90
1. What is nuclear astrophysics? Why stars shine? What are the stars made of? Are stars moving or changing? L. Gialanella RIB in experimental Nuclear Astrophysics Lucio Gialanella Dipartimento di Matematica e Fisica Seconda Università di Napoli and INFN Napoli Naples, Italy

RIB in experimental Nuclear Astrophysics...V. Castellani „Astrofisica stellare“ Zanichelli, 1985 L. Gialanella Luminosity mass relation in MS Stellar quiescent burning hydrostatic

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

  • 1. What is nuclear astrophysics?

    Why stars shine?

    What are the stars made of?

    Are stars moving or changing?

    L. Gialanella

    RIB in experimental Nuclear AstrophysicsLucio Gialanella

    Dipartimento di Matematica e Fisica

    Seconda Università di Napoli and INFN – Napoli

    Naples, Italy

  • RIB in experimental Nuclear AstrophysicsLucio Gialanella

    Dipartimento di Matematica e Fisica

    Seconda Università di Napoli and INFN – Napoli

    Naples, Italy

    1. What is nuclear astrophysics?

    Why stars shine?

    What are the stars made of?

    Are stars moving or changing?

    L. Gialanella

  • 1 - Source of stellar energy: gravitational

    • The virial theorem describes enegetically the gravitational contraction:

    K=-1/2 Ug

    K internal energy

    Ug= gravitational potential energy

    For the Sun:

    Ug~ 3G M2/(5R) ~ 4· 10-10 (2 · 1030)2 / (7 · 108) J ~ 2 · 1042 J

    L ~ 1.3 ·103 4π/DW ~ 3.8 ·1026 J/s

    Ug/(2L) ~ 2.5 ·1015 s ~ 30 My (Kelvin-Helmholtz)

    So, gravitation can account for a lifetime of the order of 10 My,

    consistent with the (wrong) estimate of Earth’s age (Lord Kelvin’s

    estimate)

    L. Gialanella

  • Increasing temperature

    Credit: http://chandra.harvard.edu/graphics/edu/formal/variable_stars/HR_diagram.jpg

    L. Gialanella

  • V. Castellani „Astrofisica stellare“ Zanichelli, 1985

    L. Gialanella

    Luminosity mass relation in MS

  • Stellar quiescent burning

    hydrostatic equilibrium

    heat transport

    mass continuity

    energy conservation

    L. Gialanella

  • The Observatory, Vol. 42, p. 371-376 (1919)

    L. Gialanella

  • 2. Source of stellar energy: nuclear

    • Nuclear binding energy per nucleon is BE~ 8MeV

    Un= 1.9·1030/1.6·10-27 8 1.6·10-13 J ~ 1.5·1045 J

    Un/L ~ 100 Gy

    But kT

  • L. Gialanella

  • Mass gap A=5, 8

    L. Gialanella

  • Velocity-Distance Relation among Extra-Galactic Nebulae.

    Edwin Hubble PNAS 1929;15:168-173

    ©1929 by National Academy of Sciences

  • Hubble’s law (1929)

    V=Hd con H=71±7 km s-1 Mpc-11 Mpc=3.1 1019 km H-1=13.8 Gy

    Hubble&Humason ApJ 1931

  • But there was no

    way to ovecome

    the gap at A=5, 8

    L. Gialanella

    Big Bang Nucleosynthesis

  • L. Gialanella

    but stellar nucleosynthesis alone cannot account for the

    abundances of light elements

  • =894±5 s

    http://www.astro.ucla.edu/~wright/BBNS.html

    Big Bang Nucleosynthesis revised

    L. Gialanella

  • since v has a distribution P(v)

    if v is the relative velocity

    Nuclear reactions in stars

    L. Gialanella

  • P(v) -> Maxwell Boltzmann distribution

    L. Gialanella

  • Pro

    bab

    ilit

    yd

    ensi

    ty

    energy

    Pro

    bab

    ilit

    yd

    ensi

    ty

    energy

    P(v) -> Maxwell Boltzmann distributione.g. p+p

    L. Gialanella

    Gamow Peak

    Maxwell-BoltzmannP exp(-E/kT) Penetrability

    Ps exp(-(Ec/E)1/2)

  • Pro

    bab

    ilit

    yd

    ensi

    ty

    energy

    Pro

    bab

    ilit

    yd

    ensi

    ty

    energy

    Same temperature but larger coulomb barrier

    L. Gialanella

    Gamow Peak

    Maxwell-Boltzmann exp(-E/kT) Penetrability

    Ps exp(-(Ec/E)1/2)

