9-280.2-280.5-280.8-281.0-281.2-281.5

Log K£

48.2547.9536.0528.9124.1420.7318.1716.1814.5813.2812.1811.2610.479.789.178.648.17

Melting T Boiling T

H298~H5

kJ

8.599 kJMolar Vol.

K

kJ

2478.97 J-bar'1 24789.7 cm3

A* -2.759E+02 B= -3.234E-03 C= 1.443E+05

11/19/92

Page 266: robie 1995

260 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SELLAITE Formula wt 62.302

MgF2 : Tetragonal crystals 298.15 to melting point 1536 K. Liquid 1536 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

61.5161.6968.6172.5675.1677.0278.4479.5780.5081.2881.9582.5383.0483.4994.5694.5694.56

ST

57.2057.5876.3892.15

105.63117.36127.74137.05145.48153.19160.29166.88173.01178.75222.46228.19233.59

(HT-H298 )/T

,-!_-!

0.000.38

16.6727.4835.2241.0745.6649.3652.4355.0257.2459.1660.8562.34

100.45100.1099.80

-<GT-H298 )/T

57.2057.2059.7264.6770.4076.2982.0987.6893.0598.17

103.06107.71112.16116.41122.01128.09133.79

AfH°

kJ

-1124.2-1124.2-1123.4-1122.4-1121.2-1120.0-1118.9-1117.7-1125.3-1124.3-1123.3-1122.3-1248.7-1246.3-1185.0-1181.4-1177.9

AfG°

mol~*

-1071.1-1070.7-1053.0-1035.5-1018.2-1001.2-984.3-967.5-950.2-932.7-915.3-898.0-877.7-851.3-827.5-805.2-783.2

Log Kf

187.64186.42137.51108.1888.6474.7164.2756.1549.6344.2939.8436.0832.7529.6427.0124.7422.73

Melting T

H298~H8

1536 K

58.69 kJ

9.914 kJ

A= -1.145E+03

Boiling T

B= 1.963E-01

Molar Vol.

C= 1.628E+06

K

kJ

1.961 J-bar'1 19.61 cm

11/19/92

Page 267: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 261

VILLIAUMITE Formula wt 41.988

NaF: Cubic crystals 298.15 to melting point 1269 K. Liquid 1269 to 1800 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

CP

46.8646.9449.7251.1952.5354.0255.7157.5959.6361.8264.1268.5168.5168.5168.5168.5168.51

ST

51.5051.7965.7477.0086.4594.66101.98108.65114.82120.60126.08157.48162.55167.28171.70175.85179.76

(HT-H598 )/T

,-!--!

0.000.2912.3619.9825.2929.2932.4835.1737.5139.6241.5669.5769.4969.4369.3769.3269.27

-<GT-H§98 )/T

51.5051.5053.3857.0261.1665.3769.4973.4877.3180.9884.5287.9193.0697.85102.33106.53110.49

AfH°

kJ

-573.6-573.6-576.0-575.7-575.3-574.7-573.9-573.0-571.8-570.5-665.8-629.2-626.4-623.5-620.6-617.8-615.0

AfG°

mol"1

-543.4-543.2-532.9-522.2-511.5-500.9-490.4-480.0-469.8-459.6-447.1-429.0-413.7-398.6-383.7-369.0-354.5

Log Kf

95.2094.5869.5954.5544.5337.3832.0227.8624.5421.8219.4617.2415.4413.8812.5311.3410.29

Melting T

H2*98"H8

1269 K

33.14 kJ

8.49 kJ

A« -6.018E+02

Boiling T

B« 1.344E-01

Molar Vol

1.835E+06

K

kJ

1.498 J-bar- 14.98 cm3

11/19/92

Page 268: robie 1995

262 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CRYOLITE Formula wt 209.941

Monoclinic (a) crystals 298.15 to 836 K transition to cubic (0) crystals. Cubic crystals 836 to 1153 K. y crystals 1153 to melting point 1290 K. Liquid 1290 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting

AIU.H"

H298-H0

CP

217.37217.73238.77251.60262.30281.11315.99279.88284.68289.47300.41396.91396.91396.91396.91396.91396.91

T

113.

38

A-

Sf

238.50239.85305.46360.26407.03448.71488.31532.93562.66590.02617.49730.45759.86787.23812.84836.89859.57

1290 K

75 kJ

.223 kJ

-3.370E+03

(HT-H298 )/T

0.001.34

58.1695.69

122.52143.68162.84186.63196.20204.46213.76308.67314.97320.43325.21329.43333.18

B=

-(G$-H298 )/T AfH° AfG°

238.50238.50247.31264.57284.51305.03325.47346.30366.46385.56403.73421.78444.89466.80487.63507.46526.39

6.097E-01

-3316.8-3316.8-3323.0-3320.4-3317.0-3312.3-3305.1-3290.1-3295.5-3289.9-3571.9-3447.8-3429.0-3410.1-3391.4-3372.6-3354.0

C*

k-T- 1""1

-3152.1-3151.0-3095.4-3038.8-2982.8-2927.4-2872.9-2820.0-2767.3-2714.7-2655.4-2580.3-2514.3-2449.6-2386.2-2323.9-2262.7

Boiling T

AV*H°

Molar Vol. 770

-3.62E+06

Log Kf

552.22548.63404.21317.45259.67218.44187.58163.66144.54128.91115.58103.6793.8185.3077.9071.4065.66

K

kJ

.081 J-bar*1

.81 cm3

11/19/92

Page 269: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 263

CHIOLITE Formula wt 461.871

Na5Al3F14 : Tetragonal crystals 298.15 to melting point 1010 K.

FORMATION FROM THE ELEMENTS

Temp.

K

cp ST <HT-H298 )/T

- J-mol'^K""1 -

-<GT-H§98 )/T AfH° AfG° Log Kf

298.153004005006007008009001000

453.91455.08499.34524.54542.23556.38568.64579.80590.28

515.30518.11655.82770.16867.43952.111027.221094.851156.48

0.002.80

122.04200.20255.80297.76330.87357.91380.63

515.30515.31533.78569.96611.63654.35696.35736.94775.85

-7546.3-7546.3-7556.5-7552.3-7546.5-7539.6-7532.1-7524.1-7547.6

-7174.7-7172.4-7047.1-6920.2-6794.3-6669.5-6545.7-6422.9-6298.8

1256.951248.79920.24722.94591.49497.67427.38372.77329.01

Melting T

H2*98~H8

1010 K

80.831 kJ

38.223 kJ

Boiling T

Molar Vol

K

kJ

15.408 J-bar'1

154.08 cm3

A= -7.5366E+03 B= 1.239E+00 O -7.07E+05

11/20/92

Page 270: robie 1995

264 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

IODARGYITE Formula wt 234.773

Agl: Hexagonal crystals 298.15 to 423 K; cubic crystals 423 to 831 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800

CP

54.4154.6064.6856.4856.4856.4856.48

ST i

115.48115.82132.91160.54170.88179.54187.07

1 tl O _U Q \ / ftI T 298 / /

i*mol K

0.000.34

15.1636.1539.5441.9643.78

-<G$-HJ98 ,/T

115.48115.48117.74124.39131.34137.58143.29

AfH°

kJ

-61.8-61.8-69.3-84.0-82.8-81.8-80.8

AfG°

mol"1

-66.3-66.3-67.6-66.3-62.9-59.6-56.5

Log Kf

11.6111.548.826.935.474.453.69

Melting T 831 K

kJ

H298"H5 kJ

Boiling T

Molar Vol

K

kJ

4.130 J-bar'1 41.30 cm3

A* -9.280E+01 B« 4.399E-02 O 1.196B+06

11/19/92

Page 271: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 265

MARSHITE Formula wt 190.450

Cul: Cubic crystals 298.15 to transition point at 643 K. 679 K. Cul melts at 868 K.

There is a second transition at

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

Melting T

HS98-H&

CP

54.0654.1457.2060.5976.9068.6268.6265.7563.4561.4359.6858.2056.99

7.

ST

96.6096.93112.92125.89137.85163.05172.22189.35196.15202.11207.38212.09216.36

868 K

93 kJ

kJ

-7.665E+01

(HT-H|98 )/T

J-mol'^K'1

0.000.3314.1722.9830.1249.3251.7462.3362.5662.5562.3862.1161.79

-<GT-H298 )/T

96.6096.6098.75102.91107.73113.73120.48127.02133.59139.56145.00149.98154.57

2.882E-02

A£H°

kJ-mol"1

-67.8-67.8-75.5-96.4-94.3-82.4-80.1-70.1-68.3-66.9-65.8-65.0-77.6

Boiling T

Molar Vol.

AfG°

-69.4-69.4-69.7-66.3-60.4-55.6-51.9-48.8-46.5-44.4-42.5-40.5-38.3

333

Log Kf

12.1612.099.106.925.264.153.392.832.432.111.851.631.43

K

kJ

.335 J-bar'1

.35 cm3

O -2.219E+05

11/19/92

Page 272: robie 1995

266 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

WITHERITE Formula wt 197.336

BaCO3 : Orthorhombic crystals 298.15 to 1079 K; tetragonal crystals 1079 to 1241 K; cubic crystals 1241 to 1600 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600

Melting

Aft,H°

°P

85.3285.7599.75

106.60112.19118.01124.41131.45139.07154.81154.81158.98158.98158.98158.98

T

ST (I

j.

112.13112.66139.57162.62182.55200.28216.45231.50245.74275.81289.28304.39316.17327.13337.39

K

kJ

io_tiQ \ IT T 2 98''

mol~l«K~*

0.000.53

23.8739.7751.3860.4868.0674.7180.76102.47106.83113.13116.40119.24121.73

-<Gf-H298 )/T

112.13112.13115.71122.84131.17139.80148.38156.79164.98173.34182.45191.26199.77207.89215.66

AfHe

kJ

-1210.9-1210.8-1209.9-1209.3-1209.3-1208.3-1207.4-1205.7-1203.4-1191.2-1187.4-1180.3-1176.1-1172.0-1167.8

A£G°

mol"1

-1132.2-1131.7-1105.5-1079.4-1053.5-1027.6-1001.8-976.2-950.8-925.3-901.3-877.7-854.7-831.8-809.3

Boiling T

Log Kf

198.35197.05144.36112.7791.7176.6865.4156.6549.6643.9439.2335.2731.8928.9726.42

K

kJ

Molar Vol. 4.581 J'bar'1H298-H8

kJ

-1.196E+03 B« 2.438E-01 C* -9

45.81

. 15E+05

cm3

9/11/92

Page 273: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 267

ARAGONITE Formula wt 100.087

CaCO3 : Orthorhombic crystals 298.15 to 1000 K,

FORMATION FROM THE ELEMENTS

Temp.

K

flO COCp ST

/tio_uo \ /IP _/f<o_tiQ \ /n* ***T 298'' \ T 298''

- J-mol""1 ^"1

A£H° AfG°

kJ-mol"1

Log Kf

298.15300400500600700800900

1000

82.3182.5592.6799.80

105.76111.17116.28121.22126.06

87.9988.50

113.75135.22153.96170.67185.85199.84212.86

0.000.51

22.3837.1848.1356.7563.8769.9775.34

87.9987.9991.3798.04105.83113.92121.98129.86137.52

-1207.4-1207.4-1206.7-1205.8-1204.8-1203.7-1203.4-1202.2-1201.0

-1127.4-1126.9-1100.2-1073.6-1047.3-1021.2-995.0-969.1-943.2

197.51196.21143.66112.1691.1776.2064.9756.2449.27

Melting T

kJ

14.31 kJ

Boiling T

Molar Vol

K

kJ

3.415 J-bar'1 34.15 cm3

A» -1.203E+03 B» 2.598E-01 C- -1.96E+05

9/18/92

Page 274: robie 1995

268 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CALCITE Formula wt 100.087

CaCO3 : Rhombohedral crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

CP

83.4783.8297.00104.55109.88114.16117.88121.28124.48127.55130.53

COST

91.7192.23

118.36140.88160.43177.70193.19207.28220.22232.23243.46

/HO_UO \ /rp' T 2 9 8 * /

J Bmol~ *K~

0.000.52

23.1838.7550.1859.0266.1572.0977.1781.6185.57

-(Gf-H298 )/T

91.7191.7195.19

102.13110.25118.68127.04135.18143.05150.62157.89

AfH°

kJ*m<

-1207.4-1207.4-1206.3-1204.9-1203.5-1202.0-1201.6-1200.3-1199.1-1198.1-1204.9

A£6°

~i-l?<L

-1128.5-1128.0-1101.6-1075.6-1049.9-1024.4-999.0-973.8-948.7-923.7-898.2

Log Kf

197.70196.39143.86112.3791.4076.4465.2356.5249.5543.8639.10

Melting T

kJ

14.48 kJ

Boiling T

Molar Vol

K

kJ

3.693 J-bar'1

36.93 cm3

A» -1.200E+03 B» 2.518E-01 C» -3.036E+05

10/14/92

Page 275: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 269

DOLOMITE Formula wt 184.401

CaMg(C03 ) 2 : Rhombohedral crystals 298.15 to 1100 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP j-mol"1 -*"1 -

-(GT-H298 )/T AfH° AfG° Log Kf

298.15300400500600700800900

10001100

157.51158.06183.54201.89215.66226.65236.08244.73253.15261.72

155.18156.16205.32248.35286.43320.53351.42379.73405.96430.48

0.000.97

43.6173.5296.12114.00128.69141.10151.89161.48

155.18155.18161.71174.83190.32206.53222.74238.63254.07269.00

-2324.5-2324.5-2323.4-2321.4-2318.8-2316.0-2313.9-2310.8-2316.2-2312.9

-2161.3-2160.3-2105.7-2051.4-1997.7-1944.4-1891.4-1838.7-1785.7-1732.9

378.64376.13274.97214.31173.91145.09123.47106.7293.2882.28

Melting T Boiling T K

kJAfi.H 0 kJ

Molar Vol. 6.434H^98~H6 25.98 kJ 64.34

J-bar'1cm3

A« -2.314E+03 B» 5.283E-01 O -4.81E+05

5/22/92

Page 276: robie 1995

270 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SIDERITE Formula wt 115.856

FeCO3 : Rhombohedral crystals 298.15 to 600 K.

298.15300400500600

82.2782.5294.34

102.56108.09

FORMATION FROM THE ELEMENTS

Temp. C>O COp ST <Hf-H298 )/T -(Gf-HSga)/

- J-mol"1^"1

T AfH° AfG° Log Kf

kJ'mol"1

95.4795.98

121.43143.43162.65

0.000.51

22.5737.8049.08

95.4795.4798.86

105.63113.56

755.9 755.9 755.1 754.0 752.9

682.8 682.4 658.0 633.8 609.9

119.63118.8185.9266.2153.09

Melting T

kJ

14.59 kJ

Boiling T

Molar Vol

K

kJ

2.938 J«bar! 29.38 cm3

A= -7.525E+02 B» 2.383E-01 C- -1.23E+05

5/22/92

Page 277: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 271

MAGNESITE Formula wt 84.314

MgC03 : Rhombohedral crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

76.0976.4490.5799.92107.38113.96120.06125.88131.54

ST

65.0965.5689.67110.94129.83146.89162.51176.98190.54

(HT-H298 )/T

J«raol~1 -K~1 -

0.000.47

21.3936.2047.4656.5064.0770.6176.42

-(Gf-H298 )/T

65.0965.0968.2874.7382.3790.3998.44106.37114.12

AfH°

i.

-1113.3-1113.3-1112.9-1111.9-1110.6-1109.1-1107.3-1105.3-1111.6

A£6°

J-mol"1

-1029.5-1029.0-1000.9-973.0-945.3-917.9-890.7-863.7-836.3

Log Kf

180.36179.15130.70101.6582.3068.4958.1650.1343.68

Melting T

HS98~H5

kJ

11.63 kJ

Boiling T

Molar Vol

K

kJ

2.802 J-bar'1 28.02 cm3

A= -1.108E+03 2.718E-01 C= -2.42E+05

5/22/92

Page 278: robie 1995

272 IHERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

RHODOCHROSITE Formula wt 114.947

MnCO3 : Rhombohedral crystals 298.15 to 600 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600

CP

80.7881.0392.38

100.87107.70

ST

98.0398.53123.49145.05164.07

(HT-H298 )/T

J-mol"1 -*,""1 -

0.000.50

22.1337.0648.29

-<GT-H298 )/T

98.0398.03101.36107.99115.78

AfH°

1. T

-892.9-892.9-892.4-891.6-890.6

A£6°

mol"1

-819.1-818.7-794.0-769.5-745.2

Log Kf

143.50142.54103.6880.3864.87

Melting T

H2*98'H5

K

kJ

14.12 kJ

Boiling T

Molar Vol

K

kJ

3.107 J-bar'1 31.07 cm3

A« -8.894E+02 B» 2.425E-01 C= -9.44E+04

5/22/92

Page 279: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 273

DAWSONITE Formula wt 143.995

NaAlC03 (OH) 2 : Orthorhombic crystals 298.15 to 500 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP COST (Hf-H|98 )/T -<G5,-H298 )/T AfH° AfG°

kJ'mol'1

Log Kf

298.15300400500

34.5234.5234.5534.58

132.00132.21142.15149.86

0.000.218.79

13.95

132.00132.00133.35135.91

-1964.0-1964.2-1980.2-1994.4

-1786.0-1784.9-1722.9-1656.9

312.89310.77224.98173.09

Melting T K Boiling T

H298~H5

kJ

22.17 kJMolar Vol

K

kJ

5.93 J'bar'1 59.3 cm3

A» -2.010E+03 6.937E-01 C= 1.518E+06

7/17/92

Page 280: robie 1995

274 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

STRONTIANITE Formula wt 147.629

SrCO3 t Orthorhombic crystals 298.15 to 1197 K; hexagonal crystals 1197 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400

Melting T

H298~H8

CP

81.5082.0397.72102.86106.05109.46113.64118.69124.54131.11144.77144.77144.77

A

Sf (

J

97.0797.58

123.80146.24165.28181.87196.75210.42223.22235.40262.84274.42285.15

K

kJ

kJ

HT-H298 )/T

mol"1^"1 -

0.000.50

23.2638.7449.6957.9864.6770.3875.5080.25100.48103.89106.81

-<GT-H298 )/T

97.0797.07

100.54107.50115.58123.89132.09140.04147.72155.15162.36170.53178.34

AfH°

-1218.7-1218.7-1217.7-1216.4-1215.2-1214.1-1213.0-1212.4-1210.6-1216.3-1195.5-1192.6-1189.9

AfG°

i-l

-1137.6-1137.1-1110.0-1083.2-1056.6-1030.3-1004.1-978.0-952.0-925.9-899.7-875.1-850.8

Boiling T

Molar Vol. 3.

- -1.210E+03 B » 2.577E-01 C -

39.

-4.37E+05

Log Kf

199.29197.97144.94113.1691.9976.8865.5656.7649.7343.9739.1635.1631.74

K

kJ

901 J-bar'101 cm3

7/17/92

Page 281: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 275

SMITHSONITE Formula wt 125.399

ZnCO3 : Rhombohedral crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

cp

80.0580.2991.77

101.01108.79115.57121.64127.19132.34137.18141.77

COST

81.1981.69106.42127.92147.05164.34180.17194.82208.49221.34233.47

<HT-H298 )/T

J-mol"1^'1 -

0.000.49

21.9336.8648.2157.3665.0271.6377.4482.6687.39

-(GT-H29Q )/T

81.1981.1984.4991.0798.83106.98115.15123.20131.05138.68146.08

AfH°

1. T

-817.0-817.0-816.4-815.4-814.0-819.7-817.9-815.7-813.2-810.3-922.2

AfG°

mol"1

-735.3-734.8-707.5-680.4-653.5-626.8-599.4-572.2-545.3-518.6-490.3

Log Kf

128.82127.9492.3971.0856.8946.7739.1333.2128.4824.6321.34

Melting T

H298"H5

K

kJ

13.49 kJ

Boiling T K

A^0 kJ

Molar Vol. 2.828 J-bar'1 28.28 cm3

A* -8.163E+02 B* 2.71IE-01 C- 1.690E+04

5/22/92

Page 282: robie 1995

276 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

NITROBARITE Formula wt 261.337

Ba(NO3 ) 2 : Cubic crystals 298.15 to 800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP ST (HT-H2 9Q )/T

J-mol'^-K"1 -

-<GT-H29Q )/T AfH° AfG'

kJ-mol"1

Log Kf

298.15300400500600700800

151.35151.85174.94193.67210.68226.88242.65

213.80214.74261.75302.85339.68373.38404.71

0.000.93

41.7070.2692.26110.34125.90

213.80213.80220.06232.59247.42263.04278.81

-992.1-992.1-990.5-988.0-984.9-979.6-973.6

-796.6-795.4-730.0-665.2-600.9-537.3-474.4

139.55138.4895.3369.4952.3140.0930.98

Melting T

H298~H5

kJ

kJ

Boiling T

Molar Vol

K

kJ

8.058 J-bar'1 80.58 cm3

A- -9.791E+02 B= 6.323E-01 C- -5.41E+05

5/22/92

Page 283: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 277

CALCIUM NITRATE Formula wt 164.088

Ca(NO3 ) 2 : Cubic crystals 298.15 to 800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP COST (HT-H298 )/T -(GT-H^98 )/T AfH° AfG° Log Kf

298.15300400500600700800

149.11149.66173.76192.74210.08226.83243.37

193.30194.22240.79281.65318.34351.98383.35

0.000.9241.3069.7391.69109.81125.47

193.30193.30199.49211.92226.64242.18257.88

-938.4-938.4-936.6-933.1-928.4-922.5-916.3

-742.6-741.4-675.9-611.2-547.2-484.1-421.8

130.10129.0888.2763.8547.6436.1227.54

Melting T

H298~H6

K

kJ

kJ

Boiling T

Molar Vol

K

kJ

6.609 J-bar'1 66.09 cm3

A- -9.217E+02 B« 6.267E-01 C= -6.975+05

5/22/92

Page 284: robie 1995

278 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

NITER Formula wt 101.103

KNO3 : Orthorhombic crystals 298.15 to 401 K; Rhombohedral crystals 401 to 610 K; liquid 610 to 700 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700

CP

96.2796.27

108.41120.50120.50123.43

ST

133.09133.69163.09204.68226.64262.08

(HT-H298 )/T

l~l -1

0.000.60

26.0556.7467.3689.73

-(GT-H298 )/T

133.09133.09137.05147.94159.28172.35

AfH°

kJ-m

-494.5-494.4-495.6-486.8-484.0-471.1

A£6°

ol~

-394.5-393.9-360.1-328.1-296.6-267.0

Log Kf

69.1268.5947.0334.2725.8219.92

Melting T 610 K

10.10 kJ

H298~H5 kJ

Boiling T

Molar Vol

K

kJ

4.804 J'bar' 48.04 cm3

A* -4.736E+02 B- 2.981E-01 C= -8.83E+05

5/22/92

Page 285: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 279

MAGNESIUM NITRATE Formula wt 148.315

Mg(N03 ) 2 : Cubic crystals 298.15 to 600 K.

298.15300400500600

FORMATION FROM THE ELEMENTS

Temp.

K

CP COST (HT-H298 )/T -<GT-H29Q )/

- J-mol'^K'1

T A fH° AfG° Log Kf

141.92142.40168.77195.63222.70

164.01164.89209.45249.99288.05

0.000.88

39.5468.0791.58

164.01164.01169.91181.92196.47

-790.7-790.6-789.5-786.0-780.4

-589.2-587.9-520.5-453.6-387.6

103.22102.3767.9747.3833.74

Melting T Boiling T

kJ

H298"H5 kJ

R

kJ

Molar Vol. 6.293 J'bar'1 62.93 cm3

A= -7.811E+02 B= 6.577E-01 C= -3.732+05

5/22/92

Page 286: robie 1995

280 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

AMMONIA-NITER Formula wt 80.043

NH4NO3 : Ammonia-niter undergoes phase changes at 305.3, 357.4, 398.4 K. It melts at 442.8 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500

CP

139.37139.37190.79161.08

ST

151.08151.94208.94260.24

(HT-H298 )/T

J-mol"1 ^"1 -

0.000.8651.2686.69

-(GT-H§9Q )/T

151.08151.08157.68173.55

A£H°

lr T

-365.6-365.6-358.5-349.1

A£6°

-183.8-182.7-122.3-64.5

Log Kf

32.2031.8115.976.74

Melting T

H298"H5

442.8 K

5.44 kJ

kJ

Boiling T

Molar Vol

K

kJ

4.649 J'bar'1 46.49 cm3

A* -3.384E+02 B= 5.556E-01 C= -9.90E+05

5/22/92

Page 287: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 281

SODA NITER Formula wt 84.995

NaN03 t a-crystals 298.15 to 549.2 K. jJ-crystala 549.2 to 583.2 K. Liquid 583.2 to 700 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700

c° CP

93.0793.48115.76138.07154.81154.81

**

116.52117.10147.04175.27234.63258.48

(Hf-H298 )/T

! _1

0.000.58

26.5946.5694.82

103.39

-<GT-H298 )/T

116.52116.52120.45128.62139.81155.09

A£H°

VT

-468.0-468.0-469.1-465.5-441.2-435.1

A£G°

mol"1

-367.1-366.5-332.6-298.9-266.7-238.1

Log Kf

64.3263.8143.4331.2223.2217.77

Melting T

kJ

H298~H5 kJ

Boiling T

Molar Vol

K

kJ

3.76 J»bar' 37.6 cm3

A- -4.447E+02 B- 2.995E-01 C- -1.05E+06

5/22/92

Page 288: robie 1995

282 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

STRONTIUM NITRATE Formula wt 211.630

Sr(N03 ) 2 : Crystals 298.15 to 900 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

CP

149.93149.88169.18197.81220.32234.85242.20243.53

COST

194.56195.49240.55281.44319.61354.76386.68415.33

/tIO_tIQ \ /«P* T 2 9 8 / /

0.000.92

39.9868.7392.23111.66127.58140.44

-(Gf-H29Q )/T

213.80213.80220.06232.59247.42263.04278.81274.89

AfH°

kJ-

-978.2-978.2-977.0-973.6-968.0-961.1-953.4-946.4

AfG°

-779.0-777.8-711.1-644.9-579.7-515.5-452.4-390.1

Log Kf

136.47135.4292.8667.3750.4738.4729.5422.64

Melting T Boiling T K

kJAfc.H 0 kJ

H298~H6 kJ

Molar Vol. 7.09370.93

J'bar'1cm3

A* -9.566E+02 B= 6.317E-01 C= -9.810+05

5/22/92

Page 289: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 283

ALUMINUM SULFATE Formula wt 342.154

A12 (SO4 ) 3 : Orthorhombic crystals 298.15 to 1100 K,

Temp.

K

CP ST (HT-H298 )/T -(GT-H298 )/T

FORMATION FROM THE ELEMENTS

AfG° Log KfAfH°

kJ*mol-1

298.1530040050060070080090010001100

259.26260.62317.35352.93376.60392.79403.92411.44416.28419.06

239.30240.91324.34399.26465.84525.19578.41626.45670.07709.89

0.001.60

74.05126.52166.35197.62222.75243.33260.40274.71

239.30239.30250.30272.74299.49327.57355.66383.12409.67435.18

-3441.8-3441.9-3449.3-3451.1-3449.7-3446.5-3442.2-3596.9-3609.7 .-3600.9

-3100.6-3098.5-2983.5-2866.9-2750.1-2633.7-2517.9-2399.4-2265.3-2131.3

543.20539.48389.60299.49239.41196.53164.40139.25118.32101.20

Melting T

H298~H5

K

kJ

40.22 kJ

Boiling T

Molar Vol

K

kJ

7.341 J-bar'1 73.41 cm3

-3.501E+03 B= 1.233E+00 C« 3.117E+06

6/10/93

Page 290: robie 1995

284 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BARITE Formula wt 233.391

BaSO4 : Orthorhombic crystals 298.15 to 1300 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000110012001300

Melting T

AtoH°

H298"H8

CP

101.75102.23119.28127.17131.46134.04135.72136.87137.69138.30138.76139.12

A=

ST

132.21132.84164.94192.50216.10236.57254.59270.65285.11298.27310.32321.44

K

kJ

kJ

-7.496E+01

<HT-H298 )/T

J-mol"1 ^'1

0.000.63

28.4747.5161.1771.4179.3585.6890.8595.1398.75101.84

B=

-(Gf-H298 )/T

132.21132.21136.47144.99154.93165.16175.24184.96194.27203.13211.57219.60

-9.007E-02

Af

-1473-1473-1476-1477-1479-1479-1480-1533-1532-1539-1539-1538

O

H° AfG°

- kJ'mol'1

.6 -1362.5

.6 -1361.8

.0 -1324.4

.5 -1286.4

.0 -1248.0

.4 -1209.5

.1 -1170.9

.5 -1131.1

.4 -1086.5

.8 -1041.1

.1 -995.8

.3 -950.6

Boiling T

AV*H°

Molar Vol. 5.2152.10

= 4.067E-01

Log Kf

238.70237.11172.95134.39108.6590.2576.4565.6556.7549.4443.3538.19

K

kJ

J'bar'1

car

5/22/92

Page 291: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 285

ANHYDRITE Formula wt 136.142

CaSO4 : Orthorhombic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP ST <HT-H298 )/T -(GT-H|98 )/T AfH° AfG°

1, T--.-.1 "I

101.23101.57116.68127.18135.03141.54147.55153.59160.04

107.40108.03139.45166.68190.59211.91231.20248.93265.44

0.000.63

27.8746.7460.8371.9080.9888.7195.52

107.40107.40111.58119.94129.77140.01150.22160.21169.92

Log Kf

-1434.4-1434.5-1436.6-1437.2-1437.0-1436.1-1435.8-1487.3-1484.2

-1321.8-1321.1-1283.2-1244.7-1206.3-1167.9-1129.5-1090.2-1046.3

231.57230.02167.56130.03105.0187.1573.7563.2754.65

Melting T 1723 K

28.03 kJ

17.30 JcJ

Boiling T

Molar Vol

K

kJ

4.601 J-bar'1 46.01 cm3

A- -1.4465E+02 B« 3.971E-01 C= 5.860E+05

9/16/92

Page 292: robie 1995

286 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CHALCOCYANITE Formula wt 159.610

CuS04 : Crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

CP

139.89140.42160.73172.71181.41188.56194.88200.72206.27211.62216.84

ST

109.50110.37153.87191.11223.40251.91277.51300.81322.24342.15360.79

(H*-H298 )/T

1*1. "I

0.000.86

38.5764.2883.1197.67109.44119.26127.68135.07141.67

-(Gf-H§98 )/T

109.50109.50115.30126.83140.29154.24168.08181.55194.56207.08219.12

AfH°

1, T

-771.4-771.3-769.2-765.1-759.9-753.9-747.3-793.4-784.6-775.6-766.1

AfG°

mol"1

-662.3-661.6-625.5-590.1-555.6-522.0-489.3-456.4-419.4-383.3-348.1

Log Kf

116.03115.1981.6961.6548.3738.9531.9526.4921.9118.2015.15

Melting T

H298~H8

kJ

16.87 kJ

Boiling T

Molar Vol

K

kJ

4.088 J-bar'1 40.88 cm3

A* -7.631E+02 B« 3.445E-01 0 -1.35E+05

11/25/92

Page 293: robie 1995

THERMODYNAMIC PROPERTIES AT fflGH TEMPERATURE OF INDIVIDUAL PHASES 287

FERRIC SULFATE Formula wt 399.885

Fe2 (SO4 ) 3 : Orthorhombic crystals 298.15 to 800 K,

FORMATION FROM THE ELEMENTS

Temp.

K

cp sf (HT-H298 )/T -(GT-H29Q )/T AfH° AfG° Log Kf

298.15300400500600700800

275.03276.04319.44351.71379.61405.44430.16

282.80284.50370.29445.15511.78572.26628.02

0.001.70

76.08128.08167.72199.85227.10

282.80282.81294.21317.07344.07372.41400.92

-2581.9-2581.9-2588.8-2591.1-2590.4-2587.4-2582.5

-2254.4-2252.4-2142.1-2030.2-1918.0-1806.2-1694.9

394.96392.16279.73212.09166.98134.78110.66

Melting T

H2*98~H8

K

kJ

kJ

Boiling T

Molar Vol

K

kJ

13.08 J-bar'1 130.80 cm3

A« -2.592E+03 B* 1.121E+00 O 2.722E+05

6/10/93

Page 294: robie 1995

288 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ARCANITE Formula wt 174.260

K2SO4 : Orthorhombic crystals (a) 298.15 to 856 K. point 1342 K. Liquid 1342 to 1700 K.

Hexagonal crystals (0) 856 to melting

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

10001100120013001400150016001700

CP

130.01130.44149.06163.03175.17186.44197.25203.55189.91197.63219.88252.38197.61197.61197.61197.61

Sf

175.56176.37216.62251.43282.25310.11335.71368.88389.40407.72425.78444.61485.93499.57512.32524.30

<Hf-H298 )/T

J-mol"1^"1 -

0.000.80

35.7059.8178.0492.73

105.12125.49132.41137.86143.69150.77180.08181.25182.28183.18

-(OJ-HJss)/-

175.56175.56180.93191.62204.21217.38230.59243.39256.99269.86282.09293.84305.85318.32330.04341.12

r Afn°

kJ

-1437.7-1437.7-1445.2-1445.8-1444.9-1442.6-1439.3-1479.5-1474.8-1628.5-1620.8-1610.5-1567.7-1561.4-1555.0-1548.8

AfG°

mol"1

-1319.6-1318.9-1278.2-1236.3-1194.5-1152.9-1111.7-1069.8-1024.5-970.4-910.9-852.1-795.0-740.1-685.5-631.3

Log Kf

231.18229.63166.91129.15103.9986.0372.5962.0953.5146.0839.6534.2429.6625.7722.3819.40

Melting T Boiling T

H298"H8

kJ

25.43 kJMolar Vol.

K

kJ

6.550 J-bar"1 65.50 cm3

A* -1.541E+03 B* 5.285E-02 0 6.26776E+06

5/27/92

Page 295: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 289

K-A1 SULFATE Formula wt 258.207

KA1(SO4 ) 2 : Hexagonal crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP

192.98193.95230.89252.19267.33279.58290.27300.06309.29

ST

204.60205.80267.25321.23368.61410.76448.80483.57515.66

(Hf-H298 )/T

J-mol'^K""1 -

0.001.19

54.5292.07120.08142.01159.89174.92187.90

-(Gf-H§98 )/T

204.60204.60212.73229.16248.53268.75288.92308.64327.76

AfH°

kJ

-2470.9-2470.9-2478.5-2480.1-2479.7-2477.9-2475.2-2577.9-2581.9

AfG°

mol'1

-2240.4-2239.0-2160.8-2081.2-2001.4-1921.9-1842.6-1761.6-1670.5

Log K£

392.50389.83282.17217.42174.24143.41120.31102.2487.25

Melting T

H298"H8

kJ

32.22 kJ

Boiling T

Molar Vol

K

kJ

9.233 J-bar'1 92.33 cm3

A« -2.499E+03 B= 8.218E-01 C= 1.235E+06

5/27/92

Page 296: robie 1995

290 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ALUNITE Formula wt 414.214

KA13 (OH) 6 (S04 ) 2 : Crystals 298.15 to 700 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP SJ <H*-HJ98 >,T -(Oi-HJ98 ,/T AfH° AfG°

kJ'mol'1

Log Kf

298.15300400500600700

372.53374.90462.28508.84539.32562.22

321.00323.31444.70553.29648.92733.84

0.002.30

107.73183.69240.57284.94

321.00321.01336.96369.60408.35448.90

-5176.5-5176.6-5185.9-5186.2-5183.0-5177.7

-4663.5-4660.3-4487.0-4312.1-4137.6-3963.8

817.00811.41585.92450.48360.20295.77

Melting T

kJ

kJ

Boiling T K

A^0 kJ

Molar Vol. 29.360 J-bar'1 293.60 cm3

A* -5.116E+03 B= 1.594E+00 O -2.065E+06

11/25/92

Page 297: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 291

LANGBEINITE Formula wt 414.997

K2Mg2 (S04 ) 3 : Cubic crystals 298.15 to 1203 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

CP

318.92319.93363.71393.92416.52434.14448.13459.30468.13474.96480.00

COST

389.30391.28489.76574.34648.25713.84772.75826.21875.08920.03961.58

/UO_UO \ /f* T 298* /

J-mol'^-K"1 -

0.001.97

87.32145.78189 . 10222.90250.21272.85291.95308.29322.40

-<0*-HJ98 )/'.

389.30389.31402.44428.56459.15490.93522.54553.36583.12611.73639.18

r AfH°

kJ

-4071.0-4071.1-4084.4-4088.1-4088.9-4087.6-4085.1-4241.1-4250.8-4401.2-4391.4

A£6°

mol"1

-3733.4-3731.3-3616.5-3499.1-3381.1-3263.3-3145.7-3025.2-2889.0-2744.0-2593.8

Log Kf

654.05649.66472.25365.54294.35243.50205.39175.57150.90130.30112.90

Melting T

H298~H8

1203 K

kJ

57.066 kJ

Boiling T K

A^0 kJ

Molar Vol. 14.695 J'bar'1 146.95 cm3

-4.191E+03 B« 1.309E+00 C= 6.392E+06

11/25/92

Page 298: robie 1995

292 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MAGNESIUM SULFATE Formula wt 120.369

MgS04 : Crystals 298.15 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400

°p

95.7196.10111.16120.67127.99134.27140.01145.42150.64155.73160.73165.66170.55

COST

91.4091.99121.91147.80170.47190.68208.99225.80241.39255.99269.75282.81295.27

<H*-H298 )/T

1-1. K~l

0.000.59

26.5444.4657.8068.2876.8984.2190.5996.28101.45106.20110.62

-CH-H598 )/!

91.4091.4095.38103.34112.67122.40132.10141.59150.80159.70168.30176.61184.65

I AfH°

1. T

-1284.9-1284.9-1287.6-1288.7-1288.9-1288.5-1287.7-1339.6-1345.4-1342.4-1339.0-1335.2-1458.4

AfG°

mol"1

-1170.5-1169.8-1131.3-1092.1-1052.7-1013.4-974.1-933.9-888.3-842.7-797.4-752.4-704.6

Log Kf

205.07203.68147.72114.0891.6475.6263.6054.2046.4040.0234.7130.2326.29

Melting T

H2*98~H6

1400 K

kJ

1539 kJ

Boiling T

Molar Vol.

