Review of the Performance of High Strength Steels Used Offshore

Embed Size (px)

Citation preview

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    1/130

    HSEHealth & Safety

    Executive

    Review of the performance of highstrength steels used offshore

    Prepared by Cranfield Universityfor the Health and Safety Executive 2003

    RESEARCH REPORT 105 

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    2/130

    HSEHealth & Safety

    Executive

    Review of the performance of highstrength steels used offshore

    Professor J Billingham, Professor J V Sharp,Dr J Spurrier and Dr P J Kilgallon

    School of Industrial and Manufacturing ScienceCranfield University

    CranfieldBedfordshire

    MK43 0AL

    High strength steels (yield strength >500MPa to typically 700MPa) are increasingly being used in

    offshore structural applications including production jack-ups with demanding requirements. They offer

    a number of advantages over conventional steels, particularly where weight is important. This review

    considers the types of steel used offshore, their mechanical properties, their weldability and their

    suitability for safe usage offshore in terms of fracture, fatigue, static strength, cathodic protection and

    hydrogen embrittlement performance. In addition, this review addresses the performance of high

    strength steels at high temperatures and at high strain rates. It outlines the difficulties in working with

    the very limited published codes and standards and discusses performance in the field. Current design

    restrictions such as limits on yield ratios, susceptibility to hydrogen cracking including the influence of

    SRBs, and the management of the behaviour of such steels in seawater under cathodic protection

    conditions are discussed. Recommendations are made to encourage the wider use of high strength

    steels in the future and areas where further study is required are identified.

    This report and the work it describes were funded by the Health and Safety Executive (HSE). Itscontents, including any opinions and/or conclusions expressed, are those of the authors alone and do

    not necessarily reflect HSE policy.

    HSE BOOKS

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    3/130

     © Crown copyright 2003

    First published 2003

    ISBN 0 7176 2205 3

    All rights reserved. No part of this publication may bereproduced, stored in a retrieval system, or transmitted inany form or by any means (electronic, mechanical,photocopying, recording or otherwise) without the priorwritten permission of the copyright owner.

    Applications for reproduction should be made in writing to:Licensing Division, Her Majesty's Stationery Office,St Clements House, 2-16 Colegate, Norwich NR3 1BQor by e-mail to [email protected]

    ii

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    4/130

    CONTENTS Page

    NOMENCLATURE....................................................................................   vii

    SUMMARY................................................................................................ ix 

    1.INTRODUCTION.................................................................................. 1

    2. THEUSEOFHIGHSTRENGTHSTEELSOFFSHORE....................... 3

    3. MECHANICALPROPERTIESOFHIGHSTRENGTHSTEELS........... 6

    3.1SteelTypeandProcessRoute.................................................... 63.2 MetallurgicalandCompositionalConsiderations..................... 63.3YieldRatioConsiderations......................................................... 7

    4. CODESANDSTANDARDS................................................................. 234.1 AllProperties............................................................................... 234.2Fatigue.......................................................................................... 244.3FractureToughness..................................................................... 244.4HydrogenCracking...................................................................... 244.5DefectAcceptanceCriteria.......................................................... 25

    4.6CorrosionProtection................................................................... 25

    4.7StaticStrengthofTubularJoints................................................ 254.8 ImpactProperties......................................................................... 264.9HighTemperatureProperties...................................................... 26

    5. FABRICATIONANDWELDING.......................................................... 29

    6. TOUGHNESS....................................................................................... 346.1 DuctiletoBrittleTransition........................................................ 346.2 CharpyV-NotchValuesandHighStrengthSteel..................... 356.3 FractureMechanicsValues....................................................... 366.4 FractureToughnessofHighStrengthSteels............................ 376.5 FlawAssessmentConsiderationsforHighStrengthSteels.... 396.6 SummaryofToughnessConsiderations................................... 40

    7. FATIGUEINHIGHSTRENGTHSTEELS........................................... 467.1 Introduction................................................................................. 467.2 FatigueCrackPropagation........................................................ 46

    7.2.1 EffectofSteelStrengthonFatigueCrackGrowthRate 467.2.2 ParentMaterials............................................................... 477.2.3 HAZ................................................................................... 47

    7.2.4 WeldMetals...................................................................... 477.2.5 FatigueThresholds.......................................................... 47

    iii

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    5/130

    7.3 EffectofSRBandSulphides...................................................... 477.4 SNData........................................................................................ 487.5 FatigueImprovementTechniques............................................. 487.6 Summary..................................................................................... 49

    8. CATHODICPROTECTION................................................................... 648.1 Introduction................................................................................. 648.2 ProtectionCriteria....................................................................... 648.3 AvoidingOverprotectionProblems........................................... 658.4 Summary..................................................................................... 66

    9. HYDROGENEMBRITTLEMENT.......................................................... 709.1 Introduction................................................................................. 709.2 SourcesofHydrogeninSteelsExposedtotheMarine

    Environment................................................................................ 709.3 RecentLiteratureReview........................................................... 71

    9.4 EffectofWelding......................................................................... 729.5 HETesting................................................................................... 729.6 HydrogenEmbrittlementTestResults...................................... 729.7 Summary..................................................................................... 74

    10.HIGHTEMPERATUREPROPERTIES................................................ 8110.1 Summary................................................................................... 82

    11.HIGHSTRAINRATES........................................................................ 8411.1 Summary................................................................................... 85

    12.FIELDPERFORMANCEOFFSHORE................................................. 8812.1 Introduction............................................................................... 8812.2 ProductionJack-ups................................................................. 88

    12.2.1 BPHarding..................................................................... 8812.2.2 Siri.................................................................................. 8812.2.3HangTuahACEPlatform.............................................. 8912.2.4 Elgin-Franklin................................................................ 89

    12.3 DrillingJack-ups....................................................................... 8912.4 TensionLegPlatforms............................................................. 91

    12.5 Summary................................................................................... 91

    13.INSPECTIONANDREPAIR............................................................... 9413.1 Summary.................................................................................. 94

    14. DESIGNRESTRICTIONS................................................................... 9614.1 BucklingofMembers............................................................... 9614.2 StaticCapacityofTubularJoints............................................ 9614.3 DraftISOStandardRecommendationsforHigh

    StrengthSteels......................................................................... 96

    15. SUMMARYANDCONCLUSIONS..................................................... 99

    iv

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    6/130

    APPENDIX1–OTHERSTRUCTURALAPPLICATIONSOFHIGHSTRENGTHSTEELS–BOLTS&

    THREADEDFASTENERS................................................ 102

    APPENDIX3............................................................................................. 104

    APPENDIX6–FRACTURETOUGHNESSCONCEPTS.......................... 105A6.1 DuctiletoBrittleTransition:AnIntroductiontoFracture.... 105A6.2 CharpyV-NotchValues:Background................................... 105A6.3 CharpyVNotchValuesforHighStengthSteel.................... 107A6.4 FractureMechanicsTests:Background............................... 108

    A6.4.1 BrittleMaterials........................................................ 108A6.4.2 DuctileMaterials....................................................... 109

    A6.5 FractureMechanicsValuesforHighStrengthSteels.......... 110A6.6FlawAssessmentConsiderationsforHighStrengthSteels 111

    APPENDIX9 ............................................................................................ 117A9.1 SlowStrainRateTesting......................................................... 117A9.2 FractureMechanicsTesting................................................... 117

    v

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    7/130

    vi 

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    8/130

    NOMENCLATURE

    a Cracklengthparameter

    B ThicknessoffracturespecimenCEorCE Carbonequivalent

    CP Cathodicprotection

    CR Controlledrolled

    CTOD Cracktipopeningdisplacement

    Cv Charpyimpactenergy

    � Cracktipopeningdisplacementvalue

    da/dN Crackgrowthrate

    � Stressintensityfactorrange

    � Young’smodulus

    �� Embrittlementindex

    FCAW Fluxcoredarcwelding

    FCGR Fatiguecrackgrowthrate

    FMD Floodedmemberdetection

    HAC Hydrogenassistedcracking

    HAZ Heataffectedzone

    HE Hydrogenembrittlement

    HIC Hydrogeninducedcracking

    HSLA Highstrengthlowalloy

    HSS Highstrengthsteels

    HV Vickershardness

    ICCP Impressedcurrentcathodicprotection

    ISO InternationalStandardsOrganisation

    J JoulesKapp Appliedstressintensityfactor

    Kc Apparenttoughness

    K1A Arresttoughness

    K1c Materialtoughness

    K1D Stressintensityfactortokeepcrackin

    motion

    KISCC Fracturetoughnessunderconditionsof

    stresscorrosioncracking

    Kth ThresholdvalueofK

    LBZ Localbrittlezones

    MAC Martensite-austenitecontentMMA Manualmetalarc

    MPa MegaPascals

    Q&T Quenchandtempered

    �y Yieldstress

    Rcurve Resistancecurve(energyperunitareaof

    crackextension)

