29
„Why Hamburg chose to integrate hydrogen technologies in the Public Transport system“ Dr. Johannes Töpler German Hydrogen and Fuel Cells Association (DWV) and European Hydrogen Association (EHA) Riga Exhibition and Conference October, 2013 „Environment and Energy",

Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

„Why Hamburg chose to integrate hydrogen technologies in the Public Transport system“

Dr. Johannes Töpler German Hydrogen and Fuel Cells Association (DWV)

and European Hydrogen Association (EHA)

Riga Exhibition and Conference October, 2013

„Environment and Energy",

Page 2: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

„ We should leave the oil, before it will leave us“

(Fatih Birol, Chief-Economist of International Energie-Agency, IEA, 8.4 2008)

Page 3: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Future primary energy supply

Page 4: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Supply cannot satisfy demand

Supply outreaches demand by far

Vertical load curve and feed-in of wind power in E.ON grid

Vertical load

Wind power 2007

Estimated wind power 2020

Date

Fluctuating renewable electricity

Page 5: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Hydrogen Electricity

or:

Hydrogen as secondary energy carrier

Page 6: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Comparison of netto-storage capacities

0

2000

4000

6000

8000

0 2 4 6 8 10 12 14 16 18 20Zeit in d

Win

d Le

istu

ng in

MW

AA CAES

Pumpspeicher

H2 (GuD)

Bei einem Speichervolumen von V = 8 Mio. m³

8 Mio. m3 correspond to the biggest German natural gas caverne field For comparison: Pump storage Goldisthal has a Volume of 12 Mio. m3

Pump storage 5 GWh

AA CAES 23 GWh

H2 – Gas /vapor turbine ca. 1.300 GWh (1.3 TWh)

Time (days)

Win

d P

ower

in M

W

Storage volume of V = 8 Mio. m3

Source: KBB UT

Page 7: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

J. Töpler

Potential Locations for H2-Caverns

Page 8: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen
Page 9: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

500 MW for 200 hours (100 GWh), 2 cycles per month

Hydrogen

Compressed Air (adiabatic)

Pumped Hydro

today

today

Depending on location

>10 years

>10 years

Only costs for storage; the costs for purchase of energy are to be added..

Cost [ €ct/kWh]

Storage costs for „Storage by weeks“

Page 10: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

• The availiability of fossil primary energies is limited to aproximately 50-80 years (with respect to probable annual growing rates even less!)

• Fossil energy carriers are raw materials for organic chemistry -> to valuable for burning.

• The damage of climate due to CO2-emissions is obvious right now and will increase further on (in spite of Kyoto-protocol).

• The energy demand world-wide will increase (especially by the developing countries) and will aggravate the situation.

• The introduction of a new energy-system will need in principal about 50 years for the first 10% of market penetration. (Marcetti 1980)

• Consequence: It‘s very high time to introduce CO2-free renewable energies (if necessary via primary energies with less CO2), with hydrogen as secondary energy carrier which can be stored, transported and used in manifold applications.

Actual Situation of Energy Supply

Page 11: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

J. Töpler

Market segments for battery- and fuel cell vehicles

Original-Source: Coalition Study

Annual range

(1000 km)

< 10

> 20

10- 20

Compakt Class Medium Class Comfort-Class

c l a s s o f v e h i c l e s

Fuel cell vehicles

hybridised

Battery- Vehicles

Plug-in-Vehicles FC- Vehicles

Page 12: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

η (%)

100

70

56

29

12

Fuel Cell Hybrid

Propuslsion Test: 1470 kg

52 %

W-t-W with renewable electricity : H2 or CNG for mobile application of passenger cars in NEDC

Hydrogen -Supply at Dispenser

(incl. Transport and Compression)

Well-to-Wheel Process steps

H2-FCV

CNG-Otto PISI 22 %

From: www. OPTIRESOURCE.com; D. Kreyenberg/J. Wind, Daimler, 5. Dt. H2-Congress Berlin 2012 Energy balance till supply at filling station: 56 % = TTW 84 MJ/100km/ WTW 150 MJ/100km x100 or TTW 188 MJ/100km/ WTW 340 MJ/100 km X100 oder at wheel 10 %, when CO2 from air is applied

Electricity from

Wind, PV Central

Electrolysis

CNG-Supply at dispenser (H2 and CO2

from Biogas for SNG Synthesis, incclusively CO2 - Compression a.