K

kJ

J-bar'1

A* -1.325E+03 B= 4.385E-01 C= 2.288E+06

11/25/92

Page 299: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 293

MANGANESE SULFATE Formula wt 151.002

MnSO4 : Orthorhombic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

100.52100.99118.68129.02136.47142.54147.89152.81157.47

ST

127.00127.62159.38187.05211.26232.77252.16269.86286.21

(HT-H298 )/T

J»mol »K -

0.000.62

28.1747.3861.6372.7781.8389.4596.02

-CH-HJ98 >/'

127.00127.00131.21139.68149.63160.00170.33180.42190.19

T AfH°

k^

-1065.7-1065.7-1067.9-1068.4-1068.2-1067.3-1066.1-1117.7-1116.9

AfG°

T-mnl 1

-962.1-961.5-926.6-891.3-855.8-820.5-785.3-749.2-708.4

Log K£

168.56167.40120.9993.1074.4961.2151.2643.4736.99

Melting T

H2*98~H8

kJ

kJ

Boiling T

Molar Vol

K

kJ

4.362 J'bar"1 43.62 cm3

-1.077E+03 B* 3.657E-01 C* 5.563E+05

6/10/93

Page 300: robie 1995

294 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MASCAGNITE Formula wt 132.141

(NH4) 2SO4 : Orthorhombic crystals 298.15 to 600 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600

CP

187.48188.00215.88243.76271.64

Sf

220.50221.66279.56330.73377.64

<Hf-H298 )/T

J-mol"1^"1

0.001.16

51.3587.05115.49

-<Gf-H298 )/T AfH°

220.50220.50228.21243.68262.15

lr T

-1182.7-1182.7-1187.6-1189.3-1188.2

AfG°

mol'1

-903.5-901.8-807.6-712.4-617.0

Log K£

158.29157.01105.4674.4253.72

Melting T

kJ

H298~H8 kJ

Boiling T K

Av*H° fcJ

Molar Vol. 7.468 J'bar'1 74.68 cm3

-1.193E+03 B= 9.583E-01 C* 3.227E+05

3/24/93

Page 301: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 295

THENAROITE Formula wt 142.043

Na2SO4 : Orthorhombic crystals (V) 298.15 to 450 K. K. Hexagonal crystals (I) 514 to 1155 K.

Orthorhombic crystals (III) 450 to 514 Liquid 1155 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Aft»H 0

H2*98~H6

CP

127.28127.63146.82173.30170.78178.92187.06195.20203.34211.48196.37195.98195.58195.19194.80194.40194.01

A

ST

149.60150.35191.96234.89279.30306.23330.66353.16374.15393.91431.72447.42461.93475.41487.99499.79510.89

1155 K

kJ

23.22 kJ

= -1.482E+03

(HT-H298 )/T

.-1 -1

0.000.79

36.8168.0396.29

107.51116.95125.19132.60139.40165.14167.53169.54171.27172.75174.04175.16

B-

-(GT-H§ 98 )/T

149.60149.56155.15166.86183.01198.72213.71227.97241.55254.51266.58279.89292.39304.14315.24325.75335.73

5.020E-01

AfH° AfG°

-1387.8-1387.8-1395.1-1392.0-1384.2-1382.5-1379.9-1429.6-1424.3-1418.2-1581.8-1575.4-1569.2-1563.0-1557.0-1551.0-1545.2

-

kJ-mol'1

-1269.8-1269.1-1229.0-1187.8-1148.4-1109.2-1070.3-1030.7-986.7-943.2-895.0-838.0-781.5-725.5-669.9-614.6-559.6

Boiling T

Av*H°

Molar Vol. 553

6.251E+06

Log Kf

222.46220.96160.49124.0999.9782.7769.8859.8251.5444.7938.9633.6729.1625.2621.8718.8816.24

K

kJ

.333 J'bar'1

.33 cm3

2/5/92

Page 302: robie 1995

296 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

NICKELOUS SULFATE Formula wt 154.754

NiSO4 : Orthorhombic crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200

CP

97.6998.19

116.56126.71133.62139.01143.57147.67151.47155.08158.56

ST

101.30101.91132.98160.17183.92204.93223.80240.95256.71271.31284.96

<HT-H§98 )/T

J-mol^-K"1 -

0.000.60

27.5746.4660.4471.2980.0587.3493.5698.99

103.81

-<GT-H298 )/T

101.30101.30105.41113.71123.48133.64143.75153.61163.14172.32181.15

AfH°

kJ

-873.2-873.3-875.7-876.5-876.6-876.2-875.0-926.6-923.7-920.5-917.1

AfG°

mol"1

-762.7-762.0-724.7-686.9-648.9-611.0-573.7-534.5-491.1-448.0-405.2

Log Kf

133.61132.6794.6471.7656.4945.5937.4631.0225.6521.2717.64

Melting T K

kJ

15.94 kJ

Boiling T

Molar Vol

K

kJ

3.857 J-bar'1

38.57 cm3

A" -8.988E+02 B» 4.077E-01 O 1.381E+06

2/5/93

Page 303: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 297

ANGLESITE Formula wt 303.264

PbSO4 : Orthorhombic crystals 298.15 to 1100 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100

CP

104.33104.33108.73117.63128.30139.81151.76163.98176.35188.83

ST

148.50149.15179.59204.76227.13247.76267.21285.79303.70321.10

<HT-H$98 )/T

i-l. K-l

0.000.64

26.9644.1657.2868.2477.9386.8195.15

103.09

-<0|-H598 )/1

148.50148.50152.62160.59169.85179.52189.28198.98208.56218.00

? AfH°

kJ-m

-920.0-920.0-922.7-924.2-924.8-929.1-927.4-977.7-972.4-966.0

AfG°

Q! 1

-813.1-812.4-776.4-739.6-702.6-664.8-627.2-588.7-545.8-503.4

Log Kf

142.44141.45101.3877.2761.1749.6140.9534.1728.5123.90

Melting T

H298"H6

kJ

20.05 kJ

Boiling T

Molar Vol

K

kJ

4.795 J-bar'1 47.95 cm3

A* -9.455E+02 B= 3.981E-01 C= 1.275E+06

11/25/92

Page 304: robie 1995

298 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ZINKOSITE Formula wt 161.454

ZnSO4 : Orthorhombic crystals 298.15 to 1100 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100

CP

104.12104.02104.84111.90121.41132.08143.36155.01166.88178.89

ST

110.50111.14140.94165.03186.25205.75224.12241.67258.62275.09

(HT-H§98 )/T

J«mol"~l»K~^ -

0.000.64

26.3842.7255.0265.2674.3182.6390.4697.95

-(G*-H598 >/<

110.50110.50114.56122.31131.23140.50149.81159.05168.16177.14

T AfH°

kJ«m

-980.1-980.1-982.9-984.8-985.8-993.3-992.5

-1043.8-1039.6-1034.4

AfG°

ol_""

-868.7-868.1-830.5-792.2-753.6-714.8-675.1-634.4-589.1-544.3

Log Kf

152.20151.14108.4682.7665.6153.3444.0836.8230.7725.85

Melting T

H298"H6

kJ

17.24 kJ

Boiling T

Molar Vol

K

kJ

4.157 J-bar'1 41.57 cm3

-1.010E+03 B« 4.187E-01 C= 1.501E+06

11/25/92

Page 305: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 299

BERLINITE Formula wt 121.953

A1PO4 : Rhombohedral crystals 298.15 to a-0 transition at 855 K. jJ-crystals 855 to 1000 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

°p ST (HT-H298 )/T

T. -._! 1 _ «r 1

-(GT-H298 )/T AfH«

\.T-

93.9694.15

109.86122.79131.82140.83153.40140.70142.50

90.8091.38120.53146.53169.75190.72210.29229.96244.88

0.000.58

25.8644.0457.9569.1278.8288.6293.92

90.8090.8094.67102.49111.80121.60131.47141.34150.96

-1733.8-1733.8-1735.3-1735.0-1734.0-1732.4-1730.0-1725.9-1735.2

A£6°

mol"1

-1617.9-1617.1-1577.9-1538.6-1499.4-1460.4-1421.7-1383.4-1344.7

Log Kf

283.44281.56206.05160.73130.53108.9792.8280.2970.24

Melting T

kJ

14.76 kJ

Boiling T

Molar Vol

K

kJ

4.658 J-bar'1

46.58 cm3

A* -1.731E+03 B= 3.866E-01 C* -2.087E+05

11/25/92

Page 306: robie 1995

300 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

WHITLOCKITE Formula wt 310.177

Ca3 (PO4 ) 2 : Rhombohedral crystals 298.15 to 1373 K. Monoclinic crystals 1373 to 1600 K.

Temp.

K

298.15300400500600700800900

1000110012001300140015001600

Melting T

AitoH0

H298~H5

CP

231.63232.12255.24275.30294.16312.44330.43348.23365.93383.55401.12418.67330.54330.54330.54

236.00237.43307.49366.64418.51465.23508.13548.08585.69621.39655.52688.32729.26752.05773.38

K

kJ

kJ

0.001.43

62.09102.76133.10157.42177.92195.86211.98226.78240.57253.60275.09278.79282.02

236.00236.00245.40263.88285.41307.82330.21352.22373.70394.61414.94434.72454.17473.26491.36

FORMATION FROM THE

AfH° AfG°

kJ-mol'1

ELEMENTS

Log Kf

-4120.8-4120.8-4122.7-4121.9-4120.2-4117.6-4116.6-4112.2-4107.0-4101.2-4245.0-4232.6-4205.8-4201.6-4197.5

-3883.6-3882.2-3802.1-3722.1-3642.3-3562.8-3483.5-3404.6-3326.2-3248.4-3167.2-3077.8-2989.8-2903.0-2816.6

Boiling T

A* -4.148E+03 B= 8.253E-01

Molar

Vol. 997

1.823E+06

680.38675.93496.50388.83317.08265.85227.44197.59173.74154.25137.86123.67111.55101.0991.95

K

kJ

.762 J'bar'1

. 62 cm3

11/25/92

Page 307: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 301

FLUORAPATITE Formula wt 504.302

Ca5 (PO4 ) 3F: Hexagonal crystals 298.15 to 1600 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600

Melting T

A&.H0

HJ98-H8

CP

375.94377.11426.47458.22480.47496.89509.43519.24527.04533.30538.35542.44545.74548.40550.50

>

eosT

387.90390.23506.06604.87690.49765.84833.05893.64948.77999.30

1045.931089.191129.511167.261202.72

K

kJ

63.47 kJ

,- -6.931E+03

(HT-H298 )/T

J-mol'^K""1

0.002.32

102 . 70170.83220.68259.02289.57314.57335.44353.15368.38381.62393.23403.49412.62

B=

-(GT-H£98 )/T AfH° AfG°

387.90387.91403.37434.03469.80506.82543.47579.07613.33646.15677.55707.57736.28763.77790.11

1.344E-fOO

-6872.0-6872.0-6874.0-6871.4-6867.7-6863.7-6864.1-6860.4-6857.7-6856.1-7085.0-7077.5-7069.7-7061.9-7054.1

kJ-mol"1

-6489.7-6487.4-6358.5-6229.9-6102.0-5974.7-5847.4-5720.6-5594.1-5467.8-5335.3-5189.8-5044.8-4900.4-4756.6

Boiling T

Molar Vol. 15157

4.048E+06

Log Kf

1136.951129.52830.32650.82531.21445.83381.79332.00292.20259.64232.23208.52188.22170.64155.28

K

kJ

.756 J»bar"!

.56 cm3

11/25/92

Page 308: robie 1995

302 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HYDROXYAPATITE Formula wt 502.311

Ca5 (PO4 ) 3 (OH): Hexagonal crystals 298.15 to 1500 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500

CP

385.17386.83446.42477.29497.62513.35526.86539.23550.97562.37573.58584.69595.76606.82

ST

390.40392.79513.36616.59705.50783.43852.88915.66973.081026.131075.541121.901165.631207.11

<HT-H§98 )/T

J-mol~^»K~^ -

0.002.38

106.92178.17229.81269.23300.60326.44348.31367.25383.98398.99412.65425.23

-<GT-H298 )/T

390.40390.41406.44438.42475.70514.21552.28589.22624.77658.88691.57722.90752.98781.88

AfH°

1. T

-6738.5-6738.5-6740.1-6736.9-6732.7-6728.4-6728.4-6724.2-6720.7-6717.9-6945.1-6935.1-6924.2-6912.5

AfG°

-6337.1-6334.7-6199.4-6064.6-5930.6-5797.2-5663.9-5531.1-5398.8-5266.7-5128.6-4977.6-4827.4-4678.0

Log K£

1110.221102.94809.55633.55516.29432.58369.81321.01282.00250.09223.24200.00180.11162.90

Melting T Boiling T

H2*98"H6

kJ

64.24 kJMolar Vol.

K

kJ

15.960 J'bar'1 159.60 cm3

A- -6.777E+03 B- 1.386E-fOO C= 2.726E+06

11/25/92

Page 309: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 303

TOPAZ Formula wt 184.043

Al2SiO4F2 : Orthorhombic crystals 298.15 to 1000 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

143.63144.28172.38190.31201.97209.49214.10216.62217.54

s*

105.40106.29151.96192.49228.30260.04288.34313.72336.61

<HT-H298 )/T

J-mol"1^"1 -

0.000.89

40.5268.8190.10106.66119.83130.46139.13

-(GT-H|98 )/T

105.40105.40111.44123.68138.19153.38168.51183.26197.47

AfH°

U.T

-3084.5-3084.5-3084.9-3083.7-3081.7-3079.3-3076.9-3074.6-3093.9

AfG«

-2910.6-2909.6-2851.1-2792.8-2734.8-2677.2-2619.9-2562.9-2504.7

Log Kf

509.92506.59372.31291.76238.08199.77171.06148.75130.83

Melting T

kJ

19.77 kJ

Boiling T

Molar Vol

K

kJ

5.153 J-bar'1 51.53 cm3

A- -3.079E+03 B» 5.740E-01 C» -2.85E+05

7/23/92

Page 310: robie 1995

304 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

KYANITE Formula wt 162.046

Al2Si05 : Triclinic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

CP

121.58122.26149.25165.25175.97183.70189.56194.15197.84200.85203.35205.44207.20208.70209.97211.06211.99

ST

82.8083.55122.81157.97189.10216.84241.77264.37285.02304.02321.61337.97353.26367.61381.12393.88405.97

/UO_I1O \ /rp \ rim Ho OD / / A

J-mol'^K"1 -

0.000.75

34.8459.4478.0292.59

104.36114.09122.29129.30135.37140.68145.37149.54153.28156.65159.70

-«*-HJ98 )/'

82.8082.8087.9798.53

111.08124.24137.40150.27162.73174.72186.24197.29207.89218.06227.84237.23246.27

I AfH°

-2593.8-2593.8-2594.7-2594.1-2592.7-2591.0-2589.2-2587.3-2606.8-2604.6-2602.3-2599.9-2597.5-2595.0-2592.5-2640.1-2637.3

AfG°

-1

-2443.1-2442.2-2391.4-2340.6-2290.1-2239.8-2189.7-2139.9-2088.8-2037.1-1985.6-1934.2-1883.2-1832.2-1781.5-1730.4-1677.0

Log Kf

428.01425.21312.28244.52199.36167.13142.97124.19109.1196.7386.4377.7270.2663.8058.1653.1748.66

Melting T Boiling T

H298~H6

kJ

15.86 kJ

A= -2.599E+03 B= 5.109E-01

Molar Vol

C= 3.358E+05

K

kJ

4.415 J'bar 44.15 cm3

7/29/92

Page 311: robie 1995

THERMODYN AMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 305

ANDALUSITE Formula wt 162.046

Al2SiO5 : Orthorhombic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afo.H0

H298-H6

CP

122.60123.26149.43165.03175.54183.16188.94193.49197.16200.16202.67204.77206.56208.08209.38210.50211.46

16.

S|

91.3992.15

131.57166.71197.79225.45250.30272.83293.41312.35329.88346.18361.43375.73389.20401.93413.99

K

kJ

90 kJ

<Hf-H298 )/T

J-mol'^K"1 -

0.000.76

34.9859.5478.0592.55

104.25113.92122.07129.04135.07140.36145.02149.18152.90156.26159.30

-<Gf-H$98 )/T AfH° AfG° Log Kf

91.3991.3996.59107.17119.74132.90146.05158.90171.34183.31194.80205.83216.40226.55236.30245.67254.69

-2589.9-2589.9-2590.7-2590.1-2588.8-2587.2-2585.4-2583.6-2603.1-2601.0-2598.8-2596.4-2594.1-2591.6-2589.2-2636.8-2634.1

-2441.8-2440.8-2391.0-2341.1-2291.4-2241.9-2192.7-2143.8-2093.5-2042.6-1992.0-1941.4-1891.2-1841.1-1791.1-1740.8-1688.2

Boiling T

Av*H°

Molar Vol. 5.51.

427.77424.98312.22244.56199.48167.29143.17124.42109.3596.9986.7178.0170.5664.1158.4753.4948.99

K

kJ

152 J'bar'152 cm3

A* -2.595E+03 B- 5.027E-01 C= 3.590E+05

7/29/92

Page 312: robie 1995

306 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

SILLIMANITE Formula wt 162.046

A12S1O5 : Orthorhombic crystals 298.15 to 1800 K.

FORMATION FROM THE

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

AfaH°

CP

123.72124.33148.88163.95174.29181.88187.70192.31196.05199.13201.70203.87205.71207.29208.64209.80210.80

**

95.4096.17135.63170.58201.44228.91253.59275.97296.44315.27332.71348.94364.12378.37391.79404.47416.50

K

kJ

(Hf-H298 )/T

.-1-1

0.000.76

35.0159.4077.7392.09103.70113.29121.39128.32134.33139.60144.26148.41152.13155.49158.54

-<Gf-H298 )/T

95.4095.40100.62111.91123.71136.81149.89162.68175.05186.95198.38209.34219.86229.96239.66248.98257.96

AfH°

1.J*

-2586.1-2586.1-2586.9-2586.4-2585.2-2583.7-2582.0-2580.4-2598.0-2598.0-2595.9-2593.6-2591.4-2589.0-2586.6-2634.3-2631.7

AfG°

.-1

-2439.1-2438.2-2388.8-2339.3-2289.9-2240.9-2192.0-2143.4-2093.4-2042.8-1992.5-1942.2-1892.3-1842.3-1792.7-1742.6-1690.3

Boiling T

A,wpH°

Molar Vol. 4H298"H8 17

A*

.44 kJ

-2.592E+03 B- 4.998E-01 0 4

49

.086E+05

ELEMENTS

Log Kf

427.32424.52311.93244.38199.35167.21143.12124.39109.3597.0086.7378.0470.6064.1658.5253.5449.05

K

kJ

.986 J-bar'1

. 86 cm3

7/29/92

Page 313: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 307

MULLITE Formula wt 426.052

Al6Si2O13 : Orthorhombic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting

AfaH°

H298-H6

cp

326.13327.73392.44431.98458.88478.40493.16504.65513.76521.10527.05531.91535.88539.13541.76543.88545.56

T

s* is

J.

275.00277.02381.04473.17554.45626.72691.61750.39804.05853.37898.98941.36980.931018.021052.901085.811116.95

2123 K

kJ

46.07 kJ

[T-H§9g)/l

mol"^«K~^

0.002.02

92.29156.55204.83242.59273.03298.15319.27337.30352.87366.46378.43389.04398.50406.99414.65

A* -6.844E+03

' -<Gf-H298 )/T AfH° AfG° Log Kf

kJ-mol"1

275.00275.01288.75316.62349.62384.14418.59452.24484.78516.07546.11574.90602.51628.98654.40678.82702.30

B- 1.295E+00

-6819.2-6819.3-6821.5-6820.4-6817.5-6813.7-6809.8-6806.0-6866.2-6861.6-6856.7-6851.4-6846.3-6840.9-6835.6-6930.5-6924.8

O

-6441.8-6439.4-6312.3-6185.1-6058.3-5932.1-5806.4-5681.2-5552.0-5420.8-5290.0-5159.5-5029.8-4900.2-4771.0-4641.0-4506.7

Boiling T

A UO Au^Jd

Molar Vol. 13.134.

1.613E+06

1128.551121.18824.29646.14527.41442.65379.11329.72290.00257.40230.26207.31187.66170.64155.75142.60130.78

K

kJ

46 J-bar'16 cm3

5/4/92

Page 314: robie 1995

308 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

DUMORTIERITE Formula wt 565.938

1 A16.7SH ].25si3B017.25< OH >.75 s Orthorhombic crystals 298.15 to 1800 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

CP

440.00442.08532.57592.80634.72664.89687.16703.94716.81726.88734.93741.52747.09751.98756.43760.66764.83

COST

334.90337.63478.13603.87715.87816.10906.41988.361063.231132.041195.641254.741309.901361.611410.291456.271499.87

<HT-H298 )/T

J-mol^-K"1 -

0.002.72

124.68212.67279.71332.70375.68411.26441.20466.73488.76507.96524.85539.83553.23565.31576.27

-<Gf-H298 )/T

334.90334.91353.45391.20436.16483.41530.73577.10622.02665.30706.88746.78785.05821.78857.06890.97923.59

AfH°

|_T KJ

-9109.0-9109.1-9112.5-9111.0-9106.7-9100.7-9094.2-9087.6-9153.0-9145.4-9137.5-9129.2-9121.2-9112.9-9104.6-9246.7-9237.7

AfG°

mol""l ____lUWiL ~ «MWM-^«

-8568.2-8564.9-8382.8-8200.4-8018.7-7837.8-7657.9-7478.7-7295.3-7109.9-6925.2-6741.0-6557.9-6375.0-6192.7-6009.4-5819.4

Log Kf

1501.081491.241094.65856.67698.07584.85499.99434.04381.06337.61301.44270.85244.67221.99202.17184.64168.87

Melting T Boiling T

H298~H8

kJ

59.84 kJ

A= -9.125E-I-03

Molar Vol

K

kJ

16.84 J-bar' 168.4 cm3

B= 1.833E+00 C- 1.061E+06

7/22/92

Page 315: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 309

EUCLASE Formula wt 145.084

BeAlSi04 (OH): Crystals 298.15 to 1800 K.

FORMATION FROM THE

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afa.H°

H298-H6

CP

126.83127.50156.65175.85188.84197.87204.36209.17212.92216.03218.78221.41224.07226.91230.01233.47237.34

16

A=

ST (E

j.

89.1089.89130.86168.02201.30231.13258.00282.36304.60325.04343.96361.57378.08393.63408.38422.42435.87

K

kJ

.83 kJ

-2.529E+03

*-H298 )/T

unl 1.^ 1

0.000.78

36.3762.4782.5298.39111.25121.88130.80138.41145.00150.77155.91160.55164.79168.73172.43

B=

-<GT-H298 )/T

89.1089.1094.49105.55118.78132.74146.75160.48173.80186.63198.96210.80222.17233.08243.58253.69263.44

5.403E-01

AfH° AfG°

-2532.9-2532.9-2533.9-2533.3-2531.8-2529.7-2527.4-2525.0-2533.3-2530.7-2528.2-2525.6-2523.0-2520.4-2532.2-2579.2-2575.6

C=

, .-1

-2370.2-2369.2-2314.4-2259.5-2204.9-2150.6-2096.6-2042.9-1988.7-1934.4-1880.3-1826.4-1772.7-1719.2-1665.5-1610.9-1554.1

Boiling T

Av*H°

Molar Vol. 446

-2.31E-I-05

ELEMENTS

Log Kf

415.24412.50302.22236.05191.95160.48136.89118.56103.8891.8581.8473.3866.1459.8754.3749.5045.10

K

kJ

.686 J-bar'1

. 86 cm3

7/23/92

Page 316: robie 1995

310 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PHENAKITE Formula wt 110.107

6628104: Hexagonal crystals 298.15 to 1800 K. Decomposes to BeO and SiO2 above 1833 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

AtoH°

H298"H5

CP

95.6096.16121.33138.41150.19158.46164.33168.53171.57173.77175.39176.61177.57178.39179.13179.88180.68

12

-

COST

63.3763.9695.31124.34150.68174.49196.06215.67233.59250.05265.24279.33292.46304.74316.27327.15337.46

K

kJ

.16 kJ

-2.135E+03

(HT-H298 )/T

J-mol"1 -*""1

0.000.59

27.8448.3564.4077.2887.8296.56103.92110.18115.55120.20124.26127.85131.03133.88136.46

-(GT-H^98 )/T AfH° AfG°

63.3763.3767.4775.9986.2897.21108.24119.10129.67139.87149.70159.13168.19176.89185.25193.28201.00

B= 3.744E-01

-2143.1-2143.1-2143.9-2143.3-2142.1-2140.3-2138.3-2136.2-2134.2-2132.2-2130.3-2128.7-2127.2-2125.9-2153.9-2202.4-2200.6

kJ-mol'1

-2028.4-2027.7-1989.0-1950.4-1911.9-1873.7-1835.7-1798.0-1760.5-1723.3-1686.2-1649.2-1612.4-1575.7-1538.3-1499.4-1458.0

Boiling T

A^pH0

Molar Vol. 337

C= -4.46E+05

Log Kf

355.36353.04259.74203.75166.44139.81119.86104.3591.9681.8373.3966.2760.1654.8750.2246.0742.31

K

kJ

.718 J-bar'1

. 18 cm3

7/22/92

Page 317: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 311

BERYL Formula wt 537.502

Be3Al2 (Si6O18 ): Hexagonal crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A^0

H298-H6

CP

417.00419.01507.82567.30608.30637.50659.03675.52688.78700.03710.19719.89729.66739.86750.81762.75775.87

64

ST

346.70349.29482.86603.00710.27806.36892.96971.57

1043.451109.641170.991228.221281.931332.611380.711426.581470.54

K

kJ

.43 kJ

<HT-H298)/T

J-mol""1^'1 -

0.002.58

118.55202.73267.11318.05359.39393.64422.51447.24468.73487.68504.61519.95534.04547.13559.47

-<Gf-H$98 )/T

346.71346.71364.32400.26443.16488.31533.56577.93620.94662.40702.26740.54777.31812.66846.67879.44911.07

A£H°

-9006.6-9006.7-9010.0-9008.6-9004.7-8999.1-8992.8-8986.1-9000.6-8993.5-8986.1-8978.7-8971.1-8963.4-8999.0-9290.5-9278.7

AfG°

-1

-8500.5-8497.3-8326.9-8156.2-7986.0-7816.7-7648.1-7480.5-7312.1-7143.5-6975.7-6808.5-6641.9-6475.7-6309.0-6138.4-5953.2

Boiling T

A^pH0

Molar Vol. 20203

Log Kf

1489.211479.481087.35852.05695.23583.27499.36434.14381.93339.21303.64273.56247.81225.50205.96188.60172.75

K

kJ

.33 J-bar'1

.3 can3

A* -8.995E+03 B= 1.683E+00 O -6.74E-I-05

7/22/92

Page 318: robie 1995

312 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BERTRANDITE Formula wt 238.230

Be4Si207 (OH) 2 : Crystals 298.15 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

K

CP ST (H$-H298 )/T -(GT-H29g)/T AfH° AfG°

- J-mol"1 ^"1 kJ-mol"1

Log Kf

298.1530040050060070080090010001100120013001400

224.64225.83279.83317.42344.16363.51377.60387.80395.06400.01403.13404.76405.16

172.10173.49246.33313.06373.43428.01477.52522.62563.88601.78636.73669.07699.09

0.001.39

64.67111.68148.32177.75201.90222.02238.98253.41265.77276.41285.60

172.10172.10181.67201.38225.11250.26275.63300.60324.90348.37370.96392.67413.49

-4580.5-4580.6-4582.9-4582.4-4580.2-4576.7-4572.5-4568.1-4563.5-4559.1-4555.0-4551.4-4548.3

-4295.1-4293.3-4197.1-4100.6-4004.5-3908.8-3813.6-3719.0-3624.9-3531.3-3438.0-3345.1-3252.4

752.46747.51548.07428.38348.61291.67249.00215.84189.34167.68149.65134.41121.35

Melting T

H298~H8

kJ

31.04 kJ

Boiling T

Molar Vol

K

kJ

9.179 J-bar'1 91.79 cm3

A- -4.564E+03 B= 9.388E-01 O -1.03E+06

7/29/92

Page 319: robie 1995

THERMODYNAMIC PROPERTIES AT fflGH TEMPERATURE OF INDIVIDUAL PHASES 313

LAWSONITE Formula wt 314.238

CaAl2Si207 (OH)2*H20: Crystals 298.15 to 600 K,

FORMATION FROM THE ELEMENTS

Temp.

K

CP ST (Hf-H298 )/T -<GT-H298 )/

- J-mol"1^"1

T AfH° AfG°

- kJ«mol~^

Log Kf

298.15300400500600

275.24276.56331.03368.81400.03

230.00231.71319.37397.47467.54

0.001.70

77.78132.37174.43

230.00230.01241.59265.10293.10

-4869.0-4869.1-4871.0-4869.7-4866.0

-4512.9-4510.7-4390.9-4270.9-4151.5

790.63785.37573.38446.17361.41

Melting T

H298~H8

kJ

41.36 kJ

Boiling T K

kJ

Molar Vol. 10.132 J'bar' 101.32 cm3

A= -4.869E+03 B- 1.196E+00 C- -7.02E-I-04

7/29/92

Page 320: robie 1995

314 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GEHLENITE Formula wt 274.200

Ca2Al2SiO7 : Tetragonal crystals 298.15 to incongruent melting point at 1866 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

AfaH0

CP

206.40207.12236.74255.45268.56278.34285.95292.04297.04301.21304.73307.74310.33312.57314.53316.24317.74

1866

COST

210.10211.38275.39330.37378.16420.33458.01492.06523.09551.61577.97602.48625.39646.88667.11686.23704.35

K

kJ

(HT-H298 )/T

J-mol"1 -*,""1

0.001.28

56.7694.75

122.69144.25161.51175.69187.58197.73206.50214.17220.95226.99232.40237.28241.71

-<GT-H2*98)/T AfH° AfG°

210.10210.10218.63235.62255.48276.08296.50316.37335.52353.88371.47388.31404.43419.89434.71448.95462.64

-3985.0-3985.0-3985.5-3984.6-3983.2-3981.6-3981.9-3980.8-4001.6-4001.2-4016.6-4014.6-4012.6-4010.3-4008.1-4055.9-4350.6

kJ-rnol'1

-3785.5-3784.3-3717.2-3650.2-3583.5-3517.0-3450.5-3384.2-3316.4-3247.9-3178.2-3108.3-3038.8-2969.3-2900.0-2830.3-2753.9

Boiling T

Av*H°

Molar Vol. 9H298-H5 33. 21 kJ

A* -4.005E+03 B- 6.909E-01 O

90

1.392E+06

Log Kf

663.19658.88485.41381.33311.96262.44225.29196.41173.23154.23138.34124.89113.38103.4094.6786.9679.91

K

kJ

.015 J-bar'1

.15 cm3

7/22/92

Page 321: robie 1995

THERMOD YNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 315

ZOISITE Formula wt 454.357

Ca2Al3Si3012 (OH): Orthorhombic crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

350.34351.83412.84450.20476.35497.24516.12534.93554.92576.93601.55

ST

295.85298.02408.40504.83589.34664.38732.02793.89851.27905.17956.41

(HT-H298 )/T

,-1 _-l

0.002.17

97.91164.89214.73253.63285.28311.96335.25356.20375.60

-(GT-H298 )/T

295.85295.86310.49339.94374.61410.74446.74481.93516.02548.97580.81

A£H°

kJ«

-6901.1-6901.2-6902.5-6900.8-6897.7-6893.8-6891.2-6886.4-6913.1-6906.3-6914.2

A£G°

mol"1

-6504.5-6502.1-6368.7-6235.4-6102.6-5970.4-5838.5-5707.2-5574.3-5440.7-5306.5

Log Kf

1139.541132.08831.65651.39531.27445.51381.21331.23291.16258.35230.98

Melting T

H298"H5

K

kJ

52.07 kJ

Boiling T

Molar Vol

K

kJ

13.65 J-bar"1 136.5 cm3

A* -6.898E+03 B= 1.325E+00 C= -1.37E+05

7/22/92

Page 322: robie 1995

316 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

GROSSULAR Formula wt 450.446

Ca3Al2Si3012 : Cubic crystals 298.15 to 1200 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

cp

330.22331.57389.70425.80448.43463.30474.02482.99491.81501.62513.24

COST

260.12262.17366.16457.32537.11607.42670.02726.37777.71825.04869.17

(HT-H298 )/T

,-1-1

0.002.04

92.25155.64202.69238.93267.67291.11310.73327.63342.60

-(GT-H298 )/T

260.12260.13273.91301.68334.41368.49402.34435.27466.98497.41526.57

A£H°

i. T

-6640.0-6640.1-6640.8-6638.6-6635.3-6631.6-6630.9-6628.0-6647.1-6645.2-6666.7

A£G°

mol'1

-6278.5-6276.2-6154.7-6033.4-5912.7-5792.6-5672.6-5553.0-5432.2-5310.8-5187.7

Log K£

1099.941092.77803.71630.29514.73432.24370.37322.28283.74252.18225.81

Melting T

H298"H8

K

kJ

47.66 kJ

Boiling T

Molar Vol

K

kJ

12.528 J-bar'1 125.28 cm3

A= -6.637E+03 B= 1.206E+00 C= -1.07E+05

7/22/92

Page 323: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 317

DATOLITE Formula wt 159.979

CaB(Si4 )OH: Crystals 298.15 to 1000 K. Datolite decomposes in air at about 970 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

127.41127.95153.07172.25187.00198.17206.23211.49214.12

COST

110.20110.99151.41187.72220.49250.20277.22301.84324.28

(HT-H$98 )/T

J-mol'^K""1 -

0.000.79

35.8761.3181.0897.05

110.23121.21130.39

-(GT-H$98 )/T AfH»

110.20110.20115.54126.41139.41153.14166.99180.63193.89

-2477.8-2477.8-2478.7-2478.3-2477.0-2475.0-2473.6-2471.1-2468.9

A£G°

-2318.1-2317.1-2263.4-2209.6-2155.9-2102.6-2049.4-1996.6-1944.0

Log K£

406.12403.44295.56230.83187.69156.89133.81115.87101.54

Melting T

H298"H8

K

kJ

19.25 kJ

Boiling T

Molar Vol

K

kJ

5.332 J'bar'1 53.32 cm3

A= -2.473E+03 B« 5.301E-01 C= -2.53E+05

7/22/92

Page 324: robie 1995

318 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ILVAITE Formula wt 408.793

CaFe3Si2070(OH): Monoclinic crystals 298.15 to 900 K.

Temp.

K

cp ST (HT-H$98 )/T -<GT-H298 )/T

FORMATION FROM THE ELEMENTS

A£6° Log ]

kJ-

A£H

298.15300400500600700800900

298.90299.90343.40362.50380.90398.50408.10417.80

292.30294.20387.70466.50534.20594.30648.10696.70

0.001.85

83.02137.00176.10206.70213.20251.40

292.30292.35304.68329.50358.10387.60434.90445.30

-3692.8-3692.8-3689.7-3685.5-3681.0-3676.1-3686.8-3668.6

-3437.0-3435.4-3350.0-3265.6-3182.0-3099.2-3031.4-2935.3

602.13598.15437.45341.14277.01231.26197.93170.36

Melting T

H298~H8

kJ

48.09 kJ

A= -3.664E+03 B= 8.052E-01

Boiling T

Molar Vol

C= -1.20E+06

K

kJ

10.107 J-bar'1 101.07 cm3

3/5/93

Page 325: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 319

ANDRADITE Formula wt 508.177

Ca3Pe2Si3O12 : Cubic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.153004005006007008009001000

°P

351.88353.17406.71440.29462.94478.83490.20498.37504.17

ST

316.40318.58428.17522.80605.20677.82742.55800.78853.61

<H*-H598,/T

J ,mol""l«1f~l> -UKJX ^ ~

0.002.17

97.19162.68210.95248.15277.74301.82321.78

-<G*-H598 >/'

316.40316.41330.99360.11394.24429.67464.81498.96531.83

r A£H°

kJ

-5771.0-5771.0-5770.1-5766.8-5762.7-5758.5-5757.4-5754.7-5754.2

A£6°

mol"1

-5427.0-5424.9-5309.5-5194.7-5080.7-4967.3-4854.2-4741.5-4629.0

Log K£

950.77944.53693.33542.67442.30370.66316.94275.18241.79

Melting T

A&.H0

H298"H8

Boiling T

kJ

53.49 kJMolar Vol

K

kJ

13.204 J-bar'1 132.04 cm3

A= -5.756E+03 B= 1.128E+00 C= -6.85E+05

7/22/92

Page 326: robie 1995

320 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MONTICELLITE Formula wt 156.466

CaMgSi04 : Orthorhombic crystals 298.15 to 1100 K,

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100

cp

123.00123.46141.90153.07160.69166.26170.53173.91176.64178.88

ST

108.10108.86147.16180.11208.73233.94256.44276.72295.19312.14

(HT-H$98 )/T

J-mol"1 -*'1 -

0.000.76

33.9656.7573.4786.3596.61105.02112.05118.03

-(GT-H$98 )/T AfH°

UT.

108.10108.10113.20123.37135.26147.60159.82171.70183.14194.11

-2251.0-2251.0-2250.9-2249.9-2248.6-2247.3-2246.8-2245.6-2253.2-2252.7

A£G°

-2132.8-2132.0-2092.3-2052.8-2013.5-1974.4-1935.4-1896.6-1857.2-1817.6

Log Kf

373.64371.21273.23214.45175.29147.33126.37110.0797.0186.31

Melting T

H298~H8

kJ

18.76 kJ

Boiling T

Molar Vol

K

kJ

5.13 J'bar'1 51.3 cm3

A= -2.248E+03 B* 3.910E-01 C« -1.25B+05

7/22/92

Page 327: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 321

AKERMANITE Formula wt 272.628

Tetragonal crystals 298.15 to melting point at 1731 K, 357.9 K has an enthalpy of 0.68 kJ.

A small transition at

FORMATION FROM THE

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

A&.H0

CP

214.10214.79239.88253.60263.63272.19280.00287.32294.24300.75306.85312.52317.73322.45326.68330.38382.00

ST

212.50213.83281.42336.53383.69424.98461.84495.25525.88554.23580.67605.46628.81650.84671.84691.76784.60

(HT-H$98 )/T

J-mol"1 ^""1 -

0.001.32

58.2396.03123.16143.85160.38174.08185.76195.92204.91212.97220.27226.93233.03238.65315.23

-<GT-H298 )/T A£H° AfG°

ELEMENTS

Log Kf

kJ-mol"1

212.50212.50223.19240.50260.53281.13301.46321.16340.12358.32375.76392.48408.54423.96438.81453.11469.37

1731 K

124. 5 kJ

-3864.8-3864.8-3864.4-3863.1-3861.7-3860.3-3860.8-3859.7-3867.4-3866.9-3882.1-3879.6-4004.1-3999.6-3994.8-4090.1-4253.3

-3667.5-3666.3-3600.9-3535.2-3469.8-3404.6-3339.3-3274.2-3208.5-3142.6-3075.6-3008.5-2938.5-2862.5-2786.8-2710.5-2629.6

Boiling T

A,,*H°

Molar Vol. 9H298~H8 34

A=

.91 kJ

-3.904E+03 B= 6.968E-01 C= 2.

92

903E+06

642.52638.35470.22369.31302.06254.05218.03190.03167.59149.23133.87120.88109.6399.6890.9883.2876.31

K

kJ

.254 J-bar'1. 54 cm3

7/22/92

Page 328: robie 1995

322 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MERWINITE Formula wt 328.705

Ca3Mg(SiO4 ) 2 : Monoclinic crystals 298.15 to 1600 K.

Temp.