    Re Specifiedmin.yieldstrength(infracture

    toughnessequations)

    SACP Sacrificalanodecathodicprotection

    SAW Submergedarcwelding

    SMYS Specifiedminimumyieldstrength

    S-N Stressversusno.ofcyclesinfatigue

    SRB Sulphatereducingbacteria

    vii

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    9/130

    SSCC Sulphidestresscorrosioncracking

    SSRT Slowstrainratetesting

    TLP Tensionlegplatform

    TMCP Thermomechanicallycontrolled

    processing

    TMCR ThermomechanicallycontrolledrollingTT Ductiletobrittletransitiontemperature

    UKCS UKContinentalshelf

    UTS Ultimatetensilestrength

    � Poisson’sratio

    YR Yieldratio(�y /UTS)

    YS Yieldstrength

    viii

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    10/130

    SUMMARY

    High strength steels (yield strength >500MPa to typically 700MPa) are increasingly being

    used in offshore structural applications including production jack-ups with demanding

    requirements. Theyofferanumberofadvantagesoverconventionalsteels,particularlywhere

    weightisimportant.Thisreviewconsidersthetypesofsteelusedoffshore,theirmechanicalproperties,theirweldabilityandtheirsuitabilityforsafeusageoffshoreintermsoffracture,

    fatigue, static strength, cathodic protection and hydrogen embrittlement performance. In

    addition, thisreviewaddresses theperformanceofhigh strengthsteels athightemperatures

    andathighstrainrates.Itoutlinesthedifficultiesinworkingwiththeverylimitedpublished

    codesandstandardsanddiscussesperformancein thefield.Currentdesignrestrictionssuch

    aslimitsonyieldratios,susceptibilitytohydrogencrackingincludingtheinfluenceofSRBs,

    and themanagement of the behaviour of such steels in seawater undercathodicprotection

    conditions are discussed. Recommendations are made to encourage the wider use of high

    strengthsteelsinthefutureandareaswherefurtherstudyisrequiredareidentified.

    ix

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    11/130

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    12/130

    1. INTRODUCTION

    Fixedoffshorestructures areconventionallyconstructed frommediumgradestructural steels,with

    yieldstrengthstypicallyintherangeof350MPa.Thesesteelsarewelldocumentedandcoveredby

    existingcodesandstandards.However,inrecentyearstherehasbeenanincreasinginterestintheuse

    of higher strength steels for these installations, recognising the benefits from an increase in thestrengthtoweightratioandtheassociatedsavingsinthecostofmaterials.Asaresult,significant

    partsofseveralplatforms(jacketandtopsides)havebeenconstructedfrom400–450MPasteeland

    installedintheNorthSea. However,todate,fatiguesensitivecomponents(e.g.tubularjoints)have

    generallybeenfabricatedfrommediumstrengthsteelbecauseofthebetterknowledgeonthesesteels

    regardingfatigueperformanceandthelackofincreasedperformanceofhighstrengthsteelsinthis

    area.

    Theprincipalapplicationofveryhighstrengthsteelsoffshorehasbeeninthefabricationofjack-ups.

    Steelswithnominalyieldstrengthsintherange500–800MPaarenormallyusedinfabricationof

    legs,rackandpinionsandspudcans.Theseunits,usedprimarilyfordrilling,havemanyyearsof

    satisfactoryexperienceinuse,operatinginavarietyofwaterdepths,butarenormallybroughtinto

    drydockforinspectionat5yearintervals,whereanydamageorcrackingcanbefoundandrepaired.Inrecentyearstherehasbeenincreasinginterestintheuseofjack-upsforproduction,whereperiodic

    drydockinspectionisnotpossible.Twojack-upsforproduction,utilisinghighstrengthsteels,are

    nowinstalled(Hardingin1996,Siriin1998)andathird(Elgin-Franklin)isduetobeinstalledshortly

    on the UKCS. High strength steels have also been used in tethering attachments for floating

    structures in TLPs (tension leg platforms) and for mooring lines with semi-submersible module

    offshoredrillingunits(MODUs).

    A considerable amount of research has been undertaken on high strength steels in recent years

    providingnewdatatosupportoffshoreapplications.However,overallthereislimitedinformationof

    the long-term use of high strength steels in seawater, particularly under the severe environment

    conditionstowhichstructuresontheUKCSaresubjected.Particularconcernswiththeuseofhigher

    strengthsteelsarethegreatersusceptibilitytohydrogencrackingwhichcanbeenhancedwhenSRBs

    arepresent,theirfatigueandfractureperformance,and,foroffshoreapplications,theirperformanceat

    highertemperaturesasaresultoffire.

    Most codes and standards relate to medium strength steels and in most cases the use of design

    formulaeislimitedtosteelswithyieldstrengths

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    13/130

    REFERENCES

    1.01  Billingham J, Healy J, and Spurrier J, ‘Currentandpotentialuseofhighstrengthsteelsin

    offshorestructures’,Publication95/102MTD,Sept.1995,51pages,ISBN1-870553-24-1

    1.02  Billingham J, Healy J, and Bolt H, ‘Highstrengthsteels–thesignificanceofyieldratioandworkhardeningforstructuralperformance’,MarineResearchReview9,36pages,published

    MTD1997,ISBN1-870553-27-6

    1.03  Billingham J, Sharp J V, Spurrier J, and Stacey A, ‘Theuseofhighstrengthstructuralsteels

    inoffshoreengineering’,Intnl.SymposiumonSafetyinApplicationofHighStrengthSteel,

    Trondheim,July1997

    1.04 Sharp J V, Billingham J, and Stacey A, ‘Performanceofhighstrengthsteelsusedinjack-ups

    inseawater’MarineStructures,Vol.12,1999,349-369,ISSN0951-8339,Elsevier1999

    1.05  Healy J, and Billingham J, ‘Areviewofthecorrosionfatiguebehaviourofstructuralsteelsin

    thestrengthrange350-900MPa,andassociatedhighstrengthweldments’,OffshoreTechnologyReport,OTH532,Publ.Health&SafetyExecutive,1997,ISBN0-71762409-9

    1.06  Robinson M J, and Kilgallon P J, ‘Reviewoftheeffectsofsulphatereducingbacteriainthe

    marineenvironmentonthecorrosionfatigueandhydrogenembrittlementofhighstrength

    steels’,OffshoreTechnologyReport,OTH55598,HSEBooks(1999),Sudbury,Suffolk

    1.07  Robinson M J, and Kilgallon P J, ‘Reviewoftheeffectsofmicrostructureonthehydrogen

    embrittlementofhighstrengthoffshoresteels’,OffshoreTechnologyReport(inpress–no

    numberyetissued)HSEBooks(1999),Sudbury,Suffolk

    1.08 Stacey A, Sharp J V and King R N, ‘HighStrengthSteelsusedinOffshoreInstallations’,

    Proceedings15thInternationalConferenceOffshoreMechanicsandArcticEngineering,Florence,Italy,June1996,VolIII

    2

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    14/130

    2. THEUSEOFHIGHSTRENGTHSTEELSOFFSHORE

    Traditionally, offshore structures have been fabricated with moderate strength steels with yield

    strengthsupto350MPa[2.01],mainlyproducedbythenormalisingroute.However,therehasbeena

    significant growth over the past twenty years in the use of high strength steels in the offshoreengineeringindustry,primarilydrivenbyadesiretosaveweightandcost[2.02].Table2.1showsthe

    main application areas involved which vary with the strength of steel used. Such steels are also

    generallyproducedbyalternativeprocessingroutessuchasthermomechanicalcontrolledprocessing

    (TMCP),andquenchingandtempering(Q&T).