  • Pro

    bab

    ilit

    yd

    ensi

    ty

    energy

    Pro

    bab

    ilit

    yd

    ensi

    ty

    energy

    Gamow Peak

    Maxwell-Boltzmann exp(-E/kT)

    Same Coulomb barrier but higher temperature

    L. Gialanella

    PenetrabilityPs exp(-(Ec/E)

    1/2)

  • Since s is dominated by the penetrability of the coulomb barrier, it isusual to factorize it out and define the S factor

  • Reaction E0(keV) Integral

    p+p 5.9 7 10-6

    4He+12C 56 5.9 10-56

    16O+16O 237 2.5 10-237

    Sun : T6 = 15

    So, E0 = f(Z1, Z2, T): that is the reason for separate, subsequent burnings

    L. Gialanella

  • p + p 2H + e+ + [0.27 MeV] p + e- + p 2H + [1.44 MeV]

    2H + p 3He +

    3He + 3He 4He + 2p 3He + 4He 7Be + 3He + p 4He + e+ +

    7Be + e- 7Li + [0.81 MeV] 7Be + p 8B +

    7Li + p 8Be 8B 8Be + e+ + [6.80 MeV]

    8Be 2 4He 8Be 2 4He

    H burning (T6 10-60)

    99.75% 0.25%

    86% 14%

    99.89% 0.11%

    CHAIN III

    Qeff= 19.67 MeV

    CHAIN II

    Qeff= 25.66 MeV

    CHAIN I

    Qeff = 26.20 MeV

    CHAIN IV

    Qeff= 16.84 MeV

    pp chain

    2·10-5%

    L. Gialanella

  • Solar neutrino energy spectrum

    L. Gialanella

  • L. Gialanella M. Wiescher et al, ApJ 1989

  • 12C

    13N

    (p,

    61

    09

    y

    14N(p,

    1109 y

    15O

    (p,

    21

    01

    2y

    13C

    e+

    10

    m

    15N

    e+

    2 m

    CN17F

    (p,

    17O

    e+

    64

    s

    NO

    16O

    (p,

    1108 y

    (p,

    (p,18F

    (p,

    18O

    e+

    10

    8 m

    (p,

    CN

    Qeff = 26.02 MeV

    NO

    Qeff = 25.73 MeV

    Hydrogen burning at high temperature and metallicity

    CNO bi-cycle CNO cycle

    pp chain

    Energy generation for pp chain and CNO cycle

    Result:

    - H burning

    - Enrichment in 14N

    L. Gialanella

  • Hot CNO (T9~0.1)Stable

    Radioactive

    Cold

    Hot

    Break out

    12C 15N 16O 18O 20Ne19F

    13C 14N 17O 18F 20Na19Ne

    13N 15O 17F

    14O18Ne

    (p,

    (p,

    (p,

    (p,

    (p, (p, (p,

    (p,(p,

    (,

    (p,

    (,p

    (p,

    (p,

    e+

    e+

    (p,

    (p,

    e+

    e+

    e+ e+

    e+ e+(p,

    (p,

    (p,

    I III

    II

    IV

    6109 y

    1.1109 y

    2.11012 y

    2 m

    1108 y

    10 m

    64 s

    L. Gialanella

  • Hot NeNa and MgAl cycles (T9~0.1)

    20Ne 24Mg(p,

    23Na

    (p,

    (p,

    19F(p,

    (p,

    27Al28Si

    (p,(p,

    22Na

    22Ne

    (p,

    e+

    3 y

    r

    21Ne

    21Na

    (p,

    e+

    22

    s

    27Si

    26Al

    26Mg

    (p,

    e+

    6 s

    25Mg

    25Al

    (p,

    e+

    7 s

    (p,

    + other paths (e.g. 21Na(p,)22Mg, 22Mg(p,) 23Al, 23Mg(p,) 24Al

    ->24Mg)

    L. Gialanella

  • 26Al Comptel-Integral/SPI

  • After Hydrogen exhaustion, core contracts

    and star expands

  • So the ashes of

    helium burning are

    essentially C and O

    Helium burningT9~0.1-0.3

    Rolfs &Rodney “Cauldron in the cosmos”