298.153004005006007008009001000110012001300140015001600

Melting T

Aft.H0

H298~H8

CP

252.36253.18286.77306.89320.06329.37336.54342.58348.15353.67359.46365.75372.69380.42389.04

A=

ST

253.10254.66332.55398.87456.07506.14550.61590.60626.99660.43691.45720.46747.82773.79798.61

K

kJ

kJ

-4.557E+03

(HT-H$98 )/T

J»mol~''''«K

0.001.56

69.05114.76147.95173.24193.22209.49223.08234.70244.85253.90262.14269.76276.94

-<C*-H598 >/'

253.10253.10263.50284.11308.12332.90357.39381.12403.91425.73446.60466.56485.68504.03521.67

FORMATION

r A£H°

kJ- ]

-4536.2-4536.2-4535.6-4533.6-4531.2-4528.9-4529.6-4528.1-4535.9-4535.9-4559.8-4557.3-4681.7-4676.9-4671.4

FROM THE ELEMENTS

AfG°

I 1

-4307.7-4306.2-4229.6-4153.3-4077.5-4002.1-3926.6-3851.4-3775.5-3699.5-3621.6-3543.5-3462.5-3375.5-3288.9

Boiling T

B= 7.840E-01

Molar Vol.

Log Kf

754.67749.77552.32433.89354.97298.63256.38223.52197.21175.67157.64142,. 38129.18117.54107.37

K

kJ

9.85 J-bar'198.5 cm3

C= 1.573E+06

7/22/92

Page 329: robie 1995

THERMOD YNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 323

TITANITE (SPHENE) Formula wt 196.041

CaTiSi05 : Monoclinic crystals 298.15 to 1670 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600

Melting T

A^0

cp

138.91139.51161.30172.66179.92185.25189.54193.24196.56199.64202.55205.34208.05210.70213.30

ST

129.20130.06173.58210.90243.07271.22296.24318.79339.32358.20375.70392.02407.34421.78435.47

1670 K

kJ

(HT-H$98 )/T

J-mol'^K""1

0.000.8638.5964.3783.0697.29108.56117.77125.49132.09137.84142.93147.48151.61155.38

-(GT-H298 )/T

129.20129.20134.99146.54160.01173.93187.68201.02213.83226.11237.86249.10259.86270.17280.08

A£H°

kJ

-2596.6-2596.6-2596.2-2594.9-2593.3-2591.6-2590.9-2589.3-2588.0-2587.1-2598.2-2596.0-2593.7-2591.3-2588.9

A£6°

I"1

-2454.6-2453.8-2406.2-2358.8-2311.7-2264.9-2218.3-2171.8-2125.4-2079.2-2032.3-1985.3-1938.4-1891.7-1845.1

Boiling T

Molar Vol. 5.H298~H8

A*

kJ

-2.591E+03 B* 4.661E-01 C« -2

55.

.27E+05

Log Kf

430.03427.23314.20246.42201.25169.01144.83126.04111.0298.7388.4679.7772.3265.8760.23

K

kJ

574 J'bar'174 cm3

7/22/92

Page 330: robie 1995

324 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

LARNITE Formula wt 172.239

Monoclinic crystals 298.15 to 1000 K. Bredigite (a 1 ) is the stable modification of Ca2Si04 between 970 and 1710 K. a-crystals 1710 to 1800 K.

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

A^H0

H298"H8

CP

128.59128.97145.20156.15164.18170.37175.34179.44180.66185.28189.89194.50199.11203.72208.33212.94205.02

A*

ST

127.60128.40167.89201.54230.76256.55279.63300.53319.64337.21353.50368.67382.87396.23408.83420.76444.84

K

kJ

kJ

-2.308E+03

<HT-H298 )/T

J-mol""1 -*"1

0.000.79

35.0258.2175.2488.4098.97107.69115.05121.35126.84131.66135.95139.79143.26146.41160.60

-<GT-H298 )/T

127.60127.60132.88143.33155.52168.15180.66192.84204.59215.86226.66237.01246.92256.44265.57274.35284.24

FORMATION

AfH°

1

-2306.7-2306.7-2306.3-2305.1-2303.6-2302.1-2302.4-2301.1-2300.1-2299.6-2315.0-2313.0-2310.8-2308.6-2306.3-2354.1-2628.4

FROM THE ELEMENTS

AfG°

_1

-2191.2-2190.5-2151.8-2113.3-2075.1-2037.1-1999.2-1961.4-1923.7-1886.1-1847.2-1808.3-1769.6-1731.0-1692.6-1653.8-1610.9

Boiling T

B= 3.850E-01

Av*H°

Molar

C= 2.

Vol.

243E+05

Log K£

383.88381.39280.99220.77180.65152.01130.53113.83100.4889.5680.4172.6666.0260.2855.2650.8146.75

K

kJ

5.16 J-bar'151.6 cm3

7/22/92

Page 331: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 325

CALCIO-OLIVINE Formula wt 172.239

Y-Ca2SiO4 : Orthorhombic crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

126.93127.29141.80151.34158.91165.57171.73177.61183.31188.89194.39

ST

120.50121.29160.08192.80221.08246.09268.60289.17308.18325.91342.58

<HT-H$98 )/T

J-mol"1^'1 -

0.000.78

34.3956.8773.2685.9896.32105.03112.57119.26125.29

-<GT-H$98 )/T

120.50120.50125.69135.93147.82160.10172.28184.14195.61206.66217.30

A£H°

\» T -. <M jcJ*m

-2316.5-2316.5-2316.3-2315.5-2314.6-2313.6-2314.3-2313.3-2312.4-2311.7-2326.7

A£6°

ol_~

-2198.9-2198.2-2158.7-2119.4-2080.3-2041.3-2002.3-1963.3-1924.5-1885.7-1845.8

Log K£

385.23382.73281.90221.41181.10152.32130.73113.95100.5289.5480.34

Melting T

H2*98~H8

kJ

kJ

Boiling T

Molar Vol

K

kJ

5.801 J-bar'1 58.01 cm3

A= -2.314E+03 B= 3.898E-01 C« -9.84E+04

7/22/92

Page 332: robie 1995

326 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HATURITE (ALITE) Formula wt 228.317

Ca3Si05 : Triclinic crystals 298.15 to 1800 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

AH»HO

CP

171.59172.08193.33207.61218.01225.97232.28237.43241.72245.33248.43251.10253.43255.48257.28258.89260.31

ST (

j

168.60169.66222.31267.07305.89340.12370.72398.39423.63446.84468.33488.32507.01524.57541.12556.76571.60

K

kJ

H*-H598)/T

mol'^lT1

0.001.06

46.6777.51

100.10117.54131.50143.00152.66160.92168.09174.38179.94184.91189.38193.42197.10

-<GT-H298 )/T

168.60168.60175.64189.56205.79222.58239.22255.39270.97285.92300.24313.94327.07339.66351.74363.34374.51

FORMATION

A£H°

kJ-mol

-2933.1-2933.1-2932.2-2930.3-2928.1-2925.9-2926.4-2924.6-2923.3-2922.8-2946.1-2943.4-2940.4-2937.4-2934.4-2981.4-3424.0

FROM THE ELEMENTS

AfG°

-1

-2786.5-2785.6-2736.5-2687.8-2639.5-2591.5-2543.6-2495.8-2448.3-2400.8-2351.5-2302.0-2252.8-2203.8-2155.0-2105.9-2048.0

Boiling T

A^o

Molar Vol. 7H298~H5

A=

kJ

-2.936E+03 B= 4. 89 IE-01 C= 4.

72

480E+05

Log Kf

488.17485.00357.34280.78229.78193.38166.07144.85127.88114.00102.3592.5084.0576.7470.3564.7059.43

K

kJ

.274 J-bar'1

.74 cm3

7/22/92

Page 333: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 327

RANKINITE Formula wt 288.401

Ca3Si2O7 : Monoclinic crystals 298.15 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400

CP

214.35215.00242.55260.37272.58281.20287.38291.79294.89296.98298.27298.92299.05

ST

210.60211.93277.86334.03382.65425.35463.33497.44528.36556.57582.47606.38628.54

<Hf-H$98 )/T

J'mol'^'K"^ -

0.001.32

58.4697.17125.45147.12164.29178.22189.74199.41207.60214.60220.63

-<GT-H298 )/T

210.60210.60219.41236.86257.20278.23299.04319.22338.61357.16374.88391.78407.91

AfH°

1, T

-3949.0-3949.0-3948.5-3946.9-3944.9-3942.9-3943.7-3942.4-3941.8-3942.2-3966.7-3965.3-3964.2

AfG°

mol"1

-3748.1-3746.9-3679.5-3612.4-3545.7-3479.4-3413.0-3346.7-3280.6-3214.4-3146.4-3078.1-3009.9

Log Kf

656.64652.37480.48377.38308.68259.63222.84194.23171.36152.64136.95123.68112.30

Melting T 1633 K

kJ

kJ

Boiling T

Molar Vol

K

kJ

9.651 J-bar 96.51 cm3

A- -3.948E+03 B= 6.684E-01 C- 5.979E+04

7/22/92

Page 334: robie 1995

328 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ROSENHAHNITE Formula wt 366.500

Ca3Si308 (OH) 2 : Triclinic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

AH»HO

CP

289.35290.58335.67359.45374.84386.28395.60403.70411.03417.86424.36430.62436.70442.66448.52454.30460.02

ST

281.80283.59374.18451.87518.85577.52629.73676.80719.72759.22795.86830.07862.21892.54921.30948.66974.79

K

kJ

(Hf-H298 )/T

J»mol"^«K~l

0.001.79

80.33133.98172.92202.61226.17245.45261.65275.54287.68298.43308.09316.87324.91332.35339.29

-<Gf-H298 )/T

281.80281.81293.85317.89345.93374.91403.56431.35458.07483.67508.18531.64554.12575.68596.39616.31635.50

A£H°

kJ

-5198.1-5198.1-5198.5-5197.0-5195.0-5192.9-5193.5-5191.8-5190.7-5190.1-5213.4-5210.4-5207.2-5203.6-5199.8-5346.2-5787.1

A£G°

mol'1

-4882.1-4880.2-4774.0-4668.1-4562.4-4457.2-4351.9-4246.8-4141.9-4037.0-3930.4-3823.6-3717.0-3610.7-3504.6-3397.4-3276.3

Boiling T

A-pH°

Molar Vol. 12.HJ98-Hg

A=

kJ

-5.206E+03 B» 1.065E+00 C- 6.

126.

937E+05

Log Kf

855.31849.69623.41487.66397.19332.59284.14246.47216.35191.70171.08153.63138.68125.73114.41104.3995.07

K

kJ

646 J'bar'146 cm3

7/22/92

Page 335: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 329

SPURRITE Formula wt 444.565

Ca5 (Si04 ) 2C03 : Crystals 298.15 to 1300 K.

Temp.

K

298.153004005006007008009001000110012001300

Melting T

H298"H5

CP

343.62344.71388.72415.98434.91449.02460.04468.93476.30482.51487.84492.46

A=

ST

331.00333.13438.91528.78606.39674.54735.24789.96839.76885.45927.67966.91

K

kJ

kJ

-5.829E+03

(H*-H598 ,/T

J-mol'^K""1 -

0.002.12

93.78155.67200.72235.23262.67285.11303.87319.84333.62345.66

-<GT-H298 )/«

331.00331.01345.13373.11405.67439.31472.57504.85535.89565.62594.05621.24

FORMATION

r A£H°

kJ*mol

-5840.2-5840.2-5838.1-5834.3-5830.1-5826.2-5826.9-5824.0-5822.2-5821.7-5861.1-5857.1

FROM THE ELEMENTS

AfGo

-1

-5525.6-5523.6-5418.4-5313.9-5210.2-5107.2-5004.2-4901.5-4799.1-4696.9-4591.5-4485.9

Boiling T

A UOfl JMlt^

Molar Vol. 14. 146.

B= 1.031E+00

Log Kf

968.04961.73707.55555.12453.58381.09326.73284.47250.68223.03199.86180.24

K

kJ

697 J'bar'1 97 cm3

C* -3.84E+05

7/23/92

Page 336: robie 1995

330 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TILLEYITB Formula wt 488.575

Ca5Si2O7 (CO3 ) 2 : Monoclinic crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

383.49384.73436.64470.37494.50512.82527.33539.15549.01557.38564.58

COST

394.00396.38514.78616.07704.07781.73851.19914.01971.341024.071072.88

(HT-H598 )/T

J-mol"1 -*'1 -

0.002.37

104.98174.89226.25265.94297.74323.92345.95364.80381.16

-<Gf-H298 )/T

394.00394.01409.80441.17477.82515.80553.46590.08625.38659.26691.72

AfH°

vjr

-6372.2-6372.2-6369.6-6365.1-6360.0-6354.9-6354.4-6350.0-6346.6-6344.4-6382.0

AfG°

mol"1

-6013.5-6011.3-5891.3-5772.2-5654.1-5536.8-5419.8-5303.2-5187.1-5071.3-4952.5

Log Kf

1053.521046.63769.30603.00492.22413.15353.87307.78270.94240.81215.57

Melting T

H298~H8

kJ

kJ

Boiling T

Molar Vol

K

kJ

17.050 J-bar'1 170.50 cm3

A« -6.351E+03 B= 1.165E+00 C« -8.90E+05

01/07/93

Page 337: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 331

COBALT-OLIVINE Formula wt 209.950

Co2SiO4 : Orthorhombic crystals 298.15 to 1300 K,

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100

CP

133.41133.83151.48162.81170.44175.73179.40181.91183.55184.52

ST

142.60143.43184.55219.65250.05276.75300.47321.75341.01358.56

(HT-H298 )/T

J-mol"1^"1 -

0.000.82

36.4660.6778.3791.92102.64111.32118.47124.43

-<GT-H298 )/T

142.60142.60148.09158.98171.68184.82197.83210.43222.54234.12

A£H°

i. T

-1412.0-1412.0-1410.8-1409.0-1406.8-1404.5-1403.1-1401.1-1399.5-1398.4

AfG°

mol"1

-1308.7-1308.0-1273.5-1239.4-1205.7-1172.4-1139.2-1106.3-1073.7-1041.1

Log Kf

229.27227.74166.30129.47104.9687.4874.3864.2156.0849.44

Melting T

H298~H8

1693 K

kJ

22.52 kJ

A= -1.401E+03 B= 3.282E-01

Boiling T

Molar Vol

O -4.72E+05

K

kJ

4.449 J'bar'1 44.49 cm3

7/22/92

Page 338: robie 1995

332 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

FAYALITE Formula wt 203.777

Fe2SiO4 : Orthorhombic crystals 298.15 to 1490 K. Fayalite melts incongruently at 1490 K. Liquid 1490 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200130014001500160017001800

CP

131.84132.39152.14162.24168.83174.03178.71183.31188.03193.02198.33204.03210.14240.60240.60240.60240.60

ST

151.00151.82192.99228.12258.31284.74308.29329.60349.16367.31384.33400.43415.77490.58506.10520.68534.43

<H*-H298 ,/T

J»mol~^«K~^

0.000.81

36.5160.7378.2391.55

102.16110.92118.39124.95130.84136.25141.30205.80207.98209.89211.60

-<GT-H298 )/T

151.00151.00156.48167.39180.09193.19206.13218.68230.77242.36253.49264.18274.46284.78298.12310.79322.83

A£H°

kJ

-1478.2-1478.2-1477.1-1475.5-1473.8-1472.3-1471.0-1470.4-1470.9-1472.9-1473.0-1469.6-1466.0-1372.5-1366.1-1412.0-1406.7

AfG°

.ntol-1

-1379.1-1378.5-1345.4-1312.7-1280.3-1248.1-1216.2-1184.4-1152.6-1120.7-1088.7-1056.8-1025.2-994.4-969.4-944.3-916.9

Log K£

241.61240.02175.69137.13111.4593.1479.4168.7460.2153.2147.3942.4638.2534.6331.6529.0126.61

Melting T

H298~H5

1490 K

89.3 kJ

22.49 kJ

Boiling T

Molar Vol.

K

kJ

4.631 J-bar'1 46.31 cm3

A« -1.457E+03 3.049E-01 C« -1.30E+06

7/22/92

Page 339: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 333

ALMANDINE Formula wt 497.753

Fe3Al2Si3O12 : Cubic crystals 298.15 to 1200 K,

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200

CP

343.29344.49396.60431.35455.57472.90485.47494.57501.06505.54508.42

ST

342.60344.73451.51543.98624.89696.49760.51818.24870.71918.69962.81

<H*-H598 ,/T

0.002.12

94.70158.77206.33243.24272.78296.94317.05334.00348.42

-<GT-H298 )/T

342.60342.61356.81385.21418.56453.25487.73521.30553.66584.69614.39

A£H°

kJ

-5264.7-5264.7-5264.5-5262.0-5258.5-5254.6-5251.0-5248.4-5269.5-5271.4-5271.3

AfG°

mol"1

-4941.9-4939.9-4831.6-4723.6-4616.2-4509.5-4403.3-4297.5-4190.5-4082.4-3974.4

Log Kf

865.79860.10630.93493.46401.87336.50287.50249.42218.88193.85173.00

Melting T 1683 K

kJ

52.74 kJ

Boiling T

Molar Vol

K

kJ

11.532 J-bar' 115.32 cm3

A« -5.257E+03 B= 1.068E+00 C- -3.13E+05

4/6/93

Page 340: robie 1995

334 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CORDIERITE Formula wt 584.953

Mg2Al3 (AlSi5O18 ): Orthorhombic crystals 298.15 to 1700 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400150016001700

Melting T

AftJH0

H2*98"H8

CP

443.28445.39528.32577.52611.37636.90657.37674.50689.32702.43714.27725.11735.16744.56753.44761.87

A=

ST

407.20409.95550.66674.23782.68878.92965.35

1043.791115.641181.971243.601301.211355.321406.361454.701500.63

K

kJ

kJ

-9.227E+03

(Hf-H298 )/T

J-mol'^K"1

0.002.74

124.83210.80274.89324.86365.18398.63426.97451.43472.84491.84508.86524.27538.31551.22

B=

-(GT-H298 )/T

407.20407.21425.83463.43507.79554.06600.16645.16688.67730.54770.76809.37846.45882.09916.38949.41

1.785E+00

AfH° AfG°

-9161.5-9161.6-9164.9-9164.2-9161.6-9157.8-9153.5-9149.2-9204.5-9199.3-9193.4-9186.9-9434.8-9424.6-9414.0-9653.8

C=

kJ-mol"1

-8651.1-8648.0-8476.1-8303.9-8132.1-7960.8-7790.1-7619.9-7445.9-7270.2-7095.1-6920.4-6740.2-6548.0-6356.6-6163.4

Boiling T

A^o

Molar Vol. 23233

4.350E+06

Log Kf

1515.611505.711106.84867.48707.94594.03508.63442.24388.92345.22308.83278.06251.48228.02207.52189.37

K

kJ

.322 J-bar'1

.22 cm3

7/22/92

Page 341: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 335

FORSTERITE Formula wt 140.693

Mg2SiO4 : Orthorhombic crystals 298.15 to 1800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

AfaH°

H2*98~H8

f oT^

118.61119.10137.71148.28155.77161.75166.83171.25175.14178.56181.54184.08186.21187.92189.21190.08190.53

ST

94.1194.85131.97163.92191.65216.12238.06257.97276.22293.08308.74323.38337.10350.01362.18373.68384.56

2163 K

kJ

17.22 kJ

(H^-H298 )/T

J-mol~^«K"^ -

0.000.73

32.9255.0171.2183.7393.81102.17109.28115.42120.81125.58129.84133.66137.09140.19142.97

-<GT-H298 )/T A£H° A£G° Log Kf

kJ-mol"1

94.1194.1199.05108.91120.44132.39144.25155.80166.94177.65187.93197.79207.26216.35225.09233.49241.59

-2173.0-2173.0-2173.2-2172.6-2171.6-2170.5-2169.2-2167.9-2183.8-2182.7-2181.3-2179.8-2433.0-2428.5-2424.0-2469.7-2465.0

-2053.6-2052.9-2012.8-1972.7-1932.9-1893.2-1853.6-1814.2-1773.6-1732.6-1691.8-1651.1-1604.2-1545.1-1486.3-1427.4-1366.2

Boiling T

A^0

Molar Vol. 4.43.

359.78357.43262.84206.09168.27141.27121.03105.2992.6482.2773.6466.3459.8553.8048.5243.8639.64

K

kJ

365 J-bar'165 cm3

A= -2.240E+03 B= 4.675E-01 C= 4.724E+06

7/22/92

Page 342: robie 1995

336 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PYROPE Formula wt 403.127

Mg3Al2Si3012 : Cubic crystals 298.15 to 1570 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500

CP

325.76327.12383.71419.39443.59460.82473.55483.27490.92497.14502.37506.94511.10515.01

ST

266.27268.29370.83460.56539.30609 . 04671.45727.81779.14826.23869.72910.11947.84983.23

<HT-H§98 )/T

J-mol"1^'1 -

0.002.01

90.96153.33199.81235.93264.87288.62308.49325.36339.90352.58363.75373.71

-<G*-H598 >/'

266.27266.28279.87307.24339.49373.11406.57439.19470.65500.87529.82557.54584.08609.52

T AfH°

1. T-

-6285.0-6285.1-6286.1-6284.3-6280.9-6276.9-6272.6-6268.5-6311.8-6308.0-6304.0-6299.9-6678.0-6669.6

AfG°

mol-1 -

-5934.5-5932.3-5814.4-5696.7-5579.5-5462.9-5346.9-5231.4-5112.8-4993.0-4873.7-4754.6-4626.6-4480.3

Log Kf

1039.671032.88759.27595.12485.72407.64349.11303.62267.06237.09212.14191.04172.62156.01

Melting T

H298~H8

1570 K

241.0 kJ

47.85 kJ

Boiling T K

A^pH0 kJ

Molar Vol. 11.312 J-bar'1 113.12 cm3

A= -6.316E+03 B= 1.208E+00 C« 2.167E+06

7/22/92

Page 343: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 337

GLASS Formula wt 403.127

Glass 298.15 to glass transition 1020 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP

387.18387.83416.67437.98455.32470.25483.61495.85507.28

ST

346.30348.70464.47559.83641.26712.60776.28833.95886.79

\ 1*M v Q ft / /

J * inol * K

0.002.39

102.57167.61214.16249.70278.12301.64321.64

-(GT-H298 )/T

346.3346.3361.9392.2427.1462.9498.2532.3565.2

AfH°

1. T

-6163.0-6162.9-6159.5-6155.1-6150.3-6145.2-6140.0-6134.8-6176.6

A£G°

mol"1

-5836.3-5834.3-5725.2-5617.2-5510.0-5403.7-5298.2-5193.2-5085.3

Log Kf

1022.481015.82747.62586.81479.68403.22345.93301.40265.62

Melting T

H298~H8

1570 K

kJ

50.09 kJ

Boiling T

Molar Vol.

K

kJ

14.61 J«bar4 146.1 cm3

A* -6.143E+03 B= 1.058E+00 C= -7.88E+05

10/15/92

Page 344: robie 1995

338 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TEPHROITE Formula wt 201.959

Orthorhombic crystals 298.15 to 1524 K. Tephroite melts incongruently at 1524 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200130014001500

CP

128.74129.11144.89155.22162.48167.82171.86174.96177.38179.27180.74181.87182.73183.36

ST

155.90156.70196.18229.69258.67284.14306.82327.25345.82362.81378.48392.99406.50419.13

(HT-H298)/T

J-mol~^«K~^ -

0.000.80

35.0058.0874.9087.8298.08106.46113.43119.34124.39128.77132.60135.96

-<GT-H298 )/T

155.90155.90161.18171.62183.76196.32208.74220.79232.38243.48254.08264.22273.90283.17

AfH°

,

-1731.5-1731.5-1731.3-1730.4-1729.5-1728.4-1727.5-1726.6-1730.3-1729.8-1729.2-1728.7-1732.9-1737.6

AfG°

.-1

-1631.0-1630.3-1596.6-1563.0-1529.7-1496.4-1463.4-1430.4-1397.4-1364.2-1331.0-1297.8-1264.6-1230.8

Log Kf

285.73283.86208.49163.29133.17111.6695.5583.0272.9964.7857.9352.1547.1842.86

Melting T 1524 K

kJ

22.35 kJ

Boiling T K

A^pH0 kJ

Molar Vol. 4.899 J*bar4 48.99 cm3

A= -1.730E+03 B= 3.321E-01 C= -3.65E+04

7/22/92

Page 345: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 339

LIEBENBERGITE Formula wt 209.463

Ni2Si04 : Orthorhombic crystals 298.15 to 1300 K.

FORMATION FROM THE ELEMENTS

Temp.

K

°P S o / ti o _ti o \ / ii* _ / f» o _ti o \ / T T (MT-M^9g)/T ~(G$-H298 )/T

J-mol'^K"1

A£H° AfG°

kJ-mol"^

Log Kf

298.153004005006007008009001000110012001300

123.07123.50141.96153.93162.20168.12172.44175.61177.93179.60180.74181.48

128.10128.86167.13200.18229.02254.49277.24297.74316.37333.41349.09363.59

0.000.76

33.9356.8273.7386.8197.26105.80112.90118.89124.00128.40

128.10128.10133.19143.36155.29167.68179.98191.94203.47214.52225.09235.19

-1396.5-1396.5-1396.7-1396.1-1395.6-1394.7-1393.0-1391.2-1389.4-1387.7-1386.2-1384.8

-1288.9-1288.3-1252.1-1216.1-1180.1-1144.2-1109.5-1073.1-1037.9-1002.8-967.9-933.1

225.81224.30163.51127.04102.7385.3872.4462.2854.2147.6242.1337.49

Melting T

kJ

19.72 kJ

Boiling T

Molar Vol

K

kJ

4.257 J-bar' 42.57 cm3

A= -1.391B+03 B= 3.528E-01 C- -3.04E+05

7/22/92

Page 346: robie 1995

340 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

Ni2Si04-SPINEL Formula wt 209.463

Ni2Si04 : Cubic crystals 298.15 to 800 K,

FORMATION FROM THE ELEMENTS

Temp.

K

CP ST (Hf-H298 )/T -(Gf-H298 )/T AfH°

kJ-mol'1

Af6° Log Kf

298.15300400500600700800

120.73121.36143.89155.08161.80166.42169.91

124.10124.85163.28196.71225.63250.93273.39

0.000.75

34.0957.2874.1887.0597.19

124.10124.10129.19139.43151.45163.89176.20

-1389.7-1389.7-1389.8-1389.1-1388.5-1387.7-1386.2

-1280.9-1280.3-1243.7-1207.3-1171.0-1134.8-1099.7

224.41222.91162.41126.12101.9484.6871.80

Melting T Boiling T K

kJA rjO 1. TA^n KJ

H298~H8 ^

Molar Vol. 3.981 J-bar'139.81 cm3

A= -1.385E+03 B- 3.578E-01 O -2.19E+05

7/29/92

Page 347: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 341

ZIRCON Formula wt 183.307

ZrSiO4 : Tetragonal crystals 298.15 to 1600 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

1000110012001300140015001600

Melting T

AfaH°

cp

98.6499.03115.51126.03133.27138.46142.28145.12147.25148.83149.97150.76151.28151.55151.63

ST (

j

84.0384.64115.58142.57166.23187.18205.93222.86238.27252.38265.38277.42288.61299.06308.84

K

kJ

HT-H398 )/T

0.000.61

27.4546.1860.1370.9779.6586.7892.7297.76102.06105.78109.01111.84114.33

-(Gf-H298 )/T

84.0384.0388.1496.39106.10116.21126.28136.08145.54154.62163.32171.64179.60187.22194.52

AfH°

kJ-

-2034.2-2034.2-2034.0-2032.9-2031.3-2029.5-2027.4-2025.4-2023.4-2021.4-2023.2-2021.0-2018.8-2016.7-2014.8

A£G°

mol"1

-1919.7-1919.0-1880.6-1842.4-1804.4-1766.7-1729.3-1692.2-1655.3-1618.5-1581.8-1545.1-1508.6-1472.2-1436.0

Boiling T

Molar Vol. 3H2-98-H5

-

kJ

-2.023E+03 B= 3.674E-01 C= -6.

39

21E+05

Log Kf

336.32334.12245.58192.47157.08131.83112.9198.2186.4676.8668.8562.0856.2851.2746.88

K

kJ

.926 J-bar4

.26 cm3

7/23/92

Page 348: robie 1995

342 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

WOLLASTONITE Formula wt 116.162

CaSiO3 : Triclinic crystals 298.15 to 1400 K. Pseudowollastonite is stable above 1398 K,

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

10001100120013001400

f oTft

86.1986.5099.33107.40112.94116.96120.02122.44124.42126.11127.60128.95130.22

Sf

81.6982.22

109.02132.12152.22169.94185.77200.05213.06225.00236.03246.30255.90

<HT-H298 )/T

J»raol »K -

0.000.53

23.7739.7451.5060.5867.8373.7778.7482.9786.6389.8392.67

-<Gf-H298 )/T

81.6981.6985.2692.38100.71109.36117.94126.28134.32142.03149.41156.47163.23

AfH°

kJ-

-1634.8-1634.8-1634.7-1633.9-1633.0-1631.9-1631.8-1630.9-1630.1-1629.6-1637.1-1635.9-1634.7

AfG°

.-1

-1549.0-1548.5-1519.7-1491.0-1462.5-1434.2-1405.9-1377.8-1349.7-1321.7-1293.1-1264.4-1235.9

Log Kf

271.37269.61198.45155.76127.32107.0291.8079.9670.5062.7656.2850.8046.11

Melting T Boiling T

H2*98"H8

kJ

13.84 kJ

A= -1.632E+03 B* 2.827E-01

Molar Vol

C= -1.12E+05

K

kJ

3.990 J'bar'1 39.90 cm3

7/31/92

Page 349: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 343

PSEUDOWOLLASTONITE Formula wt 116.162

CaSiO3 : Triclinic crystals 298.15 to melting point 1821 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200130014001500160017001800

Melting T

CP

87.9288.2099.53

106.55111.43115.06117.89120.17122.06123.65125.01126.19127.23128.14128.95129.68130.34

ST (E

j.

87.2087.74114.82137.84157.72175.18190.74204.76217.52229.23240.05250.10259.49268.30276.60284.44291.87

1821 K

mol'1 '!

0.000.54

24.0039.8651.4060.2567.2873.0477.8581.9485.4888.5691.2993.7295.8997.8699.65

)/T -<GT-H«,98 )/T

r 1

87.2087.2090.8297.98106.32114.93123.45131.72139.67147.29154.57161.54168.21174.59180.71186.58192.23

A£H°

1. T

-1627.6-1627.6-1627.4-1626.7-1625.8-1625.0-1625.0-1624.3-1623.8-1623.6-1631.3-1630.4-1629.4-1628.4-1627.5-1676.7-1824.1

A£G°

mol"1lUWJk

-1543.5-1542.9-1514.7-1486.6-1458.7-1430.9-1403.2-1375.5-1347.8-1320.3-1292.1-1263.8-1235.7-1207.6-1179.6-1145.1-1118.1

Boiling T

A« HO

Log K£

270.40268.64197.80155.30126.99106.7791.6179.8370.4062.6956.2450.7846.1042.0538.5135.3732.44

K

kJA^H0 57.3 kJ

Molar Vol. 4.H§98"H8

A=

kJ

-1.629E+03 B= 2.815E-01 C= 1.

40.

853E+05

008 J-bar'108 cm3

7/31/92

Page 350: robie 1995

344 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

glass Formula wt 116.162

CaSiO3 : Glass 298.15 to 1821 K, melting point of pseudowollastonite.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

CP

86.8187.1299.31

106.80112.43117.18121.47125.49129.34133.07136.74140.35143.92147.46150.99154.49157.98

ST

94.8095.34122.25145.27165.26182.95198.88213.42226.85239.35251.09262.17272.70282.76292.38301.64310.57

(H*-HJ98,/T

J-mol"1^'1 -

0.000.54

23.8639.7551.4160.4767.8374.0279.3684.0788.3192.1795.7499.07102.21105.18108.02

-<GT-H298 )/T

94.8094.8098.39

105.52113.85122.48131.05139.41147.49155.28162.78170.00176.96183.68190.18196.46202.56

A£H°

1. T

-1608.7-1608.7-1608.5-1607.8-1606.9-1605.9-1605.7-1604.5-1603.4-1602.3-1609.0-1606.8-1604.3-1601.5-1598.5-1645.3-1790.2

AfG°

ntoi-1

-1526.8-1526.3-1498.8-1471.5-1444.3-1417.3-1390.3-1363.5-1336.8-1310.1-1283.0-1255.9-1229.0-1202.3-1175.8-1149.0-1117.8

Log Kf

267.49265.75195.72153.72125.74105.7690.7879.1369.8262.2155.8550.4645.8541.8738.3935.3032.44

Melting T 1821 K

kJ

14.20 kJ

A* -1.606E+03

Boiling T

B= 2.698E-01

Molar Vol.

0 -6.93E+04

K

kJ

4.013 J-bar'1 40.13 cm3

7/31/92

Page 351: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 345

Ca-Al PYROXENE Formula wt 218.123

CaAl2SiOg: Monoclinic crystals 298.15 to 1000 K,

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

1000

164165194212225234241246250

CP

.97

.63

.10

.57

.29

.43

.23

.45

.58

S5

141.142.193.239.279.314.346.375.401.

11

000289322772492240

(Hf-H298 )/T

0.001.02

46.0177.59

101.21119.62134.42146.59156.79

-<GT-H298 )/T

141141147161178195212228244

.00

.00

.88

.73

.06

.10

.07

.63

.61

AfH°

-3306.-3306.-3306.-3306.-3304.-3302.-3301.-3299.-3319.

AM HBV

339034352

AfG°

-3129.6-3128.5-3069.0-3009.7-2950.5-2891.7-2833.1-2774.7-2715.0

Log Kf

548.27544.70400.77314.41256.86215.78184.98161.04141.81

Melting T

kJ

24.40 kJ

Boiling T

Molar Vol.

K

kJ

6.357 J»bar' 63.57 cm3

A« -3.303E+03 B« 5.877E-01 O -1.73E+05

04/30/93

Page 352: robie 1995

346 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

HEDENBERGITE Formula wt 248.092

CaFeSi2Og: Monoclinic crystals 298.15 to 1300 K. Decomposes at 1238 K.

FORMATION PROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

1000110012001300

CP

175.30175.94201.95218.13229.59238.39245.51251.49256.67261.25265.37269.13

Sf

174.20175.29229.81276.73317.57353.65385.96415.23442.00466.68489.59510.99

<H*-H298 )/T

J-1 --1

0.001.08

48.3580.79104.69123.18138.04150.32160.71169.64177.45184.36

-<GT-H298 )/T

174.20174.20181.46195.94212.88230.46247.92264.90281.29297.04312.14326.63

AfH°

t-T

-2839.9-2839.9-2839.3-2837.6-2835.4-2833.2-2831.8-2829.8-2828.6-2828.4-2835.2-2831.6

AfG.

mol"1

-2676.3-2675.2-2620.4-2565.9-2511.7-2457.9-2404.4-2351.1-2298.0-2244.9-2191.3-2137.6

Log Kf

468.86465.79342.18268.05218.66183.41156.99136.45120.03106.6095.3885.90

Melting T Boiling T

kJ

28.23 kJMolar Vol

K

kJ

6.795 J-bar'1 67.95 cm3

-2.830E+03 B= 5.328E-01 C= -4.43E+05

7/31/92

Page 353: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 347

DIOPSIDE Formula wt 216.550

CaMgSi2Og: Monoclinic crystals 298.15 to incongruent melting point at 1668 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600

CP

166.78167.46195.68213.25224.98233.19239.21243.80247.47250.57253.33255.94258.51261.16263.96

S*

142.70143.73196.12241.81281.80317.13348.68377.13403.02426.75448.67469.05488.11506.04522.98

(H$-H598 )/T

J-mol"1 -*""1 -

0.001.03

46.4778.19

101.74119.97134.51146.41156.34164.77172.03178.39184.02189.07193.67

-<Gf-H298 )/T

142.70142.70149.65163.62180.06197.17214.17230.72246.68261.98276.64290.66304.09316.97329.32

AfH°

1. T

-3201.5-3201.5-3201.6-3200.2-3198.2-3196.0-3194.6-3192.4-3199.1-3197.6-3204.0-3201.7-3326.7-3322.9-3319.0

AfG°

mol

-3026.8-3025.7-2967.1-2908.6-2850.4-2792.6-2735.0-2677.7-2619.9-2562.1-2503.8-2445.5-2384.3-2317.1-2250.2

Log Kf

530.27526.81387.45303.85248.14208.38178.58155.41136.85121.66108.9898.2688.9680.6973.46

Melting T

H2*98~H0*

1668 K

137.7 kJ

25.24 kJ

Boiling T

Molar Vol.

K

kJ

6.609 J-bar'1 66.09 cm3

A* -3.213E+03 B= 5.949E-01 C* 9.377E+05

7/31/92

Page 354: robie 1995

348 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CaMgSi2O6 GLASS Formula wt 216.550

CaMgSi206 : Glass 298.15 to 1400 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400

Melting T

H298~H5

CP

168.31168.93196.43213.62224.44232.22239.22247.01256.65268.92284.36303.39326.34

26

A*

ST

166.00167.04219.69265.52305.50340.70372.17400.78427.28452.30476.33499.82523.12

K

kJ

.94 kJ

-3.152E+03

(Hf-H298 )/T

i-l-l

0.001.04

46.6978.50101.99120.06134.51146.57157.07166.66175.80184.86194.12

-<GT-H298 )/T AfH° AfG° Log Kf

kJ-mol"1

166.00166.00172.99187.02203.51220.65237.65254.21270.21285.63300.53314.96328.99

-3156.1-3156.1-3156.1-3154.7-3152.7-3150.5-3149.2-3146.8-3152.9-3150.1-3154.1-3147.9-3267.2

-2988.3-2987.3-2931.0-2874.9-2819.1-2763.7-2708.4-2653.5-2598.1-2542.7-2487.0-2431.7-2373.8

Boiling T

Molar Vol. 7.609

B= 5.546E-01

76.09

523.53520.12382.74300.33245.42206.22176.84154.00135.71120.74108.2697.7188.56

K

kJ

J-bar'1cm3

0 -1.44E+05

10/15/92

Page 355: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 349

FERROSILITE Formula wt 131.931

FeSiO3 : Orthorhombic crystals 298.15 to 800 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800

°p

90.6391.13109.00118.06123.64127.58130.65

S|

94.6095.16124.16149.56171.61190.98208.22

<H*-H598 ,/T

J-1.--1

0.000.56

25.7343.3756.3266.2374.10

-<Gf-H298 )/T

94.6094.6098.43106.18115.29124.75134.12

AfH°

1. T

-1195.2-1195.2-1194.3-1192.6-1190.7-1188.8-1187.0

AfG°

mol"1

-1118.0-1117.5-1091.7-1066.2-1041.1-1016.4-991.9

Log Kf

195.86194.57142.56111.3990.6475.8464.76

Melting T

kJ

kJ

Boiling T

Molar Vol

K

kJ

3.300 J-bar'1 33.00 cm3

A* -1.188E+03 B= 2.460E-01 C= -2.90E+05

05/07/93

Page 356: robie 1995

350 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

a-SPODUMENE Formula wt 186.090

LiAlSi2O6 : Monoclinic crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

158.93159.48184.73203.25217.12227.78236.12242.75248.07252.37255.84

ST

129.30130.28179.81223.13261.47295.77326.75354.96380.82404.68426.79

(Hf-H298 )/T

J-mol'^K"1 -

0.000.98

43.9374.0396.78114.76129.43141.67152.05160.98168.75

-<GT-H298 )/T

129.30129.30135.88149.09164.69181.01197.32213.29228.77243.69258.04

AfH°

kJ*m

-3053.5-3053.5-3054.5-3057.3-3056.3-3054.4-3052.1-3049.6-3057.4-3054.3-3050.9

AfG°

_i 1

-2880.2-2879.2-2820.8-2762.1-2703.2-2644.5-2586.0-2527.9-2469.4-2410.7-2352.3

Log Kf

504.59501.29368.36288.55235.33197.33168.85146.71128.98114.47102.39

Melting T

H298~H8

kJ

kJ

Boiling T

Molar Vol

K

kJ

5.837 J-bar'1

58.37 cm3

A= -3.054E+03 B= 5.849E-01 C* -5.34E+04

9/18/92

Page 357: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 351

fJ-SPODUMENE Formula wt 186.090

L1A1S12O6 : Tetragonal crystals 298.15 to 1700 K. Melting point is 1696 K,

FORMATION FROM THE ELEMENTS

Temp.

