46
Sample preparation and characterization around SAXS Rob Meijers EMBL Hamburg Experimental verification and… validation?

Rob Meijers EMBL Hamburg

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rob Meijers EMBL Hamburg

Sample preparation and characterization around SAXS

Rob Meijers

EMBL Hamburg

Experimental verification and… validation?

Page 2: Rob Meijers EMBL Hamburg

Garbage in

?

Page 3: Rob Meijers EMBL Hamburg

The right stuff

• Molecular weight

• Oligomerization state

• Monodispersity

• Aggregation

• Protein concentration

• Protein folding state

Page 4: Rob Meijers EMBL Hamburg

Quality controlSDS Page

Mass spec

Gel filtrationDLS/SLS

Circular Dichroism

Page 5: Rob Meijers EMBL Hamburg

1 2 1 2ConcentratedDilute Non‐reduced 

1

A gel of a heterodimeric receptor

Page 6: Rob Meijers EMBL Hamburg

1 2

A size exclusion profile

Page 7: Rob Meijers EMBL Hamburg

1 2 1 2ConcentratedDilute Non‐reduced 

1

A second look

Page 8: Rob Meijers EMBL Hamburg

Different gels 

• SDS 

• SDS non‐reduced

• Native

• Iso‐electric focussing

• Purity

• Disulphide bonds

• Post‐translational modifications:– Phosphorylation

– glycosylation

Page 9: Rob Meijers EMBL Hamburg

Protein concentration

• UV‐Vis

• Bradford

• Refractive index

Sample injected

Sampleprovided

Page 10: Rob Meijers EMBL Hamburg

Quality controlSDS Page

Gel filtration

Mass spec

Page 11: Rob Meijers EMBL Hamburg

Mass spectrometry

• MALDI‐TOF or ESI

• Integral sample

• Proteolytic digest:– Trypsin

– Carboxypeptidase

– Aminopeptidase

Page 12: Rob Meijers EMBL Hamburg

Mass spectrometry

• MS/MS + Ion mobility :– Detailed folding state

– Protein‐protein interactions

– Whole protein size…

Page 13: Rob Meijers EMBL Hamburg

Ion mobility derived particle size

2012‐10‐18 13

Ruotolo et al Nature Protocols (2008) 3, 1139

in combination with SAXS…

Page 14: Rob Meijers EMBL Hamburg

Sizing profile, SLS twist

Page 15: Rob Meijers EMBL Hamburg

Intramolecular interference produces a disymmetry in the scattered light.

Size of molecule/particle must be significant compared to wavelength of light

Page 16: Rob Meijers EMBL Hamburg

Angular Dependence

small moleculesradius < 15 nm Pθ = 1 for all θ

large moleculesradius > 15 nm Pθ= 1 for θ = 0°

Page 17: Rob Meijers EMBL Hamburg

Normalised LS signals show no angular dependence for proteins

– Molecular weight requires only RALS

– Can not measure size by light scattering alone

0.0

119.5

12.0

24.0

36.0

48.0

60.0

72.0

84.0

96.0

108.0

Rig

ht A

ngle

Lig

ht S

catte

ring

Res

pons

e (m

V)

0.0

56.7

6.0

12.0

18.0

24.0

30.0

36.0

42.0

48.0

Low

Ang

le L

ight

Sca

tterin

g R

espo

nse

(mV)

10.50 16.60Retention Volume (mL)

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5

RALSLALS

Page 18: Rob Meijers EMBL Hamburg

Combined particle analysis

• UV

• Refractive index

• Viscosity

• Right angle light scattering

Viscotek/Malvern

Page 19: Rob Meijers EMBL Hamburg

What are the detectors responding to?

Refractometer =  KRI × dn/dc × Conc

UV‐Detector =  KUV × dA/dc × Conc

Viscometer  =  KVisc × Intrinsic Viscosity × Conc

Light Scattering =  KLS ×Mw × (dn/dc)2 × Conc

Page 20: Rob Meijers EMBL Hamburg

MonomerDimer

Trimer

0,0

1472,0

82,0

164,0

246,0

328,0

410,0

492,0

574,0

656,0

738,0

820,0

902,0

984,0

1066,0

1148,0

1230,0

1312,0

1394,0

Ref

ract

ive

Inde

x R

espo

nse

(mV

)

4,000

7,000

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

5,800

6,000

6,200

6,400

6,600

6,800

Log

Mol

ecul

ar W

eigh

t

0,0

239,0

14,0

28,0

42,0

56,0

70,0

84,0

98,0

112,0

126,0

140,0

154,0

168,0

182,0

196,0

210,0

224,0

Rig

ht A

ngle

Lig

ht S

catte

ring

Res

pons

e (m

V)

0,0

36,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

22,0

24,0

26,0

28,0

30,0

32,0

34,0V

isco

met

er D

P R

espo

nse

(mV

)

5,30 10,00Retention Volume (mL)

5,6 5,8 6,0 6,2 6,4 6,6 6,8 7,0 7,2 7,4 7,6 7,8 8,0 8,2 8,4 8,6 8,8 9,0 9,2 9,4 9,6

Monomer

DimerTrimer

High MW Aggregates(Mw > 1 Mio D)

Mw (D) IVw (dl/g) Rh (nm) Weight Fraction (%)

Monomer 66.430 0,056 3,88 87

Dimer 133.000 0,071 5,32 11

Trimer 201.000 0,095 6,69 1,5

Light Scattering Viscometer Refractive Index

BSA

Page 21: Rob Meijers EMBL Hamburg

LALS (7º) detector

RALS (90º)