    Theprincipaladvantageofusingthesestructuralmaterialsistheirincreasedstrengthtoweightratio

    andtheattendantsavingsinmaterialscostsandconstructionschedules[2.03]duetoreducedamounts

    ofwelding. The most importantincreases have occurred in the topside areasof jacket structures

    where the weight saving has not onlyproducedoverall savings inmaterials usedbut has allowed

    cranebargeinstallationofmorecompletetopsideprocessingandaccommodationunits[2.04]with

    significantrelatedcostsavings.Asurveyundertakenin1995[2.05]indicatedthattheproportionof

    highstrengthsteel (definedas>350MPayieldstrength)usedin offshorestructures increasedfromlessthan10%toover40%overlittlelessthanadecade.

    Morerecentapplications,especiallywithsmaller,lighterstructures,involvetheuseofsuchsteelsin

    thejacketmembersthemselvesalthoughtherearestillusuallyrestrictionsto theiruseinnodalareas

    becauseofconcerns related tofatigueperformance. Itis likely that theuse ofsuchmaterialswill

    continue to increase as the steels become more widely available andconstruction yardsget more

    experiencedinfabricationprocedures.Todate,moststeelshavebeenrestrictedto450gradesbut

    researchanddevelopmentprogrammes[2.06]haveindicatedthatsteelgradesupto550MPacanbe

    produced which are readily weldable and possess excellent fracture toughness. Such steels will

    increasinglybeutilisedastheybecomemorewidelyavailable.

    Higherstrengthsteels(>550MPaandoftenupto700MPa)areusuallyproducedbythequenchingandtemperingrouteandhavetraditionallybeenusedoffshoreinmobilejack-updrillingrigswhichdonot

    stay permanently on station and are periodically dry docked, allowing inspection and repair

    programmestobeimplemented[2.07].Theprincipalapplicationofhighstrengthsteelsinjack-upsis

    inthefabricationofthelegsbecauseoftherequirementtominimiseweightduringthetransportation

    stage. Ingeneral,each lattice leg iscomposedofthreeorfour longitudinalchordmemberswhich

    maycontainarackplateforelevatingthehullandaseriesofhorizontalanddiagonaltubularbraces

    whichconnectthechordstoformatruss.Supplementarybraces(spanbreakers)arefrequentlyused

    between main brace mid-points to increase the buckling resistance. The rack plate is very thick,

    varyingtypicallybetween150and250mm.Thechordshellcansareusuallyfabricatedfromplate

    with a wall thickness between 35 and 80mm and with a diameter in the range 800 to1200mm.

    Weldabilityandgoodtoughnessandductilityareimportantmaterialconsiderationsinthisapplication

    and thesteel makerprovides thisby carefulcontrolofalloy composition andbyprocessing[2.01;

    2.04].

    Steelsofsimilarstrengthlevelshaveonlycomparativelyrecentlybeenusedinproductionjack-ups

    permanentlyonstationinNorthSeaprojectsintheHardingandSirifields,andintheElginjacket

    which was installed in 2001. In such installations, fatigue, corrosion fatigue and hydrogen

    embrittlementbecomemajordesignconsiderationsandthesteelsusedhavetobecarefullyreassessed.

    TheFrenchTPG500designisagoodexampleofthistypeofstructure.Itcanbebuiltonshoreasone

    completeunitandfloatedouttosite.Onceonstationthelegscanbeloweredtotheseabedandthe

    deckjackedupforoperation,thusreducingtheneedforheavyliftoperationsduringinstallationand

    producingsignificantcostsavings.Asecondbenefitinthisdesignisthatitisareusableproduction

    facility,sinceitcanberefloated,removedfromonesitetoanother,andcommenceoperationsinthenew field. Toprovide the required fatigue life the legsof thestructure have incorporated forged

    3

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    15/130

    nodes(fabricatedbyCreusot-Loire),thusreducingthestressconcentrationsnormallyseeninwelded

    nodes. TheHardingplatformisin110mwaterdepthandthelowerpartofthestructurecomprisesa

    concrete base to remove any potential problems of hydrogen embrittlement related to sulphate

    reducingbacteriainthemudzone. Ajack-upwasalsoinstalledasa permanentinstallationin the

    Danishsector(Sirifield,60mdepth)in1998.ThemajorityofthelegsectionsontheSiriplatformare

    madefromthicksection(65-110mm)690gradehighstrengthsteel.TheElginstructureusesarange

    of high strength steels including 500MPa steel in structural members, chords and bracings and

    700MPasteelintheracks.Ituseslowerstrengthsteels(350MPa)inthelowerpartofthestructure

    whicharepiledintotheseabedtoavoidpotentialhydrogenembrittlementproblems.

    Otherapplicationsforhighstrengthsteelsarefoundinmooringattachmentsforfloatingstructures

    such astension leg platforms (TLPs). These structures are fixedbyvertical tension legs topiled

    foundation templates on the seabed. One ofthe firstsuchdesigns for theHutton fieldin theUK

    sectorused16tensionlegs(4ateachcorner).Eachlegisathickwalledsteeltubular,manufactured

    fromalowalloysteel(3.5%Ni,Cr,Mo,V)withaminimumyieldstrengthof795MPa[2.08].The

    individual components of each leg are forged and connected by screwed couplings. The steel

    composition was selected to provide the highest possible strength, commensurate with adequate

    fracture toughness. Resistance to both stress corrosion cracking and corrosion fatigue were alsoimportant.Thechoiceofscrewedconnectorswasbasedonthefactthattherewereinsufficientdata

    available on the corrosion fatigue performance of welded tubulars to guarantee safe performance

    undertheenvisageddesignlifeofthestructures.Alargetestprogrammewasundertakentojustify

    thechoice ofmaterial. The platformhas now been inoperation for almost 20yearswithoutany

    significantproblemswiththetethers.

    SincethenTLPtypeplatformshavebeeninstalledinseveralotherfields,bothinNorwayandinthe

    GulfofMexico.IntheHeidronfield,forexample,aweldedTMCP(thermo-mechanicallyprocessed)

    microalloyedX70pipelinesteelwasusedforthetethers.Thestructureisin270mwaterdepthand

    comprisedtubulartensionlegelementsthatwere1mdiameterand38mmthick.Thesteelhadayield

    strengthof500MPaandimpacttoughnessof60Jat-40ºC.Otherstructureshavebeenusedinmuch

    deeperwaters,mainlyintheUS(AugerTLPin872m,installedin1994;MarsTLPin896mofwaterin1996),whereconventionalfixedplatformsareuneconomic. Theseprojectsinvolved76mmthick

    415MPacomponentsofweldableTMCPsteel.PlansareinhandforevendeeperwaterTLPunits,but

    itisnowrecognisedthattheavailabilityofsuitablehighstrengthmaterialsforthetethersislimiting

    furtherdevelopment.

    Otherfloatingstructuressuchassemi-submersibles,usedweldedhigherstrengthsteelanchorchains

    or wire ropes as their mooring attachments. Such steel chain and wire rope components are

    consideredoutsidethescopeofthepresentreview.

    Other, more specialised, usage areas include flanges and repair clamps where threaded fasteners

    providethemainloadtransfermechanism. Suchboltsandthreadedfastenersarediscussedinmore

    detailinAppendixI.

    4

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    16/130

    Table2.1Highstrengthsteelsusedoffshore

    Strength Process Route Application Area

    MPa (grade)

    350(X52) Normalised Structures

    TMCP Structures&Pipelines

    450(X65) Q&T Structures

    TMCP Pipelines

    550(X80) Q&T Structures&Moorings

    TMCP Pipelines

    650 Q&T Jack-ups&Moorings

    750 Q&T Jack-ups&Moorings

    850 Q&T Jack-ups&Moorings

    REFERENCES

    2.01  Billingham J, ‘Steel–aversatileadvancedmaterialinmarineenvironments’,Ironmakingand

    Steelmaking1994,Vol.21,No.6,p422

    2.02  Billingham J, Healy J, and Spurrier J, ‘Currentandpotentialuseofhighstrengthsteelsin

    offshorestructures’,MTDPublication95/102(1995),ISBN1-870-533-24-1

    2.03  Rodgers K J, and Lockhead J C, ‘Theweldingofgrade450offshorestructuralsteels’,Proc

    Conf.onWeldingandWeldPropertiesintheOffshoreIndustry,London,April1992

    2.04 Webster S E, ‘Structural materials for offshore structures – past, present and future’,

    Proc.Conf.onSafeDesignandFabricationofOffshoreStructures,IBC,London,Sept.1993

    2.05  Healy J, and Billingham J, ‘High strength steels – a viable option for offshore designs’,

    EuroforumConference–LatestInnovationsinOffshorePlatformDesignandConstruction,

    London1996

    2.06 ‘The influence of welding on materials performance of high strength steels offshore’,

    Managed Programmes of University Research, Marine Technology Centre, Cranfield

    University,1985-1994

    2.07 Sharp J V, Billingham J, and Stacey A, ‘Performanceofhighstrengthsteelsusedinjack-ups'’

    JournalofmarineStructures,12(1999),349

    2.08 Salama M N, and Tetlow J H, Proc.ofOffshoreTechnologyConference,Houston,Texas,

    1983,Paper449.