298.1530040050060070080090010001100120013001400150016001700

Melting T

A^H0

H298-H6

CP

162.77163.37189.58207.34220.36230.39238.41244.98250.49255.18259.22262.74265.84268.58271.03273.23

A=

ST

154.40155.41206.27250.60289.60324.36355.66384.14410.24434.34456.72477.61497.20515.63533.05549.55

1696 K

kJ

kJ

-3.023E+03

(Hf-H298 )/T

0.001.01

45.1175.8898.93117.02131.71143.94154.33163.29171.12178.03184.20189.73194.74199.29

B*

-(GT-H298 )/T AfH° AfG°

154.40154.40161.16174.71190.68207.34223.95240.19255.91271.05285.60299.58313.00325.90338.31350.25

5.543E-01

-3025.3-3025.3-3025.8-3028.2-3026.8-3024.7-3022.1-3019.3-3026.9-3023.5-3019.9-3016.0-3012.1-3008.0-3003.8-3245.1

C*

kJ-mol~l

-2859.5-2858.5-2802.7-2746.7-2690.5-2634.7-2579.1-2523.9-2468.3-2412.6-2357.2-2302.1-2247.4-2192.9-2138.7-2076.7

Boiling T

A^H°

Molar Vol. 778

-2.00E+05

Log Kf

500.96497.69365.99286.94234.23196.60168.40146.48128.93114.56102.6092.5083.8576.3669.8263.81

K

kJ

.825 J-bar'1

.25 cm3

10/16/92

Page 358: robie 1995

352 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ENSTATITE Formula wt 100.389

MgSiO3 : Orthorhombic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

83.0983.4197.40

106.62112.88117.44121.10124.39127.68

ST

66.2766.7892.83

115.63135.66153.41169.34183.80197.07

(HT-H298 )/T

0.000.51

23.1138.9550.7859.9967.4173.5678.81

-<Gf-H$98 )/T

66.2766.2769.7376.6884.8793.42101.93110.24118.27

AfH°

kJ-

-1545.6-1545.6-1545.6-1544.9-1543.8-1542.5-1541.1-1539.6-1546.7

AfG°

mol"1

-1458.3-1457.7-1428.4-1399.1-1370.1-1341.2-1312.6-1284.1-1255.1

Log Kf

255.48253.81186.52146.16119.27100.0885.7074.5265.56

Melting T K

kJ

11.99 kJ

Boiling T

Molar Vol

K

kJ

3.131 J-bar'1 31.31 cm3

A= -1.542E+03 B= 2.869E-01 C- -1.78E+05

7/31/92

Page 359: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 353

CLINOENSTATITE Formula wt 100.389

MgSi03 : Crystals 298.15 to melting point at 1830 K,

FORMATION FROM THE ELEMENTS

Temp.

K

298.153004005006007008009001000110012001300140015001600

CP

82.1282.3493.04101.20107.42112.22115.98118.95121.32123.22124.73125.93126.87127.60128.14

ST

67.8668.3793.59115.27134.29151.23166.47180.30192.96204.62215.41225.44234.81243.59251.84

<Hf-H298)/T

0.000.51

22.3637.3548.5357.3064.4170.3175.3079.5783.2786.5189.3691.8994.14

-<Gf-H298 )/T

67.8667.8671.2377.9285.7693.92102.06109.99117.67125.05132.13138.93145.45151.70157.71

AfH°

1. T.

-1545.0-1545.0-1545.3-1545.1-1544.6-1543.8-1542.9-1541.9-1549.6-1548.7-1547.7-1546.7-1673.1-1670.8-1668.5

AfG°

mol"1

-1458.1-1457.6-1428.4-1399.2-1370.0-1341.0-1312.1-1283.3-1253.9-1224.3-1194.9-1165.5-1133.1-1094.6-1056.3

Log Kf

255.45253.78186.52146.17119.27100.0685.6774.4865.4958.1452.0146.8342.2838.1234.48

Melting T 1830 K

61.50 kJ

kJ

Boiling T

Molar Vol

K

kJ

3.128 J-bar*1 31.28 cm3

-1.562E+03 B= 3.088E-01 C= 1.138E+06

10/16/92

Page 360: robie 1995

354 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MgSi03-ILMENITE Formula wt 100.389

: Ilmenite structure form stable only at high pressure 298.15 to 700 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700

102102104109115122

CP

.64

.63

.92

.92

.98

.55

S*

60.4061.0390.77

114.69135.26153.62

<Hf-H298 )/T

J-mol"1^'1 -

0.000.63

26.3342.5254.2563.53

-<Gf-H298 )/T

606064728190

.40

.40

.44

.17

.01

.09

AfH°

-1486.-1486.-1485.-1484.-1482.-1481.

1» T JCU

664280

AfG°

mol"1

-1397.-1397.-1367.-1337.-1308.-1279.

503989

Log Kf

244.83243.23178.54139.77113.9495.51

Melting T

kJ

H2*98~H5 kJ

Boiling T

Molar Vol

K

kJ

2.636 J-bar'1 26.36 cm3

A* -1.481E+03 B= 2.885E-01 C= -1.88E+05

12/9/92

Page 361: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 355

RHODONITE Formula wt 131.022

MnSiO3 : Triclinic crystals 298.15 to 1600 K. Melts incongruently at 1564 K,

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000110012001300140015001600

Melting T

A^0

CP

86.4486.84101.42108.73113.29116.61119.31121.67123.83125.87127.83129.75131.63133.50135.35

Sf

100.50101.04128.30151.79172.04189.77205.52219.71232.64244.54255.58265.89275.57284.72293.39

1564 K

kJ

(Hf-H298)/T

J-mol"1^"1 -

0.000.53

24.1840.4352.2161.1968.2974.0978.9683.1386.7790.0192.9195.5697.99

-<GT-H298 )/T

100.50100.50104.12111.37119.83128.58137.23145.62153.69161.41168.81175.88182.66189.16195.41

A£H°

VT

-1321.6-1321.6-1321.4-1320.6-1319.8-1318.9-1318.0-1317.2-1318.6-1317.8-1317.0-1316.1-1317.4-1318.9-1330.5

A£G°

mol"1

-1244.7-1244.2-1218.4-1192.7-1167.2-1141.9-1116.6-1091.5-1066.4-1041.3-1016.2-991.1-966.1-940.9-915.1

Boiling T

Molar Vol. 3.H298"H8 14.55 kJ

A* -1.318E+03 B- 2.513E-01 0 -1.

34.

87E+05

Log Kf

218.05216.63159.10124.60101.6185.2172.9163.3555.7049.4444.2339.8236.0532.7629.87

K

kJ

494 J'bar'194 cm3

4/5/93

Page 362: robie 1995

356 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

JADEITE Formula wt 202.139

NaAlSi2O6 : Monoclinic crystals 298.15 to 1300 K,

Temp.

298.15300400500600700800900

1000110012001300

Melting T

A^H"

H2*98~H6

CP

159.92160.62188.41205.31217.07225.96233.06238.96244.02248.44252.39255.96

A=

Sf

133.50134.49184.89228.88267.41301.57332.22360.02385.46408.93430.72451.07

K

kJ

kJ

-3.039E+03

<HT-H298 )/T

J-mol"1-^1 -

0.000.99

44.7175.2597.96115.64129.89141.69151.67160.27167.79174.44

-<GT-H298 )/T

133.50133.50140.19153.63169.45185.93202.33218.33233.79248.66262.94276.63

FORMATION

A£H°

kJ*mol

-3029.3-3029.3-3033.0-3032.7-3031.6-3029.9-3027.8-3025.6-3033.8-3031.1-3125.0-3121.1

FROM THE ELEMENTS

A£6°

-1

-2850.6-2849.5-2789.1-2728.2-2667.4-2606.8-2546.5-2486.5-2426.0-2365.3-2302.4-2234.0

Boiling T

Av*H°

Molar Vol. 6. 60.

B= 6.146E-01

Log Kf

499.40496.13364.22285.01232.21194.52166.27144.31126.72112.32100.2289.76

K

kJ

040 J-bar'1

40 cm3

C= 4.741E+05

7/31/92

Page 363: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 357

ACMITE Formula wt 231.004

NaFeSi2O6 : Monocltnic crystals 298.15 to 1300 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300

Melting T

H2*98~H8

CP

169.88170.58197.52213.32224.73234.07242.31249.91257.10264.04270.80277.44

26.

**

170.57171.62224.81270.70310.65346.01377.81406.80433.50458.33481.60503.54

K

kJ

94 kJ

A= -2.587E+03

(H*-H298 ,/T

,-!.--!

0.001.05

47.1778.93

102.32120.49135.21147.54158.13167.45175.78183.35

-<GT-H298 )/T

170.57170.57177.64191.78208.33225.52242.60259.26275.37290.88305.82320.19

A£H° A£G°

-2584.5-2584.5-2587.4-2586.4-2584.9-2582.9-2580.6-2578.2-2576.2-2574.5-2668.5-2662.8

kJ-mol"1

-2417.2-2416.2-2359.8-2303.0-2246.4-2190.2-2134.3-2078.6-2023.2-1968.0-1910.5-1847.6

Boiling T

Molar Vol. 6

B= 5.648E-01 0 9

64

.860E+04

Log Kf

423.48420.69308.15240.59195.57163.43139.35120.64105.6893.4583.1674.24

K

kJ

.460 J-bar'1

.60 cm3

7/31/92

Page 364: robie 1995

358 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

TREMOLITE Formula wt 812.366

Ca2Mg5Si8O22(OH) 2 : Monoclinic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

1000

CP

655.44657.85774.71850.48895.82926.86956.04992.18

1041.58

ST

548.90552.96759.08940.81

1100.211240.731366.361480.951587.91

(HJ-HJ98,/T

J-1--1

0.004.05

182.86309.46403.71476.31534.42583.18626.42

-<Gf-H298 )/T

548.90548.91576.22631.36696.50764.42831.94897.77961.49

A£H°

kJ-

-12303.0-12303.1-12304.7-12299.8-12292.0-12283.0-12275.3-12265.0-12295.7

A£G°

mol~l

-11574.6-11570.0-11325.2-11080.8-10837.7-10596.1-10355.5-10116.1-9874.4

Log Kf

2027.772014.471478.891157.59943.48790.67676.13587.11515.78

Melting T

H298~H8

kJ

97.63 kJ

Boiling T

Molar Vol

K

kJ

27.290 J'bar'1 272.90 cm3

A= -1.228E+04 B= 2.405E+00 -1.24E+06

7/31/92

Page 365: robie 1995

THERMOD YNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 359

GRUNERITE Formula wt 1001.614

Fe7Si8O22(OH) 2 : Monoclinic crystals 298.15 to 900 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

681683798871927975

10191061

cp

.08

.99

.99

.66

.67

.82

.77

.29

ST

725.00729.22943.371129.921293.951440.641573.851696.37

(Hf-H298 )/T

J-mor^-KT1 -

0.004.21

189.94319.42416.28492.84555.99609.84

-<Gf-H598 )/T Af

725.725.753.810.877.947.

1017.1086.

0001435068808653

-9623-9623-9622-9616-9607-9597-9586-9574

rH°

- kJ*m

.0

.1

.2

.4

.7

.4

.0

.5

f

,Q! 1

-8964-8960-8739-8519-8301-8084-7869-7655

:G°

.8

.7

.9

.9

.4

.5

.1

.1

Log Kf

1570.561560.171141.28890.05722.68603.26513.79444.28

Melting T

H298~H8

kJ

kJ

Boiling T

Molar Vol

K

kJ

27.870 J-bar'1 278.70 cm3

-9.590E+03 B= 2.154E+00 C- -1.52E-H06

9/18/92

Page 366: robie 1995

360 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ANTHOPHYLLITE Formula wt 780.820

Mg7Si8O22 (OH) 2 : Monoclinic crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

664.02667.12788.45859.43907.21942.29969.58991.72

1010.241026.111039.97

ST

534.50538.62748.97933.121094.291236.891364.571480.091585.561682.611772.50

<HT-H298 )/T

J-mol'^K'1 -

0.004.10

186.60314.60409.61483.32542.46591.19632.19667.30697.79

-(GT-H298 )/T

534.50534.51562.37618.53684.68753.58822.11888.90953.371015.311074.71

A£H°

1. T

-12070.0-12070.1-12070.0-12063.8-12054.7-12043.9-12032.2-12020.3-12068.5-12057.1-12045.0

A£6°

- _. * 1

-11343.4-11338.8-11094.9-10851.7-10610.1-10370.2-10131.9-9895.0-9654.6-9413.7-9174.0

Log Kf

1987.261974.221448.811133.64923.67773.82661.53574.28504.29447.01399.32

Melting T

H298"H8

kJ

96.78 kJ

Boiling T

Molar Vol

K

kJ

26.540 J-bar"1 265.40 cm3

A= -1.204E+04 B= 2.389E+00 O -1.29E+06

4/5/93

Page 367: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 361

GLAUCOPHANE Formula wt 783.543

Monoclinic crystals 298.15 to 1200 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200

CP

645.48647.73750.28823.97878.30919.33950.88975.41994.601009.621021.32

ST

541.20545.20746.42922.191077.461216.071340.981454.451558.261653.791742.16

(Hf-H29Q )/T

J-mol"1 -*"1 -

0.003.99

178.46300.59392.56465.02523.86572.73613.99649.31679.84

-<GT-H298 )/T

541.20541.21567.95621.60684.89751.05817.12881.73944.261004.481062.32

AfH°

1. T

-11964.0-11964.1-11973.3-11971.7-11966.2-11958.0-11948.3-11937.7-11973.7-11962.3-12144.0

AfG°

-11230.8-11226.2-10979.0-10730.6-10482.8-10236.2-9990.9-9746.8-9500.4-9253.5-9003.0

Log K£

1967.541954.611433.681120.99912.59763.82652.32565.68496.24439.40391.88

Melting T

H2*98~H5

K

kJ

95.62 kJ

Boiling T

Molar Vol

K

kJ

26.210 J'bar'1 262.10 cm3

A- -1.196E+04 B= 2.462E+00 C* -4.11E+05

8/5/92

Page 368: robie 1995

362 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ANORTHITE Formula wt 278.207

CaAl2Si208 : Triclinic (PI) crystals 298.15 to 510 K: triclinic (II) crystals 510 to melting point 1830 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

cp

211.34212.23248.25270.17285.13296.26305.17312.78319.67326.21332.67339.23346.03353.18360.75368.81377.41

S o T

199.30200.61267.09325.01375.67420.49460.65497.04530.36561.13589.80616.68642.07666.18689.22711.33732.65

(Hf-H298 )/T

1-1. .-1

0.001.31

58.9699.17128.98152.12170.71186.08199.10210.36220.28229.18237.28244.77251.78258.42264.79

-<G*-HJ98 ,/'

199.30199.30208.12225.84246.68268.37289.94310.96331.26350.78369.51387.50404.79421.42437.44452.90467.86

r A£H°

i» T _

-4234.0-4234.0-4234.6-4233.4-4231.4-4229.1-4227.5-4225.2-4244.3-4241.8-4246.9-4243.0-4238.6-4233.8-4228.4-4322.7-4464.2

M°moi-l

-4007.9-4006.5-3930.5-3854.5-3778.9-3703.7-3628.7-3554.0-3478.1-3401.6-3324.7-3248.0-3171.7-3095.6-3019.9-2943.6-2860.5

Log Kf

702.15697.57513.25402.67328.98276.37236.93206.27181.67161.52144.72130.50118.33107.7998.5990.4483.01

Melting T 1830 K Boiling T

A^H0 133.0 kJ

H2*98~H8 33.33 kJMolar Vol.

K

kJ

10.079 J-bar'1 100.79 cm3

A= -4.240E+03 B= 7.634E-01 0 4.945E+05

7/30/92

Page 369: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 363

CaAl2Si2O8-GLASS Formula wt 278.207

CaAl2Si208 : Glass 298.15 to 1500 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200130014001500

Melting T

f° CP

210.65211.54247.44269.96286.17298.89309.44318.53326.59333.90340.62346.89352.80358.41

ST

237.30238.61304.86362.65413.37458.48499.09536.08570.06601.54630.88658.40684.33708.86

K

kJ

(Hf-H298 )/T

J-mol"1^"1 -

0.001.30

58.7698.89

128.82152.24171.25187.12200.67212.45222.86232.16240.57248.24

-(GT-H298 )/T AfH° AfG°

237.30237.30246.09263.76284.55306.24327.85348.96369.39389.08408.03426.24443.76460.62

-4163.2-4163.2-4163.9-4162.7-4160.7-4158.2-4156.3-4153.5-4171.9-4168.7-4173.0-4168.3-4163.2-4157.8

kJ-mol'1

-3948.4-3947.1-3874.9-3802.7-3730.9-3659.4-3588.3-3517.4-3445.4-3372.9-3300.1-3227.5-3155.4-3083.6

Boiling T

Molar Vol. 10.H298~H8 33

A=

.15 kJ

-4.164E+03 B* 7.199E-01 C* 1

103.

.207E+05

Log Kf

691.73687.23505.99397.26324.79273.06234.28204.14179.97160.16143.65129.68117.73107.38

K

kJ

30 J-bar'10 cm3

9/16/92

Page 370: robie 1995

364 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

BICCHULITE Formula wt 292.216

Ca2Al2Si06 (OH) 2 : Cubic crystals 298.15 to 1800 K.

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

AjfcH0

CP

240.87241.81277.62298.60313.75326.14337.06347.12356.66365.85374.80383.59392.26400.84409.35417.80426.22

213.10214.59289.63353.99409.83459.15503.43543.71580.78615.21647.43677.78706.52733.88760.02785.09809.21

K

kJ

<H*-H598 >

0.001.49

66.54111.00143.58168.80189.16206.16220.73233.51244.91255.24264.72273.51281.73289.49296.85

-«0*-H*98>,

213.10213.10223.09243.00266.25290.36314.27337.56360.05381.70402.52422.53441.80460.37478.29495.60512.36

FORMATION

r AfH°

kJ-mol

-4341.2-4341.2-4342.2-4341.6-4340.3-4338.6-4338.6-4336.9-4356.6-4354.8-4368.4-4364.0-4359.1-4353.3-4347.0-4390.2-4679.6

Boiling

A^o

FROM THE ELEMENTS

A£G° Log Kf

-1

-4073.0-4071.4-3981.2-3891.0-3801.0-3711.3-3621.5-3532.0-3441.2-3349.7-3257.2-3164.7-3072.7-2981.0-2889.7-2798.3-2700.6

T

Molar Vol. 10.H298~H6

A=

kJ

-4.356E+03 B= 9.167E-01

103.

713.56708.87519.88406.48330.90276.93236.46204.99179.74159.06141.78127.16114.64103.8094.3485.9878.37

K

kJ

368 J-bar'168 cm3

C= 9.910E+05

7/30/92

Page 371: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 365

MEIONITE (Al/Si ORDERED) Formula wt 934.709

Ca4Al6Si6O24CO3 : Tetragonal crystals 298.15 to 1200 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200

cp

709.51713.05844.29915.47963.02999.411029.841056.821081.651105.081127.55

COST

715.20719.60945.011141.701313.041464.331599.811722.701835.341939.542036.67

<HT-H$98)/T

,-1 _-l

0.004.39

199.95336.51437.18514.99577.49629.28673.29711.49745.23

-(GT-H$98)/T

715.20715.21745.06805.18875.86949.331022.321093.421162.051228.061291.44

AfH°

kJ-t

-13881.4-13881.5-13882.2-13877.0-13869.8-13861.6-13856.8-13848.8-13905.1-13896.8-13919.2

AfG°

.-1

-13131.8-13127.1-12875.3-12624.1-12374.1-12125.5-11877.6-11630.7-11380.3-11128.1-10874.3

Log Kf

2300.582285.581681.301318.801077.24904.80775.51675.01594.43528.42473.33

Melting T

H298~H5

kJ

kJ

Boiling T

Molar Vol

K

kJ

34.036 J-bar'1 340.36 cm3

A» -1.387E+04 B= 2.495E+00 C» -2.94E+05

7/30/92

Page 372: robie 1995

366 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MICROCLINE Formula wt 278.332

KAlSi308 : Triclinic crystals 298.15 to 1400 K.

Temp.

298.1530040050060070080090010001100120013001400

Melting

H2*98~H6

CP

FORMATION FROM THE ELEMENTS

ST (HT-H^98 )/T -(GT-H2> 93)/T AfH° AfG° Log Kf

T._ .t l.«r 1 t-T. rti 1

202.13202.85236.27259.96276.64288.65297.58304.51310.21315.20319.89324.56329.45

T

33.

A» -4

214.20215.45278.64334.06383.02426.62465.77501.23533.62563.42591.05616.84641.07

K

kJ

99 kJ

.002E+03

0.001.25

56.0594.60123.63146.39164.76179.91192.67203.58213.08221.48229.01

214.20214.20222.59239.46259.39280.22301.01321.32340.95359.84377.97395.37412.06

-3974.6-3974.7-3978.8-3978.7-3977.4-3975.3-3972.8-3970.2-3978.0-4054.0-4049.7-4045.3-4040.7

-3749.3-3747.9-3671.5-3594.6-3517.9-3441.5-3365.4-3289.6-3213.4-3132.5-3048.9-2965.7-2882.8

Boiling T

Molar Vol. 10

B= 7.941E-01

108

656.84652.54479.44375.52306.25256.80219.73190.92167.85148.74132.71119.16107.56

K

kJ

.872 J-bar'1

.72 cm3

C= 1.562E+06

7/30/92

Page 373: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 367

SANIDINE Formula wt 278.332

KAlSi3O8 : Monoclinic crystals 298.15 to 1400 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400

cp

204.55205.29238.98262.28278.65290.48299.30306.15311.72316.51320.85325.03329.24

ST

232.80234.07298.03354.02403.37447.26486.65522.32554.87584.81612.54638.39662.63

(HT-H$98 )/T

J-mol"1^"1 -

0.001.26

56.7495.66124.87147.73166.15181.34194.11205.02214.49222.84230.29

-(GT-H298 )/T

232.80232.80241.30258.36278.50299.54320.51340.98360.76379.79398.04415.55432.34

AfH°

UT

-3965.6-3965.6-3969.5-3969.2-3967.7-3965.4-3962.7-3959.9-3967.6-4043.4-4039.0-4034.5-4029.9

AfG°

-3745.8-3744.4-3670.0-3595.1-3520.4-3446.0-3372.0-3298.3-3224.2-3145.4-3064.0-2982.9-2902.2

Log Kf

656.23651.95479.24375.57306.47257.14220.16191.42168.41149.36133.37119.85108.28

Melting T

H298~H5

1473 K

kJ

34.02 kJ

Boiling T K

A^0 kJ

Molar Vol. 10.905 J-bar'1 109.05 cm3

A» -3.991E+03 B» 7.728E-01 C» 1.497E+06

5/12/93

Page 374: robie 1995

368 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

KAlSi3O8-GLASS Formula wt 278.332

KAlSi308 : Glass 298.15 to 1300 K.

Temp.

K

298.153004005006007008009001000110012001300

Melting T

H298"H5

cp

209.41210.18244.32267.66283.99295.65304.11310.30314.88318.26320.78322.67

34

ST

261.60262.90328.36385.54435.87480.57520.63556.83589.77619.95647.75673.51

K

kJ

.88 kJ

-3.937E+03

(HT-H$98 )/T

-1-1

0.001.29

58.0697.79127.54150.77169.43184.76197.55208.38217.65225.66

-<GT-H298 )/'

261.60261.60270.30287.75308.33329.81351.20372.07392.22411.57430.11447.85

FORMATION

I AfH°

kJ*mol

-3920.8-3920.8-3924.2-3923.3-3921.3-3918.5-3915.3-3912.0-3919.3-3994.9-3990.4-3986.0

FROM THE ELEMENTS

AfG«

-1

-3709.6-3708.3-3636.8-3565.0-3493.5-3422.4-3351.7-3281.5-3210.9-3135.6-3057.7-2980.1

Boiling T

Molar Vol. 11. 116.

B= 7.307E-01

Log Kf

649.89645.65474.90372.42304.13255.38218.84190.45167.72148.89133.09119.74

K

kJ

650 J-bar'1

50 cm3

C= 9.138E+05

9/16/92

Page 375: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 369

KALIOPHILLITE (KALSILITE) Formula wt 158.163

KAlSi04 : Hexagonal crystals 298.15 to 810 K. High kaliophillite 810 to 1800 K.

Temp.

298.15300400500600700800900

100011001200130014001500160017001800

Melting T

Afa.H0

cp

119.70120.07137.03150.35161.63171.63180.76177.65177.65177.65177.65177.65177.65177.65177.65177.65177.65

ST

133.26134.00170.98203.04231.47257.15280.68303.87322.58339.52354.97369.19382.36394.61406.08416.85427.00

K

kJ

(H*-HJ98 )/T

_1 _1

0.000.74

32.7955.0271.8785.4296.77106.26113.39119.23124.10128.22131.75134.81137.49139.85141.95

-(G*-H298)/.

133.26133.26138.19148.02159.61171.74183.90197.61209.19220.29230.87240.97250.61259.80268.59277.00285.05

FORMATION

T AfH°

-2124.7-2124.7-2127.9-2127.6-2126.5-2124.6-2122.1-2119.4-2128.1-2205.2-2202.5-2199.9-2197.4-2195.0-2192.7-2240.7-2238.3

Boiling

A,.^0

FROM THE ELEMENTS

AfG°

-1

-2008.8-2008.1-1968.6-1928.8-1889.1-1849.7-1810.5-1773.3-1734.2-1690.3-1643.6-1597.2-1550.9-1504.8-1458.9-1412.6-1364.0

T

Molar Vol. 5H298""H5

AS

kJ

-2.170B+03 B= 4.426E-01

59

Log Kf

351.92349.62257.06201.49164.46138.02118.21102.9290.5980.2771.5464.1757.8752.4047.6343.4039.58

K

kJ

.959 J-bar'1

.89 cm3

C» 2.954E+06

1/12/94

Page 376: robie 1995

370 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

LEUCITE Formula wt 218.247

KAlSi2O6 : Tetragonal crystals 298.15 to 955 K. Cubic crystals 955 to melting point 1959 K.

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

AfajH0

H298~H5

cp

164.11164.65188.61206.91222.99238.01252.48266.62236.40237.04238.18239.69241.46243.42245.53247.74250.05

A=

**

200.20201.22252.08296.20335.36370.87403.61434.16462.95484.04504.71523.83541.66558.39574.16589.11603.34

1959 K

kJ

kJ

-3.082E+03

<HT-H$98)/T

J-mol"1 -*"1

0.001.01

45.1175.6998.92117.73133.67147.66160.23165.82171.80176.96181.51185.57189.25192.62195.75

-<GT-H298 )/T

200.20200.20206.98220.50236.44253.15269.93286.50302.72318.22332.91346.87360.15372.82384.91396.49407.59

FORMATION

AfH°

-3037.8-3037.8-3041.2-3040.9-3039.4-3036.8-3033.3-3028.8-3034.0-3112.9-3110.4-3108.0-3105.6-3103.2-3100.8-3198.6-3195.6

FROM THE ELEMENTS

AfG°

i-l

-2875.1-2874.0-2818.8-2763.2-2707.8-2652.8-2598.1-2544.0-2489.6-2430.5-2368.6-2306.9-2245.4-2184.0-2122.8-2060.8-1994.0

Boiling T

B= 5.979E-01

A^H°

Molar Vol. 8.88.

Log Kf

503.69500.40368.09288.67235.73197.95169.63147.64130.04115.41103.1092.6983.7776.0569.3063.3257.86

K

kJ

827 J-bar'1

27 cm3

C= 2.833E+06

1/12/94

Page 377: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 371

EOCRYPTITE Formula wt 126.006

L1A1S104 : a-eucryptite 298.15 to 1300 K. 0-eucryptite 1300 to 1600 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300140015001600

Melting T

Aft»H0

H298"H5

CP

113.30113.85136.04149.80159.40166.58172.22176.81180.63183.88186.69189.16191.34193.29195.05

A=

ST

103.80104.50140.59172.53200.73225.87248.49269.05287.88305.26321.38336.42350.52363.79376.32

1670 K

kJ

kJ

-2.123E+03

(HT-H298 )/T

0.000.70

32.0254.2971.0584.2194.87103.73111.23117.69123.33128.30132.73136.70140.29

B=

/ f* o v fi \ /f A w ® A f* ®

103.80103.80108.57118.24129.68141.66153.62165.32176.65187.56198.05208.12217.80227.09236.03

3.846E-01

-2123.3-2123.3-2123.9-2126.5-2125.4-2123.9-2122.0-2119.9-2128.4-2125.9-2123.2-2120.3-2117.4-2114.3-2111.1

kJ-mol"1

-2009.2-2008.5-1970.1-1931.4-1892.4-1853.7-1815.2-1777.0-1738.3-1699.4-1660.7-1622.3-1584.2-1546.2-1508.4

Boiling T

Molar Vol. 553

-1.10E+05

Log Kf

352.00349.70257.26201.76164.75138.32118.52103.1390.8080.7072.2965.1859.1053.8449.24

K

kJ

.363 J-bar'1

.63 cm3

9/16/92

Page 378: robie 1995

372 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PETALITE Formula wt 306.259

LiAlSi4O10 : Monoclinic crystals 298.15 to 1300 K. Petalite decomposes above about 1100 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000110012001300

CP

245.30246.32292.33323.66345.43360.93372.26380.77387.40392.77397.36401.52

ST

233.20234.72312.31381.13442.18496.65545.63589.99630.46667.64702.02733.99

(HT-H298 )/T

J»inol~ *K~

0.001.52

68.84116.87153.25181.87205.00224.08240.09253.73265.52275.82

-(Gf-H298 )/T

233.20233.20243.47264.26288.92314.78340.63365.91390.37413.91436.50458.17

AfH°

1- T

-4886.5-4886.6-4887.9-4889.9-4887.5-4884.0-4879.9-4875.5-4881.6-4876.8-4871.9-4866.9

AfG°

mol'1

-4610.7-4608.9-4516.1-4422.9-4329.8-4237.1-4144.9-4053.3-3961.5-3869.7-3778.3-3687.4

Log Kf

807.75802.47589.73462.05376.93316.17270.63235.24206.92183.75164.46148.16

Melting T Boiling T

kJ

38.31 kJ

K

kJ

Molar Vol. 12.840 J-bar'1 128.40 cm3

A» -4.879E+03 B= 9.174E-01 C» -5.17E+05

8/7/92

Page 379: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 373

ALBITE Formula wt 262.223

NaAlSi308 : Triclinic crystals 298.15 to 1400 K,

FORMATION FROM THE ELEMENTS

Temp.

K

298.1530040050060070080090010001100120013001400

CP

205.07205.84239.68262.58278.77290.66299.66306.68312.30316.95320.92324.41327.61

**

207.40208.67272.86328.96378.34422.25461.68497.39530.01560.00587.75613.58637.74

/llO_UQ _ \ /*P\ V vQft* /

J-mol"1^"1

0.001.27

56.9395.91125.11147.95166.38181.59194.39205.33214.80223.10230.45

-<G*-H298 ,/'

207.40207.40215.93233.05253.23274.30295.30315.80335.61354.67372.95390.48407.28

T AfH°

kJ-

-3935.0-3935.0-3939.0-3938.6-3937.1-3934.7-3931.9-3929.0-3936.5-3933.1-4026.3-4021.9-4017.4

AfG°

mnl 1

-3711.6-3710.2-3634.8-3558.7-3482.9-3407.4-3332.2-3257.4-3182.2-3107.0-3029.6-2946.7-2864.2

Log Kf

650.24645.98474.64371.77303.20254.26217.57189.05166.22147.53131.87118.40106.86

Melting T

H298~H5

K

kJ

33.45 kJ

Boiling T

Molar Vol

K

kJ

10.007 J-bar'1 100.07 cm3

A= -3.949E+03 B* 7.694E-01 C» 7.970E+05

8/7/92

Page 380: robie 1995

374 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ANALBITE Formula wt 262.223

NaAlSi308 : Triclinic crystals 298.15 to 1400 K.

Temp.

298.1530040050060070080090010001100120013001400

Melting T

A^H"

H298"H5

cp

204.81205.57239.71263.29279.83291.73300.49307.13312.30316.50320.06323.25326.24

ST

225.60226.87290.99347.17396.72440.80480.35516.15548.78578.75606.45632.19656.26

(Hf-H$98)/T

J»mol~*»K""* -

0.001.27

56.8795.94125.29148.26166.77182.01194.79205.67215.06223.26230.51

-(Gf-H$98)/T

225.60225.60234.11251.23271.43292.54313.58334.13353.99373.08391.39408.93425.75

1391 K

kJ

33.42

A» -3.

kJ

937E+03 B= 7.507E-01

FORMATION

AfH°

kJ*mol

-3923.6-3923.6-3927.6-3927.2-3925.5-3923.1-3920.2-3917.2-3924.7-3921.3-4014.6-4010.3-4005.9

FROM THE ELEMENTS

AfG°

-1 ___

-3705.6-3704.2-3630.6-3556.4-3482.4-3408.7-3335.4-3262.5-3189.2-3115.8-3040.3-2959.3-2878.6

Boiling T

A^"

Molar Vol. 10100

Log Kf

649.19644.95474.10371.53303.16254.36217.78189.35166.58147.95132.34118.90107.40

K

kJ

.043 J-bar'1

.43 cm3

C» 7.781E+05

8/7/92

Page 381: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 375

NaAlSi3O8-GLASS Formula wt 262.223

NaAlSi3O8 : Glass 298.15 to 1200 K,

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900100011001200

CP

209.90210.68246.12270.03286.40298.28307.73316.09324.30333.04342.78

COST

251.90253.20318.98376.65427.42472.50512.96549.70583.42614.74644.12

<Hf-H298 )/T

-1-1

0.001.30

58.3598.45128.49151.94170.84186.52199.89211.59222.11

-<GT-H298 )/T

251.90251.90260.63278.19298.92320.56342.12363.18383.54403.15422.02

AfH°

kJ

-3875.5-3875.5-3878.9-3877.8-3875.5-3872.4-3868.9-3865.0-3871.5-3866.7-3958.1

AfG°

mol"1

-3665.3-3664.0-3593.1-3521.8-3450.8-3380.3-3310.2-3240.6-3170.7-3100.8-3029.0

Log Kf

642 . 14637.95469.21367.91300.41252.23216.13188.07165.61147.24131.84

Melting T

H298~H5

kJ

34.17 kJ

Boiling T

Molar Vol

K

kJ

11.010 J«bar'1 110.10 can3

A* -3.871E+03 B« 7.012E-01 O -3.14E+05

12/9/92

Page 382: robie 1995

376 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

NEPHELINE Formula wt 142.054

NaAlSiO4 : Orthorhombic(?) crystals 298.15 to 467 K. Hexagonal crystals 467 to 1180 K, Orthorhombic crystals 1180 to 1521 K. Carnegieite is the stable phase of NaAlSi04 between 1521 and 1799 K.

Temp.

K

298.15300400500600700800900100011001200130014001500

Melting T

°P

115.81116.36145.90145.64152.36159.07165.78172.49179.20185.91178.62179.18179.73180.28

sT

124.35125.12161.59196.36223.80247.82269.33288.91306.86324.09341.12355.47368.78381.20

K

kJ

(HT-H298 )/T

J-mol^-K'1

0.000.72

32.3752.5572.6684.5894.14102.13108.99115.51122.21126.58130.36133.66

-<GT-H298 )/T

124.35124.40129.22143.81151.14163.24175.19186.77197.86208.58218.92228.89238.42247.54

FORMATION

AfH°

-2090.4-2090.4-2093.5-2094.7-2091.8-2091.0-2089.9-2088.7-2098.0-2095.7-2188.8-2186.0-2183.4-2180.7

Boiling

FROM THE ELEMENTS

AfG°

-1

-1975.8-1975.0-1936.3-1899.3-1858.0-1819.0-1780.3-1741.6-1702.4-1662.9-1621.3-1574.1-1527.2-1480.4

T

Molar Vol. 5H298"H5

-

kJ

-2.118E+03 "- 4.188E-01

54

Log Kf

346.14343.88252.84198.41161.75135.73116.24101.0888.9278.9670.5763.2556.9851.55

K

kJ

.419 J-bar'1

. 19 cm3

0 1.718E+06

8/7/92

Page 383: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 377

CARNEGIEITE Formula wt 142.054

NaAlSi04 : Triclinic crystals 298.15 to 966 K; cubic crystals 966 to melting point 1799 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900100011001200130014001500160017001800

Melting T

p° CP

119.26119.69138.01151.11162.14172.21181.77191.02181.15184.03186.92189.80192.68195.57198.45201.33204.21

1799

eoST

118.70119.44156.58188.84217.39243.15266.77288.71317.40334.80350.94366.01380.18393.57406.29418.40429.99

K

<HT-H°,98 )/T

_1 _1

0.000.74

32.9455.3172.2285.7997.19107.11123.78129.13133.82138.02141.82145.31148.54151.56154.40

-<GT-H°,98 )/T

118.70118.70123.64133.53145.17157.36169.58181.60193.62205.67217.12227.99238.36248.26257.75266.84275.59

A£H°

i.

-2089.3-2089.3-2092.5-2092.2-2091.0-2089.0-2086.4-2083.1-2082.1-2079.6-2173.7-2170.0-2166.2-2162.1-2157.9-2203.7-2198.8

AfG°

i

-1973.0-1972.2-1932.9-1893.0-1853.3-1813.8-1774.7-1735.9-1697.0-1658.6-1618.1-1571.9-1526.0-1480.4-1435.1-1389.6-1341.9

Boiling T

Av, HO

Log Kf

345.65343.39252.41197.76161.34135.35115.87100.7588.6478.7670.4363.1656.9451.5546.8542.7038.94

K

kJAfc.H0 21.7 kJ

Molar Vol. 5.H298"H5 19.45

A= -2.

kJ

122E+03 B- 4.276E-01 0 2.

