13
RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION PRIORITIES FOR EMP AND SOLAR STORMS by George H. Baker July 2017

RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION PRIORITIES

FOR EMP AND SOLAR STORMS

by

George H. Baker

July 2017

Page 2: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks
Page 3: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

REPORT TO THE COMMISSION TO ASSESS THE THREAT TO THE UNITED STATES FROM ELECTROMAGNETIC PULSE (EMP) ATTACK

RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION PRIORITIES

FOR EMP AND SOLAR STORMS

by George H. Baker

July 2017

Page 4: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

The cover photo depicts Fishbowl Starfish Prime at 0 to 15 seconds from Maui Station in July 1962, courtesy of Los Alamos National Laboratory.

This report is a product of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack. The Commission was established by Congress in the FY2001 National Defense Authorization Act, Title XIV, and was continued per the FY2016 National Defense Authorization Act, Section 1089.

The Commission completed its information-gathering in June 2017. The report was cleared for open publication by the DoD Office of Prepublication and Security Review on June 5, 2018.

This report is unclassified and cleared for public release.

Page 5: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

1

Acronyms and Abbreviations

EMP electromagnetic pulse

GMD geomagnetic disturbances

GPS global positioning system

HF high frequency

MHD magnetohydrodynamic

MOV metal-oxide varistor

UHF ultra high frequency

VHF very high frequency

Page 6: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

2

Table of Contents

Introduction ..................................................................................................................................... 3

Wide-Area Electromagnetic Environments ......................................................................................... 3

Wide-Area Electromagnetic Infrastructure Effects .............................................................................. 4

EMP and Solar Storm Risks............................................................................................................... 5

Countermeasures .............................................................................................................................. 7

Summary and Future Directions......................................................................................................... 8

Page 7: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

3

Introduction

TheCommissiontoAssesstheThreattotheUnitedStatesfromElectromagneticPulse(EMP)AttackhasprovidedacompellingcaseforprotectingcivilianinfrastructureagainsttheeffectsofEMPandgeomagneticdisturbances(GMDs)causedbyseveresolarstorms.Similartoprotectingcriticalinfrastructureagainstanyhazard,itwillbeimportanttotakearisk-basedpriorityapproachforthesetwoelectromagneticthreats,recognizingthatitwillbefiscallyimpracticabletoprotecteverything.Inthisregard,EMPandsolarstormsareparticularlychallenginginthattheyinterferewithelectricalandelectronicdata,control,transmission,andcommunicationsystemsorganictonearlyallinfrastructures,simultaneously,overwideareas.Theaffectedgeographiesmaybecontinentalinscale.Theseeventsthusrepresentaclassofhigh-consequencedisastersthatisuniqueincoverageandubiquitoussystemdebilitation.Suchdisastersdeserveparticularattentionwithregardtopreparednessandrecoverysinceassistancefromnon-affectedregionsofthenationcouldbescarceornonexistent.Atfirstblush,theproblemofwheretobeginindevelopinganationalprotectionprogramseemsoverwhelming.Despitethechallengesposedbysuchanendeavor,itisthepurposeofthepresentworktosuggestthatsuchaprogramispossibleandaffordablebasedonasystempriorityapproach.

Wide-Area Electromagnetic Environments

Thenuclearelectromagneticpulse(EMP),resultsfromadetonationhighabovethetropopause.SolarstormGMDsoccurnaturallywhenanintensewaveofchargedparticlesfromthesunperturbstheearth’smagneticfield.

Inthecaseofhighaltitudenuclearbursts,threemainphenomenacomeintoplay,eachwithdistinctassociatedsystemeffects:

§ Thefirst,a“prompt”EMPfield,alsoreferredtoasE1,iscreatedbygammarayinteractionwithstratosphericairmolecules.Itpeaksattensofkilovoltspermeterinafewnanoseconds,andlastsforafewhundrednanoseconds.E1’sbroad-bandpowerspectrum(frequencycontentinthe10s–100sofmegahertz)enablesittocoupletoelectricalandelectronicsystemsingeneral,regardlessofthelengthoftheirpenetratingcablesandantennalines.Inducedcurrentsrangeintothe1000sofamperes.Exposedsystemsmaybeupsetorpermanentlydamaged.