    L. Gialanella

  • L. Gialanella

  • Advanced burnings

    Carbon (T9 ~0.6-0.9) 12C+12C

    20Ne+ + 4.6 MeV

    Neon(T9 ~ 1.2-1.7)

    20Ne+(4.7 MeV)->16O+a ;

    20Ne+->24Mg+4.6 MeV

    20Ne+20Ne->16O+24Mg

    23Na+p + 2.2 MeV

    23Mg+n - 2.6 MeV

    L. Gialanella

  • Oxygen (T9 ~ 1.4-2.3) 16O+16O

    28Si++9.6 MeV

    31P+p+7.7 MeV

    31S+n+1.5 MeV

    30Si+2p+0.38 MeV30P+d-2.4 MeV

    Silicon (T9 ~ 2.7-4.0) 28Si+

    p + A

    n

    54,56Fe58Ni

    L. Gialanella

  • http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html

    L. Gialanella

  • V. Castellani „Astrofisica stellare“ Zanichelli, 1985

    L. Gialanella

  • L. Gialanella

    HST- NASA, ESA, "Crab Nebula" J. Hester and A. Loll (Arizona State University)

  • Evolutionary Stages of a 25-M

    Star

    Stage Core Temperature [K]Core Density

    [kg/m3]Duration of Stage

    Hydrogen burning

    4 107 5 103 7 106 years

    Helium burning 2 108 7 105 7 105 years

    Carbon burning 6 108 2 108 600 years

    Neon burning 1.2 109 4 109 1 year

    Oxygen burning 1.5 109 1010 6 months

    Silicon burning 2.7 109 3 1010 1 day

    Core collapse 5.4 109 3 1012 3 second

    Core bounce 2.3 1010 4 1015 milliseconds

    Explosion (supernova)

    ~109 varies 10 seconds

    http://www.physics.byu.edu/faculty/christensen

  • s, r, and p processes

    p process

    s process

    r process

    L. Gialanella

  • s process

    • low neutron density n ~107-8 n/cm3

    • seed from advanced burnings

    • neutron sources in burning shells with dredge up :12C(p, )13N(+)13C(,n)16O

    14N(,)18F (+)18O(,)22Ne(,n)25Mg

    • neutron traps, p.e.14N

    • nucleosintesis close to the valley of stability up to A~208

    n(A)>(A)

    L. Gialanella

  • r-process

    - high neutron density n ~1020 n/cm3

    - yields depend somwhat on seed nuclei fron advanced burning

    - neutron sources: SNII, neutron-star mergers, neutrino-driven winds

    following core collapse

    - n(A)

  • L. Gialanella

  • A key feature of r-process: nice movies

    http://compact-merger.astro.su.se/movies.html

    L. Gialanella

    httpcompact-merger.astro.su.semovies.html.avi

  • L. Gialanella

  • L. Gialanella

  • Nuclear reactions in the laboratory

    X(a,b)Y

    Ion beam

    target

    detectors

    L. Gialanella

  • NOTE: s depend on E, and E is not constant through the target

    particles in CSRIM calulationwww.srim.org

    Reaction yield

    L. Gialanella

  • target

    particles in CSRIM calulation

    L. Gialanella

  • Case of a single resonance

    Er=1.4 MeVG=30 keV

    DEt=3 to 680 keV)

    L. Gialanella

  • L. Gialanella

  • resonant+not resonant

    L. Gialanella

  • Effective energy for the cross section extracted from a yieldThere are 3 recipes found in the literature

    1

    2

    3

    L. Gialanella

  • 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.50

    0.55

    0.60

    0.65

    0.70

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

    Ee

    ff (

    Me

    V)

    target thickness (MeV)

    Ein = 0.660MeV

    E_mean

    E_median

    E_cs

    L. Gialanella

  • 0.00 0.10 0.20 0.30 0.40

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.00 0.10 0.20 0.30 0.40 0.50

    rate

    fra

    cti

    on

    (E

    >E

    eff

    )

    target thickness (MeV)

    mean

    median

    cs

    L. Gialanella

  • 5%

    30%

  • Experimental determination of reaction cross sections

    Direct methods:

    very low cross sections -> low counting rates

    measure outside Gamow window -> extrapolation (reaction mechanism

    cosmic radiation + nat. roombckg

    Beam/target induced bckg

    For RIB: low beam intensity

    key improvements: Beams (obvious)