56.

200E+06

603 J-bar*103 cm3

1/12/94

Page 384: robie 1995

378 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

NaAlSi04-GLASS Formula wt 142.054

NaAlSiO4 : Glass-liquid 298.15 to glass transition 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP

121.03121.47140.22152.09159.90165.10168.50170.60171.73

ST

134.50135.25172.98205.64234.11259.17281.46301.44319.48

(HT-H298 )/T

J-mol^'K'1

0.000.75

33.4656.0972.7885.6295.79103.99110.72

-(GT-H$98 )/T

134.50134.50139.52149.55161.33173.55185.67197.45208.76

AfH°

kJ

-2089.0-2089.0-2092.0-2091.5-2090.3-2088.8-2087.2-2085.7-2094.9

AfG°

.mol""1

-1977.4-1976.7-1939.0-1900.7-1862.7-1824.9-1787.2-1749.8-1711.9

Log Kf

346.42344.17253.20198.56162.16136.17116.69101.5689.42

Melting T

H298~H5

kJ

19.99 kJ

Boiling T

Molar Vol

K

kJ

5.686 J'bar'1 56.86 cm3

A= -2.089E+03 B= 3.771E-01 C= -9.27E+04

9/16/92

Page 385: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 379

ANALCIME Formula wt 220.154

NaAlSi2O6 *H2O: Cubic crystals 298.15 to 800 K. Analcime starts to lose H2O above 500 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800

CP ST <HT-H298 )/T

T-.-.~I l_«r 1

-<GT-H298 )/T AfH» AfG°

1. T- 1 1

212.23212.68237.19262.19287.38312.66337.99

227.70229.01293.54349.14399.17445.37488.77

0.001.31

57.2095.69125.54150.47172.32

227.70227.70236.34253.45273.63294.90316.45

Log Kf

-3310.1-3310.1-3313.3-3312.2-3309.3-3304.3-3297.3

-3090.0-3088.6-3014.4-2939.8-2865.5-2792.0-2719.2

541.33537.76393.63307.11249.46208.33177.54

Melting T

H298~H5

K

kJ

35.74 kJ

Boiling T

Molar Vol

K

kJ

9.680 J-bar'1

96.80 cm3

A= -3.306E+03 B» 7.344E-01 C= -2.83E+05

5/12/93

Page 386: robie 1995

380 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

DEHYDRATED ANALCIME Formula wt 202.139

NaAlSi206 : Cubic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

cp

163.05163.85194.89213.59227.43238.99249.32258.94268.12

ST

172.50173.51225.37271.00311.21347.16379.76409 . 68437.44

<HT-H298 )/T

J-mol'^K"1 -

0.001.01

46.0177.77

101.60120.42135.90149.04160.49

-<G*-HS98)/.

172.50172.50179.36193.23209.61226.74243.86260.64276.95

I AfH°

kJT-

-2983.1-2983.1-2986.3-2985.3-2983.2-2980.3-2976.8-2972.8-2978.8

A£6°

mr,l~lUIUX

-2816.0-2815.0-2758.6-2701.8-2645.3-2589.2-2533.5-2478.3-2422.9

Log K£

493.35490.12360.23282.25230.29193.20165.42143.84126.56

Melting T Boiling T

H298~H6

kJ

27.18 kJMolar Vol

K

kJ

J-bar'1 cm3

A= -2.978E+03 B= 5.560E-01 C= -3.36E+05

5/12/93

Page 387: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 381

DICKITE Formula wt 258.160

Al2Si2O5 (OH) 2 : Triclinic crystals 298.15 to 900 K

Temp,

K

°P ST

FORMATION FROM THE ELEMENTS

A£H° AfG° Log K£

J-mol"1 -^1 kJ*mol"1

298.15300400500600700800900

239.56240.64287.65317.09334.95344.93349.32349.59

197.10198.59274.77342.38401.91454.38500.78541.97

0.001.48

67.60114.78150.12177.32198.59215.39

197.10197.10207.17227.59251.79277.06302 . 19326.58

-4118.5-4118.6-4120.4-4119.5-4117.2-4114.4-4111.7-4109.5

-3796.0-3794.0-3685.5-3576.8-3468.5-3360.6-3253.1-3145.9

665.04660.58481.26373.66301.95250.76212.40182.58

Melting T Boiling T

kJMolar Vol

H298~H5 kJ

K

kJ

9.856 J-bar1 98.56 cm3

-4.113E+03 B= 1.075E+00 C= -3.31E+05

7/29/92

Page 388: robie 1995

382 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

KAOLINITE Formula wt 258.160

Al2Si205 (OH) 2 : Triclinic crystals 298.15 to 800 K

FORMATION FROM THE ELEMENTS

Temp.

K

CP s* /tIO_tlQ \ /m _/^»O_uQ \ / !»(HT-H29Q)/T -(GT-H29g)/T A £H° A £6°

kJ-mol'1

Log Kf

298.15300400500600700800

243.37244.40289.53317.00333.50344.03351.92

200.40201.91278.90346.72406.10458.35504.82

0.001.50

68.31115.53150.60177.53198.85

200.40200.40210.59231.19255.50280.82305.97

-4119.0-4119.1-4120.6-4119.6-4117.3-4114.5-4111.6

-3797.5-3795.5-3687.3-3579.1-3471.1-3363.7-3256.6

665.29660.84481.50373.89302.18251.00212.63

Melting T Boiling T K

kJA..H0

H298"H5

kJ

35.75 kJMolar Vol. 9.934 J'bar'1

99.34 cm3

A= -4.115E+03 B= 1.074E+00 C= -2.43E+05

7/29/92

Page 389: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 383

PYROPHYLLITE Formula wt 360.314

Al2Si4010 (OH) 2 : Monoclinic crystals 298.15 to 800 K

Temp.

K

Sf

FORMATION FROM THE ELEMENTS

<Gf-H§98 )/T AfH° AfG« Log Kf

J-mol'^K""1 kJ*mol-1

298.15300400500600700800

293.76295.04349.70386.14412.51432.69448.83

239.40241.22334.18416.37489.22554.39613.25

0.001.82

82.47139.78183.14217.41245.36

239.40239.41251.71276.59306.08336.98367.89

-5640.0-5640.1-5641.8-5640.6-5637.5-5633.1-5628.0

-5266.1-5263.8-5138.0-5012.1-4886.7-4761.9-4637.8

922.58916.49670.94523.60425.42355.33302.81

Melting T

H298"H5

K

kJ

42.70 kJ

Boiling T

Molar Vol

K

kJ

12.81 J-bar'1 128.1 cm3

A= -5.634E+03 B= 1.246E+00 O -3.54E+05

7/29/92

Page 390: robie 1995

384 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MARGARITE Formula wt 398.184

CaAl2 [Al2Si2 ]010 (OH) 2 : Monoclinic crystals 298.15 to 1200 K

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

100011001200

CP

323.41324.82384.97424.42452.21472.69488.23500.23509.60516.96522.74

ST

263.60265.60367.96458.38538.35609.68673.86732.08785.29834.22879.46

» ***p *** 5 Q ft / /

w*moX *K *

0.002.00

90.81153.83201.37238.74269.00294.05315.16333.18348.75

-<GT-H298 )/T

263.60263.61277.15304.55336.98370.94404.86438.03470.14501.04530.71

A£H°

kJ

-6244.0-6244.1-6245.9-6244.5-6241.1-6236.7-6232.8-6228.0-6265.9-6260.8-6263.4

AfG°

mol"1

-5858.9-5856.5-5726.9-5597.2-5468.1-5339.6-5211.6-5084.3-4954.5-4823.6-4692.5

Log Kf

1026.431019.68747.84584.73476.03398.44340.28295.08258.79229.05204.26

Melting T

H298~H8

kJ

48.14 kJ

Boiling T K

A^0 kJ

Molar Vol. 12.963 J-bar"1 129.63 cm3

A- -6.243E+03 B= 1.291E+00 C= 6.216B+02

7/29/92

Page 391: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 385

PREHNITE Formula wt 412.384

Ca2Al[AlSi3010 ](OH) 2 : Orthorhombic crystals 298.15 to 1200 K

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800900

100011001200

°p

331.12332.41389.19427.23453.51471.95484.90493.85499.76503.31505.00

ST

292.80294.85398.83490.03570.39641.76705.68763.34815.71863.52907.40

<H*-HJ98 ,/T

,-!--!

0.002.05

92.23155.67203.25240.39270.20294.58314.83331.82346.19

-<GT-H298 )/T

292.80292.81306.60334.36367.14401.37435.48468.76500.88531.71561.21

AfH°

kJ

-6202.6-6202.7-6203.7-6201.7-6198.0-6193.4-6190.4-6185.9-6203.2-6199.7-6212.4

AfG°

mol'1

-5824.7-5822.3-5695.3-5568.3-5442.0-5316.4-5191.2-5066.5-4940.9-4814.8-4687.7

Log Kf

1020.431013.73743.71581.71473.76396.70338.94294.05258.08228.63204.05

Melting T

H298~H8

kJ

50.66 kJ

Boiling T

Molar Vol

K

kJ

14.110 J'bar'1 141.10 can3

A* -6.194E+03 B« 1.255E+00 O -3.99E+05

5/14/92

Page 392: robie 1995

386 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

MUSCOVITE (Al/Si disordered) Formula wt 398.308

KAl2 [AlSi3010 ](OH) 2 : Crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.153004005006007008009001000

CP

325.99327.30385.47425.61454.37475.51491.31503.20512.13

ST

306.40308.42411.09501.68581.96653.67718.24776.83830.33

(HT-H298 )/T

J-mol"1 -K~1 -

0.002.01

91.08154.21201.96239.61270.13295.40316.64

-(GT-H2*98 )/T

306.40306.41320.01347.47379.99414.06448.11481.43513.69

A£H°

1»T

-5974.8-5974.9-5979.1-5977.5-5973.8-5968.6-5962.6-5956.4-5981.9

AfG°

mol"1

-5598.8-5596.4-5469.5-5342.2-5215.4-5089.5-4964.2-4839.8-4713.9

Log Kf

980.86974.40714.22558.08454.03379.77324.12280.89246.22

Melting T

H598"H8

kJ

49.41 kJ

Boiling T

Molar Vol

K

kJ

14.081 J-bar'1 140.81 cm3

A* -5.966E+03 B= 1.253E+00 -5.87E+05

7/15/92

Page 393: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 387

MUSCOVITE (Al/Si ordered) Formula wt 398.308

KAl2 [AlSi3010 ](OH) 2 : Monoclinic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

298.153004005006007008009001000

CP

325.99327.30385.47425.61454.37475.51491.31503.20512.13

ST

287.70289.72392.39482.98563.26634.97699.54758.13811.63

J-mol'^K"1 -

0.002.01

91.08154.21201.96239.61270.13295.40316.64

-(GT-H298 )/T

287.70287.71301.31328.77361.29395.36429.41462.73494.99

A£H°

I»T . _>

-5990.0-5990.1-5994.3-5992.7-5989.0-5983.8-5977.8-5971.6-5997.1

AfG°

-5608.4-5606.0-5477.2-5348.0-5219.4-5091.6-4964.5-4838.2-4710.4

Log Kf

982.55976.07715.23558.69454.38379.93324.14280.79246.04

Melting T Boiling T K

kJ

H2*98~H8

kJ

49.41 kJMolar Vol. 14.081 J'bar'1

140.81 cm3

A* -5.981E+03 B« 1.271E+00 O -5.87E+05

3/5/93

Page 394: robie 1995

388 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

ANNITE Formula wt 511.886

KFe3 [AlSi3010 ](OH) 2 : Crystals 298.15 to 1000 K

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

1000

CP

390.32391.81452.51491.34520.03543.12562.76580.11595.84

ST

415.00417.42539.23644.64736.87818.82892.65959.961021.90

(H$-H598 ,/T

_1 «1

0.002.41

108.03181.04235.25277.63312.07340.91365.63

-<G*-HJ98 ,/-

415.00415.01431.20463.60501.62541.19580.58619.05656.28

r AfH°

k,

-5149.3-5149.3-5149.7-5144.8-5138.3-5130.7-5122.7-5114.9-5119.0

AfG°

J-mol"1

-4798.3-4796.1-4678.2-4560.7-4444.5-4329.5-4215.6-4102.6-3989.8

Log Kf

840.62835.06610.89476.45386.92323.06275.24238.10208.40

Melting T

H298"H8

kJ

kJ

Boiling T

Molar Vol

K

kJ

15.43 J-bar*1 154.3 cm3

A* -5.122E+03 B« 1.135E+00 O -1.31E+06

7/29/92

Page 395: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 389

PHLOGOPITE (Al/Si Disordered) Formula wt 417.260

KMg3 [AlSi3010 ](OH) 2 : Crystals 298.15 to 1000 K

Temp.

K

CP ST -<GT-H298 )/T

J-mol"1^"1

FORMATION FROM THE ELEMENTS

AfG° Log Kf

kJ*mol'

A£H°

'1

298.15300400500600700800900

1000

354.65355.97412.17448.48473.45491.23504.13513.53520.33

334.60336.80447.54543.69627.79702.19768.67828.62883.10

0.002.19

98.22164.88214.35252.70283.37308.45329.31

334.60334.61349.32378.80413.44449.48485.30520.17553.78

-6226.0-6226.1-6230.1-6228.8-6225.8-6221.8-6217.4-6213.1-6245.5

-5846.0-5843.7-5715.4-5586.8-5458.7-5331.2-5204.2-5077.8-4949.0

1024.181017.45746.74583.64475.21397.81339.79294.70258.50

Melting T

H2*98~

kJ

54.08 kJ

Boiling T K

A^pH0 kJ

Molar Vol. 14.965 J'bar'1 149.65 cm3

A= -6.222E+03 B« 1.273E+00 O -3.45E+05

7/29/92

Page 396: robie 1995

390 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PHLOGOPITB (Al/Si ordered) Formula wt 417.260

KMg3 [AlSi3010 ](OH) 2 : Monoclinic crystals 298.15 to 1000 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.153004005006007008009001000

CP

354.65355.97412.17448.48473.45491.23504.13513.53520.33

ST

315.90318.10428.84524.99609.09683.49749.97809.92814.40

(Hf-H298 )/T

J-mol"1-^1 -

0.002.19

98.22164.88214.35252.70283.37308.45329.31

-(GT-H298 )/T

315.90315.91330.62360.10394.74430.78466.60501.47535.08

AfH°

1> T

6246.0-6246.1-6250.1-6248.8-6245.8-6241.8-6237.4-6233.1-6265.5

AfG°

mol'1

-5860.5-5858.1-5727.9-5597.5-5467.5-5338.1-5209.2-5081.0-4950.3

Log Kf

1026.711019.96747.97584.75475.97398.32340.12294.89258.57

Melting T

H298~H8

K

kJ

kJ

Boiling T

Molar Vol

K

kJ

14.962 J'bar'1 149.62 cm3

A* -6.242E+03 B= 1.291E+00 O -3.45E+05

Page 397: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 391

FLUORPHLOGOPITE (Al/Si disordered) Formula wt 421.242

KMg3 [AlSi3O10 ]F2 : Crystals 298.15 to 1700 K. Approximate melting point 1670 K,

FORMATION FROM THE ELEMENTS

Temp.

298.15300400500600700800900

10001100120013001400150016001700

Melting T

Aft^H0

CP

342.42343.70392.83420.87439.96454.48466.38476.62485.76494.13501.92509.29516.32523.09529.64536.01

ST

336.30338.42444.81535.72614.23683.18744.67800.21850.90897.60940.93981.401019.401055.261089.231121.53

1670 K

kJ

(HT-H298 )/T

J-mol"1 -*"1

0.002.12

94.33157.05202.69237.66265.53288.43307.71324.28338.77351.60363.12373.56383.11391.92

-(GT-H£98 )/T AfH° A£6°

336.30336.31350.48378.67411.54445.52479.14511.78543.19573.32602.17629.80656.28681.70706.12729.61

-6355.5-6355.5-6358.5-6356.9-6354.4-6351.3-6347.9-6344.6-6377.8-6453.5-6448.8-6443.7-6820.5-6810.5-6800.2-6940.0

-1

-6015.7-6013.6-5899.0-5784.3-5670.0-5556.2-5442.8-5329.8-5214.4-5093.6-4970.2-4847.1-4715.2-4565.1-4415.6-4265.5

Boiling T

A^H°

Molar Vol. 14.H2*98~H8

A

kJ

= -6.476E+03 B= 1.272E+00 c-

146.

8.177E+06

Log Kf

1053.901047.04770.31604.26493.60414.60355.37309.33272.37241.87216.34194.76175.92158.97144.15131.06

K

kJ

652 J-bar'152 cm3

01/14/93

Page 398: robie 1995

392 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

FLUORPHLOGOPITE (Al/Si ordered) Formula wt 421.242

KMg3 [AlSi3O10 ]F2 : Crystals 298.15 to 1700 K. Approximate melting point 1670 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.1530040050060070080090010001100120013001400150016001700

Melting T

A^H0

CP

342.42343.70392.83420.87439.96454.48466.38476.62485.76494.13501.92509.29516.32523.09529.64536.01

SJ

336.30338.42444.81535.72614.23683.18744.67800.21850.90897.60940.93981.401019.401055.261089.231121.53

(Hf-H298 )/T

_ i-l. K-l

0.002.1294.33

157.05202.69237.66265.53288.43307.71324.28338.77351.60363.12373.56383.11391.92

-<G*-H598 )/-

336.30336.31350.48378.67411.54445.52479.14511.78543.19573.32602.17629.80656.28681.70706.12729.61

1670 K

kJ

T AfH°

lr

-6375.5-6375.5-6378.5-6376.9-6374.4-6371.3-6367.9-6364.6-6397.8-6473.5-6468.8-6463.7-6840.5-6830.5-6820.2-6960.0

AfG°

J- 1~1

-6030.1-6028.0-5911.5-5794.9-5678.7-5563.1-5447.8-5333.0-5215.7-5093.0-4967.7-4842.8-4709.0-4557.0-4405.7-4253.7

Boiling T

A-p"0

Molar Vol. 14.H298~H8

A=

kJ

-6.496E+03 B- 1.2 9 IE +00 O 8

146.

.177E+06

Log Kf

1056.431049.54771.95605.38494.37415.11355.70309.51272.43241.84216.23194.58175.69158.69143.83130.70

K

kJ

652 J-bar'152 cm3

01/14/93

Page 399: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INfDIVIDUAL PHASES 393

TALC Formula wt 379.266

Mg3Si4O10 (OH) 2 : Monoclinic crystals 298.15 to 800 K,

FORMATION FROM THE ELEMENTS

Temp.

K

°P s* /UO_UO \ /fn _//^O_tiO \ /m\**T **298 ' l**T "298 '

- J-mol"1^'1

A£H°

kJ-mol"1

Af6° Log Kf

298.15300400500600700800

321.77323.23386.65420.68444.28475.19525.90

260.80262.79365.29455.61534.40605.03671.51

0.001.99

90.94153.83200.28237.17269.84

260.80260.81274.35301.78334.12367.85401.68

-5900.0-5900.1-5901.1-5899.0-5895.5-5890.5-5882.6

-5520.1-5517.8-5390.1-5262.5-5135.5-5009.3-4883.9

967.08960.71703.85549.76447.08373.79318.88

Melting T

H298~H8

kJ

46.88 kJ

Boiling T

Molar Vol

K

kJ

13.625 J'bar'1 136.25 cm3

A* -5.890B+03 B« 1.260E+00 O -4.84E+05

7/29/92

Page 400: robie 1995

394 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

CHRYSOTILE (Antigorite) Formula wt 277.112

Mg3Si2O5(OH) 4 : Monoclinic crystals 298.15 to 900 K.

Temp,

K

-<GT-H298 )/T

FORMATION FROM THE ELEMENTS

AfG° Log 1AfH°

J-mol"1 ^'1 kJ<

298.15300400500600700800900

274.05275.12323.31356.40379.00394.31404.36410.50

221.30223.00309.17385.10452.21511.86565.22613.23

0.001.69

76.44129.33169.18200.32225.24245.52

221.30221.31232.73255.77283.03311.54339.97367.71

-4360.0-4360.1-4361.0-4359.1-4355.4-4350.8-4345.7-4340.7

-4032.4-4030.3-3920.2-3810.1-3700.7-3591.9-3483.8-3376.4

706.44701.73511.91398.03322.16268.03227.47195.96

Melting T Boiling T

kJMolar Vol

H298~H5 kJ

K

kJ

10.75 J-bar'1 107.5 cm3

A= -4.348E+03 B* 1.08IE+00 O -6.03E+05

5/14/92

Page 401: robie 1995

THERMODYNAMIC PROPERTIES AT HIGH TEMPERATURE OF INDIVIDUAL PHASES 395

PARAGONITE (Al/Si disordered) Formula wt 382.200

NaAl2 [AlSi3010 ](OH) 2 : Monoclinic crystals 298.15 to 800 K,

Temp,

K

CP ST

FORMATION FROM THE ELEMENTS

AfG° Log K£A£H°

J-mol"1^"1 kJ*mol"1

298.15300400500600700800

321.50322.86380.52419.03447.59470.21488.92

288.80290.79392.22481.51560.55631.30695.35

0.001.99

89.98152.15199.12236.29266.73

288.80288.81302.24329.36361.43395.02428.62

-5933.0-5933.1-5937.9-5936.9-5933.8-5929.2-5923.5

-5555.7-5553.3-5426.1-5298.2-5170.7-5043.9-4917.8

973.31966.90708.56553.49450.14376.37321.09

Melting T

H298~H6

K

kJ

48.12 kJ

A* -5.931E+03 B- 1.268E+00

Boiling T K

A^° kJ

Molar Vol. 13.211 J-bar'1 132.11 cm3

C- -2.33E+05

5/14/92

Page 402: robie 1995

396 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

PARAGONITB (Al/Si ordered) Formula wt 382.200

NaAl2 [AlSi3010 ](OH) 2 : Monoclinic crystals 298.15 to 800 K.

FORMATION FROM THE ELEMENTS

Temp.

K

298.15300400500600700800

CP

321.50322.87380.52419.04447.60470.21488.92

Sf

277.10279.09380.52469.81548.85619.61683.65

<HT-H298 )/T

J-rool"1^"1 -

0.001.99

89.98152.16199.12236.29266.73

-(GT-H298 )/T

277.10277.11290.54317.66349.73383.32416.92

A£H°

kJ

-5949.3-5949.4-5954.2-5953.2-5950.1-5945.5-5939.8

AfG°

mol'1

-5568.5-5566.1-5437.7-5308.7-5180.0-5052.0-4924.8

Log Kf

975.55969.12710.08554.58450.95376.98321.55

Melting T

kJ

48.12 kJ

Boiling T

Molar Vol

K

kJ

13.211 J-bar'1 132.11 cm3

A- -5.947E+03 B- 1.279E+00 C- -2.34E+05

12/9/92

Page 403: robie 1995

REFERENCES CITED 397

REFERENCES CITED

1. Ad a mi, L. H., and Conway, K. C., 1966, Heats and free energies of formation of anhydrous carbonates

of barium, strontium, and lead: U.S. Bur. Mines Rept. Inv. 6822, 7 p.

2. Adami, L. H., and Kelley, K. K., 1963, Heats of formation of two crystalline hydrates of ferrous sulfate:

U. S. Bur. Mines Rept. Inv. 6260, 7 p.

3. Adami, L. H., and King, E. G., 1964, Heats and free energies of formation of sulfides of manganese,

iron, zinc, and cadmium: U.S. Bur. Mines Rept. Inv. 6495, 10 p.

4. Adami, L. H., and King, E. G., 1965, Heats of formation of anhydrous sulfates of cadmium, cobalt,

copper, nickel, and zinc: U. S. Bur. Mines Rept. Inv. 6617, 10 p.

5. Agoshkov, V. M., Semenov, Yu. V. Malinko, S. V., and Khodakovskiy, I. L., 1977, Enthalpies of datolite

and danburite between 298.15 and 973.15 K: Geochemistry International, v. 14(6), p. 142-147.

6. Akaogi, M., and Navrotsky, A., 1984, The quartz-cosite-stishovite transformations: new calorimetric

measurements and calculations of phase diagrams: Physics of the Earth and Planetary Interiors,

v. 36, p. 124-134.

7. Amosee, J. and Mathieu, J.C., 1980, The enthalpies of formation of FeWO 4, MnWO4, and their solid

solutions: Jour. Chem. Thermodynamics, v. 12, p. 683-689.

8. Anovitz, L. M., Essene, E. J., Hemingway, B. S., Komada, N. L., and Westrum, E. F., Jr., 1988, The

heat-capacities of grunerite and deerite: phase equilibria in the system Fe-Si-C-0-H and implications

for the metamorphism of the banded iron formations: EOS, v. 69, p. 515.

Page 404: robie 1995

398 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

9. Anovitz, L. M., Essene, E. J., Metz, G. W., Bohlen, S. R., Westrum, E. F., Jr., and Hemingway, B. S.,

1993, Heat capacity and phase equilibria of almandine, Fe3AI2Si3O 12 : Geochim. Cosmochim. Acta,

v. 57, p. 4191-4204.

10. Anovitz, L. M., Hemingway, B. S., Westrum, E. F., Jr., Metz, G. W., and Essene, E. J., 1987, Heat

capacity measurements for cryolite (Na3AIFe) and reactions in the system Na-Fe-AI-Si-O-F:

Geochim. Cosmochim. Acta, v. 51, p. 3087-3103.

11. Anovitz, L. M., Treiman, A. H., Essene, E. J., Hemingway, B. S., Westrum, E. F., Jr., Wall, V. J.,

Burriel, R., and Bohlen, S. R., 1985, The heat-capacity of ilmenite and phase equilibria in the

system Fe-Ti-O: Geochim. Cosmochim. Acta, v. 49, p. 2027-2040.

12. Apps, J. A., Neil, J. M., and Jan, C.-H., 1988, Thermochemical properties of gibbsite, bayerite,

boehmite, diaspore, and the aluminate ion between 0 and 350°C: University of California

Lawrence Berkeley Rept., LBL-21482.

13. Ashida, T., Kume, S., Ito, E., and Navrotsky, A., 1988, MgSiO3 ilmenite: heat capacity, thermal

expansivity, and enthalpy of transformation: Phys. Chem. Minerals, v. 16, p. 239-245.

14. Baker, F. B., Huber, E. J., Jr., Holley, C. E., Jr., and Krikorian, N. H., 1971, Enthalpies of formation of

cerium dioxide, cerium sesquicarbide, and cerium dicarbide: Jour. Chem. Thermodynamics, v. 3,

p. 77-84.

15. Bannister, M. J., 1984, The standard molar Gibbs free energy of formation of PbO. Oxygen

concentration cell measurements at low temperatures: Jour. Chem. Thermodynamics, v. 16,

p. 787-792.

Page 405: robie 1995

REFERENCES CITED 399

16. Bannister, M. J., 1986, Oxygen concentration-cell determination of the standard molar Gibbs free

energy of formation of SnO2 : Jour. Chem. Thermodynamics, v. 18, p. 455-463.

17. Barany, R., 1962, Heats and free energies of formation of calcium tungstate, calcium molybdate, and

magnesium molybdate: U.S. Bur. Mines Rept. Inv. 6143, 11 p.

18. Barany, R., 1965, Heats of formation of goethite, ferrous vanadate, and manganese molybdate: U.S.

Bur. Mines Rept. Inv. 6618, 10 p.

19. Barany, R., and Adami, L. H., 1965, Heats of formation of anhydrous ferric sulfate and indium sulfate:

U. S. Bur. Mines Rept. Inv. 6687, 8 p.

20. Barany, R., and Adami L. H., 1966, Heats of formation of lithium sulfate and five potassium- and

lithium-aluminum silicates: U.S. Bur. Mines Rept. Inv. 6873, 18 p.

21. Bartel, J.J. and Westrum, E.F., Jr., 1975, Heat capacities of Fe3O4 and ZnFe2O4 from 300 to 500 K:

Jour. Chem. Thermodynamics, v. 7, p. 706-708.

22. Bartel, J.J. and Westrum, E. F., Jr., 1976, Thermodynamics of Fe(ll) Fe(lll) oxide systems. II zinc and

cadmium-doped Fe3O4 and crystalline magnetite: Jour. Chem. Thermodynamics, v. 8, p. 583-600.

23. Barton, M. D., 1982, The thermodynamic properties of topaz solid solutions and some petrologic

applications: Am. Mineralogist, v. 67, p. 956-974.

24. Barton, M. D., Haselton, H. T., Jr., Hemingway, B. S., Kleppa, O. J., and Robie, R. A., 1982, The

thermodynamic properties of fluor-topaz: Am. Mineralogist, v. 67, p. 350-355.

Page 406: robie 1995

400 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

25. Barton, P. B., Jr., 1969, Thermochemical study of the system Fe-As-S: Geochim. Cosmochim. Acta,

v. 33, p. 841-857.

26. Barton, P. B., Jr., and Bethke, P. M., 1960, Thermodynamic properties of some synthetic zinc and

copper minerals: Am. Jour. Sci., v. 258-A, (Bradley volume), p. 21-34.

27. Belitskiy, I. A., Gabunda, S. P., Drebushchak, V. A., Naumov, V. N., and Nogteva, V. V., 1984, The

specific heat of edingtonite at 5-316 K and the entropy and enthalpy under standard conditions:

Geochemistry International, v. 21(3), p. 21-23.

28. Bennington, K. O., 1982, Stability relationships between petalite (LiAISi4O 10) and spodumene (LiAISi2O8):

U.S. Bur. Mines Rept. Inv. 8719, 15 p.

29. Bennington, K. O., Beyer, R. P., and Brown, R. R., 1984, Thermodynamic properties of hedenbergite,

a complex silicate of Ca, Fe, Mn, and Mg: U.S. Bur. Mines Rept Inv. 8873, 19 p.

30. Bennington, K. O., Beyer, R. P., and Johnson, G. K., 1983, Thermodynamic properties of pollucite (a

cesium-aluminum silicate): U.S. Bur. Mines Rept. Inv. 8779, 18 p.

31. Bennington, K. O., and Brown, R. R., 1982, Thermodynamic properties of synthetic acmite

(NaFe3 +Si2O 8): U.S. Bur. Mines Rept Inv. 8621, 12 p.

32. Bennington, K. O., Brown, R. R., Bell, H. E., and Beyer, R. P., 1987, Thermodynamic properties of two

manganese silicates, pyroxmangite and fowlerite: U.S. Bur. Mines Rept Inv. 9064, 22 p.

33. Bennington, K. O., Brown, R. R., and Beyer, R. P., 1984, Thermodynamic properties of aegirine: U.S.

Bur. Mines Rept. Inv. 8912, v. 16, p.

Page 407: robie 1995

REFERENCES CITED 401

34. Bennington, K. O., Ferrante, M. J., and Stuve, J. M., 1978, Thermodynamic data on the amphibole

asbestos minerals amosite and crocidolite: U.S. Bur. Mines Rept. Inv. 8265, 30 p.

35. Bennington, K. O., Stuve, J. M., and Ferrante, M. J., 1980, Thermodynamic properties of petalite

(Li2AI2Si 8O20): U.S. U.S. Bur. Mines Rept. Inv. 8451, 20 p.

36. Berg, R. L., and Vanderzee, C. E., 1978, Thermodynamics of carbon dioxide and carbonic acid: (a) the

standard enthalpies of solution of Na2C03(s), NaHCO3(s), and CO 2(g) in water at 298.15 K; (b) the

standard enthalpies of formation, standard Gibbs energies of formation, and standard entropies of

CO2 (aq), HCCtyaq), Co|'(aq), NaHCO3{s), Na2CO3(s), Na2CO3 H2O(s), and Na2CO3 « 10H20(s):

Jour. Chem. Thermodynamics, v. 10, p. 1113-1136.

37. Berman, R. G., 1988, Internally consistent thermodynamic data for minerals in the system Na2O-K2O-

CaO-MgO-FeO-Fe2O3-AI 2O3-SiO2-TiO2-H2O-CO2 : Jour. Petrology, v. 29 pt. 2, p. 445-522.

38. Beyer, R. P., Ferrante, M. J., and Mrazek, R. V., 1983, An automated calorimeter for heat-capacity

measurements from 5 to 300 K. The heat capacity of cadmium sulfide from 5.37 to 301.8 K and

the relative enthalpy to 1103.4 K: Jour. Chem. Thermodynamics, v. 15, p. 827-834.

39. Boerio, J. and Westrum, E.F., Jr., 1978, Heat capacity and thermodynamic properties of strontium from

5 to 350 K: Jour. Chem. Thermodynamics, v. 10, p. 1-7.

40. Boerio-Goates, J., Artman, J. I., and Woodfield, B. F., 1990, Heat capacity studies of phase transition

in langbeinites II. K2Mg4{SO4}3 : Phys. Chem. Minerals, v. 17, p. 173-178.

41. Bohlen, S. R., Metz, G. W., Essene, E. J., Anovitz, L. M., Westrum, E. F., Jr., and Wall, V. J., 1983,

Thermodynamics and phase equilibrium of ferrosilite: potential oxygen barometer in mantle rocks:

EOS, v. 64, p. 350.

Page 408: robie 1995

402 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

42. Bonnickson, K. R., 1954, High-temperature heat contents of calcium and magnesium ferrites:

Am. Chem. Soc. Jour., v. 76, p. 1480-1482.

43. Bonnickson, K. R., 1955, High-temperature heat contents of some titanates of aluminum, iron, and zinc:

Am, Chem. Soc. Jour., v. 77, p. 2152-2154.

44. Bonnickson, K. R., 1955, High-temperature heat contents of aluminates of calcium and magnesium:

Jour. Phys. Chemistry, v. 59, p. 221-221.

45. Boyle, B. J., King, E. G., and Conway, K. C., 1954, Heats of formation of nickel and cobalt oxides (NiO

and CoO) by combustion calorimetry: Am. Chem. Soc. Jour., v. 76, p. 3835-3837.

46. Brink, I. J., and Holley, C. E., Jr., 1978, The enthalpy of formation of strontium monoxide: Jour. Chem.

Thermodynamics, v. 10, p. 259-266.

47. Brodale, G., and Giauque, W. F., 1958, The heat of hydration of sodium sulfate. Low temperature heat

capacity and entropy of sodium sulfate decahydrate: Am. Chem. Soc. Jour., v. 80, p. 2042-2044.

48. Brooks, A. A., 1953, A thermodynamic study of the equilibrium 2Cu(s) + H2S(g) = Cu2S(K) + H2 (g):

Am. Chem. Soc. Jour., v. 75, p. 2464-2467.

49. Brousse, C., Newton, R. C., and Kleppa, O. J., 1984, Enthalpy of formation of forsterite, enstatite,

akermanite, monticellite and merwinite at 1073 K by alkali borate solution calorimetry: Geochim.

Cosmochim. Acta, v. 48, p. 1081-1088.

50. Bryndzia, L. T., and Kleppa, O. J., 1988, Standard molar enthalpies of formation of realgar (or-AsS) and

orpiment (As2S3) by high-temperature direct-synthesis calorimetry: Jour. Chem. Thermodynamics,

v. 20, p. 755-764.

Page 409: robie 1995

REFERENCES CITED 403

51. Bryndzia, L. T., and Kleppa, O. J., 1988, High-temperature reaction calorimetry of solid and liquid

phases in the quasi-binary system Ag2S-Sb2S3 : Geochim. Cosmochim. Acta, v. 52, p. 167-176.

52. Bryndzia, L.T., and Kleppa, O.J., 1988, Standard enthalpies of formation of sulfides and sulfosalts in

the Ag-Bi-S system by high-temperature, direct synthisis calorimetry: Economic Geology, v. 83,

p. 174-181.

53. Bryndzia, L.T., and Kleppa, O.J., 1988, High-temperature reaction calorimetry of solid and liquid phases

in part of the quasi-binary system Cu2S-Sb2S3 : Am. Mineralogist, v. 73, p. 707-713.

54. Busenberg, E., and Plummer, L. N., 1986, The solubility of BaCO3(cr)(witherite) in CO2-H2O solutions

between 0 and 90°C, evaluation of the association constants of BaHCO3 (aq) and BaCO3(aq)

between 5 and 80°C, and a preliminary evaluation of the thermodynamic properties of Ba2+ (aq):

Geochim. Cosmochim. Acta, v. 50, p. 2225-2233.

55. Busenberg, E., Plummer, L. N., and Parker, V. B., 1984, The solubility of strontianite (SrCO3) in CO 2-H2O

solutions between 2 and 91°C, the association constants of SrHCO3f (aq) and SrC03(aq)° between

5 and 80°C, and an evaluation of the thermodynamic properties of Sr2+ (aq) and SrCO3(cr) at 25 °C

and 1 atm total pressure: Geochim. Cosmochim. Acta, v. 48, p. 2021-2035.

56. Carpenter, M. A., McConnell, J. D. C., and Navrotsky, A., 1985, Enthalpies of ordering in the

plagioclase feldspar solid solution: Geochim. Cosmochim. Acta, v. 49, p. 947-966.

57. Castanet, Robert, 1984, Selected data on the thermodynamic properties of alpha-alumina: High

Temperatures - High Pressures, v. 16, p. 449-457.

Page 410: robie 1995

404 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

58. Cemic, L., and Kleppa, O. J., 1986, High temperature calorimetry of sulfide systems.

I. Thermochemistry of liquid and solid phases of Ni + S: Geochim. Cosmochim. Acta, v. 50,

p. 1633-1641.

59. Cemic, L., and Kleppa, O. J., 1987, High temperature calorimetry of sulfide systems II. Standard

enthalpies of formation of pentlandite and violarite: Phys. Chem. Minerals, v. 14, p. 52-57.

60. Cemic, L., and Kleppa, O. J., 1988, High temperature calorimetry of sulfide systems III. Standard

enthalpies of formation of phases in the systems Fe-Cu-S and Co-S: Phys. Chem. Minerals, v. 16,

p. 172-179.

61. Chang, S. S., and Bestul, A. B., 1971, Heat capacities of cubic, monoclinic, and vitreous arsenious

oxide from 5 to 360 K: Jour. Chem. Physics, v. 55, p. 933-946.

62. Chang, S.S., and Bestul, A.B., 1974, Heat capacities of selenium crystal (trigonal), glass, and liquid

from 5 to 360 K: Jour. Chem. Thermodynamics, v. 6, p. 325-344.

63. Chang, Y. A., and Ahmad, N., 1982, Thermodynamic Data on Metal Carbonates and Related Oxides,

(Metallurgical Society of AIME Publ.), 235 p.

64. Charlu, T. V., Newton, R. C., and Kleppa, O. J., 1975, Enthalpies of formation at 970 K of compounds

in the system MgO-AI2O3-Si02 from high temperature solution calorimetry: Geochim. Cosmochim.

Acta, v. 39, p. 1487-1497.

65. Charlu, T. V., Newton, R. C., and Kleppa, O. J., 1978, Enthalpy of formation of some lime silicates by

high-temperature solution calorimetry, with discussion of high pressure phase equilibria: Geochim.