§ Thesecondphenomenon,late-timeEMP,alsoreferredtoasmagnetohydrodynamic(MHD)EMPorE3,iscausedbythedistortionoftheearth’smagneticfieldlinesduetotheexpandingnuclearfireballandrisingofheatedandionizedlayersoftheionosphere.Thechangeofthemagneticfieldattheearth’ssurfaceinducescurrentsof100s-1000sofamperesinlongconductinglines(afewkilometersorgreater)thatdamagecomponentsoftheelectricpowergriditselfaswellasconnectedsystems.Long-linecommunicationsystemsarealsoaffectedincludingcopperaswellasfiber-opticlineswithrepeaters.Transoceaniccablesareaprimeexampleofthelatter.

§ Thethirdphenomenon,referredtoasthe“atmosphericeffect”iscausedbyionizationoftheupperatmosphereleadingtointerferencewithnormalradiowavepropagationand

Page 8: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

4

reflectionbehavior.TheinterferencelastfortensofhoursandismostpronouncedintheHF,VHF,UHFandGPStransmissionbands.

SolarstormGMDeffectsaretheresultoflargeexcursionsinthefluxlevelsofchargedparticlesfromtheSunandtheirinteractionswiththeEarth’smagneticfieldandupperatmosphere.Twoeffectsarepresent:

§ PerturbationoftheEarth’smagneticfield,similartoMHDEMP,thatgeneratesovervoltagesinlong-linesystemsoverlargeregionsoftheearth’ssurfaceaffectingelectricpowerandcommunicationtransmissionnetworks.

§ Ionizationoftheupperatmosphere,similartoMHDEMP,leadingtointerferencewithhighfrequency(HF),veryhighfrequency(VHF),ultrahighfrequency(UHF),andglobalpositioningsystem(GPS)signals.Fortypicalsolarstorms,theseeffectslastforaround30hours.

Wide-Area Electromagnetic Infrastructure Effects

Wide-areaelectromagneticsystemeffectsarechallengingduetotheirnear-simultaneousinitialeffectsandcascadingeffectsonawidearrayofinfrastructures.Infrastructuresystemscomprisedoflong-lineconductornetworksarethemostvulnerabletobotheffects.Susceptiblenetworksincludetheelectricpowergrid,land-linecommunications,andinterstatepipelines.Effectsonthesenetworkswillcascadetomostotherinfrastructures.Smaller,self-contained,self-poweredinfrastructuresystems(e.g.hand-heldradiosandvehicles)arealsovulnerable,butonlytoEMPandtoalesserdegreethanlong-linenetworks.

Page 9: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

5

Figure1providesasummaryoftheenvironments,initially-affectedsystemsandeffectlongevity.Notethatsignificantsynergiesexistbetweenthehighaltitudenuclearburstandsolartsunamigeomagneticandionosphericenvironmentsandsystemeffects.Properlydesignedhigh-altitudeburstprotectionmeasureswillsufficeagainstsolarstorms.Theconverseisnottrue,duetotheE1effect.

TheCongressionalEMPCommissionhasmadeacompellingcaseforprotectionofcriticalinfrastructure.1Itsconclusionsandrecommendationsapplytobothnuclearandsolareffects.However,becausetheircharterforcedabroadapproach,theCommissionwrestledwithfocus.Whilerecognizingtheimpossibilityofprotectingallexposedcriticalinfrastructures,theCommissionreportwasnotprescriptiveintermsofprotectionpriorities.OnereasonwhyaU.S.protectionprogramhasyettobeinitiatedisthatpolicymakerscontinuetowrestlewiththequestionofwheretobegin,giventhelonglistofcriticalinfrastructuresectors,viz.AgricultureandFood,Water,PublicHealth,Energy,Transportation,BankingandFinance,ChemicalIndustry,EmergencyServices,InformationandCommunication,PostalandShipping,GovernmentServices,theDefenseIndustrialBase,andCriticalManufacturing.

EMP and Solar Storm Risks

TheDepartmentofHomelandSecurity(DHS)ispursuinga“risk-based”prioritizationapproachindevelopinggeneralprotectionprograms.SuchanapproachishelpfulindevelopinganEMP/SolarStormthreatprotectionprogramaswell.Acommonlyusedequationforcalculatingriskis:

1 W. Graham et al., Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse

(EMP) Attack, Volume 1: Executive Report, 2004.