    5

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    17/130

    3. MECHANICALPROPERTIESOFHIGHSTRENGTHSTEELS

    3.1 STEELTYPEANDPROCESSROUTEIn general, thestrength ofa steel iscontrolled by its microstructurewhichvariesaccording to its

    chemical composition, its thermal history and the deformation processes it undergoes during its

    productionschedule. Inaddition,structuralsteelforoffshoreapplicationsmustbe readilyweldablesincethisisthetraditionalfabricationrouteforoffshorestructures.Structuralsteelsforoffshoremust

    thereforebeavailableinmoderatetothicksections(30–100mm)andmustexhibitgoodtoughnessto

    avoid the possibilityof brittle failure, in addition to showing good weldabilityandhigh strength.

    Suchoverallrequirementsareoftendifficulttoachievebecauseanincreaseinoneoftheseproperties

    oftenleadstoadecreaseintheothers.

    Table3.1belowshowsthestrengthrangesandprocessroutesforhighstrengthsteelsusedinavariety

    ofoffshoreengineeringapplications.

    Most conventional structures use only moderate strength steel produced by the normalised or

    thermomechanically processed routes (TMCP) but at higher strength levels there are processing

    thicknessrestrictionstoTMCPsteelsandnormalisingcannotproducethestrengthlevelsrequiredinthenecessary section thicknesses. Quenchingand tempering is therefore the standardproduction

    routeforveryhighstrengthstructuralsteel.Thelimitationsthatapplytothedifferentprocessroutes

    inrespectofstrengthorthicknessrangesareshowninTable3.2.

    3.2 METALLURGICALANDCOMPOSITIONALCONSIDERATIONSTheoffshorepipeline industry,for many years, hasusedhigh strengthsteels andtoday commonly

    uses X70 steel grade ( ! 450MPa) with excellent toughness and weldability properties [3.01].Significant benefits in suchdevelopments have comefrom understanding the complex chemistries

    developedforthesteelplustheuseofextensivethermomechanicalprocessing,primarilytoproduce

    fine grained microstructures, including controlled rolling, thermomechanical controlled processing

    and accelerated cooling. Many of the principles involved in such developments, particularly the

    complexinteractionsbetweenstrength,toughnessandweldabilityasinfluencedbysteelchemistry,

    heat treatments and thermal processing [3.02] have been carried over into higher strength steel

    development.

    Many of these well understood metallurgical principles can be utilised to satisfy the overall

    mechanicalpropertyrequirementsforhighstrengthstructuralsteels,namely:

    " reducedcarboncontenttoimproveweldabilityandtoughness;" decreasedgrainsize(ferriteand/orbainite)togiveincreasedstrengthandincreasedtoughness.

    This is usually achieved by microalloying with Nb, V or Al and by some form of

    thermomechanicalprocessing;

    " decreased impuritycontent (S, P,O)to increase toughness inparticular and through thicknesshomogeneity,i.e.theuseofcleansteeltechnology;

    " increased alloying with Ni, Cr, Mo and Cu to give solid solution and transformationstrengthening,especiallyatthehigherstrengthlevels.

    Relativelysmallchangesincompositionand/orvariationsinprocessingroutecansignificantlyaffect

    theresultingmechanicalpropertiesasshowninTable3.3.Thistableshows‘old’and‘new’versions

    ofsteelswithin3standardsteelgrades,i.e.355,450and690MPayieldstrength. Althoughallofthe

    steelswithin a particular grade satisfy thegrade requirements (primarilywith respect to specified

    minimum yield strength) it can be seen that the ‘newer’ versions show much improved overall

    properties by combining the required yield strength with improved toughness (improved Charpy

    impactperformance{Cv}),andimprovedweldability(lowercarbonequivalentvalues[CE1}). This

    Carbon equivalent CE is defined as CE=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 – See page 30 for more details.

    6

    1

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    18/130

    has been achieved primarily by controlling the microstructure through changes in chemistry and

    thermalprocessing.

    Manyengineersanddesignersdonotappreciatethatthemechanicalpropertiesofaparticularsteel

    can vary significantly within a specified steel grade (i.e. steel with a specified minimum yield

    strength).Figure3.1showsthevariationinmechanicalpropertiesforthreeoffshoresteelgradeswith

    minimumyieldstrengthsof355,420and450MPa[3.03].Forthe450MPasteel,forexample,itcan

    beseen that the yieldstrengthcanvaryby100MPa from440 to540MPa (+20%ondesign yield

    value),withameanvalueatapproximately500MPa.Suchvariationsareproducedbyvariationsin

    steelcompositionandprocessingwhichaffectallthemechanicalpropertiesasshowninFigure3.2for

    a450MPasteel.Suchvariationscanhaveseriousimplicationsforthedegreeofweldovermatching

    or undermatching that occurs in the final structure. The range of properties achievable within a

    particulargradecanalsovarysignificantlywithprocessrouteasshowninFigure3.3whichillustrates

    themuchwidervariation obtainedfrom theTMCProutethan fromeither the normalised routeat

    lowerstrengthlevelsorthequenchedandtemperedrouteathigherstrengthlevels[3.04].Variations

    can also occur with plate thickness and with steel manufacturer [3.05]. It is important that this

    potentialvariationinyieldstrengthisrecognisedatthedesignstage.

    Typical compositions and properties for high strength steels produced by the normalised,

    thermomechanically controlledprocessedandquenchingand tempered routes are shown inTables

    3.4,3.5and3.6respectively. Othertypicalcompositionandmechanicalpropertiesaregivenin the

    draftDNVOffshoreStandardOS-B101MetallicMaterials,(May2000).Ingeneralforsuchsteelsthe

    strengthincreasesasthehardenabilityandthecompositionrelatedcarbonequivalentvaluesincrease

    (seeFigure3.4).foreachprocessroute,buttheparticularprocessrouteselectedgenerallyhasamore

    significantinfluenceonyieldstrength.Bymakinguseofstrengthimprovementsassociatedwiththe

    processingroute,itispossibletoproducesteelsofthesamestrengthlevelatleanerchemistriesand

    hencelowercarbonequivalentvalues,whichshowimprovedweldability.Byusingcarefulcontrolof

    compositionandprocessing,steelscanthereforeusuallybeproducedwithexcellentcombinationsof

    strengthandtoughnesscombinedwithexcellentweldability.Ingeneral,asthestrengthincreasesthe

    weldabilityinparticulardecreasesandmorecontrolovertheweldingproceduressuchasincreasedlevelsofpreheatingareusuallyrequired.Moreover,ingeneral,thetoughnessofveryhighstrength

    steels(690MPa)isinferiortothatofsteelswithlow(350MPa)orintermediate(450-550MPa)levels

    ofstrength.

    3.3 YIELDRATIOCONSIDERATIONSThestressstrainbehaviourofhighstrengthsteelsdifferssomewhatfromthatoflowerstrengthsteels

    in that they generally show reduced capacity for strain hardening after yielding and reduced

    elongationasshowninFigure3.5.Thisisbecausethesteelstrengtheningmechanismsusedinhigh

    strength steeldevelopmenthave been selected specifically to increase the yieldstrength and have

    muchlessinfluenceinsubsequentstrainhardeningbehaviour.Onemeasuretoillustratethisdifferent

     

     

    y)toultimatetensilestrength(UTS),andwhichgenerallyincreasesasthestrengthofthesteelincreasesasshowninFigure

    3.6forarangeofoffshoresteelgrades[3.06].YRisnot,however,auniquemeasureofhowthesteel

    behavesbecausesteelswithverydifferentstressstraincurvescanhavethesamevalueofYR[3.06].