Cosmochim. Acta, v. 42, p. 367-375.

Page 411: robie 1995

REFERENCES CITED 405

66. Charlu, T. V., Newton, R. C., and Kleppa, O. J., 1981, Thermochemistry of synthetic Ca2AI2SiO7

(gehlenite) Ca2MgSi2O7 (akermanite) melilites: Geochim. Cosmochim. Acta, v. 45, p. 1609-1617.

67. Chase, M. W., Jr., Davies, C. A., Downey, J. R., Jr., Frurip, D. J., McDonald, R. A., and Syverud,

A. N.,1985, JANAF Thermochemical Tables Third Edition, Part I, AI-Co; Part II, Cr-Zr: Jour. Phys.

Chem. Ref. Data, v. 14, Supplement no. 1, p. 1-1856.

68. Chatterjee, N. D., Johannes, Wilhelm, and Leistner, Hans, 1984, The system CaO-AI2O 3-SiO2-H2O: new

phase equilibrium data, some calculated phase relations, and their petrological applications:

Contributions to Mineralogy and Petrology, v. 88, p. 1-13.

69. Chattilon-Colinet, C., Kleppa, O. J., Newton, R. C., and Perkins, D., 1983, Enthalpy of formation of

Fe3AI2Si3O 12 (almandine) by high temperature alkali borate solution calorimetry: Geochim.

Cosmochim. Acta, v. 47, p. 439-444.

70. Chernosky, J. V., Jr., and Autio, L. K., 1979, The stability of anthophyllite in the presence of quartz:

Am. Mineralogist, v. 64, p. 294-303.

71. Chhor, K., Bocquet, J. F., Pommier, C., and Chardon, B., 1986, Heat capacity and thermodynamic

behavior of Mn3O4 and ZnMn204 at low temperatures. Jour. Chem. Thermodynamics, v. 18,

p. 88-99.

72. Chhor, K., Pommier, C., Gariner, P. and Abello, L., 1991, Low temperature behavior of cr-PbO and

Pb 1 .x Ti1+x oxides from calorimetric spectroscopic and neutron diffraction studies: Jour. Phys.

Chem. Solids, v. 52, p. 895-902.

Page 412: robie 1995

406 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

73. Chisholm, R. C., and Stout, J. W., 1962, Heat capacity and entropy of CoCI 2 and MnCI2 from 11 ° to

300° K. Thermal anomaly associated with antiferromagnetic ordering in CoCI2 : Jour. Chem.

Physics, v. 36, p. 972-979.

74. Cho, M., Maruyama, S., and Liou, J.G., 1987, An experimental investigation of heulandite-laumontite

equilibrium at 1000 to 2000 bar PfluW . Contributions to Mineralogy Petrology, v. 97, p. 43-50.

75. Cohen, E. R., and Taylor, B. N., 1987, The 1986 CODATA recommended values of the fundamental

physical constants: U.S. Nat. Bur. Standards, Jour. Research v. 92, p. 85-95.

76. Cook, O. A., 1947, High-temperature heat contents of V2O3, V2O4, and V2O5 : Am. Chem. Soc. Jour.,

v. 69, p. 331-333.

77. Cordfunke, E. H. P., Konings, R. J. M., and Ouweltjes, W., 1990, The standard enthalpies of formation

of MO(s), MCI2(s), and M +2(aq,<») (M = Ba, Sr): Jour. Chem. Thermodynamics, v. 22, p. 991-996.

78. Cordfunke, E. H. P., Ouweltjes, W., and Prins, G., 1987, Standard enthalpies of formation of Tellurium

compounds. I. Tellurium dioxide: Jour. Chem. Thermodynamics, v. 19, p. 369-375.

79. Coughlin, J. P., 1950, High-temperature heat contents of manganous sulfide, ferrous sulfide, and pyrite:

Am. Chem. Soc. Jour., v. 72, p. 5445-5448.

80. Coughlin, J. P., 1951, High-temperature heat contents of nickel chloride: Am. Chem. Soc. Jour., v. 73,

p. 5314-5315.

81. Coughlin, J. P., 1955, High-temperature heat contents, heats of transition, and heat of fusion of

anhydrous sodium sulfate: Am. Chem. Soc. Jour., v. 77, p. 868-870.

Page 413: robie 1995

REFERENCES CITED 407

82. Coughlin, J. P., and King, E. G., 1950, High-temperature heat contents of some zirconium-containing

substances: Am. Chem. Soc. Jour., v. 72, p. 2262-2265.

83. Coughlin, J. P., King, E. G., and Bonnickson, K. R., 1951, High-temperature heat contents of ferrous

oxide, magnetite and ferric oxide: Am. Chem. Soc. Jour., v. 73, p. 3891-3893.

84. Coughlin, J. P., and O'Brien, C. J., 1957, High temperature heat content of calcium orthosilicate: Jour.

Phys. Chemistry., v. 61, p. 767-769.

85. Cox, J. D., Wagman, D. D., and Medvedev, V. A., 1989, CODATA key values for thermodynamics:

Hemisphere, New York, 271 p.

86. Dayal, R. R., Johnson, R. E., and Muan, A., 1967, Stability of mullite derived from equilibria in the

system CaO-AI 2O3-SiO2 : Am. Chem. Soc. Jour., v. 50, p. 537-540.

87. DeKock, C. W., 1982, Thermodynamic properties of selected transition metal sulfates and their

hydrates: U. S. Bur. Mines Information Circular 8910, 45 p.

88. DeKock, C. W., 1986, Thermodynamic properties of selected metal sulfates and their hydrates: U. S.

Bur. Mines Information Circular 9081, 59 p.

89. Dellien, I., McCurdy, K. G, and Hepler, L. G., 1976, Enthalpies of formation of lead chromate, lead

molybdate, and lead tungstate, and the entropy of aqueous tungstate ion: Jour. Chem.

Thermodynamics, v. 8, p. 203-207.

90. Desai, P. D., 1986, Thermodynamic properties of iron and silicon: Jour. Phys. Chem. Ref. Data, v. 15,

p. 967-983.

Page 414: robie 1995

408 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

91. Desai, P. D., 1987, Thermodynamic properties of manganese and molybdenum: Jour. Phys. Chem.

Reference Data, v. 16, p. 91-108.

92. Desai, P. D., 1987, Thermodynamic properties of aluminum: Int. Jour. Thermophysics, v. 8,

p. 621-638.

93. Ditmars, P. D., and Douglas, T. B., 1971, Measurement of the relative enthalpy of pure 0-AI203 (NBS

heat capacity and enthalpy standard reference material no. 720) from 273 to 1173 K: U. S. Natl.

Bur. Standards Jour. Research, v. 75A, p. 401-420.

94. Ditmars, D. A., Isihara, S., Chang, S. S., Bernstein, G., and West, E. D., 1982, Enthalpy and heat-

capacity standard reference material: synthetic sapphire (K-AI 203 ) from 10 to 2250 K: U.S. Natl.

Bur. Standards Jour. Research, v. 87, p. 159-163.

95. Donahoe, R. J., Hemingway, B. S., and Liou, J. G., 1990, Thermochemical data for merlinoite: 1. Low-

temperature heat capacities, entropies, and enthalpies of formation at 298.15 K of six synthetic

samples having various Si/AI and Na/(Na + K) ratios: Am. Mineralogist, v. 75, 188-200

96. Donahoe, R. J., Liou, J. G., and Hemingway, B. S., 1990, Thermochemical data for merlinoite: 2. Free

energies of formation at 298.15 K of six synthetic samples having various Si/AI and Na/(Na + K)

ratios and application to saline, alkaline lakes: Am. Mineralogist, v. 75, 201-208

97. Dzhabbarov, A.I., 1985, Heat capacity of theanisotropicantiferromagnetic semiconductor iron antimony

sulfide (FeSb2S4) at low temperature: Zhur. Fiz. Khirn., v. 59, p. 202-204.

98. Egami, Akira, Nagakawa, T., Oishi, T., Ono, K., and Moriyama, J., 1986, A thermodynamic study of

the systems Ni-S and Co-S by CaF2 solid electrolyte galvanic cell technique: Trans. Japan Institute

of Metals, v. 27, p. 890-897.

Page 415: robie 1995

REFERENCES CITED 409

99. Egan, E. P., Jr., Wakefield, Z. T., and Elmore, K. L., 1950, High-temperature heat content of

hydroxyapatite: Am. Chem. Soc. Jour., v. 72, p. 2418-2421.

100. Egan, E. P., Jr., Wakefield, Z. T., and Luff, B. B., 1961, Low temperature heat capacity, entropy and

heat of formation of crystalline and colloidal ferric phosphate dihydrate: Jour. Phys. Chemistry,

v. 65, p. 1265-1270.

101. Ellison, A.J.G., and Navrotsky, A. 1992, Enthalpy of formation of zircon. Jour. Am. Ceramic Soc.,

v. 75, p. 1430-1433.

102. Eriksson, G. and Pelton, A. D., 1993, Critical evaluation and optimization of the thermodynamic

properties and phase diagrams of the MnO-Ti02 , MgO-Ti02, FeO-TiO2 , Ti2O3-TiO2 , Na2O-TiO2 , and

K2OTi02 systems: Metallurgical Transactions, v. 24B, p. 795-805.

103. Evans, L. G. and Muan, A., 1971, Activity-composition relations of solid solutions and stabilities of

manganese and nickel titanates at 1250° C as derived from equilibria in the systems MnO-CoO-TiO2

and MnO-NiO-Ti0 2 : Thermochimica Acta, v. 2, p. 277-292.

104. Fei, Y., and Saxena, S. K., 1987, An equation for the heat capacity of solids: Geochim. Cosmochim.

Acta, v. 51, p. 251-254.

105. Fei, Y., Saxena, S.K. and Navrotsky, A., 1990, Internally consistent thermodynamic data and equilibrium

phase relations in the system MgO-SiO2 at high pressure and high temperature: Jour. Geophys.

Research, v. 95B, p. 6915-6928.

106. Ferrante, M. J., 1972, Enthalpies above 298.15 K for copper sulfateand copper oxysulfate: U. S. Bur.

Mines Rept. Inv. 7600, 8 p.

Page 416: robie 1995

410 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

107. Ferrante, M. J., and Gokcen, N. A., 1982, Relative enthalpies of Ni3S2 : U. S. Bur. Mines Rept. Inv.,

no. 8745, 8 p.

108. Ferrante, M.J., Mrazek, R.V., and Brown, R.R., 1987, High-temperature relative enthalpies and related

thermodynamic properties of Cul: U.S. Bur. Mines Rept. Inv. 9074, 10 p.

109. Ferrante, M. J., Stuve, J. M., Daut, G. E., and Pankratz, L. B., 1978, Low-temperature heat capacities

and high-temperature enthalpies of cuprous and cupric sulfides: U.S. Bur. of Mines Rept.

Inv. 8305, p. 1-22. See also High Temp Science, v. 14, p. 77-90.

110. Ferrante, M. J., Stuve, J. M., and Richardson, D.W., 1976, Thermodynamic data for synthetic

dawsonite: U.S. Bur. Mines Rept. Inv. 8129, 13 p.

111. Fitzgibbon, G. C., Huber, E. J., Jr., and Holley, C. E., Jr., 1973, Enthajpy of formation of barium

monoxide: Jour. Chem. Thermodynamics, v. 5, p. 577-582.

112. Flotow, H. E., and Osborne, D. W., 1974, The heat capacity of dicesium monoxide (Cs2O) from 5

to 350 K and the Gibbs energy of formation to 763 K: Jour. Chem. Thermodynamics, v. 6,

p. 135-140.

113. Fredrickson, D. R., and Chasanov, M. G., 1970, Enthalpy of uranium dioxide and sapphire to 1500 K

by drop calorimetry: Jour. Chem. Thermodynamics, v. 2, p. 623-630.

114. Fredrickson, D. R., and Chasanov, M. G., 1971, The enthalpy of molybdenum disulfide to 1200° K by

drop calorimetry: Jour. Chem. Thermodynamics, v. 3, p. 693-696.

115. Fredrickson, D. R., and Chasanov, M. G., 1 973, The enthalpy of sodium oxide IS^O to 1 300 K by drop

calorimetry: Jour. Chem. Thermodynamics, v. 5, p. 485-490.

Page 417: robie 1995

REFERENCES CITED 411

116. Furukawa, G. T., and Saba, W. G., 1965, Heat capacity and thermodynamic properties of beryllium

aluminate (chrysoberyl), BeO« AI203 , from 16 to 380°K: U. S. Natl. Bur. Standards Jour.

Research., v. 65, p. 13-18.

117. Garvin, D., Parker, V. B., and White, H. J., 1987, CODATA thermodynamic tables. Selections for some

compounds of calcium and related mixtures: A prototype set of tables. Hemisphere, New York,

356 p.

118. Gillet, P., Reynard, B., and Tequi, C., 1989, Thermodynamic properties of glaucophane: new data from

calorimetric and spectroscopic measurements: Phys. Chem. Minerals, v. 16, p. 659-667.

119. Gillet, P., Richet, P., Guyot, F. and Fiquet, G., 1991, High temperature thermodynamic properties of

forsterite: Jour. Geophys. Research, v. 96, p. 11805-11816.

120. Goates, J. R., Cole, A. G., and Gray, E. L., 1951, Free energy of formation and solubility product

constant of mercuric sulfide: Amer. Chem. Soc. Jour., v. 73, p. 3596-3597.

121. Goates, J. R., Cole, A. G., Gray, E. L., and Faux, N. D., 1951, Thermodynamic properties of silver

sulfide: Am. Chem. Soc. Jour., v. 73, p. 707-708.

122. Goldman, D. T., and Bell, R. J., 1986, The international system of units (SI): U.S. Natl. Bur. Standards

Special Publication 330, 51 p.

123. Goldsmith, J. R., and Jenkins, D. M., 1985, The high-low albite relations revealed by reversal of degree

of order at high pressures: Am. Mineralogist, v. 70, p. 911-923.

124. Good, W. D., Lacina, J. L., and McCullough, J. P., 1960, Sulfuric acid: heat of formation of aqueous

solutions by rotating bomb calorimetry: Am. Chem. Soc. Jour., v. 82, p. 5589-5591.

Page 418: robie 1995

412 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

125. Grimsey, E.J. and Reynolds, K.A., 1986, Equilibrium oxygen pressure of (Co304 + CoO) from 1173 to

1228K. Jour. Chem Thermodynamics, v. 18, p. 473-476.

126. Gronvold, F., 1973, Heat capacities and thermodynamic properties of hexagonal and liquid selenium

in the range 298 to 1000 K. Enthalpy and temperature of fusion: Jour. Chem. Thermodynamics,

v. 5, p. 525-531.

127. Gronvold, F., 1975, Heat capacity and thermodynamic properties of bismuth in the range 300 to 950

K. Fusion characteristics: Acta Chem. Scandinavica, v. 29A, p. 945-955.

128. Gronvold, F., Kveseth, N. J., Sveen, A., and Tichy, J., 1970, Thermodynamics of the UO2+X phase 1.

Heat capacities of UO2017 and U02254 from 300 to 1000 K and electronic contributions: Jour.

Chem. Thermodynamics, v. 2, p. 665-680.

129. Gronvold, F., and Meisingset, K. K., 1983, Thermodynamic properties and phase transitions of salt

hydrates between 270 and 400 K. II. Na2CO3 'H2O and Na2CO3 '10H20: Jour. Chem.

Thermodynamics, v. 15, p. 881-889.

130. Gronvold, F. and Samuelsen, E.J., 1975, Heat capacity and thermodynamic properties of a-Fe 2O3 in the

region 300-1050 K. Antiferromagnetic transition: Jour. Phys. Chem. Solids, v. 36, p. 249-256.

131. Gronvold, F., and Stolen, S., 1992, Thermodynamics of iron sulfides II. Heat capacity and

thermodynamic properties of FeS and of Fe0.87sS at temperatures from 298.15 K to 1000K, of

Fe098S from 298.15 K to 800 K and of Fe0.89S from 298.15 K to about 650 K. Thermodynamics

of formation: Jour. Chem. Thermodynamics, v. 24, p. 913-916.

Page 419: robie 1995

REFERENCES CITED 413

132. Grenvold, F., St0len, S., Tolmach, P. and Westrum, E. F., Jr., 1993, Heat capacities of the wustites

Fe0.93790 and Feo.92540 at temperatures T from 5 K to 350 K. Thermodynamics of the reaction xFe(s)

+ (1/4)Fe3O4{s) - Fe(0.75oo + x)O(s) = Fe^Ots) at ~ 850 K, and properties of Fe^CIs) to T = 1000

K. Thermodynamics of formation of wustite: Jour. Chem. Thermodynamics, v. 25, p. 1089-1117.

133. Gronvold, F. Stolen, S., Westrum, E. F., Jr., and Galeas, C. G., 1987, Thermodynamics of copper

sulfides III. Heat capacities and thermodynamic properties of Cu^S, Cu 1<8oS and Cu^S from

5 to about 700 K: Jour. Chem. Thermodynamics, v. 19, p. 1305-1324.

134. Gronvold, F., and Sveen, A., 1974, Heat capacity and thermodynamic properties of synthetic magnetite

(Fe304) from 300 to 1050 K. Ferrimagnetic transition and zero-point entropy: Jour. Chem.

Thermodynamics, v. 6, p. 859-872.

135. Gronvold, F., Svein, S., Labban, A. K., and Westrum, E. F., Jr., 1991, Thermodynamics of iron sulfides

I. Heat capacity and thermodynamic properties of Fe9S10 at temperatures from 5 K to 740 K: Jour.

Chem. Thermodynamics, v. 23, p. 261-272.

136. Gronvold, F., Thurmann-Moe, T., and Westrum, E. F., Jr., and Chang, E., 1961, Low-temperature

heat capacities and thermodynamic functions of some platinum group chalcogenides.

I. Monochalcogenides: PtS, PtTe and PdTe: Jour. Chem. Physics, 35, p. 1665-1669.

137. Gronvold, F. and Westrum, E.F., Jr., 1959, a-ferric oxide: low temperature heat capacity and

thermodynamic functions. Am. Chem. Soc. Jour., v. 81, p. 1780-1783.

138. Gronvold, F., and Westrum, E. F., Jr., 1962, Heat capacities and thermodynamic functions of iron

disulfide (pyrite), iron-diselenide, and nickel diselenide from 5 to 350°K. The estimation of standard

entropies of transition metal chalcogenides: Inorganic Chemistry, v. 1, p. 36-48.

Page 420: robie 1995

414 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

139. Gronvold, F., and Westrum, E. F., Jr., 1976, Heat capacities of iron disulfides. Thermodynamics of

marcasite from 5 to to 700 K, pyrite from 350 to 770 K, and the transformation of marcasite to

pyrite: Jour. Chem. Thermodynamics, v. 8, 1039-1048.

140. Gronvold, F., and Westrum, E. F., Jr., 1980, The anilite/ low-digenite transition: Am. Mineralogist,

v. 65, p. 574-575.

141. Gronvold, F., and Westrum, E. F., Jr., 1986, Silver(l) sulfide: Ag2S. Heat capacity from 5 to 1000 K,

thermodynamic properties, and transitions: Jour. Chem. Thermodynamics, v. 18, p. 381-401.

142. Gronvold, F., and Westrum, E. F., 1987, Thermodynamics of copper sulfides. I. Heat capacity and

thermodynamic properties of copper (I) sulfide, Cu2S, from 5 to 950 K: Jour. Chem.

Thermodynamics, v. 19, p. 1183-1198.

143. Gronvold, F., Westrum, E. F., Jr., and Chou, C., 1959, Heat capacities and thermodynamic properties

of the pyrrhotites FeS and Fe0-877S from 5 to 350°K: Jour. Chem. Physics, v. 30, p. 528-531.

144. Gupta, A., and Chatterjee, N. D., 1978, Synthesis, composition, thermal stability and thermodynamic

properties of bicchulite, Ca2 [AI2Si06](OH) 2 : Am. Mineralogist, v. 63, p. 58-65.

145. Gurevich, V.M., Gorbunov, V.E., Gavrichev, K.S., and Khodakovskii, I.L., 1988, The low-temperature

heat capacity of livingstonite (HgSb4S8): Russ. Jour. Phys. Chemistry, v. 62, p. 699-700.

146. Gurevich, V. M., Gorbunov, V. E., Gavrichev, K. S., and Khodakovsky, I. L, 1989, Low-temperature

heat capacity of proustite Ag3AsS3 and smithite AgAsS2 : Geokhimiia, p. 132-139.

Page 421: robie 1995

REFERENCES CITED 415

147. Gurevich, V. M., Semenov, Yu. V., Sidorov, Yu. I., Gorbunov, V. E., Gavrichev, K. S., Zhananov, V. M.,

Turdakin, V. A., and Khodakovsky, I. L., 1990, Low-temperature specific heat of epidote

Ca2FeAI 2Si3O 12(OH). Geochemistry International 27(8), p.111-114.

148. Haas, J. L., Jr., and Hemingway, B. S., 1992, Recommended standard electrochemical potentials and

fugacities of oxygen for the solid buffers and thermodynamic data in the systems iron-silicon-

oxygen, nickel-oxygen, and copper-oxygen / by John L. Hass, Jr with comments and additions by

Bruce S. Hemingway: U.S. Geological Survey Open-file Report 92-267.

149. Haas, J. L., Jr., Robinson, G. R., Jr., and Hemingway, B. S., 1981, Thermodynamic tabulations for

selected phases in the system CaO-AI203-Si02-H20 at 101.325 kPa (1 atm) between 273.15 K and

1800 K: Jour. Phys. Chem. Ref. Data, v. 10, p. 575-669.

150. Halbach, H., and Chatterjee, N. D., 1984, An internally consistent set of thermodynamic data for

twenty-one CaO-AI 203-Si02-H20 phases by linear parametric programming: Contributions to

Mineralogy and Petrology, v. 88, p. 14-23.

151. Harlov, D.E., and Newton, R.C., 1992, Experimental determination of the reaction 2 magnetite +

2 kyanite + 4 quartz = 2 almandine + O2 at high pressure on the magnetite-hematite buffer:

Am. Mineralogist, v. 77, p. 558-564.

152. Haselton, H. T., Jr., Cygan, G. L, and Jenkins, D. M., 1994, Experimental study of muscovite stability

in pure H2O and 1 molal KCI-HCI solutions: (unpublished report).

153. Haselton, H. T., and Goldsmith, J. R., 1987, The decarbonation and heat capacity of ZnCO3 : Geochim.

Cosmochim. Acta, v. 51, p. 261-265.

Page 422: robie 1995

416 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

154. Haselton, H. T., Jr., Hemingway, B. S., and Robie, R. A., 1984, Low-temperature heat capacities of

CaAI2SiO6 glass and pyroxene and thermal expansion of CaAI 2SiO6 pyroxene: Am. Mineralogist,

v. 69, p. 481-489.

155. Haselton, H. T., Jr., Hovis, G. L., Hemingway, B. S., and Robie, R. A., 1983, Calorimetric investigation

of the excess entropy of mixing in analbite-sanidine solid solutions: Lack of evidence for Na,

K short-range order and implications for two-feldspar thermometry: Am. Mineralogist, v. 68,

p. 398-413.

156. Haselton, H. R., Jr., Robie, R. A., and Hemingway, B. S., 1987, Heat capacities of synthetic

hedenbergite, ferrobustamite, and CaFeSi2O6 glasses: Geochim. Cosmochim. Acta, v. 51,

p. 2211-2217.

157. Haselton, H. T., Jr., and Westrum, E. F., Jr., 1980, Low-temperature heat capacities of synthetic

pyrope, grossular, and pyrcpe^, grossular^: Geochim. Cosmochim. Acta, v. 44, p. 701-709.

158. Hatton, W. E., Hildenbrand, D. L., Sinke, G. C., and Stull, D. R., 1959, The chemical thermodynamic

properties of calcium hydroxide: Am. Chem. Soc. Jour., v. 81, p. 5028-5030.

159. Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K., 1978, Summary and critique of the

thermodynamic properties of rock-forming minerals: Am. Jour. Science, V.278-A, 220 p.

160. Hemingway, B. S., 1987, Quartz: Heat capacities from 340 to 1000 K and revised values for the

thermodynamic properties: Am. Mineralogist, v. 72, p. 273-279.

161. Hemingway, B. S., 1990, Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and

hematite, Fe2O3 with comments on selected oxygen buffers: Am. Mineralogist, v. 75, p. 781-790.

Page 423: robie 1995

REFERENCES CITED 417

162. Hemingway, B. S., 1991, Thermodynamic properties for anthophyllite and talc: Corrections and

discussion of calorimetric data: Am. Mineralogist, v. 76, p. 1589-1596.

163. Hemingway, B. S., Anovitz, L. M., and Robie, R. A., 1990, Thermodynamic properties of dumortierite

(Si3B(AI6 .75 [ ] 0 . 250 17 . 25 (OH)0.75 : Am. Mineralogist, v. 75, 1370-1375.

164. Hemingway, B. S., Barton, M. D., Robie, R. A., and Haselton, H. T., Jr., 1986, Heat capacities and

thermodynamic functions for beryl, Be3AI2Si60 18, phenakite, Be2SiO4, euclase, BeAISiO4(OH),

bertrandite, Be4Si207 (OH) 2 , and chrysoberyl, BeAI204 : Am. Mineralogist, v. 71, p. 557-568.

165. Hemingway, B. S., Evans, H. T., Jr., Nord, G. L., Haselton, H. T., Jr., Robie, R. A., and McGee, J. J.,

1987, Akermanite: phase transitions in heat capacity and thermal expansion, and revised

thermodynamic data: Canadian Mineralogist, v. 24, p. 425-434.

166. Hemingway, B. S. and Haselton, H. T., Jr., 1994, A reevaluation of the calorimetric data for

the enthalpy of formation of some K- and Na-bearing silicate minerals: U. S. Geological Survey

Open-file Report 94-576, 33 p.

167. Hemingway, B. S., Krupka, K. M., and Robie, R. A., 1981, Heat capacities of the alkali feldspars

between 350 and 1000 K by differential scanning calorimetry. The thermodynamic functions of

the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite:

Am. Mineralogist, v. 66, p. 1202-1215.70 p.

168. Hemingway, B. S., and Robie, R. A., 1972, The heat capacities at low temperatures and entropies at

298.15 K of huntite, CaMg3(C03) 4, and artinite, Mg2 (OH) 2CO3 «3H2O: Am. Mineralogist, v. 57,

p. 1754-1767.

Page 424: robie 1995

418 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

169. Hemingway, B. S., and Robie, R. A., 1973, A calorimetric determination of the standard enthalpies of

formation of huntite, CaMg3(C03 )4, and artinite, Mg2 (OH) 2CO3 3H2O and their standard Gibbs free

energies of formation: U.S. Geol. Survey Jour. Research, v. 1, p. 535-541.

170. Hemingway, B. S., and Robie, R. A., 1977, The entropy and Gibbs free energy of formation of the

aluminum ion: Geochim. Cosmochim. Acta, v. 41, p. 1402-1404.

171. Hemingway, B. S., and Robie, R. A., 1977, Enthalpies of formation of low albite (NaAISi 3O8), gibbsite

(AI(OH) 3 ), and NaAI02; revised values for AH°f,298 and AGf,298 of alumino-silicates: U.S. Geol.

Survey Jour. Research, v. 5, p. 413-429.

172. Hemingway, B. S., and Robie, R. A., 1984, Heat capacity and thermodynamic functions for gehlenite

and staurolite: Comments on the Schottky anomaly in staurolite: Am. Mineralogist, v. 69,

p. 307-318.

173. Hemingway, B. S., and Robie, R. A., 1984, Thermodynamic properties of zeolites: low temperature heat

capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the

thermochemical properties of zeolitic water at low temperatures: Am. Mineralogist, v. 69,

p. 692-700.

174. Hemingway, B. S., and Robie, R. A., 1990, Heat capacities and thermodynamic properties of annite

(aluminous iron biotite): Am. Mineralogist, v. 75, p. 183-187

175. Hemingway, B. S. and Robie, R. A., 1994, Enthalpy and Gibbs energy of formation of dolomite,

CaMg(C03) 2 , at 298.15 K from HCI solution calorimetry: U. S. Geological Survey Open-File Report

94-575, 12 p.

Page 425: robie 1995

REFERENCES CITED 419

176. Hemingway, B. S., Robie, R. A., and Apps, J. A., 1991, Revised values for the thermodynamic

properties of boehmite, AIO(OH), and comments on the relative stabilities of the aluminum

hydroxide and oxyhydroxide phases: Am. Mineralogist, v. 76, p. 445-457.

177. Hemingway, B. S., Robie, R. A., Evans, H. T., Jr., and Kerrick, D. M., 1991, Heat capacities and

entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the AI2SiO5 phase diagram.

Am. Mineralogist, v. 76, p. 1597-1613.

178. Hemingway, B. S., Robie, R. A., Fisher, J. R., and Wilson, W. H., 1977, The heat capacities of gibbsite,

AI(OH)3 , between 13 and 480 K and magnesite, MgC03, between 13 and 380 Kand their standard

entropies at 298.15 K, and the heat capacities of Calorimetry Conference benzoic acid between

12 and 316 K: U.S. Geol. Survey Jour. Research, v. 5, p. 797-806.

179. Hemingway, B. S., Robie, R. A., and Kittrick, J. A., 1978, Revised values for the Gibbs free energy of

formation of [AKOH^], diaspore, boehmite and bayerite at 298.15 K and I bar, the thermodynamic

properties of kaolinite to 800 K, and the heats of solution of several gibbsite samples: Geochim.

Cosmochim. Acta, v. 42, p. 1533-1543.

180. Hemingway, B. S., Robie, R. A., Kittrick, J. A., Grew, E. S., Nelen, J. A., and London, D., 1984, The

heat capacities of osumilite from 298.15 to 1000 K, the thermodynamics properties of two natural

chlorites to 500 K, and the thermodynamic properties of petalite to 1800 K: Am. Mineralogist,

v. 69, p. 701-710.

181. Hemingway, B. S., Robie, R. A., and Krupka, K. M., 1992, Thermodynamic properties for berlinite,

AIPO4: U.S. Geol. Survey Open-File Rept. 92-510, 8 p.

Page 426: robie 1995

420 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

182. Henderson, C. E., Essene, E. J., Anovitz, L. M., Westrum, E. F., Jr., Hemingway, B. S., and Bowman,

J. R., 1983, Thermodynamics and phase equilibria of clinochlore (Mg5AI)(Si3AI)0 10{OH) 8 : EOS,

v. 64, p. 466. Final term for Cp equation is missing, the value is + 1.4955x105T"2 .

183. Henderson, C.M.B., and Thompson, A.B., 1980, The low-temperature inversion in sub-potassic

nephelines: Am. Mineralogist, v. 65, p. 970-980.

184. Holland,T.J.B., 1980, The reaction albite = jadeite + quartz determined experimentally in the range

600 - 1200°C: Am. Mineral., v. 65, p. 129-134.

185. Holland, T. J. B., 1988, Preliminary phase relations involving glaucophane and applications to high

pressure petrology: new heat capacity and thermodynamic data: Contributions to Mineralogy and

Petrology, v. 99, p. 134-142.

186. Holland, T. J. B., 1989, Dependence of entropy on volume for silicate and oxide minerals: A review and

a predictive model: Am. Mineralogist, v. 74, p. 5-13.

187. Holland, T. J. B., and Powell, R., 1985, An internally consistent thermodynamic dataset with

uncertainties and correlations: 2. Data and results: Jour. Metamorphic Geology, v. 3, p. 343-370.

188. Holland, T. J. B. and Powell, R., 1990, An enlarged and updated internally consistent thermodynamic

dataset with uncertainties and correlation: the system K20-Na 20-CaO-MgO-MnO-FeO-Fe203-AI203-

Ti02-Si02-C-H2-0 2 : Jour. Metamorphic Geology, v. 8, p. 89-124.

189. Holm, J. L, Kleppa, 0. J., and Westrum, E. F., Jr., 1967, Thermodynamics of polymorphic

transformations in silica. Thermal properties from 5 to 1070°K and P-T stability fields for coesite

and stishovite: Geochim. Cosmochim. Acta, v. 31, p. 2289-2307.

Page 427: robie 1995

REFERENCES CITED 421

190. Holmes, R. D., Kersting, A. B., and Arculus, R. J., 1989, Standard molar Gibbs free energy of formation

for Cu20: high-resolution electrochemical measurements from 900 to 1300K: Jour. Chem.

Thermodynamics, v. 21, p. 351-361.

191. Holmes, R.D., O'Neill, H.St.C., and Arculus, R.J., 1986, Standard Gibbs free energy of formation for

Cu2O, NiO, CoO, and FexO: High resolution electrochemical measurements using zirconia solid

electrolytes from 900-1400 K: Geochim. Cosmochim. Acta, v. 50, p. 2439-2452.

192. Hosmer, P. K., and Krikorian, 0. H., 1980, The high-temperature enthalpies of zinc sulfate and zinc

oxysulfate: High Temperatures-High Pressures, v. 12, p. 281-290.

193. Hostetler, P. B., 1963, The stability and surface energy of brucite in water at 25°C: Am. Jour. Sci.,

v. 21, p. 238-258.

194. Hovis, G. L., 1988, Enthalpies and volumes related to K-Na mixing and Al-Si disorder in alkali feldspars:

Jour. Petrology, v. 29, p. 731-763

195. Howell, D. A., Johnson, G. K., Tasker, I. R., O'Hare, P. A. G., and Wise, W. S., 1990, Thermodynamic

properties of the zeolite stilbite: Zeolites, v. 10, p. 525-531.

196. Huber, E. J., Jr., Head, E. L., and Holley, C. E., Jr., 1964, The heats of formation of zirconium diboride

and dioxide: Jour. Phys. Chemistry, v. 689, p. 3040-3042.

197. Hull, H., and Turnbull, A. G., 1973, A thermochemical study of monohydrocalcite: Geochim.

Cosmochim. Acta, v. 37, p. 685-694.

Page 428: robie 1995

422 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

198. Humphrey, G. L, King. E. G., and Kelley, K. K., 1952, Some thermodynamic values for ferrous oxide:

U. S. Bur. Mines Rept. Inv. 4870, 16 p.

199. Huntzicker, J. J., and Westrum, E. F., Jr., 1971, The magnetic transition, heat capacity, and

thermodynamic properties of uranium dioxide from 5 to 350 K: Jour. Chem. Thermodynamics,

v. 3, p. 61-76.

200. Inaba, H., Miyahara, K., and Naito, K., 1984, Measurements of the molar heat capacities of Mo02 and

MoO3 from 350 to 950K. Jour. Chem. Thermodynamics, v. 16, p. 643-651.

201. Itskevich, Ye. S., 1961, Thermodynamic investigations at low temperatures. XII. Specific heat

of bismuth telluride between 1.4 and 65° K. Enthalpy and entropy of Bi 2Te3 at 298.15 K:

Zhur. Fizicheskoi Khimii, v. 35, no. 8, p. 1813-1815.

202. Jacobs, G. K., Kerrick, D. M., and Krupka, K. M., 1981, The high-temperature heat capacity of natural

calcite (CaC03 ): Phys. Chem. Minerals, v. 7, p. 55-59.

203. Jeffes, J. H. E., Richardson, F. S., and Pearson, J., 1954, The heats of formation of manganous

orthosilicate and manganous sulfide: Faraday Society Transactions, v. 50, p. 364-370.

204. Jenkins, D. M., and Chernosky, J. V., 1986, Phase equilibrium and crystallochemical properties of

Mg-chlorite: Am. Mineralogist, v. 71, p. 924-936.

205. Jenkins, D.M., Holland, T.J.B., and Clarke, A., 1991, Experimental determination of the pressure

stability and thermochemical properties of synthetic tremolite: Am. Mineralogist, v. 76,

p. 458-469.

Page 429: robie 1995

REFERENCES CITED 423

206. Johnson, G. K., Flotow, H. E., O'Hare, P. A. G., and Wise, W. S., 1982, Thermodynamic studies of

zeolites: analcime and dehydrated analcime: Am. Mineralogist, v. 67, p. 736-748.

207. Johnson, G. K., Flotow, H. E., O'Hare, P. A. G., and Wise, W. S., 1983, Thermodynamic studies of

zeolites: natrolite, mesolite, and scolecite: Am. Mineralogist, v. 68, p. 1134-1145.

208. Johnson, G. K., Flotow, H. E., O'Hare, P. A. G., and Wise, W. S., 1985, Thermodynamic studies of

zeolites: Heulandite: Am. Mineralogist, v. 70, p. 1065-1071.

209. Johnson, G.K., Grow, R.T. and Hubbard, W.N., 1975, The enthalpy of formation of lithium oxide (Li 20):

Jour. Chem. Thermodynamics, v. 7, p. 781-786.

210. Johnson, G. K., Papatheodorou, G. N., and Johnson, C. E., 1980, The enthalpies of formation and high-

temperature thermodynamic functions of As4S4 and As2S3 : Jour. Chem. Thermodynamics, v. 12,

no. 6, p. 545-558.

211. Johnson, G. K., Papatheodorou, G. N., and Johnson, C. E., 1981, The enthalpies of formation of SbF5(l)

and Sb2S3 (c) and the high-temperature thermodynamic functions of Sb2S3 (c) and Sb2S3 (l): Jour.

Chem. Thermodynamics, v. 13, p. 745-754.

212. Johnson, G. K., Tasker, I. R., Flotow, H. E., and Wise, W. S., 1992, Thermodynamic studies of

mordenite, dehydrated mordenite, and gibbsite: Am. Mineralogist, v. 77, p. 85-93. Note that

quartz was taken as the reference phase for silica instead of silicalite.

213. Johnson, G. K., Tasker, I. R., Howell, D. A., and Smith, J. V., 1987, Thermodynamic properties of

silicalite: Jour. Chemical Thermodynamics, v. 19, p. 617-632.

Page 430: robie 1995

424 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

214. Johnson, G.K., Tasker, I.R., Jurgens, R., and O'Hare, P.A.G., 1991, Thermodynamic studies of zeolites,

Clinoptilolite. Jour. Chem. Thermodynamics, v. 23, p. 475-484.

215. Kale, G. M. and Jacob, K. T., 19S9, Gibbs energy of formation of Co2SiO4 and phase relations in the

system Co-Si-0: Trans. Instn. Min. Metallurgy. Sect. C: Mineral. Process. Extr. Metall., v. 98,

p. C117-122.

216. Kale, G.M. and Jacob, K.T., 1992, Chemical potential of oxygen for iron-rutile-ilmenite and iron-ilmenite-

ulvospinel equilibria: Metal. Transactions, v. 23B, p. 57-64.

217. Kelley, K. K., 1960, Contributions to the data on theoretical metallurgy. XIII. High-temperature heat-

capacity, and entropy data for the elements and inorganic compounds: U. S. Bureau of Mines

Bulletin 584, 232 p.

218. Kelley, K. K., Barany, R., King, E. G., and Christensen, A. U., 1959, Some thermodynamic properties

of fluorphlogopite mica: U.S. Bur. Mines Rept. Inv. 5436, 16 p.