    Targets

    Detectors

    L. Gialanella

  • X(,)Y

    Cosmic backgroundNatural radioactivity

    No direct natural background

    Radiative captures reactions

    L. Gialanella

  • 0 1000 2000 3000 4000 5000 6000 70000

    1000

    2000

    3000

    4000

    5000

    raw suppressed

    Counts

    Channel

    •4He beam on 12C solid target

    •Targets: (low-energy) ion beam implantation

    •12C/13C separation of accelerated ions

    •Array of Ge detectors

    • Eurogam

    •Ge surrounded by BGO crystals

    (active shielding)

    •Compton suppression

    •Cosmic ray suppression

    compton suppression

    Strahl

    beam

    L. Gialanella

  • M. Fey, PHD Thesis and Assuncao et al.E [MeV]

    9.0 9.5 10.0

    expected. E = 8.05 MeV

    L. Gialanella

  • M. Fey, PHD Thesis and Assuncao et al.E [MeV]

    7.5 8.0 8.5

    expected. E = 8.05 MeV

    L. Gialanella

  • LUNA 1(1992-2001)50 kV

    LUNA 2(2000…)400 kV

    Laboratory for Underground

    Nuclear Astrophysics

    Radiation LNGS/surface

    Muons

    Neutrons

    10-6

    10-3

    LNGS(shielding 4000 m w.e.)

    LUNA MV2016->..

    LUNA collaboration

  • 1,00E-06

    1,00E-05

    1,00E-04

    1,00E-03

    1,00E-02

    1,00E-01

    1,00E+00

    0 2000 4000 6000 8000 10000

    E[keV]

    coun

    ts

    1,00E-06

    1,00E-05

    1,00E-04

    1,00E-03

    1,00E-02

    1,00E-01

    1,00E+00

    0 2000 4000 6000 8000 10000

    E[keV]

    coun

    ts

    3MeV < E < 8MeV: 0.5 Counts/s

    3MeV < E < 8MeV0.0002 Counts/s

    GOINGUNDERGROUND

    HpGe

    courtesy LUNA collaboration

  • -ray detector

    Nrecoils = Nprojectiles x ntarget x s x TERNA x Fq x epartNgamma = Nrecoils x e

    recoils + “leaky”

    beam ions

    gas target

    accelerated beam ions

    beam ions+recoils (10-12-18) Recoil

    Mass Separator

    Particledetector

    RMS : working principle

    gate

    L. Gialanella

  • Angular and energy broadening by -ray

    emission

    p = E / c

    J = 90° J= 0° / 180°

    Full angular broadening Full energy broadening

    Recoil Separators

    basic principles

    Jrecoil

    E0

    E0 +- DE

    DE/E0 ≈ 2 Dp/p = 2E/cprecoil

    Jrecoil ≈ tan-1(Dp/p) = tan-1 ( )E/c

    precoil

    Jmax = 26mrad

    -> ø52 mm after 1 m !

    DE ~ ±185 keV

    E0 = 3.6 MeV

    L. Gialanella

  • magnetic dipole

    Fz = FL

    P

    q=rxB

    Momentum filter

    electric dipole

    - +

    Fz = Fe

    E

    q

    rxU

    2xd=

    Energy filter

    Wien filter

    +

    -

    Velocity filter

    |Fe| = | FL|

    v = U

    Bxd

    Charge insensitive for v=v0

    Variable analyzing power

    Combine to filteringm

    q

    L. Gialanella

  • RMS for Nuclear Astrophysicsfor Nuclear Astrophysics

    DRAGON

    Caltech ARES

    ERNA

    KUTL

    DRS NaBoNA

    ERNA

    St GEORGE

  • DRAGON

    Caltech ARES

    ERNA

    KUTL

    DRS NaBoNA

    DRAGON

    ISAC

    •Configuration: M-E-M-E•radioactive ion beams•differentially pumped gas target•Acceptances 18mrad (?)•Assumption of FULL acceptances

    L. Gialanella

  • 20NeARESCaltech

    KUTL

    DRS NaBoNA

    DRAGON ERNA•Configuration: M-W•Target: H containing foil•PARTIAL ACCEPTANCES•Improvements planned toincrease suppression (add. Magnet)