    TherearerestrictionsinstructuraldesigncodestoreflectthischangedbehavioursuchthatYRfor

    materialtobeusedforstructuralmembersisnotallowedtohaveavaluegreaterthan0.85indesign

    equationstoensurethatthereisadequateductilityinthemembertodevelopplasticfailurebehaviour

    as a defenceagainst brittle fracture.Design aspects related toYRaregiven in section 13of this

    report.Examinationofadifferentdatabase[3.07]showninFigure3.7showsthatgenerallysteels

    withyieldstrengthsupto500MPacansatisfythisgeneralrequirementsbutthatveryhighstrength

    steelsdonot.

    Theyieldratioisnotdirectlyrelatedtothecapabilityofagivensteeltowithstandplasticstrainafter

    yieldandbeforefracture. Inolderhighstrengthsteels,elongationgenerallydecreasesasyieldratio

    7

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    19/130

    increases,butmoderncleansteelswithlowcarboncontentandlowlevelsofimpurityhavesignificant

    elongation even at the highest strength (690 grade) and yield value ratio (0.95), giving more

    confidenceastotheirdeformationcapability[3.05].Analternativemeasureisthegeneralelongation

    whichisusuallysubstantialinmodernsteelwithhighyieldratios.

    Currentdesignequationsarebasedontestdatafrommediumstrengthsteels,wheresomedegreeof

    strainhardening ispresent. Lack ofstrainhardening can lead toprematurecracking, whichcould

    havesignificant implicationsfortubular joints inservice. As a result,design codeshaveplaceda

    limitontheyieldratio(typically0.7).ExaminationofFigure3.7emphasisestherangeofvaluesthat

    can occur within particular strength grades, largely due to the different methods of production,

    differences in steel chemistry, and differences in section thickness that occur (see section 3.2).

    Indeed,fromthisdiagramitcanbeseenthat350MPasteelsgenerallyshowayieldratiorangingfrom

    0.6 to0.8, that 450MPa steels havevalues rangingfrom0.7 to0.87,whereas690MPasteelshave

    valuesrangingfrom0.9to0.95.Elongationgenerallydecreasesinlinewithincreasingyieldratio;

    thereforefor350–450steels,elongationsaregenerallyoftheorderof20–35%,whereasfor690

    steels,valuesof14–18%aremoretypical[3.06].

    ExaminationofFigure3.7showsthatmanysteels,evenatstrengthlevelsupto400MPahaveyieldratios above 0.7, which could include many steels purchased at grade 355 level. It is therefore

    possiblethatsomeearlierstructuresmighthavenodaljointswhichdonotsatisfythecurrentdesign

    codesalthoughtheyhaveperformedperfectlysatisfactorilyinservice.

    Therehas for some time been a feeling that the code restrictionsfor nodalconnections are rather

    conservativeinrespectofhighstrengthsteelsbecauseintuitivelyitwouldbeexpectedthatjointload

    capacity would increase in line with yield strength, whereas the code restrictions impose severe

    limitations.Forexample,onincreasingtheyieldstrengthfrom355to532MPa(a50%increase)the

    designerisonlyallowedtoincreasetheallowabledesignstressby23%whentheyieldratiois0.85

    (YR = 0.85,design stress = 0.7UTS = 0.7 x626 =438MPa). Otherexamplesof the restrictions

    imposedbythecodearegiveninAppendix3.InitialfiniteelementstudiesonXjointdeformation

    behaviourbyBOMELandCranfield[3.06]indicatedthatjointswithhighYRhadsignificantlyhigher joint capacities than joints with low ratios. For example, a joint with a YR of 0.93 (490MPa$y,525MPa UTS) showed a 28% increase in joint capacity compared to a lower strength steel$y =350MPawithaYRof0.66and the samevalueofUTS(525MPaUTS). Existing structuralcodes

    wouldhaverestrictedthecapacityofboththesejointstothesamevalue(YR=0.66$D=$y=350,YR0.93,$D=2/3xUTS=2/3x525=350).Despitetheaboveenhancedin-jointcapacity,thecapacity does not increase linearly with yield stress as indicated by the design equations (static

    strengthforDTjoints):

    %P- F MIN*,

    ,17.0 )

    ' T2 5.2( & Q)14 %y+ YR(

    where P = staticdesign strength, Fy = yield strength, YR = yield ratio, T = wall thickness, % =

    diameterratiod/D,andQ% isageometricfactor,definedasQ% =0.3/ %(1-0.833%)for% >0.6andQ%=1for% 600MPa)[3.10]showedthattherecommendedrestrictionof0.7UTSwasjustified. However,the

    analyseswerecarriedout usingthe HSE GuidanceNotesequations whereultimatestrength isthefailurecriterion.Thepointwasalsomadethatthedatawereverylimitedandthattherangeofjoint

    8

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    20/130

    typestestedwaslimited(1T,8K/YT,2DT).Inaddition,thegeometryrangewaslimited(lowest

    gammawas14.8,highestbeta0.43). Therangeofyieldratioswas0.88to0.94.

    A later study for the European Commission [3.11] which involved some relatively large scale

    experimental tests by BOMEL, TNO and Delft Universities largely confirmed these earlier

    experiments. This programme included a significant finite element study, a comprehensive re

    examinationofthetestdatabaseusedinsettingupthestructuralcodeformulationsandanexpanded

    experimentaltestprogrammeinvolving2seriesoftests(compressionandtension)onDTjointsmade

    from 350, 450 and 690MPa steels. The finite element analyses successfully reflected the

    experimentalDTtestjointdata.Theyalsoisolatedandquantifiedaccuratelytheeffectofgeometric

    imperfectionsinthe testjoint.Theearlierindicationsthatthedesignstressfortubularjointsshould

    beraisedfromtheYR=0.7valueintheguidancewereconfirmed.Theauthorsconcludedthatthe

    conservatismutilisedinhighstrengthsteeltubularsteeldesigncouldbereducedbychangingtheYR

    =0.7limitinthedesignequationto0.8forbothcompressionandtensionjoints.Thiswouldthen

    enablemorewidespreadusetobemadeofhighstrengthsteelintubularjointdesign.Theauthorsalso

    recommendedthatmoretestsontubularjoints,especiallyatthehighergradesofsteelandespecially

    intension,wererequired.

    A recentlypublishedpaper [3.12] from ThyssenKrupp StahlAGanalysed transition temperatures

    from Charpy V-tests and the fracture mechanics transition temperature for 690MPa steels against

    yieldratioandfoundnocorrelation,butitwasrecognisedthattheseresultswerefromsmallscale

    tests.Anotheranalysisofthemaximumnetstressversustesttemperatureofthewideplatetestsfor

    690MPasteels,withyieldratiosrangingfrom0.87to0.93showedthatthehighestloadswereinthe

    steelswiththehighestyieldratio.Theauthorsconcludedthatyieldratioisnotagoodmeasureof

    componentsafety,andthatotherfactorsshouldbetakenintoaccount. Thispaper[3.12]alsolisted

    limitationsonyieldratioinvariousdesigncodesandmaterialsstandards(bothonshoreandoffshore)

    rangingfrom0.7to0.93forvariouscomponents.

    Since1996, severalPanelshavebeenmeeting todraft anew ISOstandardforoffshorestructures.

    ThisincludesaPaneldraftingasectiononthestaticstrengthoftubularjoints.ThePanelhasreexaminedthetestdataonjointstrengthanddevelopedsomeimproveddesignequations.However,

    becauseofthelackofdataonhigherstrengthsteeljoints,thePanelconcludedthattheseequations

    shouldbelimitedtosteelswithyieldstrengthslessthan500MPa(seesection4).However,evenfor

    thesesteels,itwasconsiderednecessarytoimposealimitoftheyieldratio(sincesomelowerstrength

    steelshaveyieldratiosgreater than0.7). ThePanelconcluded thatonthebasisof test results for

    lowerstrengthsteels,thelimitingyieldratioshouldbe0.8.

    For higher strengthsteels (yieldstrengthgreater than 500MPa) the Panelconcluded that use ofa

    limitingvalue of yield ratio of0.8 may be adequate to permit theultimate compression capacity

    equationstobeusedforjointswithstrengthsintherange500-800MPaprovidedadequateductility

    canbedemonstratedintheHAZandparentmaterial.Itisunclearhowthisdemonstrationofadequate

    ductility canbeprovidedeither interms ofmechanicalpropertydataof the steels concerned orinidentifiedtestprocedures.