RI detector

UV detector

GPC columns

Laser Light Scattering Detector, Refractive Index Detector and UV‐Cell

Page 22: Rob Meijers EMBL Hamburg

SEC + SAXS

• SWING beamline at Soleil

• HPLC in FPLC mode

Page 23: Rob Meijers EMBL Hamburg

Online purification & QC

• Combine SEC and SAXS

• Add:– Refractive index

– RALS

• Integrate in BioSAXSbeamline

Page 24: Rob Meijers EMBL Hamburg

Courtesy Melissa Graewert

Page 25: Rob Meijers EMBL Hamburg

UVRiLS

UV ~  c ɛLS ~ c (dn/dc)² MWRi ~ c dn/dc 

ml

Au

Courtesy Melissa Graewert

Page 26: Rob Meijers EMBL Hamburg

Frame 1 Frame 501

Frame 1001 Frame 1501 Frame 2001

I(O)

2500 frames collected (1 sec each) while proteins eluted from superdex 200 10/300 column @ 0.3 ml/min

Courtesy Melissa Graewert

Page 27: Rob Meijers EMBL Hamburg

Automation – how to handle > 2000 frames

Conventional pipe line (Autognom, Dammif, etc)

Detector images

Defining buffer region

Buffer substration

AutoRadius of Gyration

Peakdetection

Scaling and averaging

Radial averaging

Courtesy Melissa Graewert

Page 28: Rob Meijers EMBL Hamburg

Courtesy Melissa Graewert

0.0

197.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

Ref

ract

ive

Inde

x R

espo

nse

(mV

)

4.000

6.000

4.200

4.400

4.600

4.800

5.000

5.200

5.400

5.600

5.800

Log

Mol

ecul

ar W

eigh

t

10.50 16.60Retention Volume (mL)

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5

Data File: 2005-08-04_12;51;19_BSA_01.vdt Method: Proteins SEC-0002.vcm

Dimer134 kDa

Trimer205 kDa

Monomer66 kDa

SAXS Rg/I(0) profile 

SEC elution profile

Monomer versus Dimer

Page 29: Rob Meijers EMBL Hamburg

Definedbuffer region

Courtesy Melissa Graewert

Page 30: Rob Meijers EMBL Hamburg

Integration of experimental data

• SAXS scattering curve

• Accurate protein concentration (UV‐VIS +RI)

• Molecular weight (RALS)

• Radius of gyration? (MALS)

Page 31: Rob Meijers EMBL Hamburg

Estimation of Particle Radius

H2O

H2OH2O

H2O

H2O

H2O

RgRh

Rg II

Rg

Page 32: Rob Meijers EMBL Hamburg

The micro‐world

Page 33: Rob Meijers EMBL Hamburg

Stokes‐Einstein relation

• D = Diffusion coefficient

• k = Boltzmann’s coefficient

• T = Temperature

• η = Viscosity

• R = hydrodynamic radius

Page 34: Rob Meijers EMBL Hamburg

Dynamic light scattering

Page 35: Rob Meijers EMBL Hamburg

Dynamic Light Scattering scheme

Sample

Detector

Correlator

Transmitted light

DiffusedLight

Page 36: Rob Meijers EMBL Hamburg

Information from the correlation curve

Page 37: Rob Meijers EMBL Hamburg

Integration of experimental data

• SAXS scattering curve

• Accurate protein concentration (UV‐VIS +RI)

• Molecular weight (RALS)

• Radius of gyration? (MALS)

Page 38: Rob Meijers EMBL Hamburg

Thermophoresis

• Heat sample by 2K

• Molecules dissipate

• When fluorescently labelled

• Equilibrate depending on size of hydration shell, charge distribution

Duhr and Braun (2006) PNAS 103, pp19678

Page 39: Rob Meijers EMBL Hamburg

Current technology

Jerabek‐Willemsen et al. 2011

Page 40: Rob Meijers EMBL Hamburg

Sample optimization

• Reduced Gel problematic: change purification protocol

• NR Gel problematic: check cysteines

• Protein aggregation, folding stability:– Size exclusion, light scattering, CD, NMR, thermofluor

Page 41: Rob Meijers EMBL Hamburg

Thermal stability

• Thermofluor

• Modified real‐time PCR machine– Add hydrophobic fluorescent probe

– When protein unfolds…

– Fluorescence increases

Page 42: Rob Meijers EMBL Hamburg

Thermal stability

• Check protein stability

• Additive/ligand screen

Ericsson et al Analytical Biochemistry 357 (2006) 289

Page 43: Rob Meijers EMBL Hamburg

Sample optimization

• Reduced Gel problematic: change purification protocol

• NR Gel problematic: check cysteines

• Protein aggregation, folding stability:– Size exclusion, light scattering, CD, NMR, thermofluor

• Modify buffers, additives

• If nothing works: change construct

Page 44: Rob Meijers EMBL Hamburg

Additives?

• DTT (will affect OD 280nm)

• Glycerol (no more than 5 %)

• Detergents at less than 2xCMC0.1% 1‐s‐Nonyl‐β‐D‐thioglucoside0.2% n‐Decanoylsucrose0.3% n‐Nonyl‐β‐D‐maltoside0.4% DDAO0.5% C8E50.8% FOS‐Choline®‐101.1% FOS‐Choline®‐9

Page 45: Rob Meijers EMBL Hamburg

Conclusions

• QC at home is crucial

• But we can do it for you at EMBL@PETRA3

• Some quality control methods can provide useful complementary data

• (In)direct validation of the SAXS models

Page 46: Rob Meijers EMBL Hamburg

Acknowledgements

• Malvern Instruments (Bernd Tartsch)

• Melissa Graewert (EMBL Hamburg)

• Stefan Duhr (Nanotemper)

• Stephane Boivin (EMBL Hamburg)