Figure 1 Wide-Area Electromagnetic Effects

Page 10: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

6

Risk=E·V·C

whereErepresentsprobabilityofsystemexposuretothethreat,Vrepresentssystemvulnerability,andCrepresentssystemcriticality.TheEMP/solarstorm‘exposurefactor’issimilarforallcivilianinfrastructuresduetotheeffects’seamlesscontinental-scalecoverage.Thus,forthewide-areaelectromagneticthreats,theequationissimplifiedbecause‘vulnerability’and‘criticality’arethesoledeterminantfactorsforrisk.

Asimplerisk-basedprioritizationexerciseconductedbytheauthorisinstructiveusingthefollowingvulnerabilityandcriticalitycriteria:

§ EMP/SolarStormVulnerabilityCriteria(V)- Doestheinfrastructurefunctionrequireconnectiontolongconductinglinesand/or

networks?- Doestheinfrastructuredependondigitalelectroniccontrolsystems?- Aremanualwork-aroundproceduresavailabletoperformtheinfrastructure’sfunction?- Whatisthetimeneededtoreconstitutethesystem?- Howdifficultisittoprotectthesystem?

§ EMP/SolarStormCriticalityCriteria(C)- Howmanyotherinfrastructureswouldfailshouldthisinfrastructurebedebilitated?- Whatistheimmediacyofeffectsonservicesprovided?- Howmanyhumancasualtieswouldoccur?- Howbigistheeconomicimpact?- Isthisinfrastructurenecessarytoenabletherepairandrecoveryofother

infrastructurespost-attack?

Page 11: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

7

Theexerciseusedascaleof1to3toscoretheoverallvulnerabilityandcriticalityofeachinfrastructuresector,with3beingthemostvulnerableorcriticaland1beingtheleast.Theriskproductvaluesthusrangedfrom1to9.Figure2plotstheresults.

Theelectricpowerportionoftheenergyinfrastructureandtheinformation/communicationinfrastructureposethehighestriskstosocietyinEMP/SolarStormscenarios.Theseinfrastructuresarethemostvulnerabletothewide-areaelectromagneticthreatsduetotheirorganiclong-linenetworksandlargeassociatedcouplingcrosssections.Theyarethemostcriticalbecausetheyenabletheoperationofallotherinfrastructuresandtheyareessentialwithrespecttothereconstitutiontimeline.AprofoundresultofthissimpleexerciseisthatourmostcriticalinfrastructuresarealsothemostvulnerabletoEMP/SolarStormthreats.Thisconclusionaddsimpetusforactiontoprotectourelectricpowerandinformation/communicationnetworks.

Countermeasures

Bywayofencouragement,weknowhowtoprotectsystemsagainstwide-areaelectromagneticeffects.EMPprotectionhasbeenimplementedandstandardizedbytheU.S.DepartmentofDefense

Figure 2 EMP/Solar Storm Risk-Priority Values for Critical Infrastructures

Page 12: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

8

onahostofsystems.Becauseoftheirnortherlylatitudes,theelectricindustryinGreatBritain,Canada,andtheScandinaviancountrieshaveexperiencedseveresolarstormeffectsandhavedevelopedcountermeasuresthatappeartobeeffective.

RecognizingthatsignificantportionsoftheU.S.gridarelikelytofailinanEMPormajorsolarstormevent,itwillbeimportanttoexpandprovisionofback-uppowersystemsforbasiclifefunctions.ThisisalessonlearnedfromourHurricaneKatrinaexperiencenowemphasizedbyLTGRusselHonoré.2Manymedical,communication,andfinancialfacilitiesnowhaveemergencygenerators.Additionalprovisionofemergencygeneratorsisneededforwatersupplysystems,gasstations,foodstores,andpharmacies.Emergencygenerators’protectionisrelativelyeasytoimplementandcertifyviatest.