    Laterexaminationofsomeoftheavailablestaticstrengthdata[3.13]hasconcludedthatalthoughthe

    factorforcompressionloadingcouldberelaxedto0.8,thefactorfortensionloadingshould,indeed,

    beloweredto0.5basedonthedesigncapacitybeingrelatedtofirstcrackingratherthantoultimate

    strengthasin,forexample,theAPIRP2Acode.Failuremodesinthecompressiontestsinvolvedan

    indentationofthechordofabout30%ofthediameter.Cracksappearedinthetensionspecimensat

    loadsofaround50%ofthemaximumloadreachedinthetests.However,itshouldberecognisedthat

    theserecommendationsarebasedonverylimitedtestdata.

    Overall, the design ofhigh strengthwelded joints for static strength isunclear basedon thevery

    limitedexistingdata.Whenfailureisdefinedastheonsetofcracking(undertensionloading,e.g.as

    inAPIRP2A)itwouldappearthattheexistingdesignequationsareunconservativeforhighstrength

    9

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    21/130

    steeljoints,evenwithayieldratioof0.7.Forcompressionloadingalimitingyieldratioof0.8would

    appear appropriate, provided there isadequateductility present inboth the HAZandparent plate.

    Furtherdataarerequiredtoresolvetheseuncertainties.

    Analternativeapproachtotheconcernsregardingtheinfluenceofhighyieldratioanddeformation

    capacityofhighstrengthsteeltubularjointsistoredesignthesteelanditsproductionroutetodevelop

    highstrengthsteelswithloweryieldratios. Japanesestudies[3.14]aimedatdevelopingsteelsfor

    earthquake resistant structures have utilised accelerated cooling and intercritical quenching

    procedures toproduceamicrostructureof ferrite dispersed inabainiticmatrixwhichcan produce

    highstrengthsteel500MPainthicksectionswithayieldratioof0.7andCEvaluesof0.4which

    would indicate reasonable weldability. 700MPa steels with YR of only 0.83 have also been

    developedbutthesearelessweldable(CE0.52)[3.15].Theweldabilityofsuchsteelisinferiorto

    modernHSLAsteelsusedoffshorebutcouldalmostcertainlybeimprovedwithfurtherdevelopment.

    Castingscanofferadvantagesoverweldedstructuralfabricationsbecausethejointintersectionscan

    be easily contoured to reducestress concentrationeffects,at say nodal joints for example, with a

    correspondingincreaseinfatiguelife[3.16].Inconventionalweldednodaljointsthefatiguelifeis

    decreasedbecauseofthemicrocrackingthatexistsintheweldtoewhichiseliminatedincastjointswithacorrespondingsignificantincreaseinfatiguelifeasshowninFigure3.8.Highstrengthsteel

    castingsareavailablewhichhaveattractivecombinationsofstrengthandtoughnessproperties[3.17;

    3.18]. Steelswithyieldstrengthsupto690MPaareavailable.Theycannotderivetheirstrengthfrom

    processingsousuallyhaveadditionofnickelandchromiumtosuppresstransformationtemperatures

    andproducelowcarbonmartensiticorbainiticstructures.Theexcellentthroughthicknessproperties

    of castings have also opened up new markets in lifting attachments, spreader bars, and pad eyes

    [3.16].

    REFERENCES

    3.01 ‘SteelsforLinepipeandPipelinefittings’,Proc.Intnl.Conf.London1981,publMetalsSociety

    3.02  Billingham J, ‘Steel–AVersatileAdvancedmaterialsinmarineEnvironments’,Ironmaking

    andSteelmaking,Vol.21,No.6,452,1994

    3.03  Billingham J, Healy J, and Spurrier J, ‘CurrentandPotentialUseofHighStrengthSteelsin

    OffshoreStructures,MTDpublication95/102,published1996,ISBN1-870553-24-1

    3.04  Denys R, ConfEvaluationofMaterialsinSevereEnvironments,ISIJapan,Vol.2,1989.

    3.05  Healy J, and Billingham J, MetallurgicalConsiderationsoftheHighYieldtoUltimateRatio

    in High Strength Steels for Use in Offshore Engineering’, 14th

    Intnl.Conf. OMAE 1995,

    Vol.III,365

    3.06  Billingham J, Healy J, and Bolt H, ‘HighStrengthSteel–theSignificanceofYieldRatioand

    WorkHardeningforStructuralPerformance’,MarineResearchReview9,publMTD1997,

    ISBN1-870553-27-6

    3.07 Willcock R T S, ‘Yield:TensileRatioandSafetyofHighStrengthSteels’,HSEReport,Mat

    R108,1992

    3.08  Healy B E, and Zettlemoyer N, ‘Inplanebendingstrengthofcirculartubularjoint’,Proc.5th

    Intnl.SymposiumonTubularStructures,ed.MGCoutieandGDavies,EandFNSpan,1993

    10

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    22/130

    3.09 Wilmhurst S R and Lee M M K, Non-linear FEM Studyof Ultimate Strength of Tubular

    MultiplanerDoubleKJoint’,Proc12thOMAE,Glasgow1993.

    3.10  Lalani et al, ESCSReport7210MC/6021996

    3.11 StaticStrengthofHighStrengthSteelTubularJoints,ECSC7210MC/6021996,reportedin

    Wicks P J, and Stacey A, ‘StaticStrengthofHighStrengthSteelTubularJoints’,Proceedings

    ETCE/OMAE2000Conference,Paper2081,February2000,Publ,ASME

    3.12 Kaiser H J, Kern A, Niessen T, and Schriever, ‘ModernHighStrengthSteelswithMinimum

    YieldStrength upto 690MPa and HighComponent Safety’,Proc. 11thIntnl.Offshoreand

    PolarEngineeringConference,Norway2001,ISBN1-880653-55-9.

    3.13 PrivateCommunicationwithNWNicholls

    3.14 Shikani N, Kurihora M, Tagawa H, Salkui S, and Watanabe I, ‘Developmentofhighstrength

    steelwithlowyieldratioforlargescalesteelstructures’,Proc.ofMicroalloying88,Chicago

    1988,p481

    8

    3.15 Toyoda M, ‘StrainHardenabilityofHighStrengthSteelsandMatchingPropertiesinWelds’,th

    Intnl.OMAEConf.1989

    3.16  Marston G J, ‘NovelApplicationofStructuralSteelCastingsintheOffshoreIndustry’The

    SafeDesignandFabricationofOffshoreStructures,IBCConf.,London,1993

    3.17  Richardson R C, ‘HigherStrengthCastSteelforOffshoreStructures’,WorldExpro161

    3.18 Cowling M J , ‘Fatigue Performance of Cast Steel Intersection for Offshore Structures, in

    FatigueCrackGrowthinOffshoreStructures,ed.WDDover,SDharmavason,FPBrennan

    andKJMarsch,EMAS1995.

    11

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    23/130

    Table3.1Strengthrangesandprocessroutesforhighstrengthsteelsusedinoffshoreengineering

    Type Strength levels used Process

    of structure (MPa) Route

    Jacketstructuresandtopsides 350–500 NormalisedQ&T

    TMCP

    Pipelines 350–550 TMCP

    (X52)(X80)

    Jack-ups/Moorings 500–850 Q&T

    Table3.2Steelprocessingroutesforproductionofhighstrengthstructuralsteels

     Normalised Usually

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    24/130

    Table3.3EffectofchangesinprocessingandalloyingmethodologyonmechanicalpropertiesofGrade35