219. Kelley, K. K., Shomate, C. H., Young, F. E., Naylor, B. F., Salo, A. E., and Huffman, E. H., 1946,

Thermodynamic properties of ammonium and potassium alums and related substances, with

reference to extraction of alumina from clay and alunite: U. S. Bur. Mines Tech. Paper 688,104 p.

220. Kelley, K. K., Todd, S. S., Or, R. L., King, E. G., and Bonnickson, K. R., 1953, Thermodynamic

properties of sodium-aluminum and potassium-aluminum silicates: U.S. Bur. Mines Rept. Inv. 4955,

21 p.

221. Khodakovsky, I. L. written communication in 1993.

Page 431: robie 1995

REFERENCES CITED 425

222. Khriplovich, L. M., Oppermann, H., and Paukov, I. E., 1979, The heat capacity of cobalt oxide (Co304)

in the range 5.1 - 307.34 K: Zuhr. Fiz Khimii, v. 53, p. 1608-1610.

223. King, E. G., 1951, Heats of formation of crystalline calcium orthosilicate, tricalcium silicate and zinc

orthosilicate: Am. Chem. Soc. Jour., v. 73, p. 656-658.

224. King, E. G., 1952, Heats of formation of manganous metasilicate (rhodonite) and ferrous orthosilicate

(fayalite): Am. Chem. Soc. Jour., v. 74, p. 4446-4448.

225. King, E.G., 1957, Low-temperature heat capacities and entropies at 298.15° K. of some crystalline

silicates containing calcium. Am. Chem. Soc. Jour., v. 79, p. 5437-5438.

226. King, E. G., Barany, R., Weller, W. W., and Pankratz, L. B., 1967, Thermodynamic properties of

forsterite and serpentine: U.S. Bur. Mines Rept. Inv. 6962, 19 p.

227. King, E. G., and Christensen, A. U., 1961, High-temperature heat contents and entropies of cerium

dioxide and columbium dioxide: U. S. Bur. Mines Rept. Inv. 5789, 6 p.

228. King, E. G., Ferrante, M. J., and Pankratz, L. B., 1975, Thermodynamic data for Mg(OH) 2 (brucite):

U. S. Bur. Mines Rept. Inv. 8041, 13 p.

229. King, E.G., and Todd, S.S., 1953, Heat capacities at low-temperature and entropies at 298.16° K of

stannic and stannus sulfides: Am. Chem. Soc. Jour., v. 75, p. 3023-3029.

230. King, E. G., and Weller, W. W., 1961, Low-temperature heat capacities and entropies at 298.15°K of

diaspore, kaolinite, dickite and halloysite: U.S. Bur. Mines Rept. Inv. 5810, 6 p.

Page 432: robie 1995

426 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

231. King, E. G., and Weller, W. W., 1961, Low temperature heat capacities and entropies at 298.15°K of

some sodium- and calcium-aluminum silicates: U.S. Bur. Mines Rept. Inv. 5855, 8 p.

232. King, E. G. and Weller, W. W., 1961, Low-temperature heat capacities and entropies at 298.15°K of

monotungstates of sodium, magnesium, and calcium: U.S. Bur. Mines Rept. Inv. 5791, 6 p.

233. King, E. G., and Weller, W. W., 1962, Low-temperature heat capacity and entropy at 298.15°K of red

mercuric sulfide: U.S. Bur. Mines Rept. Inv. 6001, 4 p.

234. King, E. G., and Weller, W. W., 1962, Low-temperature heat capacities and entropies at 298.15°K of

antimony and indium sulfides: U.S. Bur. mines Rept. Inv. 6040, 5 p.

235. King, E. G., and Weller, W. W., 1970, Low-temperature heat capacities and entropies at 298.15°K of

goethite and pyrophyllite: U.S. Bur. Mines Rept. Inv. 7369, 6 p.

236. King, E. G., Weller, W. W., and Christensen, A. U., 1960, Thermodynamics of some oxides of

molybdenum and tungsten: U. S. Bur. Mines Rept. Inv. 5664, 29 p.

237. Kiseleva, I. A., 1984, The enthalpy of formation of grossular: Geochemistry International, v. 21(5),

p. 138-141.

238. Kiseleva, I. A., Mel'chakova, L. V., and Ogorodnikova, L. P., 1986, Thermodynamical properties of

beryllium minerals: chrysoberyl, beryl, euclase, and bertrandite: Geokhimiya, n. 5, p. 716-729.

239. Kiseleva, I. A., and Ogorodnikova, L. P., 1986, Calorimetric data on the thermodynamics of epidote,

clinozoisite, and zoisite: Geokhimiia, n. 6, p. 846-853.

Page 433: robie 1995

REFERENCES CITED 427

240. Kiseleva, I. A., Ogorodnikova, L. P., Topor, N. D., and Chigareva, 0. G.,1980, A thermochemical study

of the CaO-MgO-Si02 system: Geochemistry International, v. 16(6), p. 122-134

241. Kiseleva, I.A., Ogorodova, L.P., Melchakova, L.V., Bisengalieva, M.R., and Becturganov, M.S., 1992,

Thermodynamic properties of copper carbonates-malachite Cu2 (OH)2CO3 . and azurite

Cu3{OH) 2(C03) 2 : Phys. Chem. Minerals, v. 19, p. 322-333.

242. Kiseleva,, I. A., Ogorodova, L. P., and Sokolova, E. L., 1989, Enthalpy of formation of andradite:

Geokhimiia, n. 1, p. 125-131.

243. Kiseleva, I. A., Topor, N. D., and Andreyenko, E. D., 1974, Thermodynamic parameters of minerals of

the epidote group: Geochemistry International, v. 11, p. 389-398.

244. Kiseleva, I. A.', Topor, N. D., and Melchakova, L. V., 1972, Experimental determination of heat content

and heat capacity of andradite and pyrope: Geokhimiia, n. 11, p. 1372-1379.

245. Kiukkoia, K., and Wagner, C., 1957, Measurements on galvanic cells involving solid electrolytes: Jour.

Electrochem. Soc., v. 104, p. 379-387.

246. Ko, H. C., Ahmad, N., and Chang, Y. A., 1982, Thermodynamics of calcination of calcite: U.S. Bur.

Mines Rept. Inv. 8647, 9 p.

247. Ko, H. C., and Daut, G. E., 1980, Enthalpies of formation of a- and y?-magnesium sulfate and magnesium

sulfate monohydrate: U. S. Bur. Mines Rept. Inv. 8409, 8p.

248. Ko, H. C., Ferrante, M. J., and Stuve, J. M., 1977, Thermophysical properties of acmite: Proceedings

of the Seventh Symposium on Thermophysical Properties, (Am. Soc. Mech. Eng.}, p. 392-395.

Page 434: robie 1995

428 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

249. Koehler, M. F., Barany, R., and Kelley, K. K., 1961, Heats and free energies of formation of ferrites and

aluminates of calcium, magnesium, sodium, and lithium: U. S. Bur. Mines Rept. Inv. 5711, 14 p.

250. Koehler, M. F., and Coughlin, J. P., 1959, Heats of formation of ferrous chloride, ferric chloride and

manganous chloride: Jour. Phys. Chemistry, v. 63, p. 605-608.

251. Kolesnik, Yu. N., Nogteva, V. V., Arkhipenko, D. K., Orekhov, B. A., and Ye, I., 1979, Thermodynamics

of pyrope-grossular solid solutions and the specific heat of grossular at 13-300 K: Geokhimiia, n.

5, p. 713-721.

252. Komada, N., Westrum, E. F., Jr., and Hemingway, B. S., 1994, Thermodynamic properties of two iron

silicates: heat capacities of deerite from 10 to 700 K and grunerite from 10 to 1000 K: Jour. Chem.

Thermodynamics, (in press).

253. Konigsberger, E., and Gamsjager, H., 1987, Solid-solute phase equilibrium in aqueous solution:

I solubility constant and free enthalpy of formation of huntite: Ber. Buns. Phys. Chemie., v. 91,

p. 785-790.

254. Konings, R. J. M., Cordfunke, E. H. P., and Ouweltjes, W., 1988, The standard enthalpies of formation

of hydroxides. II. The alkali hydroxides CsOH and KOH: Jour. Chem. Thermodynamics, v. 20, p.

777-780.

255. Kostryakov, V. N., and Kalinkina, I. N., 1964, Heat capacity and entropy for manganese, iron, cobalt,

and nickel carbonates at low temperatures: Zhur. Fizicheskoi Khimii, v. 38, p 780-78.

256. Kornilov, A.M., Ushakova, I.M., Huber, E.T., Jr., and Holley, C.E., Jr., 1975, The enthalpy of formation

of hafnium dioxide: Jour. Chem. Thermodynamics, v. 7, p. 21-26.

Page 435: robie 1995

REFERENCES CITED 429

257. Krupka, K. M., Hemingway, B. S., Robie, R. A., and Kerrick, D. M., 1985, High-temperature heat

capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite,

bronzite, talc, tremolite, and wollastonite: Am. Mineralogist, v. 70, p. 261-271.

258. Krupka, K. M., Robie, R. A., and Hemingway, B. S., 1979, The heat capacities of corundum, periclase,

anorthite, CaAI2Si208 glass, muscovite, pyrophyllite, KAISi30B glass, grossular, and NaAISi30 8 glass:

Am. Mineralogist, v. 64, p. 86-101.

259. Krupka, K. M., Robie, R. A., Hemingway, B. S., Kerrick, D. M., and Ito, Jun, 1985, Low-temperature

heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, and

wollastonite: Am. Mineralogist, v. 70, p. 249-260.

260. Landee, C. P., and Westrum, E. F., Jr., 1975, Thermophysical measurements on transition-metal

tungstates. I. Heat capacity of zinc tungstate from 5 to 550 K: Jour. Chem. Thermodynamics,

v. 7, p. 973-976.

261. Landee, C. P., and Westrum, E. F., Jr., 1976, Thermophysical measurements on transition metal

tungstates. III. Heat capacity of antiferromagnetic manganese tungstate: Jour. Chem.

Thermodynamics, v. 8, p. 663-674.

262. Lander, J. J., 1951, Experimental heat contents of SrO, BaO, CaO, BaC03 and SrC03 at

high temperatures. Dissociation pressures of BaCO3 and SrC03 : Am. Chem. Soc. Jour., v. 73,

p. 5794-5797.

263. Lange, R. A., Carmichael, I. S. E., and Stebbins, J. F., 1986, Phase transitions in leucite (KAISi20B),

orthorhombic KAISi04, and their iron analogues: Am. Mineralogist, v. 71, p. 937-945.

Page 436: robie 1995

430 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

264. Lattard, D. and Evans, B.W., 1992, New experiments on the stability of grunerite: Euro., Jour.

Mineralogy, v. 4, p. 219-238.

265. Lyon, W. G., and Westrum, E. F., Jr., 1974, Heat capacities of zinc tungstate and ferrous tungstate

from 5 to 550°K: Jour. Chem. Thermodynamics, v. 6, p. 763-80.

266. Lyon, W. G., and Westrum, E. F., Jr., 1974, High temperature thermal functions and the

thermochemistry of zinc tungstate: Jour. Chem. Thermodynamics, v. 6, p. 781-786.

267. Mah, A. D., 1954, Heats of formation of chromium oxide and cadmium oxide from combustion

calorimetry: Am. Chem. Soc. Jour., v. 76, p. 3363-3365.

268. Mah, A. D., 1957, Heats of formation of alumina, molybdenum trioxide, and molybenum dioxide: Jour.

Phys. Chemistry, v. 61, p. 1572-1573.

269. Mah, A. D., 1961, Heats of formation of cerium sesquioxide and bismuth sesquioxide by combustion

calorimetry: U. S. Bur. Mines Rept. Inv. 5676, 7 p.

270. Mah, A. D., 1982, Thermodynamic data for arsenic sulfide reactions: U.S. Bur. Mines Rept. Inv. 8671,

85 p.

271. Mah, A. D., and Pankratz, L. B., 1976, Contributions to the data on theoretical metallurgy. XVI.

Thermodynamic properties of nickel and its inorganic compounds: U.S. Bur. Mines Bull. 668,

125 p.

272. Mah, A. D., Pankratz, L. B., Weller, W. W., and King. E. G., 1967, Thermodynamic data for cuprous and

cupric oxides: U. S. Bur. Mines Rept. Inv. 7026, 20 p.

Page 437: robie 1995

REFERENCES CITED 431

273. Marland, G., 1975, The stability of CaCO3 «6H20 (ikaite). Geochem. Cosmochim. Acta., v. 39,

p. 83-91.

274. Mazdab, F. K., Anovitz, L. M., Hemingway, B. S., Robie, R. A., and Navrotsky, A., 1992,

Thermodynamic properties of some boron-bearing minerals: Abstracts with Program, 1992,

Geological Society of America, p A258.

275. McBride, J. J., and Westrum, E. F., Jr., 1976, Low-temperature heat capacity of anisotropic crystals.

Lamellar molybdenum disulfide: Jour. Chem. Thermodynamics, v. 8, p. 37-44.

276. Mehrotra, G. M., Tare, V. B., and Wagner, J. B., Jr., 1985, The Standard Gibbs Energy of Formation

of Ni3+xS2 : Jour. Electrochem. Soc., v. 132, p. 247-250.

277. Metz, G. W., Anovitz, L. M., Essene, E. J., Bohlen, S. R., Westrum, E. F., and Wall, V. J., 1983,

The heat capacity and phase equilibria of almandine: EOS v. 64, p. 346-347.

278. Mills, I., Cuitas, T., Homann, K., Kalloy, N., and Kuchitsu, K., 1988, Quantities, units and symbols in

physical chemistry: Blackwell, Oxford, 134 p.

279. Mills, K.C., 1974, Thermodynamic data for inorganic sulfides, selenides and tellurides, Butterworths,

London, 845 p.

280. Mizota, T., Tanada, H., Fujii, Y., and Koto, K., 1985, The heat capacity of cubanite and the anomaly

in cubic CuFe2S3 : Canadian Mineralogist, v. 23, p. 77-82.

281. Moecher, D. P., and Chou, l-Ming, 1990, Experimental investigation of andradite and hedenbergite

equilibria employing the hydrogen sensor technique, with revised estimates of A fG° /298 for andradite

and hedenbergite: Am. Mineralogist, v. 75, p. 1327-1341.

Page 438: robie 1995

432 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

282. Moecher, D. P., and Essene, E. J., 1990, Phase equilibria for calcic scapolite and implications of variable

Al-Si disorder for P-T, T-XCQ and a~x relations. Jour. Petrology, v. 31, 997-1024.

283. Moore, G. E., 1943, Heat content of manganese dioxide and carbonate at high temperatures:

Am. Chem. Soc. Jour., v. 65, p. 1398-1399.

284. Moore, G. E., 1943, Heat contents at high temperatures of the anhydrous chlorides of calcium, iron,

magnesium, and manganese: Am. Chem. Soc. Jour., v. 65, p. 1700-1703.

285. Morey, G. W., Fournier, R. 0., and Rowe, J. J., 1962, Solubility of quartz in water in the temperature

interval from 25° to 300°C: Geochim. Cosmochim. Acta, v. 26, p. 1029-1043.

286. Mosesman, M. A., and Pitzer, K. S., 1941, Thermodynamic properties of the crystalline forms of silica:

Am. Chem. Soc. Jour., v. 63, p. 2348-2356.

287. Nabutouskaya, O.A., Opperman, H., Paukov, I.E., and Khriplovich, L.M., 1985, Thermodynamic

properties of cobalt monoxide at 5-328 K: Zhur. Fiz. Khim; v. 59, p. 1253-1254.

288. Navrotsky, Alexandra, 1989, Thermochemistry of perovskites in Navrotsky, Alexandra and Weidner,

D.J. (eds.), Perovskite: A structure of great interest to geophysics and materials science: AGU

Geophysical Monograph 45, p. 67-80.

289. Navrotsky, Alexandra, and Coons, W. E., 1976, Thermochemistry of some pyroxenes and related

compounds: Geochim. Cosmochim. Acta, v. 40, p. 1281-1288.

290. Navrotsky, Alexandra, and Kleppa, O.J., 1968, Thermodynamics of formation of simple spinels: Jour.

Inorg. Nucl. Chemistry, v. 30, p. 479-498.

Page 439: robie 1995

REFERENCES CITED 433

291. Navrotsky, Alexandra, Pintchovski, F. S., and Akimoto, S. I., 1979, Calorimetric study of the stability

of high pressure phases in the systems CoO-Si02 and "FeO"-Si02, and calculation of phase

diagrams in MO-SiO2 systems: Physics of the Earth and Planetary Interiors, v. 19, p. 275-292.

292. Naylor, B. F., 1944, High-temperature heat contents of ferrous and magnesium chromites: Ind. Eng.

Chemistry, v. 36, p. 933-934.

293. Naylor, B. F, 1945, Heat contents at high temperatures of magnesium and calcium fluorides:

Am. Chem. Soc. Jour., v. 67, p. 150-152.

294. Naylor, B. F., 1946, High-temperature heat contents of TiO, Ti2O3, Ti3O5, and Ti02 : Am. Chem. Soc.

Jour. v. 68, p. 1077-1080.

295. Naylor, B. F., and Cook, O. A., 1946, High-temperature heat contents of the metatitanates of calcium,

iron, and magnesium: Am. Chem. Soc. Jour., v. 68, p. 1003-1005.

296. Newton, R. C., Charlu, T. V., Anderson, P. A. M., and Kleppa, 0. J., 1979, Thermochemistry

of synthetic clinopyroxenes on the join CaMgSi2OB-Mg 2Si2OB : Geochim. Cosmochim. Acta, v. 43,

p. 55-60.

297. Newton, R. C., Charlu, T. V., and Kleppa, O. J., 1974, A calorimetric investigation of the stability of

anhydrous magnesium cordierite with application to granulite facies metamorphism: Contribution

to Mineralogy and Petrology, v. 44, p. 295-311.

298. Newton, R. C., Charlu, T. V., and Kleppa, O. J., 1977, Thermochemistry of high-pressure garnets

and clinopyroxenes in the system CaO-MgO-AI203-SiO2 : Geochim. Cosmochim. Acta, v. 41,

p. 369-377.

Page 440: robie 1995

434 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

299. Newton, R. C., Thompson, A. B., and Krupka, K. M., 1977, Heat capacity of synthetic MggAIjSiOgO^

from 350 to 1,000 K and the entropy of pyrope: EOS Trans. Am. Geophys. Union, v. 58, p. 523.

300. O'Brien, C. J., and Kelley, K. K., 1957, High temperature heat contents of cryolite, anhydrous aluminum

fluoride and sodium fluoride: Am. Chem. Soc. Jour., v. 79, p. 5616-5618.

301. Ogorodova, L. N., Kiseleva, I. A., and Shuriga, T. N., 1989, Enthalpies of formation and phase

transformation of cryolite: Geokhimiia, N. 8, p. 1180-1183.

302. O'Hare, P.A.G., 1972, Thermochemical and theoretical investigations of the sodium-oxygen system,

Part I. The standard enthalpy of formation of sodium oxide (Na 20): Jour. Chem. Phys., v. 56,

p. 4513-4516.

303. O'Hare, P. A. G., 1987, Inorganic chalcogenides: high-tech materials, low-tech thermodynamics: Jour.

Chem. Thermodynamics, v. 19, p. 675-701.

304. O'Hare, P. A. G., Hubbard, W. N., Johnson,G. K., and Flotow, H. E., 1984, Calorimetric mesurements

of the low-temperature heat capacity, standard molar enthalpy of formation at 298.15 K, and high-

temperature molar enthalpy increments relative to 298.15 K of tungsten disulfide (WS2), and the

thermodynamic properties to 1500 K: Jour. Chem. Thermodynamics, v. 16, p. 45-59.

305. O'Hare, P. A. G., Lewis, B. M., and Parkinson, B. A., 1988, Standard molar enthalpy of formation by

fluorine-combustion calorimetry of tungsten diselenide (WSe2). Thermodynamics of the high-

temperature vaporization of WSe2 . Revised value of the standard molar enthalpy of formation of

molybdenite (MoS2): Jour. Chem. Thermodynamics, v. 20, p. 681-691.

Page 441: robie 1995

REFERENCES CITED 435

306. Okazaki, H. and Takano, A., 1985, The specific heat of Ag2S in alpha-phase: Zeit. Naturforsch., v. 40a,

p. 986-988.

307. O'Neill, H. St. C., 1985, Thermodynamics of Co3O4 : A possible electron spin impairing transition in

Co3+ : Phys. Chem. Minerals, v. 12, p. 149-154.

308. O'Neill, H. St. C., 1987, Free energies of formation of NiO, CoO, Ni 2SiO4, and Co2SiO4 : Am.

Mineralogist, v. 72, p. 280-291.

309. O'Neill, H. St. C., 1987, Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy

of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4): Am. Mineralogist, v. 72, p. 67-75.

310. O'Neill, H. St. C., 1988, Systems Fe-O and Cu-O: Thermodynamic data for the equilibria Fe-TeO,"

Fe-Fe3O4, "FeO"-Fe3O4, Fe3O4-Fe2O3, Cu-Cu20, and Cu2O-CuO from emf measurements:

Am. Mineralogist, v. 73, p. 470-486.

311. O'Neill, H. St. C., and Navrotsky, A., 1980, The thermodynamics of the clinopyroxene to pyroxenoid

phase transition in the systems CaO-MnO-SiO2 : EOS, v. 61, p. 1147.

312. O'Neill, Hugh St. C., Pownceby, M. I., and Wall, V. J., 1988, llmenite-rutile-iron and ulvospinel-ilmenite-

iron equilibria and the thermochemistry of ilmenite (FeTiO 3 ) and ulvospinel (Fe2Ti04): Geochim.

Cosmochim. Acta, v. 52, p. 2065-2072.

313. Openshaw, R. E., Hemingway, B. S., Robie, R. A., Waldbaum, D. R., and Krupka, K. M., 1976, The heat

capacities at low temperatures and entropies at 298.15 K of low albite, analbite, microcline, and

high sanidine: U.S. Geol. Survey Jour. Research, v. 4, p. 195-204.

Page 442: robie 1995

436 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

314. Orr, R. L., 1953, High temperature heat contents of magnesium orthosiiicate and ferrous orthosiiicate:

Am. Chem. Soc. Jour., v. 75, p. 528-529.

315. Orr, R. L. and Christensen, A. U., 1958, High temperature heat contents of stannous and stannic

sulfides: Jour. Phys. Chemistry, v. 62, p. 124-125.

316. Pankratz, L. B., 1964, High temperature heat contents and entropies of muscovite and dehydrated

muscovite: U.S. Bur. Mines Rept. Inv. 6371, 6 p.

317. Pankratz, L. B., 1968, High-temperature heat contents and entropies of dehydrated analcite, kaliophilite,

and leucite: U.S. Bur. Mines Rept. Inv. 7073, 8 p.

318. Pankratz, L. B., 1970, Thermodynamic data for silver chloride and silver bromide: U. S. Bur. Mines

Rept. Inv. 7430, 12 p.

319. Pankratz, L. B., 1982, Thermodynamic properties of elements and oxides: U. S. Bur. Mines Bull. 672,

509 p.

320. Pankratz, L. B., 1984, Thermodynamic properties of halides: U. S. Bur. Mines Bull. 674, 826 p.

321. Pankratz, L. B., and Kelley, K. K., 1963, Thermodynamic data for magnesium oxide (periclase):

U. S. Bur. Mines Rept. Inv. 6295, 5 p.

322. Pankratz, L. B., and Kelley, K. K., 1964, High-temperature heat contents and entropies of andalusite,

kyanite, and sillimanite: U.S. Bur. Mines Rept. Inv. 6370, 7 p.

Page 443: robie 1995

REFERENCES CITED 437

323. Pankratz, L. B., and Kelley, K. K., 1964, High-temperature heat contents and entropies of akermanite,

cordierite, gehlenite, and merwinite: U.S. Bur. Mines Rept. Inv. 6555, 7 p.

324. Pankratz, L. B., and King, E. G., 1965, High-temperature heat contents and entropies of two zinc

sulfides and four solid solutions of zinc and iron sulfides: U.S. Bur. Mines Rept. Inv. 6708, 8 p.

325. Pankratz, L. B., and King, E. G., 1970, High-temperature enthalpies and entropies of chalcopyrite and

bornite: U.S. Bur. Mines Rept. Inv. 7435, 10 p.

326. Pankratz, L. B., Mah, A. D., and Watson, S. W., 1987, Thermodynamic properties of sulfides: U.S. Bur.

Mines Bull., 689, 427 p.

327. Pankratz, L. B., and Weller, W. W., 1967, Thermodynamic properties of three lithium-aluminum silicates:

U.S. Bur. Mines Rept. Inv. 7001, 13 p.

328. Pankratz, L. B., and Weller, W. W., 1969, Thermodynamic data for ferric sulfate and indium sulfate:

U. S. Bur. Mines Rept. Inv. 7280, 8 p.

329. Pankratz, L. B., Weller, W. W., and Kelley, K. K., 1963, Low-temperature heat capacity and high-

temperature heat content of mullite: U.S. Bur.Mines Rept. Inv. 6287, 7 p.

330. Parks, G. A., 1972, Free energies of formation and aqueous solubilities of aluminum hydroxides and

oxide hydroxides at 25 °C: Am. Mineralogist, v. 57, p. 1163-1189.

331. Pashinkin, A.C., Muratova, V.A., Antyukhov, A.M., and Moiseyev, N.V., 1989, Heat capacity and

thermodynamic functions of arsenopyrite (in Russian): Izv. Akad. Nauk. SSSR, Neorg. Mater.,

v. 25, p. 225-227.

Page 444: robie 1995

438 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

332. Pashinkin, A.C., Muratova, V.A., Moiseyev, N.V. and Bazhenov, J.V., 1991, Heat capacity and

thermodynamic functions of iron diarsenide in the temperature range 5 K to 300 K: Jour. Chem.

Thermodynamics, v. 23, p. 827-830.

333. Pashinkin, A. S., Rabinovich, I. B., Sheiman, M. S., Nistratov, V. P., and Vorobjova, O. I., 1985, Heat

capacity and thermodynamic functions of tellurium dioxide in the range 5 to 300 K: Jour. Chem.

Thermodynamics, v. 17, p. 43-47.

334. Perkins, D., Ill, Essene, E. J., Westrum, E. F., Jr., and Wall, V. J., 1979, New thermodynamic data

for diaspore and their implications to the system AI 2O3-SiO2-H2O: Am. Mineralogist, v. 64,

p. 1080-1090.

335. Perkins, D., Ill, Westrum, E. F., Jr., and Essene, E. J., 1980, The thermodynamic properties and phase

relations of some minerals in the system CaO-AI203-SiO2-H2O: Geochim. Cosmochim. Acta, v. 44,

p. 61-84.

336. Plummer, L. N., and Busenberg, E., 1982, The solubilities of calcite, aragonite and vaterite in CO 2-H20

solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-C02-

H2O: Geochim. Cosmochim. Acta, v. 46, p. 1011-1040.

337. Potter, R.W. II, 1977, An electrochemical investigation of the system copper-sulfur: Economic Geology,

v. 72, p. 1524-1542.

338. Richards, A. W., 1959, The heats of formation and dissociation of zinc sulfide: Jour. Appl. Chemistry,

v. 9, p. 142-145.

Page 445: robie 1995

REFERENCES CITED 439

339. Richardson, D. W., and Brown, R. R., 1974, Enthalpy of formation of malachite [Cu 2(CO3)(OH) 2]: U.S.

Bur. Mines Rept. Inv. 7851, 5 p.

340. Richet, P., and Bottinga, Y., 1984, Anorthite, andesine, wollastonite, diopside, cordierite and pyrope:

thermodynamics of melting, glass transitions, and properties of the amorphous phases: Earth and

Planetary Science Letters, v. 67, p. 415-432.

341. Richet, P., Bottingia, Y., Denielou, L., Petitet, J.P., and Tequi, C., 1982, Thermodynamic properties of

quartz, cristobalite and amorphous SiO2 : drop calorimetry measurements between 1000 and 1800

K and a review from 0 to 2000 K. Geochim. Cosmochim. Acta., v. 46, p. 2639-2658.

342. Richet, P., and Piquet, G., 1991, High-temperature heat capacity and premelting of minerals in the

system MgO-CaO-AI203-SiO2 : Jour. Geophys. Research, v. 96, No. B1, p. 445-456.

343. Richet, P., Robie, R. A., and Hemingway, B. S., 1987, Low-temperature heat capacity of diopside glass

(CaMgSi2O6): A calorimetric test of the configurational-entropy theory applied to the viscosity of

liquid silicates: Geochm. Cosmochim. Acta, v. 50, p. 1521-1533.

344. Richet, P., Robie, R. A., and Hemingway, B. S., 1991, Thermodynamic properties of wollastonite,

pseudowollastonite and CaSiO3 glass and liquid: Europ. Jour. Mineralogy, v. 3, p. 475-484.

445. Richet, P., Robie, R. A., and Hemingway, B.S., 1993, Entropy and structure of silicate glasses and melts:

Geochim. Cosmochim. Acta, v. 57, p. 2751-2766.

346. Richet, P., Robie, R. A., Rogez, J., Hemingway, B. S., Courtial, P., and Tequi, C., 1990,

Thermodynamics of open networks: ordering and entropy in NaAISi04 glass, liquid, and polymorphs:

Phys. Chem. Minerals, v. 17, p. 385-394.

Page 446: robie 1995

440 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

347. Robie, R. A., 1965, Heats and free energies of formation of troilite, herzenbergite, magnesite, and

rhodochrosite calculated from equilibrium data: U.S. Geol. Survey Prof. Paper 525-D, p. 65-72.

348. Robie, R. A., Bin, Zhao, Hemingway, B. S., and Barton, M. D., 1987, Heat capacity and thermodynamic

properties of andradite garnet, Ca3Fe2Si3O 12 , between 10 and 1000 K and revised values for AfG°

(298.15 K) of hedenbergite and wollastonite: Geochim. Cosmochim. Acta, v. 51, p. 2219-2224.

349. Robie, R. A., Evans, H. T., Jr., and Hemingway, B. S., 1988, Thermophysical properties of ilvaite

CaFeVFe3 *Si2O7(OH): heat capacity from 7 to 920 Kand thermal expansion between 298 and 856

K: Phys. Chem. Minerals, v. 15, p. 390-397.

350. Robie, R. A., Finch, C. B., and Hemingway, B. S., 1982, Heat capacity and entropy of fayalite (Fe2Si04)

between 5.1 and 383 K: comparison of calorimetric and equilibrium values for the QFM buffer

reaction: Am. Mineralogist, v. 67, p. 463-469.

351. Robie, R. A., Haselton, H. T., Jr., and Hemingway, B. S., 1984, Heat capacities and entropies of

rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K: Am. Mineralogist, v. 69,

p. 349-357.

352. Robie, R. A., Haselton, H. T., Jr., and Hemingway, B. S., 1989, Heat capacities and entropies at

298.15 K of MgTi03 (geikielite), ZnO (zincite), and ZnC03 (smithsonite): Jour. Chem.

Thermodynamics, v. 21, p. 743-749.

353. Robie, R. A., and Hemingway, B. S., 1972, The heat capacities at low-temperatures and entropies

at 298.15 K of nesquehonite, MgCO3 «H2O, and hydromagnesite: Am. Mineralogist, v. 57,

p. 1768-1781.

Page 447: robie 1995

REFERENCES CITED 441

354. Robie, R. A., and Hemingway, B. S., 1973, The enthalpies of formation of nesquehonite, MgCO3 3H2O,

and hydromagnesite, 5MgO«4CO2 «5H2O: U.S. Geol. Survey Jour. Research, v. 1, p. 543-547.

355. Robie, R. A., and Hemingway, B. S., 1984, Entropies of kyanite, andalusite, and sillimanite: additional

constraints on the pressure and temperature of the AI2SiO5 triple point: Am. Mineralogist, v. 69,

p. 298-306.

356. Robie, R. A., and Hemingway, B. S., 1984, Heat capacities and entropies of phlogopite

(KMg3[AISi3O 10](OH) 2) and paragonite (NaAI 2[AISi3O 10](OH2) between 5 and 900 Kand estimates

of the enthalpies and Gibbs free energies of formation: Am. Mineralogist, v. 69, p. 858-868.

357. Robie, R. A., and Hemingway, B. S., 1985, Low-temperature molar heat capacities and entropies of

MnO2 (pyrolusite), Mn3O4 (hausmannite) and Mn2O3 (bixbyite): Jour. Chem. Thermodynamics,

v. 17, p. 165-181.

358. Robie, R. A., and Hemingway, B. S., 1991, Heat capacities of kaolinite from 7 to 380 K and of DMSO

intercalated kaolinite from 20 to 310 K. The entropy of kaolinite AI 2Si205(OH) 4 : Clays and Clay

Minerals, v. 39, p. 362-386.

359. Robie, R. A. and Hemingway, B. S., 1994, Heat capacities of synthetic grossular (Ca3AI2Si 30 12), macro-

crystals of magnesite ((Mg0.991 Fe0.005Ca0.oo3Mnaoo1 )C03), high-temperature superconductors

YBa2Cu306+x and BiCaSrCu2O6+x, and type 321 stainless steel: U. S. Geological Survey Open-File

Report 94-223, 12 p.

360. Robie, R. A., Hemingway, B. S., and Ditmars, D.A., unpublished data on Cp between 10 and 360 K for

calcium metal.

Page 448: robie 1995

442 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

361. Robie, R. A., Hemingway, B. S., and Fisher, J. R., 1978, Thermodynamic properties of minerals and

related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures: U.S.

Geol. Survey Bull. 1452, 456 p.

362. Robie, R. A., Hemingway, B. S., Gillet, P., and Reynard, B., 1991, On the entropy of glaucophane

Na2Mg3AI2 Si 8O22 (OH) 2 : Contributions to Mineralogy and Petrology, v. 107, p. 484-486.

363. Robie, R. A., Hemingway, B. S., Ito, J., and Krupka, K. M., 1984, Heat capacity and entropy of

Ni2SiO4-olivine from 5 to 1000 K and of Co2Si04 from 360 to 1000 K: Am. Mineralogist, v. 69,

p. 1096-1101.

364. Robie, R. A., Hemingway, B. S., and Takei, H., 1982, Heat capacities and entropies of Mg2SiO4,

Mn2SiO4, and Co2SiO4 between 5 and 380 K: Am. Mineralogist, v. 67, p. 470-482.

365. Robie, R. A., Hemingway, B. S., and Wilson, W. H., 1976, The heat capacities of Calorimetry

Conference copper and muscovite KAI2 (AISi3)O 10(OH)2, pyrophyllite AI2Si4O 10(OH) 2, and illite

K3(AI7Mg)(Si 14AI2)040(OH) 8 between 15 and 375 Kandtheir standard entropies at 298.15 K: U.S.

Geol. Survey Jour. Research, v. 4, p. 631-644.

366. Robie, R. A., Hemingway, B. S., and Wilson, W. H., 1978, Low-temperature heat capacities and

entropies of KAISi3O8, NaAISi3O8/ and CaAUSi 208 glasses and of anorthite: Am. Mineralogist, v. 63,

p. 110-123.

367. Robie, R.A., Huebner, J.S., and Hemingway, B.S., 1993, Heat capacities and thermodynamic

properties of braunite (Mn7 Si0 12 ) and rhodonite (MnSiO3): (unpublished report).

Page 449: robie 1995

REFERENCES CITED 443

368. Robie, R. A., Russell-Robinson, S., and Hemingway, B. S., 1989, Heat capacities and entropies from

8 to 1000 K of langbeinite (K2Mg 2(SO4)3), anhydrite (CaSO4) and of gypsum (CaSO4 2H20) to 325

K: Thermochimica Acta, v. 139, p. 67-81.

369. Robie, R. A., Seal, R. R., II, and Hemingway, B. S., 1994, Heat Capacity and entropy of bornite

(Cu5FeS4) between 6 and 760 K and the thermodynamic properties of phases in the Cu-Fe-S:

Canadian Mineralogist, v. 32, 945-956.

370. Robie, R. A., and Stout, J. W., 1963, Heat capacity from 12 to 305 °K and entropy of talc and

tremolite: Jour. Phys. Chemistry., v. 67, p. 2252-2256.

371. Robie, R. A., Wiggins, L. B., Barton, P. B., Jr., and Hemingway, B. S., 1985, Low-temperture heat

capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs

free energy of formation of chalcopyrite and bornite (Cu5FeS4): Jour. Chem. Thermodynamics,

v. 17, p. 481-488.

372. Romanovskii, V. A., and Tarasov, V. V., 1960, Heat capacity of the trisulfides of arsenic, antimony, and

bismuth in connection with their structural and physical-chemical properties: Sov. Phys.-Solid

State, v. 2, p. 1170-1175.

373. Sack, R.O. and Ghiorso, M.S., 1991, Chromium spinels as petrogenetic indicators: Thermodynamics

and petrological applications: Am. Mineralogist, v. 76, p. 827-847.

374. Saxena, S. K., and Chatterjee, N., 1986, Thermochemical data on mineral phases: the system

CaO-MgO-AI 203-Si02 : Jour. Petrology, v. 27, p. 827-842.

375. Schaefer, S. C., 1980, Electrochemical determination of Gibbs energies of formation of MnS and Fe0 9S:

U.S. Bur. Mines Rept. Inv., 8486, 17 p.

Page 450: robie 1995

444 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

376. Schaefer, S. C., 1981, Electrochemical determination of Gibbs energies of formation of cobalt and nickel

sulfides: U.S. Bur. Mines Rept. Inv., 8588, 18 p.

377. Schaefer, S. C., 1983, Electrochemical determination of thermodynamic properties of manganese sulfate

and cadmium oxysulfate: U. S. Bur. Mines Rept. Inv. 8809, 20 p.

378. Schaefer, S. C., and Gokcen, N. A., 1982, Electrochemical determination of the thermodynamic

properties of sphalerite, ZnS (beta): High Temperature Science, v. 15, p. 225-237.

379. Schuiling, R. D., Vergouwen, L, and Van der Rijst, J., 1976, Gibbs energies of formation of zircon

(ZrSi04), thorite (ThSiOJ, and phenacite (Be2SiO4): Am. Mineralogist, v. 61, p. 161-168.

380. Seal, R.R., II, Essene, E.J. and Kelley, W.C., 1990, Tetrahedrite and tennantite: evaluation of

thermodynamic data and phase equilibria: Canadian Mineralogist, v. 28, p. 725-738.

381. Seal, R. R., II, Robie, R. A., and Hemingway, B. S., 1991, Unpublished entropy and Cp data for enargite.

382. Seal, R. R., II, Robie, R. A., Hemingway, B. S., and Barton, P. B., Jr., 1992, Superambient heat

capacities of synthetic stibnite, berthierite and chalcostibite: Revised thermodynamic properties

and implications for phase equilibria: Economic Geology, v. 87, p. 1911-1918.

383. Semenov, Yu. V., Malinko, S. V., Kiseleva, I. A., and Khodakovsky, I. L., 1987, The formation

conditions of endogenous calcium borates and borosilicates: Geokhimiya, No. 8, p. 1182-1190.

384. Settle, J. L., Johnson, G. K., and Hubbard, W. N., 1974, The enthalpy of formation of dicesium

monoxide (Cs2O): Jour. Chem. Thermodynamics, v. 6, p. 263-269.