WehaveempiricalevidencethatEMPandsolarstormcurrentsdamagetransformerswithintheelectricgrid.Thesecomponentsareexpensive,difficulttomove,andthelargestoftransformersarenolongermanufacturedintheU.S.,requiringmonthstoyearstoreplace.InstallationofblockingdevicesintheneutraltogroundconnectionsoftransformerswillsignificantlyreducetheprobabilityofdamagefromsolarstormsandMHDEMP.E1overvoltageprotectionisachievablebyinstallingcommonmetal-oxidevaristors(MOVs)ontransformerterminals.Estimatesforprotectingthemostdifficulttoreplacetransformers(transmissiongridtransformers)intheU.S.range$1to$10billion.

EMPprotectionmethodsforcommunicationfacilitieshavebeendevelopedandimplementedbyDoDsincethe1960sandarewelldocumented.3Techniquesareapplicableforbothtelecommunicationsfacilitiesandpowergridsupervisorycontrolanddataacquisition(SCADA)systems.Engineeringapproachesincludeuseofshieldedenclosures,provisionofbackuppower,standardgroundingtechniques,installationofovervoltageprotectiondevicesandfiltersonpenetratingconductors,andintentionalcablemanagement.ThecostofEMPprotectionforcommunicationfacilitiesranges2to5percentofthebuildingcostsifincorporatedintheinitialfacilitydesign.Emergencycommunicationfacilitiesareagoodplacetostarttodemonstratethefeasibilityandcost-effectivenessofelectromagneticprotection.IncludingEMP/solarstormprotectioninfirecodesandinteroperablecommunicationsystemprocurementsandrelatedDHSgrantswouldbehelpful.4

Summary and Future Directions

ThehugegeographiccoverageandubiquitoussystemeffectsofEMPandmajorsolarstormsbegthequestionof“wheretobegin?”anationalprotectionprogram.Wemustbecleverindecidingwheretoinvestlimitedresources.Basedonsimpleriskanalysis,theelectricpowerand

2 G. Baker and C. Elliott, editors. Cascading Infrastructure Failures: Avoidance and response, Homeland Security

Symposium Proceedings, James Madison University and Federal Facilities Council, May 16, 2007, pp. 19-31. 3 High Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C4I Facilities Performing Critical, Time-Urgent

Missions, MIL-STD-188-125-1, Fixed Facilities, April 7, 2005 and MIL-STD-188-125-2, Transportable Facilities, March 3, 1999; also MIL-HDBK-423.

4 See National Fire Protection Association. NFPA 1221, “Standard for the Installation, Maintenance, and Use of Emergency Services Communications Systems,” and NFPA 1600, “Standard on Disaster/Emergency Management and Business Continuity/Continuity of Operations Programs.”

Page 13: RISK-BASED NATIONAL INFRASTRUCTURE PROTECTION …...in long-line systems over large regions of the earth’s surface affecting electric power and communication transmission networks

9

communicationinfrastructuresemergeasboththemostvulnerabletoEMPandthemostcriticalinfrastructures,andthusthehighestpriorityforEMP/solarstormprotection.Protectionofalimitedsetofhighriskinfrastructureswillgoalongwayinlesseningthesocietalimpact.Inthecaseofelectricpower,protectingthelargedistributiontransformersandexpandingtheprovisionofemergencygeneratorsforcriticalsystemswillimprovethesurvivabilityofmultipleotherinterdependentinfrastructures.Forcommunicationsystems,protectionofemergencycommunicationcentersandinteroperablemobileandhandheldcommunicationsystemsareusefulfirststeps.Pilotprogramstodemonstratewide-areaEMprotectionengineeringforthehighestriskinfrastructureswouldpavethewayforacomprehensiveefforttoaddresscriticalnationalinfrastructures.RecentCongressional,FERC,andNERCinitiativeswillhopefullyspurprogressinthisdirection.5,6,7

5 H.R. 668, the Secure High Secure High-voltage Infrastructure for Electricity from Lethal Damage (SHIELD) Act,

introduced February 16, 2011. 6 U.S. Department of Energy and the North American Electric Reliability Corporation. High-Impact, Low-Frequency Event

Risk to the North American Bulk Power System: A jointly-commissioned summary report of the North American Electric Reliability Corporation and the U.S. Department of Energy’s November 2009 Workshop, June 2010.

7 National Academies Press. Severe Space Weather Events: Understanding societal and economic impacts: A workshop report, 2008.