    Steeldesign Process

    Chemical Composition

    B C Mn Si Ni Cr Mo Cu S P Al

    Grade 355BS4340

    50D

    NormalisedOLD

    - 0.20 1.35 0.30 - - 0.016 0.015 0.02

    BS7191

    355EMZ

    Normalised

    NEW

    - 0.11 1.50 0.40 0.15 0.15 0.005 0.015 0.03

    BS4360

    50D

    TMCP - 0.07 1.49 0.21 0.38 0.02 0.002 0.008 0.02

    Grade450Q1N

    Q&T

    OLD

    - 0.18 0.4 0.30 3.0 1-1.8 0.015 0.005 0.02

    BS7191

    450EMZ

    Q&T

    NEW

    - 0.11 1.49 0.3 0.52 0.11 0.001 0.010 0.03

    Dillinger

    450TMCP

    TMCP - 0.09 1.50 0.3 - - 0.001 0.007 0.03

    Grade 690Q2N

    Q&T

    OLD

    - 0.11 0.42 0.23 3.40 1.48 0.46 0.03 0.001 0.012 0.026

    OX812 Q&TNEW

    - 0.11 0.89 0.26 1.18 0.46 0.38 0.15 0.003 0.008 0.07

    SE702 Q&T

    NEW

    0.0027 0.125 1.05 0.25 1.4 0.5 0.45 0.20

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    25/130

    Table3.4TypicalcompositionandmechanicalpropertiesofnormalisedsteelsproducedinEurope–yieldstre

    Typical composition (by weight %)

    Thickness CE  IIW Ty(mm) C Mn Si S P Nb V Al Cu Ni Cr Mo

    25 0.20 1.35 0.42 0.016 0.015 0.028 - 0.022 - - - - 0.43 360MP

    20 0.22 1.0- 0.55 0.030 0.035 - - - 0.3 0.5- 0.2 0.1 0.52 420MP1.6 max 0.7

    20 0.22 1.6

    - 0.60 0.49 0.02 0.37 460MPa/2

    Table3.6Typicalcompositionandmechanicalpropertiesofquenchedandtemperedsteels–yieldstrengthra

    Typical composition (by weight %)

    Thickness CE  IIW(mm) C  Mn Si S P Nb V Al Ti Cu Ni Cr Mo B

    6–140 0.18 0.1- 0.15- 0.075 0.015 -

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    26/130

    Figure3.1Variationinyieldstrengthfor355,420and450gradesteels

    15

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    27/130

    Figure3.2Showingtypicalvariationinmechanicalpropertiesforagrade450steel(35- y=430MPa,m

    20%,samplesizeN=94)

    16

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    28/130

    Figure3.3Variationinmechanicalpropertieswithprocessrouteforsteelgrades350and420afterDenys

    [3.04]

    17

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    29/130

    Figure3.4Effectofcarbonequivalentvalueandsteelprocessingrouteonplatestrength

    18

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    30/130

    Figure3.5Typicalstress-straincurveforGrades355,450and690steel

    Truestressstrainlinesfordifferentsteelgrades

    Load-deflectionlinesfordifferentsteelgrades

    19

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    31/130

    Figure3.6Offshoregradesteels,nominalthickness50mm

    20

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    32/130

    Figure3.7Yieldratioof200castandwroughtironhighstrengthsteels

    21

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    33/130

    Figure3.8Showingcomparisonofweldedandcaststeelproperties

    22

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    34/130

    4.CODESANDSTANDARDS

    Detailedcodesandstandardsnowexistformediumstrengthstructuralsteels,coveringmostofthe

    aspects relevant to offshore design. However, for higher strength steels (YS 500-600MPa) the

    availablecodesandstandardsarelimitedandforevenhigherstrengthsteels(>600MPa),almostnon

    existent. This section reviews theavailable codes and standards, both published and thosebeingdevelopedatpresentforoffshoreuse.Intermsofoffshorehazards,table4.1showsthecurrentstatus

    ofcodesandstandards.Thecurrentstatusofcodesandstandardswillnowbereviewedintermsof

    materialsproperties.

    4.1 ALLPROPERTIESHSE/D.EnergyOffshoreGuidancehasbeendevelopedovermanyyears,withthefirsteditionbeing

    published in1974.Thefourth edition was published in1990, [4.05] with significant amendments

    being added up to 1995 [4.07]. It is particularly strong in materials properties, performance of

    structuralcomponentsetc,andhasseveralsectionsdevotedtohighstrengthsteels. Inparticularthe

    controlofhydrogen assistedcracking isaddressed in somedetail, morethan inany otherexisting

    codeorstandard.HoweverasaresultoftheissueoftheDCRRegulations[4.08]in1996ithasbeen

    withdrawn,althoughitisstillavailableasadocumentforconsultation.

    Two ASTM standards [4.01,4.02] cover some aspects of the requirements ofhigh strength steels,

    although these are limited in their applicability. A808 is concerned with high strength, low ally

    carbon,manganesesteels of structuralquality,whilst A514providesa specification forhigh yield

    strengthQ&Talloysteels,intendedprimarilyforuseinweldedbridgesandotherstructures.

    TherecentlypublishedNORSOKstandardontheDesignofSteelstructures[4.09]includesfivesteel

    qualitylevels(DC1-DC5).HoweverallofthesegradesarelimitedtosteelswithYSequaltoorless

    than500MPa.Forhigherstrengthsteelsitisstatedthatthefeasibilityofsuchaselectionofsteelshall

    beassessedineachcase.

    TheInternationalAssociation ofClassificationSocieties(IACS)providesa setof requirements forhighstrengthquenchedandtemperedsteels[4.11],forsteelswithYSintherange420–690MPa,

    dividedintosixgroups.Therequirementsincludemethodofmanufacture,mechanicalproperties,and

    inspectionduringmanufacture.

    TheDnVoffshorestandard[4.04]groupssteelsintothreemaingrades,thehighestofwhich(extra

    highstrength)coversmaterialswithyieldstrengthsfrom420-690MPa.Thesegradesarelinkedto

    impact toughness properties according to weldability requirements, but the improved weldability

    gradeislimitedtoamaximumYSof500MPa.AstatementisalsomadethatsteelswithYS>550MPa

    shall be subject to special considerations for applications where anaerobic conditions may

    predominate.

    SimilarlyinthedraftISOStandardforfixedstructures(19902)[4.10]steelsareclassifiedintofive

    groups,withGradeVcoveringsteelswithYSupto500MPa.Itisalsostatedthatfurthergroupsmay

    beaddedwhendatabecomesavailable.Thedraftstandardincludesanimportantstatementonhigher

    strengthsteels,whichis:

    'Althoughsteelswithyieldstrengthsinexcessof500MPa(73ksi)arecurrentlyavailable,no

    agreedstandardexistsforoffshorefixedplatformstructuraluse.Thesearenotrecognisedasoffshore

    fixedplatformstructuralgradesandusersshouldtakecaretoensurethatductility,fracturetoughness

    and weldability will be adequate for the intended application. Attention is drawn to the need to

    considerfatigueandcorrosionconditions,includingthetendencyforhigherstrengthsteelstobemore

    susceptibletohydrogenembrittlementandcertaintypesofstresscorrosion.Particularcareshouldbe

    exercisedwherehighstrengthisdevelopedasaresultofalloyadditions'.

    23

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    35/130

    AseparateISOTechnicalgroupisdevelopingastandardforjack-ups,whichisexpectedtoinclude

    guidanceonhigherstrengthsteels,appropriatetojack-ups,buthasyettobedrafted.

    4.2 FATIGUENewGuidancewaspublishedbyHSEin1995[4.07].ThisincludedamodifiedsetofS-Ncurves,but

    thesewererestrictedtosteelswithyieldstrengthequaltoor lessthan500MPa,asitwasconcluded

    thatthetestdataavailablewereinsufficientforhigherstrengthsteels.Thiswasparticularlytruefor

    fatigueinseawaterundercathodicprotectionandfreecorrosionconditions,wherethedataavailable

    onhighstrengthsteeljointswereextremelylimited.TheHSEGuidancerecommendedthatforhigher

    strengthsteels,datafromanapprovedtestprogrammeareusedtodetermineappropriateS-Ncurves,

    orfracturemechanicsconstants.Following incorporationof theDCRRegulationsoffshorein1996

    theHSEGuidancehasbeenwithdrawn.

    DnV Rules [4.05] include S-N curves and fracturemechanics constants for steels with YS up to

    500MPa.

    TheNORSOKstandard[4.09]providesrecommendedS-Ncurvesforsteels,bothinairandseawater.

    AsnotedearliertheseapplytosteelswithsteelqualitylevelsfromItoV,themaximumyieldstrengthbeing500MPa.Forsteelsofhigherstrengthitisstatedthatthefeasibilityofsuchaselectionshallbe

    assessedineachcase.