Page 451: robie 1995

REFERENCES CITED 445

385. Sharp, Z. D., Essene, E. J., Anovitz, L. M., Metz, G. W., Westrum, E. F., Hemingway, B. S., and Valley,

J. W., 1983, The heat capacity of natural monticellite and phase equilibria in the system CaO-MgO-

Si02-C02 : Geochim. Cosmochim. Acta, v. 50, p. 1475-1484.

386. Shearer, J. A., and Kleppa, 0. J., 1973, The enthalpies of formation of MgAI204, MgSi03, Mg 2Si04 and

AI2Si05 by oxide melt solution calorimetry: Jour. Inorg. Nuc. Chemistry, v. 35, p. 1073-1078.

387. Shomate, C. H., and Naylor, B. B., 1945, High-temperature heat contents of aluminum oxide, aluminum

sulfate, potassium sulfate, ammonium sulfate and ammonium bisulfate: Am. Chem. Soc. Jour.,

v. 67, p. 72-75.

388. Sirota, N. N., Lubyannikov, E. P., Novikov, V. V., and Sidorov, A. A., 1985, Low-temperture

thermodynamic properties of cubic cubanite at temperatures of 5-300 K: Soviet Physics Doklady,

v. 30, p. 789-791.

389. Southard, J. C., 1941, A modified calorimeter for high temperatures. The heat content of silica,

wollastonite and thorium dioxide above 25°: Am. Chem. Soc. Jour., v. 63, p. 3142-3150.

390. Southard, J. C., and Moore, G. E., 1942, High-temperature heat content of Mn304, MnSi03 and Mn3C:

Am. Chem. Soc. Jour., v. 64, p. 1769-1770.

391. Southard, J. C., and Shomate, C. H., 1942, Heat of formation and high-temperature heat content

of manganous oxide and manganous sulfate. High-temperature heat content of manganese:

Am. Chem. Soc. Jour., v. 64, p. 1770-1774.

392. Staveley, L. A. K., and Linford, R. G., 1969, The heat capacity and entropy of calcite and aragonite and

their interpretation: Jour. Chem. Thermodynamics, v. 1, p. 1-11.

Page 452: robie 1995

446 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

393. Stephenson, C. C., and Smith, D., 1968, Heat capacity of manganese titanate from 30° to 300°K:

Jour. Chem. Physics, v. 49, p. 1814-1818.

394. Stolen, S., Gronvold, F., and Westrum, E. F., Jr., 1990, Thermodynamics of copper sulfides. IV. Heat

capacity and thermodynamic properties of Cu^oS from 5 K to 750 K, Cu^gS from 5 K to 1000

K, Cu 1-98S from 300 K to 750 K: Jour. Chem. Thermodynamics, v. 22, p. 1035-1057.

395. Stolen, S., Gronvold, F., Westrum, E. F., Jr., and Kolonin, G. R., 1991, Heat capacities and

thermodynamic properties of synthetic heazlewoodite, Ni3S2, and of the high-temperature phase

Ni3±xS2 : Jour. Chem. Thermodynamics, v. 23, p. 77-93.

396. Stout, J. W., and Robie, R. A., 1963, Heat capacity from 11 to 300°K. Entropy and heat of formation

of dolomite: Jour. Phys. Chemistry, v. 67, p. 2248-2252.

397. Stubbles, J. R., and Birchenall, C. E., 1959, Redetermination of the lead-lead sulfide equilibrium between

585 and 920°C K: Trans. Metal. Soc. AIME., v. 215, p. 535-539.

398. Stuve, J. M., 1974, Low-temperture heat capacities of sphalerite and wurtzite: U.S. Bur. Mines Rept.

Inv., 7940, 8 p.

399. Stuve, J. M., Beyer, R. P., and Brown, R. R., 1985, Thermodynamic properties of CoS0.89, CoS,^, and

CoS2 : U.S. Bur. Mines Rept. Inv., 8994, 11 p.

400. Stuve, J. M., and Ferrante, M. J., 1980, Low-temperature heat capacities and high-temperature

enthalpies of chiolite (Na5AI3F14): U. S. Bur. Mines Rept. Inv. 8442, 8 p.

401. Stuve, J. M., Ferrante, M. J., and Ko, H. C., 1978, Thermodynamic properties of NiBr2 and NiS04 from

10 to 1,200 K: U.S. Bur. Mines Rept. Inv. 8271, 15 p.

Page 453: robie 1995

REFERENCES CITED 447

402. Tequi, C., Robie, R. A., Hemingway, B. S., Neuville, D., and Richet, P., 1991, Melting

and thermodynamic properties of pyrope (Mg3AI2Si30 12): Geochim. Cosmochim. Acta, v. 55,

p. 1005-1010.

403. Thompson, A. B., Perkins, D. Ill, Sonderegger, U., and Newton, R. C., 1978, Heat capacities of

synthetic CaAI2Si0 6-CaMgSi206-Mg 2Si20 6 pyroxenes: EOS Transactions, v. 59, p. 395.

404. Thompson, A. B., and Wennemer, M., 1979, Heat capacities and inversions in tridymite, cristobalite,

and tridymite-cristobalite mixed phases: Am. Mineralogist, v. 64, p. 1018-1026.

405. Todd, S. S., 1951 , Low-temperature heat capacities and entropies at 298.16°K of crystalline calcium

orthosilicate, zinc orthosilicate and tricalcium silicate: Am. Chem. Soc. Jour., v. 73, p. 3277-3278.

406. Todd, S. S., and Kelley, K. K., 1956, Heat and free-energy data for tricalcium dititanate, sphene, lithium

metatitanate, and zinc-titanium spinel: U.S. Bur. Mines Rept. Inv. 5193, 18 p.

407. Topor, L, Kleppa, 0. J., Newton, R. C., and Kerrick, D. M., 1989, Molten salt calorimetry of AI 2Si05

polymorphs at 1000 K. EOS Transactions (Amer. Geophys. Union), v. 70, p. 493.

408. Torgeson, D. R., and Sahama, T. G., 1948, A hydrofluoric acid solution calorimeter and the

determination of the heats of formation of Mg2Si04, MgSi03, and CaSi03 : Am. Chem. Soc. Jour.,

v. 70, p. 2156-2160.

409. Toulmin, P., Ill, and Barton, P. B., Jr., 1964, Thermodynamic study of pyrite and pyrrhotite: Geochim.

Cosmochim. Acta, v. 28, p. 641-671.

410. Treiman, A. H., and Essene, E. J., 1983, Phase equilibria in the system CaO-Si02-H20: Am. Jour.

Science, v. 283-A, p. 97-120.

Page 454: robie 1995

448 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

411. Tremaine, P.R. and LeBlanc, J.C., 1980, The solubility of magnetite and the hydrolysis and oxidation

of Fe2+ in water to 300°C: Jour. Sol. Chemistry, v. 9, p. 415-442.

412. Turnbull, A. G., 1973, A thermochemical study of vaterite: Geochim. Cosmochim. Acta, v. 37,

p. 1593-1601.

413. Ulbrich, H. H., and Waldbaum, D., R., 1976, Structural and other contributions to the third-law

entropies of silicates: Geochim. Cosmochim. Acta, v. 40, p. 1-24.

414. van Lier, J. A., de Bruyn, P. L., and Overbeek, J. Th. G., 1960, The solubility of quartz: Jour. Phys.

Chemistry, v. 64, p. 1675-1682.

415. Vanderzee, C. E., Rodenburg, L. N., and Berg, R. L., 1974, Thermochemical studies on red and yellow

orthorhombic and on red hexagonal mercuric oxide: Jour. Chem. Thermodynamics, v. 6, p. 17-33.

416. Vanderzee, C. E., and Wigg, D. A., 1981, The standard enthalpies of solution and formation of

Wegscheider's salt: Na2C03 3NaHC03(s) and of trona: Na2C03 «NaHC03 «2H20(s) at 298.15 K:

Jour. Chem. Thermodynamics, v. 13, p. 573-583.

417. Victor, A. C., and Douglas, T. B., 1961, Thermodynamic properties of thorium dioxide from 298 to

1,200°K: U. S. Natl. Bur. Standards Jour. Research, v. 65A, p. 105-111.

418. Victor, A. C., and Douglas, T. B., 1963, Thermodynamic properties of magnesium oxide and beryllium

oxide from 298 to 1200°K: U. S. Natl. Bur. Standards Jour. Research, v. 67A, p. 325-329.

419. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L.,

and Nuttal, R. L., 1982, The NBS tables of chemical thermodynamic properties. Selected values

for inorganic and C 1 and C2 organic substances in SI units: Jour. Phys. Chem. Ref. Data, v. 11,

supplement no. 2, 392 p.

Page 455: robie 1995

REFERENCES CITED 449

420. Waldbaum, D. R., 1973, The configurational entropies of Ca 2MgSi207-Ca2SiAI 2O7 melilites and related

minerals: Contributions to Mineralogy and Petrology, v. 39, p. 33-54.

421. Waldbaum, D. R., and Robie, R. A., 1971, Calorimetric investigation of Na-K mixing and polymorphism

in the alkali feldspars: Zeit. Kristallographie, v. 184, p. 381-420.

422. Walther, J. V., and Helgeson, H. C., 1977, Calculation of the thermodynamic properties of aqueous

silica and the solubility of quartz and its polymorphs at high pressures and temperatures: Am. Jour.

Sci., v. 227, p. 1315-1351.

423. Watanabe, H., 1982, Thermochemical properties of synthetic high pressure compounds relevant to the

earth's mantle. ]n Akimoto, S., and Manghnani, M. H., eds. High-Pressure Research In

Geophysics, p. 441-464, Reidel, Dordrecht.

424. Waterfield, C. G., Linford, R. G., Goalby, B. B., Bates, T. R., Elyard, C. A., and Staveley, L. A. K., 1968,

Thermodynamic investigation of disorder in the hydrates of sodium carbonate: Faraday Soc. Trans.,

v. 69, p. 868-874.

425. Wechsler, B.A., and Navrotsky, A., 1984, Thermodynamics and structural chemistry of compounds in

the system MgO-Ti02 : Jour. Solid State Chemistry, v. 55, p. 165-180.

426. Welch, M.D., and Pawley, A.R., 1991, Tremolite: New enthalpy and entropy data from a phase

equilibrium study of the reaction tremolite = 2 diopside + 1.5 ortho enstatite + ^-quartz + H20:

Am. Mineralogist, v. 76, p. 1931-1939.

427. Weller, W. W., and Kelley, K. K., 1963, Low-temperature heat capacities and entropies at 298.15°K

of akermanite, cordierite, gehlenite, and merwinite: U.S. Bur. Mines Rept. Inv. 6343, 7 p.

Page 456: robie 1995

450 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

428. Weller, W. W., and Kelley, K. K., 1964, Low-temperature heat capacities and entropies at 298.15°K

of lead molybdate and lead tungstates: U.S. Bur. Mines Rept. Inv. 6357, 5 p.

429. Weller, W. W., and Kelley, K. K., 1964, Low-temperature heat capacities and entropies at 298.15°K

of sulfides of arsenic, germanium and nickel: U.S. Bur. Mines Rept. Inv. 6511, 7 p.

430. Weller, W. W., and Kelley, K. K., 1966, Low-temperature heat capacities and entropies at 298.15°K

of ferrous molybdate and ferrous tungstate: U.S. Bur. Mines Rept. Inv. 6782, 5 p.

431. Weller, W. W., and King, E. G., 1963, Low-temperature heat capacities and entropies at 298.15°K of

monomolybdates of sodium, magnesium, and calcium: U.S. Bur. Mines Rept. Inv. 6147, 6 p.

432. Weller, W. W., and King, E. G., 1963, Low-temperature heat capacity and entropy at 298.15°K of

muscovite: U.S. Bur. Mines Rept. Inv. 6281, 4 p.

433. Westrich, H. R., and Holloway, J. R., 1981, Experimental dehydration of pargasite and calculation of

its entropy and Gibbs energy: Am. Jour. Science, v. 281, p. 922-934.

434. Westrich, H. R., and Navrotsky, A., 1981, Some thermodynamic properties of fluorapatite,

fluorpargasite, and fluorphlogopite: Am. Jour. Science, v. 281, p. 1091-1103.

435. Westrum, E. F., Jr., written communication, September, 1959.

436. Westrum, E.F., Jr., and Beale, A.F., Jr., 1961, Heat capacities and chemical thermodynamics of cerium

(III) fluoride and of cerium (IV) oxide from 5 to 300° K: Jour. Phys. Chemistry, v. 65, p. 353-355.

437. Westrum, E. F., Jr., Chou, C., and Gronvold, F., 1959, Heat capacities and thermodynamic properties

of the iron telluridesFeLnTe and FeTe2 from5to350° K: Jour. Chem. Physics, v. 30, p. 761-764.

Page 457: robie 1995

REFERENCES CITED 451

438. Westrum, E. F., Jr., Essene, E. J., and Perkins, D., Ill, 1977, Thermophysical properties of the garnet,

grossular (Ca3AI2Si30 12): Jour. Chem. Thermodynamics, v. 11, p. 57-166.

439. Westrum, E.F., Jr., and Grimes, D.M., 1957, Low temperature heat capacities and thermodynamic

properties of zinc ferrite: Jour. Phys. Chem. Solids, v. 3, p. 44-49.

440. Westrum, E.F., Jr., and Gronvold, F., 1969, Magnetite (Fe304) heat capacity and thermodynamic

properties from 5 to 350° K low-temperature transition: Jour. Chem. Thermodynamics, v. 1,

p. 543-557.

441. Westrum, E. F., Jr., and Gronvold, F., 1970, Manganese disulfide (hauerite) and manganese ditelluride.

Thermal properties from 5 to 350° Kand antiferromagnetic transitions: Jour. Phys. Chem., v. 52,

p. 3820-3826.

442. Westrum, E. F., Jr., Stolen, S., and Gronvold, F., 1987, Thermodynamics of copper sulfides II. Heat

capacity and thermodynamic properties of synthetic covellite, CuS, from 5 to 780.5 K. Enthalpy

of decomposition: Jour. Chem. Thermodynamics, v. 19, p. 1199-1208.

443. White, G. K., and Collocott, S. J., 1984, Heat capacity of reference materials: Cu and W: Jour. Phys.

Chem. Ref. Data, v. 13, p. 1251-1257.

444. Wise, S. S., Margrave, J. L, Feder, H. M., and Hubbard, W. N., 1963, Fluorine bomb calorimetry. V.

The heats of formation of silicon tetrafluoride and silica: Jour. Phys. Chemistry, v. 67, p. 815-821.

445. Woodland, A. B., and Wood, B. J., 1989, Electrochemical measurement of the free energy of almandine

(Fe3AI2Si30 12) garnet: Geochem. Cosmochim. Acta, v. 53, p. 2277-2282.

Page 458: robie 1995

452 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

446. Wruck, B., 1987,Thermodynamic behavior of the PI ,n pnase transition in anorthite(abs): Programme

Physical Properties and Thermodynamic Behavior of Minerals (NATO), Cambridge.

447. Yakovlev, B. G., and Vozianova, 0. V., 1983, Thermodynamical properties of almandine: Geokimiia,

n. 1, p. 64-75.

448. Zhdanov, V. M., Turdakin, V. A., Arutyunov, V. S., Semenov, Yu. V., Malinko, S. V., and Kodakovsky,

I. L., 1977, Low-temperature specific heat, standard entropy, and elastic parameters of datolite and

danburyite: Geochemistry International, 14(6), p. 135-141.

449. Zhogin, D. Yu., Kosarukina, E. A., and Kolesov, V. P., 1980, Heat capacity in the 10-300 K range and

thermodynamic functions of tetragonal tin dioxide: Zhur. Fiz. Khimii, v. 54(4), p. 916-920.

450. Heat capacity of hercynite estimated as CP(FeAI204) = £ CP(FeO) + CP(AI203 ) by Robie. Entropy of

MnS04 and other values estimated by Robie.

451. Enthalpies of solution of members of the nepheline-kalsilite series were reported by Hovis and Roux

(Hovis, G.L. and Roux, J., 1993, Thermodynamic mixing properties of nepheline-kalsilite crystalline

solutions: Am. Jour. Sci., v. 293, p. 1108-1127.). Using enthalpy of solution values calculated

from their equations 4 and 5, ancillary data from (166, tables 1-4), and unpublished enthalpy

of solution data for KCI from Hemingway (AH(soln) = 6.045 -0.0189t(°O), we calculate AfH =

-2090.4 ± 2.5 and-2124.7 ± 2.5 kJ *mor1 , respectively, for nepheline and kaisilite. These results

are in good agreement with values given in (361) of -2092.1 ± 2.4 and-2121.9 ± 1.4kJ*mol'1 ,

respectively, but based on less pure samples (20, 171). These results are significantly less

negative than the formation properties calculated by (188) from a limited number of phase

equilibrium experiments. The calorimetrically determined value of -3037.8 ± 2.8 kJ*mol*1 for

leucite (171, 20) is preferred to that derived by (188) from a limited number of phase equilibrium

data (-3020.0 ± 2.7 kJ-mor1 ).

Page 459: robie 1995

REFERENCES CITED 453

452. Heat capacity measurements on a synthetic alunite are combined with earlier results by Kelley et al.

(219) to estimate the entropy at 298.15 K. The reaction scheme used by Kelley et al. (219) is

recalculated using modern values for the enthalpy of formation of the reference phases. See,

Hemingway, B.S. and Robie, R.A., 1994, Heat capacity and enthalpy of formation of synthetic

alunite: U.S. Geological Survey Open-file Report 94-688, 8 p.

453. High temperature heat capacities are derived from 244, 299, 402.

454. The Gibbs energy of livingstonite at 298.15 K is estimated from the study of (Sorokin, V.I., Dadze, T.P.,

and Pokronskiy, V.A., 1988, The Gibbs free energy of formation of livingstonite: Geokhimiya, No.

6, 897-900).

Page 460: robie 1995

454 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

INDEX OF NAMES

Acanthite (argentite)AcmiteAkermaniteAlabanditeAIbiteAlmandineAltaiteAluminumAluminum ionAluminum sulfateAluniteAmmoniaAmmonia-niterAmmonium ionAnaIbiteAnalcimeAnataseAndalusiteAndraditeAnglesiteAnhydriteAniliteAnni teAnorthiteAnthophylliteAntimonyAragoniteArcaniteArsenicArsenoliteArsenopyriteArtiniteAzurite

BaddeleyiteBariteBariumBarium ionBarium monoxideBer UniteBerndtiteBerthieriteBertranditeBerylliumBerylBianchiteBicarbonate ionBicchuliteBi smiteBismuthBismuthiniteBixbyiteBoehmi teBoraxBoric oxideBorniteBoronBrauniteBredigiteBrochantiteBromargyriteBromelliteBromide ionBromineBromine (ideal gas)BruciteBunsenite

page

11 4535 6232 5912 4637 6333 6013 615 415

28 5628 5610 4426102 37

37 6419 5031 5832 5929 5728 561139 652 36

35 629 43

25 5528 565 41

15142525

page

122 148357321135 16137333330868

283290121280

64 374379223305319297285

38863 36236010626728869

202855

15301314315

31291536155

111715291611517322823155551718

5056

47574646584158

634741

4947

45414959

5347

41414849

22828472

17729914214631273

311

36417974

201175

17612971

203

245178

754198207

168172

155

Ca-AlCaAUSiOCaAUCaFeS

pyroxene glass glass

? glassCaMgSioi glass CaSiOj glass

Cadmum Cadmium ion Calcio-olivine Calcite Calcium

Calcium ferriteCalcium ionCalcium nitrateCalomelCarbon dioxideCarbon monoxideCarbonate ionCarbonic acid (aqueous)Carnegie jteCassiteriteCattierriteCelestiteCerianiteCeriumCerussiteCesiumCesium ionChalcanthiteChalcociteChalcocyaniteCha I copy riteChalcostibiteChioliteChlorargyriteChloride ionChlorineChloromagnesiteChromiteChromiumChrysoberylChrysotile (Antigorite)CinnabarClaudetiteClausthaliteClinochloreClinoenstatiteClinoptiloliteCobaltCobalt monoxideCobalt-oli vineCocci niteCoesiteCoheniteCooper iteCopperCopper ionCordieriteCorundumCotumiteCovelliteCristobaliteCryoliteCuban iteCupric ionCupriteCuprous ion

3434363434343166

32256

61 3456163 3636161 34861 3445841 79

59 32555 26841 78

216

262315151515371911291662666

2811281114242366

23216

2139121513403436616322419101366

331523111924126166

51

55

4747

645045

4741

455645465453

415351415165

61

414759

5044

42

604753455054

48

230

277

181180

377219125

18480

84

127286128147263247

8125323483229394

353

82185331

216120

85

334174257126215262

189

151

153

154173

152

Page 461: robie 1995

INDEX OF NAMES 455

page

Danburite 36 63Datolite 32 59 317Dawsonite 26 55 273Dehydrated analeime 38 64 380Dehydrated mordenite 33Diamond 5 41 77Diaspore 15 47Diboron trioxide 15 47 176Dicalcium ferrite 21 51 231Dicesium monoxide 16Dickite 39 65 381Digenite 11Dilithium monoxide 17 48196Diopside 34 61 347Dipotassium monoxide 17 48 195Disodium monoxide 18 49 206Dititanium trioxide 19Djurleite 11Dolomite 25 55 269Dumortierite 31 58 308

Edingtonite 36 63Enargite 14Enstatite 34 61 352Epidote 31 58Epsomite 29Eskolaite 16 48 187Euclase 31 58 309Eucryptite 37 63 371

FayaliteFerberiteFerric ionFerric sulfateFerrobustamiteFerroseliteFerrosiliteFerrous ionFerrous oxideFluorapatiteFluoride ionFluorineFluoriteFluor-pargasiteFluorphlogopite (Al/Si disordered) 39Fluorphlogopite (Al/Si ordered)ForsteriteFrankliniteFrohbergite 12

page

32307

283412347163066

243539393322

60

5661

61

4857

4254

65656052

332

287

349

191301

86258

391392335243

GalenaGaspeiteGehleniteGeikieliteGermaniumGibbsiteGlaucophaneGoethiteGoldGoslariteGraphiteGreenockiteGrossularGruneriteGypsum

Hafnium dioxideHaliteHalloysiteHaturiteHaueriteHausmanni te

13 46 139 1652631 58 31421 51 2407 42 88

15 4735 62 361165 41 70295 41 76

11 45 124 1502 31 58 316

35 62 35928

172339321317

53 2556559 326

49 202

HeazlewooditeHedenbergiteHematiteHercyniteHerzenbergiteHetaeroliteHeulanditeHexagonal anorthiteHuebneriteHuntiteHydrogenHydrogen chlorideHydrogen fluorideHydrogen ionHydrogen sulfideHydrogen sulfide ionHydromagnesiteHydrophiliteHydroxide ionHydroxyapatiteHypersthene

IkaiteIlliteIlmeniteIlvaitelodargyriteIodide ionIodineIodine (ideal gas)IronIron ionIron tennantiteIron tetrahedrite

Jadeite

K-Al sulfateKAISUO. glassKaliophTUite (Kalsilite)KaoliniteKarelianiteKyani te

LangbeiniteLarnite (bredigite)LaumontiteLawrenciteLawsoniteLeadLead ionLeonharditeLeuciteLiebenbergiteLimeLirmaeiteLithargeLithiumLithium ionLivingstoniteLoellingite

Nagnes ioch romi teMagnesioferriteMagnesiteMagnesiumMagnesium ionMagnesium nitrateMagnesium sulfateMagnetiteMalachiteManganese

133416211322363630257

2324712122523163035

2539213224777271414

35

283737391931

28313623318836373315111877

1412

21212588262816258

4661485146

425354

46

53

5762

65515954

42

7

62

566363655058

5658

535843

636047

49

51515542

555648

42

138346192233141

89251259

134

248

302

235318264

91

87

356

289368369382225304

291324

249313102

370339182

20893

23823927194

279292193

95

164

167

160

Page 462: robie 1995

456 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

page page

Manganese ionManganese sulfateManganositeMarcasiteMargariteMarsh iteMascagniteMassicotMat i Id iteMeionite (Al-Si ordered)MelanteriteMercuric ionMercurous ionMercuryMer lino iteMerwiniteMesoliteMetacinnabarMethaneMgSiO, glassMgSio|-IlmeniteMgSiOj-PerovskiteMgjA^SijO^p glass(Mg. cCa. c)AUSi,Oi:) glasslsi*°" 9lassMicroclineMilleriteMiniumMirabiliteMolybdeniteMolybdenumMolybditeMolysiteMonohydrocalci teMonteponiteMont i eel I iteMontroyditeMordeniteMorenositeMull iteMuscovite (Al/Si disordered)Muscovite (Al/Si ordered)

NaAlSiO, glassglassglass

Na ?5~K 75 feldspar Na 55-K 45 feldspar Na* fic-K'ic feldspar Naficolite Nantokite Nat ro I iteNepheline-Na 7«K ?9AlSiO/ Nepheline ' n ~ Z^ 4 NesguehoniteNH,*NickelNickelous chlorideNickelous ionNickelous sulfateNiningeriteNi ?SiO/ -spinelNiferNitrate ionNitrobariteNitrogenNitrogen dioxideNukundami te

Oldhamite Orpiment

829171239242919143628777

3832381210343535333333143613182913817232516321738293122

564845655456

63

42

59

446162

606060

634649

46424953

59

583939

293199133384265294

365

90

322

119

354

337

366137210

13696

204250

320

3076565

159

163

162

386387

373537373737262338323725108

238

29123326172681712

1111

64 3786264 375

6464 376

43 9953 256

56 289

60 340278

55 27642 9749 205

OsumiliteOtaviteOxygen

Paragonite (Al/Si disordered)Paragonite (Al/Si ordered)Pargasite (Al/Si ordered)PentlanditePericlasePerovskitePetalitePhenakitePhillipsitePhlogopite (Al/Si disordered)Phlogopite (Al/Si ordered)Phosphate ionPhosphorusPhosphorus pentoxidePlatinumPlattneritePolIncitePortlanditePotassiumPotassium aluminum sulfatePotassium bromidePotassium hydroxidePotassium ionRowel IitePrehniteProustitePseudobrookitePseudotrallastonitePyrargyritePyritePyrolusitePyropePyrope-grossularPyrophanitePyrophylIi tePyroxmangitePyrrhotite

Quartz

RankiniteRealgarRetgersiteRhodochrositeRhodoniteRiebeckiteRosenhahniteRutile

SalammoniacSanidineSanmartiniteSapphirineScacchiteScheeliteScoleeiteSeleniumSellaiteSideriteSilica glassSilicaliteSilicic acid (aqueous)SiliconSilicon monoxideSillimaniteSilverSilver ionSmithite

33258

404035131721373138221881881836167

2823177

3039142134141217333321393512

60

42

6666

48516358

3939

43

43496347425653

65

5161

454860605165

45

100

395396

197232372310

6565

101

103209

18392

289246

385

343

132200336

241383

131

389390

158

157

18 49 214

3211292635353219

232

30332330369

242519199918315514

59 32745 123 149

55 27262 3556259 32850 222

5337 63 367

53 254

43 10754 26055 27050 218

1943 10849 21358 30641 67

Page 463: robie 1995

INDEX OF NAMES 457

page page

SmithsoniteSoda-niterSodiumSodium carbonateSodium hydroxideSodium ionSphaleriteSpinela-spodumenep-spodumeneSpurriteStauroliteSteamStibniteStilbiteStishoviteStolziteStrengiteStrontianiteStrontiumStrontium ionStrontium monoxideStrontium nitrateSulfate ionSulfide ionSulfite ionSulfurSulfur (monoclinic)Sulfur (ideal gas)Sulfur dioxideSulfur trioxideSulfuric acidSylviteSzomolnokite

TalcTelluriteTelluriumTellurobismuthiteTenoriteTephroiteThenarditeThermonatriteThorianiteThoriumTialiteTilleyiteTinTitanite (sphene)TitaniumTopazTremoliteTrevoriteTricobalt tetraoxideTridymiteTroiliteTronaTungstenTungsten dioxideTungsteni teTungsten trioxide

UlvospinelUraniniteUranium

ValentiniteVanadiumVateriteVilliaumiteViolarite

262782618813213434323317133619303026991927189183931818282328

39199

1116332926199

21329329

313521161912269201320

21199

189

252413

555542

4651616159604846

50

5543

5055

8

94949

53

65

43

486056555043515943594358625247

45

445046

515043

44

54

27528198

144237350351329

194140

217

274110

220282

43

43211212

252

393

111

188338295

221112

330109323113303358242186

130

116226143

236224114

115

261

170

166

104

105

156

169

UairakiteWaterUegscheideriteUhitlockiteUillemiteWitheriteWollastoniteWulfeniteWurtziteWustite

ZincZinc ionZinc tennantiteZinc tetrahedriteZinc titanium spinelZinciteZinkositeZirconZirconiumZoisite

36162630332534301316

10101414222029331031

57 3006055 26661 342

46 145 17148 190

44 117

52 24450 22757 29860 34144 11858 315

Page 464: robie 1995

458 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

INDEX OF FORMULAS

AgAg+AgAsS2p-AgBiS2AgBrAgC IAglo-AgSbS2Ag2SAg3AsS3Ag3sbs3

M3+

Al(OH)3 AIO(OH) AIP04A12°3 A12(S04 )3Al2Si04F2 Al 2Si05

Al2Si 4010(OH)2

Al6Si 2013Al 6.75 C] 0.25BSi 3°17.25 (OH)0.75 AsAsSAS2°3 AS2S3Au

BB2°3

BaBa2+

BaAl 2Si 301Q -3H20BaCOjBa(N03 )2BaOBaS04BeBeAlSi04(OH)BeAl 204BeOBe2Si04

Be4Si 207(OH)2 BiBi 2°3 Bi 2S3Bi 2Te3 BrBr2

C CH,

page

5514142323241411141455

15153015283131

39392131315

1115115

5

1555

36252615285

312115

3131315

15111155

510

41

535354

45

41

47475747565858

656551585841

67

245247264

122

68

299174283303304

381383

30730869

148

305306382

45 123 149

41

41

4772

635555475641585147

5858584147

41

4144

70

71

176

26627617728473

309229178

31031131274179

75

76119

77

page

COC02COj2"

Ca0.59Sr0.18Ba0.06Na0.38~K0.13Al2.16Si 6.84°18' 6H2°

Ca, Ca2+

CaAl2 [Al2Si 2010](OH)2 CaAl 2Si06CaAl2 [Si 207<OH)2]-H20 CaAl2Si 208 CaAl2Si 301Q -3H20 CaAl 2Si 4012 -2H20 CaAl2Si4012 -4H20 CaB(Si04)(OH) CaB2Si 208 CaCOj

CaCl CaF

CaFe204CaFe3(Si 207)0(OH)CaMg(C03 )2CaMgSi04CaHgSi 206

CaHo04CaOCa(OH)2CaSCaS04CaS04 -2H20CaSiOj

CaTi&jCaTiSi05CaW04Ca1.02Na0.14K .01 (Al2.18Si 6.82°18)l

Ca2Al2Si06(OH)2

C82FC2°5

o-Ca2Si04 (J-Ca2Si04 Y-Ca2Si04

Ca3Mg(Si04 )2Ca3(P04 )2Ca3Si05

151515

3666

39343136363636323625252523243421322532342530151611282834

213230

363931363131362132353131322

32323032

4747

41

65615863

596355

5354615159555961

4747

56

61

5159

6558635858

5159625858593159595759

180181

78

384345313362

317

267

248258346230318269320347

182183

285

342

232323

385

364314315

23132135832432432558

319322300326

363

268

348

343344

316

Page 465: robie 1995

INDEX OF FORMULAS 459

page page

Ca3Si 207Ca3Si 308(OH)2Ca4Al6Si6024C03Ca5 (P04 )3FCa5 (P04 )3OH

CdCd2*

CdCOjCdOCdSCeCe02Cl'

ci 2Co CoO

C°3°4C°3S4 CrCP2°3(Cs 65Na 19Rb 03>AI 2S1"4°12' H2°Cs "Cs+

Cs20CuCu+CU2+

CuC I CuFeSo

CulCuOCuSCuSbS2CUSO,CuSOCu Cu Cu

4 -5H201.75s '1.80s

1.95 JCu2(C03 )(OH) 2Cu20Cu2S

Cu3(OH)2(C03 )2 CU4 (S04 )(OH) 6

Cu10Fe2Sb4S13 Cu10Zn2As4S13Cu

F"

FL FeFe

10Zn2Sb4S13

.875J

.90s"^.947°

3232363030323266

2516116166661611321611616366616666

2311122416111428281111112516111425281114141414

66121216

5959635757595941

454147

414147455947

414863

42

45

5448454656

4845

45

42454548

32732836530130232933079

12480184

8182185125331186

83187

84

85

128

265188126147286

189127

129

86131

190

150

151

154

152173

153

155

157

Fe FeAl204FeAs1.08s0.92 FeAs2FeCOjFeC 1 2FeCljFeCr204FeOFeO(OH)Fe(P04)-2H20FeSFeS04 -H20FeS04 -7H20FeS

FeSe2FeSiOjFeTe2FeTiOjFeW04Fe2°3 Fe2(S04 )3Fe2Si04 Fe2Ti04 Fe2Ti05

Fe3CFe3°4Fe4Al 18Si 8046(OH>2Fe7Sig022(OH)2

Ge

H+

HCOj"HClHFHS"

H2

J2J»S

H2S H2S04H4Si04 HfO,

HgCl Hgl 2 HgO HgSH9|J?4S8

277

2114122523232116123012282812

14123412213016283221213310163335

7

7152324127

1516122891777

23241712147

77

7

51

555353514845

45

45

46

61

51

48566051516044486062

42

5354

42

1746

19

42

42

87

233

270249250234191130

130

132158146

349

235

192287332236

333120193

359

88

251259

89

48134

90

91

156

156

133159172

194160

Page 466: robie 1995

460 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES

K0.80lla0.20Al8! 1 .94°5.88* 1.81H20

1"!. 81*5.62*1.79H20

KAl(S04 )2 KAlSi0

KAlSl*1 94°5 88' 1 - 69H2° KAlSi 266

KAl 2 [AlSi 301Q](OH) 2KA13<OH)6<S04 )2KBrKClKFe3 [AlSi,010](OH)2

KMg3 CAlSi 3010](OH)2KNOjKOHK2Mg2(S04 )3K20K2S04K3(Al 7Hg)(Al2Si 14 )040(OH)8

LiLi*

LiAlSi04LiAlSi 206LiAlSi4010Li 20

<M9.85 Fc.15>Si°3 MgJ*

HgAl2o4 MgCOj

MgCl 2HgCr204MgF2HgFe204Ng(N03 )2HgOMg(OH)2MgS

MgS04 -7H20 MgSiOj

MgTiOj(Ng 1 5Ca1 5 >Al2Si 3012"

'5°18>

page

38

page

Hg2Si04

3877

28373838372

3928232339333939261728172839

7737343717

3588

21252523212421261717122829343521333333332533

42

5663

6336

6556535365606565

56485665

63616348

6242

5155

53515451554848

56

616251606060

60

92

289369

37037366386290246252388

391389278

291195288

93

371350372196

94

237271

253238260239279197198

292

352354240

334

335

63367387

392390

351

353

Mg3Si 205 (OH)4M83Si4°10(OH)2

Ng5Al(AlSi 3010 )(OH)84MgC03 -Ng(OH) 2 -4H20Hg7si 8o22(OH)2NnHn2+

NnCOjMnCl2MnONn02MnSMnS04NnS2MnSiOj

MnU0

Ho HoOj

52MoS-

NH3NH4+

NH4Cl

<NH4 )2S04 N02 -

(Na0.25K0.75 )AlSf 3°8 Na0.36Ca0.29Al0.94S l5.06°12Na0.36Ca0.29AL0.94Sl 5.06°12'

3.47H2(N80.55K0.45 )AlSi 3°8. Na0.68Ca0.66<Al 1.99Si 3.01°10)-

2.64H20(Na0.78K0.22 >A [ Si°4Na0.81 K0.19ALSi 1.81°5.62'

2.18H20Na0.81 K0.19AlSi 1.94°5.88'

2.13H20(Na0.85K0.15>AlSi3°8 NaNa+

NaAlC03(OH)2NaAlSi04

NaAlSi 206 NaAlSi 206 -H20

NaAlSijOg

NaAl2 [AlSi 301Q](OH)2NaCa2Hg4Al(Al2Si 6)022F2NaCa2Ng4Al(Al 2Si 6)022(OH)2

33 6039 6539 65

402535 628 428

26 5523 5317 4817 4812 4529 561335 6221 513017 4933 6017 4917 498 4217 4913 46

10 441023 532629 5617 49178 423738

3837

3832 64

336 337394393

36095

272254199200135 161293

355241

20133820220396

204136 162

121

280294205

97

38

383788

2637

3537

42 98

55 27364 376 377

37862 356 38064 379

2 37 63 64373 374

40 66 395 3963535

Page 467: robie 1995

INDEX OF FORMULAS 461

page page

Nad NaFNaFeSi 206 NaHC&j NaNOj NaOH<Ka1.1 K,8>Al 1.9Si6.r 6H20

Na2B407-10H20

Na2C03-NaHC03 -2H20 Na2Fe3Fe2Si8022(OH)2 Ma2Mg3Al2Si8022(OH)2 Na2C03 -3NaHC03Na20Na2S04 Na2S04 -10H20

NiCl 2NiCOjMiFe204NiONiSNiS04NiS04 -6H20NiS0 -7H20< Ni .?Fc.3>3S4 Ni 2Si04

Ni 4.5 Fe4.5S8

OH"

°2

PO3-

P205PbPb2+

PbCOjPbCl2PbMo04PbOPb02PbSPbS04PbSePbTePbW04Pb3°4 PtPtS

S2'

so2

232435262718383829262626353526182929242488

232621181329292913331313

168

81818882623301818132913133018813

30918

535462

55

55

6262

4956

545443

53

52494656

6046

42

43

43

53

49494657

61

4943

8

49

255261357

281

361

206295

26226399

256

242207137289

339138

100

101

102

257

208209139297

308

210103

43

211

163

340164

165

104

.so4S2 SbSb2°3

SeSiSiOSi02

SnSn02SnSSnS2SrSr2+

SrCOj

SrO SrS04

TeTe02ThTh02TiTi02Ti 2°3

Uuo2

V V2°3

Wwo2"°3 WS

Zn2+

ZnCOjZnFe204ZnMn204ZnOZnS

ZnS04ZnS04 -6H20ZnS04 -7H20Zrtuo,Zn2Si04Zn2Ti04ZrZr02ZrSiO,

181818391813991818

91913139926271929

91991991919

919

919

9202013

10102622222013

292929303322102033

49

943

4643434919

2142174350464643

555550

43

43504350

4350

4450

4450

46

44

5552

5046

57

6052445060

212

43106

14010710821349215218109219141142110

274282220

111

112221113222

114224

115225

116226

143

117

275243

227144170298

244118228341

105

166

50216

167168

223

169

145171

*U.S. G.P.O.:1995-380-070:89

Page 468: robie 1995
Page 469: robie 1995
Page 470: robie 1995