    ARESLouvain-la-Neuve

    Courtesy of M. Couder, Notre Dame

    Calculated acceptancevs reaction kinematics

    19Ne

    19F

    1H(19Ne,)20Na

    Needed

    calculated

  • Recoil Separatorsfor Nuclear Astrophysics

    DRS

    DRAGON

    Caltech ARES

    ERNA

    KUTL

    NaBoNA

    WF

    WF

    Target

    D

    QT

    QT

    QTFP

    DRS

    ORNL

    •Configuration: W-W-M•Acceptances angle +-45 mrad

    energy +-5%

    •H-Gastarget(differentially pumped, windowless)

    1H(7Be,)8B

    L. Gialanella

  • DRAGON

    Caltech ARES

    ERNA

    KUTL

    DRS NaBoNA

    NaBoNA

    Naples1H(7Be,)8B

    NaBoNA -> Precursor of ERNA

    L. Gialanella

  • Next to come: SECAR at FRIB

    L. Gialanella

  • Divergence slits

    Object slits

    Small beam emittance

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    -2 -1 0 1 2

    Target collimator

    beam

  • Angular acceptancealong the gas target

    Energy acceptance

    Change beam energy

    L. Gialanella

  • Why is acceptance so important? An example: 12C(,)16O at Ecm=1 MeV

    Required acceptance:27 mradActual acceptance: 24 mrad

    L. G. and D. Schuermann ENA VI – POS 2011

    Recoils 47% 66% 23% Loss (beam and target effects not included)

    L. Gialanella

  • Angular acceptance - experimental

    L. Gialanella

  • -20 -15 -10 -5 0 5 10 15 200.0

    0.2

    0.4

    0.6

    0.8

    1.0

    tran

    smis

    sio

    n

    D E / E0

    [ % ]experimental

    calculated

    Energy acceptance - experimental

    L. Gialanella

  • Recoil detection and identificationz

    DE Eres

    DE·EMZ2

    Dt = L (m/2E)1/2

    E

    Dt

    Charge identification

    Mass identification

    L. Gialanella

  • Recoil detection

    DE-ETOF-E

    3He(,)7Be

    Full acceptance

    SuppressionSeparator: 10-10-10-11

    Detector : 10-3-10-6

    12C(,)16O

    3He(,)7Be

    L. Gialanella

  • 3He(,)7Be – measurements

    L. Gialanella

  • 3He(,)7Be – measurements

    L. Gialanella

  • Adelberger et al 2011

    L. Gialanella

  • RecoilMass Separator

    detector

    ion sources

    ion beam analysis and purification

    Radio-chemistry 1

    2Scatteringchamber

    ERNA at CIRCE, Caserta, Italy

    - High intensity ion beams- Medium lived RIB- Applied physics- Basic research- Service

    NIC XIII – Debrecen - L: GialanellaL. Gialanella

  • NIC XIII – Debrecen - L: GialanellaL. Gialanella

    7Be beam current vs time

  • NIC XIII – Debrecen - L: Gialanella

    HyHydrogen gas target

    L. Gialanella

  • NIC XIII – Debrecen - L: Gialanella

    0.7-1.0 1019 at/cm2

    Hydrogen gas target profile

    L. Gialanella

  • 7Be beam:109 p/s(up to 1010 p/s)

    Five energies600-800 KeV>10% statistics

    L. Gialanella

  • Outlook

    RIB are an essential tool in Nuclear Astrophysics:

    • r-process: half lives, neutron capture far from stability, surrogate reactions

    • explosive burnings (novae, supernovae Type I, Xray burst)

    p-rich nuclei, low energy

    Key experimental issues are:

    • beam intensity

    • detection apparatuses

    I did not present indirect methods, that provide very important information

    (e.g. Coulomb excitation, TMH, transfer reactions, and others)

    A final remark: new large scale facilities for RIB are promisingly growing,

    but stable beams and small facilities are very important in this field.

    For questions/comments: [email protected]

    L. Gialanella

  • References

    • D.D. Clayton, „Principles of Stellar Evolution and Nucleosynthesis“,

    • Chicago University Press, Chicago, 1968

    • C.Rolfs, W.S.Rodney, „Cauldrons in the Cosmos“, Chicago University

    • Press, Chicago, 1988

    • Ch. Iliadis, „Nuclear Physics of Stars“, Wiley-VCH, Weinheim, 2007

    • V. Castellani „Astrofisica stellare“ Zanichelli, 1985

    •Very important: all original works

    L. Gialanella

  • One-day SPES Workshop “ Nuclear astrophysics at SPES

    November 12th-13th, 2015, Caserta, Italy

  • You will be happy to stay with us