Transport)

Page 13: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

E prim

8,1

4,5

1,9 1

Electricity from

Wind, PV

Central Electrolysis CNG-Supply

at dispenser (H2 and CO2 from Biogas for SNG

Synthesis, incclusively CO2 - Compression a.

Transport)

Otto-CNG-Antrieb: 22 %

W-t-W with renewable electricity : H2 or CNG for mobile application of passenger cars in NEDC

(normalized to 1 for final energy at wheel)

Well-to-Wheel Process steps

H2-FCV 52%

CNG-Otto PISI

22 %

From: www. OPTIRESOURCE.com; D. Kreyenberg/J. Wind, Daimler, 5. Dt. H2-Congress Berlin 2012 Energy balance till supply at filling station: 56 % = TTW 84 MJ/100km/ WTW 150 MJ/100km x100 or TTW 188 MJ/100km/ WTW 340 MJ/100 km X100 oder at wheel 10 %, when CO2 from air is applied

5,6

2,4

3,4 H2 –Supply at Dispenser (incl. Transport and

Compression)

Fuel Cell Hybrid

Propuslsion Test: 1470 kg

52 %

Page 14: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Comparison of Fuel Cell System and Internal Combustion Engine

Power in %

Effic

ienc

y in

%

Medium Power Passenger Car Bus /Truck

with Hydrogen Fuel Cell Systems

Source: IBZ

Page 15: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Clean Transport Strategy One holistic approach

15

High operating grade Highly environmentally

friendly Highly economic

+ +

E-mobility H2-/FC-vehicles Fleet operation

Buses and multi-purpose vehicles

Low emissions for long range Public transport a perfect

match for the concept of e-mobility

Specialized city-cars Little footprint in terms of space Ideal for multi-modal mobility

service

Page 16: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Framework Conditions

16

Policy: most innovative bus system in Europe; from 2020 only low emission buses to be purchased

Implementation of EU clean air regulations in national law

Transition towards renewable energy/wind in national law and regional objectives

Annual increase of passengers 3%, with growing rate of environmentally orientated customers“

Consideration of socio-economic developments in mobility

Future availability and cost of fossil fuel?

Page 17: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

FC successfully started

Achievements Currently 20 FCV and 4 buses in operation – in both

public transport as well as corporate use

3 hydrogen refuelling stations in operation provide hydrogen partly produced by wind energy

Hamburg is one of the initiators and active partner of the CEP* in Germany and HyER* on European level

17

H2-/FC-vehicles

CEP: Clean Energy Partnership www.cleanenergypartnership.de; HyER: Hydrogen and Fuel Cells and Electro-Mobility in European Regions www.hyer.eu

Future plans 1,000 passenger cars by 2015

2 more hydrogen refuelling stations in the city

Hydrogen highway to Berlin and Scandinavia

Large-scale hydrogen production from wind-power with underground storage of hydrogen

Page 18: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

18

Current status

4 FC/Hybrid buses in operation 2 x 70 kW fc modules, 35 kg hydrogen on board,

350 kilometer mileage Guarantee 12,000 hours or 5 years Very comfortable, quiet , good drivability More than 50% fuel reduction compared with last bus

generation

FC Buses

Next steps

3 more vehicles in 2013, next generation by 2017 Masterplan for implementation of technology with

manufacturer From 2020 only low emission buses Depot for low emission buses in planning

Page 19: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Citaro FuelCELL-Hybrid

Technische Daten Leistung BZ-

System 250 kW

Lebensdauer (BZ) 4 Jahre

Antriebsleistung 205 kW, für < 15-20 sec Wasserstofftank 40 – 42 kg H2 (350 bar)

Reichweite 180 - 220 km HV-Batterie --

Effizienz BZ-System 43 - 38 %

H2-Verbrauch 20 – 24 kg / 100 km

Technische Daten Leistung BZ-

System 120 kW (konst.) / 140 kW (max.)

Lebensdauer (BZ) 6 Jahre

Antriebsleistung Leistung (konst. / max.): 2 x 80 kW / 2 x 120 kW

Wasserstofftank 35 kg Wasserstoff (350 bar) Reichweite > 250 km HV-Batterie 26,9 kWh, Leistung 250 kW

Effizienz BZ-System 58 - 51 %

H2-Verbrauch 10 – 14 kg / 100 km

BZ-Bus (CUTE)

Nächste Generation BZ-Hybrid Busantrieb:

• Energierückgewinnung durch Hybridisierung

• Effizienzverbesserung • optimale Verfügbarkeit durch erhöhte Zuverlässigkeit des Antriebs (zwei Energiequellen)

2 BZ-Systeme ebenfalls Eingesetzt in der B-Klasse F-CELL

Lebens-dauer +50%

[l/10

0km

Verbrauch - 45%

Wirkungs-grad (BZ)

+35%

[km

]

Reichweite +25%

[Jah

re]

The Citaro FuelCELL-Hybrid is the next generation of fuel cell buses

Page 20: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

20

General 5 hydrogen refuelling stations (3 already existing) for vehicles

Partners: Vattenfall, Shell and TOTAL

German masterplan: connections with Berlin and Scandinavia

Additional 2 stations for other applications (Airport, Zemships)

Refuelling Infrastructure

HafenCity: 70 MPa SAE J2601 cars, 35 MPa buses & cars 50% production, 50% trucked-in Hydrogen Technology: Linde AG 2 electrolysers (60 Nm³/h), option for 3rd 2 ionic compressors (400 Nm³/h) by Linde Storage total ~ 750 kg 2 middle pressure tanks @ 45 bar, 2x 215 kg 120 high pressure Faber bottles @ 830 bar, ca. 250 kg Maximum capacity of 20 buses and several cars per day

Page 21: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

72,500 kg of CO2 1000 kg of NOx 220 kg of SOx 40 kg of particles will not be emitted per year!

The first fuel cell passenger ship in Hamburg

Source:Alster Touristik GmbH

Page 22: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Technical Specifications

Batteries & Energy Management

2 Proton Motor fuel cell systems with 50 kW rated power each

Hydrogen Tanks / 350 bar

Bow thruster

100 kW electric motor for

propulsion

Water tanks

Source:Alster Touristik GmbH

Page 23: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Page 23

Fuel cell technologies and H2 can make Aircraft systems simpler

Fuel cells as APU‘s in Airplanes

Source: Airbus

Example of a typical A30X application: F/C to replace APU

Page 24: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

24

Hamburg Airport

STILL Fuel cell powered towing tractor R08 Experimental operation

Ground power unit (mobile generator) at remote stands in process

Linde hydrogen filling station 200 / 350 bar

Mulag Comet 3E tow tractor, electric platform tested from may 2012

Members of a common strategy of German airports in hydrogen and fuel cell technology as well as electric drives

Page 25: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Hydrogen economy in the Lower-Elbe-Region in 2020

Page 26: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

The sixth Kondratjew: Energy productivity (after Charlie Hargroves, Brisbane, Australia)

Mechanization

Steel & railroads

Electricity, chemicals,cars

TV, aviation, computers,

Biotech IT

Energy productivity, renew. energy

Source: E.U.v.Weizsäcker

Page 27: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Thank you very much for your attention!

And see us occasionally at

www.dwv-info.de!

Which are the questions I can answer at first?

Page 28: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Anode: H2 → 2 H+ + 2 e- Cathode: 2 H+ + ½O2 + 2 e- → H2O ---------------------------------------------------------------------------------------------------

Sum: H2 + ½O2 → H2O

CnH2(n+1) + (3n+1)/2 O2 → nCO2 + (n+1)/2 H2O

Comparison of Power-Trains I

Gasoline/ Diesel- Vehicles

H2/FC- vehicles

Battery-Vehicles

(double range) I

Cathode: LixCn → nC + x Li+ + x e-

Anode: Li1-xMn2O4+ xLi +xe- → LiMn2O4 ------------------------------------------------------------------------------------------------------------------------------------------------------

---------

Batt.: Li1-xMn2O4+ LixCn → LiMn2O4 + nC

Page 29: Riga Exhibition and Conference October, 2013 · 2013. 10. 22. · 0 2 4 6 8 10 12 14 16 18 20 Zeit in d Wind Leistung in MW AA CAES Pumpspeicher H2 (GuD) Bei einem Speichervolumen

Powertrain of a H2 /FC-Hybrid-Vehicle

Electricity- Management