    The draftISOstandard [4.10] states that the limitedamount oftestdataforplatejoints withyield

    strengthsupto540MPaandtubularjointsmanufacturedfromhighstrengthsteelwithyieldstrengths

    up to700MPasuggeststhat fatigueperformance in seawaterunder CPandunder freecorrosionis

    similartothatformediumstrengthsteels,buttestdatashouldbeusedtodetermineappropriateS-N

    curves. Inaddition,thedraftstandardindicatesthatforevenhigherstrengthsteels(700–800MPa)

    the effect of seawater on the fatigue performance of these materials is considered to be more

    detrimentalthanformediumstrengthsteelsbecauseoftheirgreatersusceptibilitytocrackingfrom

    hydrogenembrittlement. Inparticular,it isnotedthat several studieshaveshown thatexcessively

    negativeCPprotectionpotentialscanbeacauseofcrackingduetothegenerationofhydrogenwhichenhancescrackgrowthrates.Itisstatedinconclusionthatitisimportantthatthefatigueperformance

    ofhighstrengthsteelsisunderstoodandthatappropriatelevelsofCPareapplied.

    4.3 FRACTURETOUGHNESSMost codes and standards recommend the need to avoid brittle fracture. Good specifications are

    publishedformediumstrengthsteelsbutgenerallythereisverylimitedguidanceforhigherstrength

    steels.OverallavoidanceofbrittlefractureisbasedonrecommendingaminimumvalueofCharpy

    energyvaluesaccordingtoyieldstrength.OnthisbasistheInternationalAssociationofClassification

    Societies(IACS)[4.11]hasrecommendedforhighstrengthQ&Tsteelsthattheaverageenergyfrom

    acharpyVnotchtestshouldbeRe/10forthelongitudinaldirection,and2/3ofthisforthetransverse

    direction,i.e.for690MPasteels(Fgrade)Charpyenergyvaluesof69Jand46Jatatesttemperature

    of -60oC with minimum individual values of 70% of the minimum average, i.e. 48J and 32Jrespectively[4.11].Possiblelimitationsonthisrequirementareconsideredinsection6.

    4.4 HYDROGENCRACKINGAsaresultofthedetectionofcrackinginjack-upsinthelate1980sasignificantresearchprogramme

    was undertaken on high strength steels which led to new guidance being developed to minimise

    crackinginpractice.

    HSEpublishedanamendmenttoitsGuidance[4.07]witharecommendationthattheCPlevelshould

    belimitedtoanegativevoltagenolowerthan-850mV(Ag/AgCl).Toachievethisspecialmeasures

    wererecommended,suchasvoltagelimitingdiodestokeeppotentialswithintherecommendedlimits.

    Inadditionsteelsproposedforuseoffshoreinconditionswherethereisavulnerabilitytohydrogencracking should be assessed using, for example, slow strain rate testing. High strength steels

    (YS>650MPa) should beexamined for the possibilityofhydrogendamage in service,both in the

    24

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    36/130

    parentmaterialandintheweldments.TheHSEGuidancewassupportedbyapublishedOTHreport

    [4.13] which provided data on the performance of several steels and on the recommended test

    methods.

    The DnV Offshore standard [4.04] also provides guidance on the use of high strength steels in

    seawaterwithCP. In this case the recommended rangefor steels susceptible tohydrogen induced

    crackingis-770mVto-830mVforsteelswithYSlargerthan550MPa,whichissimilartotheHSE

    recommendations.

    4.5 DEFECTACCEPTANCECRITERIABS7910publishedin1998[4.06]containsdataforcalculatingcrackgrowthunderstaticandcyclic

    loadingconditions.Recommendedvaluesoftheconstants(A,m)aregivenforsteelswithyield

    strengthsupto600MPa,thusenablingthefatiguecrackgrowthrateacceptanceofdefectsinhigher

    strengthsteelsfoundduringinspectionorassumedduringdesigntobequantified.Forhigherstrength

    steels(>600MPa)itisrecommendedthattestdataarerequired.

    4.6 CORROSIONPROTECTION

    It is stated in the NORSOK standard [4.14] that for high strength steels (YS>700MPa) a specialevaluationisrequiredwithrespecttohydrogenimpact.(SeeEN10002,metallicmaterials.Tensile

    testing.Part1methodoftest).

    TheDnVcode[4.04]providesbothgeneralrequirementsforcathodicprotectionaswellasspecific

    needsforhighstrengthsteels.Steelswithspecifiedminimumyieldstrengths>550MPaaresubjectto

    special considerations for applications where hydrogen induced stress cracking (HISC) may be

    anticipated,wherequalificationtestingshouldbecarriedoutforcriticalapplicationssuchaslegsand

    spudcans.Intheabsenceof suchtestingtodemonstratethathighnegativeCPlevelsarenotharmful

    itisstatedthattheCPlevelshouldbelimitedbytheuseofspecialanodesorcontrolledvoltagetype

    (e.g. with diodes) or by other methods. CP potentials levels should also be monitored to ensure

    compliance with the target range, which is set to be within the limits of -770mV to -830mV

    (Ag/AgCl).InthecaseofobservedexceedanceofthisrangeitisrecommendedthatinspectionforHISCshouldbecarriedout,

    Section19ofthedraftISOstandard[4.10]isconcernedwithcorrosioncontrol,andincludesasection

    oncathodicprotection.Thisstatesthatbecauseoftherisksofhydrogeninducedstresscrackingsteels

    with minimum yield strengths in excess of 720MPa should not be used for critical cathodically

    protectedcomponentswithoutspecialconsiderations.Inaddition,itisstatedthatanyweldingorother

    fabrication affecting ductility or tensile properties, should be carried out according to a qualified

    procedure,whichlimits hardness toHV350. Itis expectedthat thiswill restrict the useofwelded

    structuralsteelstoapproximately550MPamaximumspecifiedminimumyieldstrength.

    For medium strength steels the recommendedpotential range is -0.8 to -1.1volts (Ag/AgCl). For

    somehigherstrengthsteelsthenegativeendofthisrangeisexpectedtobedetrimental,intermsofhydrogencrackingetc.

    4.7 STATICSTRENGTHOFTUBULARJOINTSCurrentoffshoredesigncodesprovideequationsfordeterminingthestaticstrengthofvariousclasses

    oftubularjoints.Thestrengthisgenerallyproportionaltoyieldstrength,butdataindicatethatthis

    proportionalityislimitedtolowerstrengthsteels.Asaresultthebasicequationsarelimitedtosteels

    with YS

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    37/130

    For higher strengthsteels thedraft ISOstandard recommends that the basicultimate compression

    capacityequationsmaybeused,togetherwitharatiooftheyieldtoultimatestrengthlimitedto0.8,

    providedadequateductilitycanbedemonstratedinboththeHAZandparentmaterial(however,the

    criteriafordemonstratingthisarenotprovided). ThedraftISOstandardhighlightsthatthe limiton

    yieldratioforthetensioncapacityofjointsbasedonfirstcrackingmayneedfurtherinvestigation(see

    section3).

    The static strength of cracked high strength steel joints is of interest, particularly for the use of

    floodedmemberdetection.Somerecentlypublisheddataforhighstrengthsteels(SE702)[4.16]have

    beenmadeavailablefromaseriesofninestatictestsperformedonlargepre-crackedweldedtubular

     joints(sixTjoints,threeYjoints). Thesewereloadedtofailureinaxialandout-of-planebending.

    Allspecimenshadaleastonethroughthicknesscrack.Theresultswereanalysedintermsofboth

    lossofstaticcapacityduetothecrackingandbyfailureassessmentdiagrams(FAD).Thereduction

    instaticstrengthcomparedtocrackedmediumstrengthsteelswasabout5%greater,possiblydueto

    differences incrackpath (the cracks in theSE702steel stayed closer tothe weldwhengrowing).

    UsingtheFADapproach,somediscrepancieswerefoundforaTjointwithtwocracks,givinglow

    values.Thiswasconsideredpossiblyduetotheinadequacyofthemultiplecrackcorrectionused.

    TheFADapproachalsodemonstratedtheimportanceofthefracturetoughnessvalueused.FortheSE702 steel it was necessary to use the KQ (nominal) toughness value rather than the maximum

    toughnessvalue,Kmax,forwhichmanyoftheresultswereunconservative.

    4.8 IMPACTPROPERTIESLowspeedimpactscanarisefrombothshipimpactanddroppedobjects.Inthesecasestheabilityof

    thehighstrengthsteeltoabsorbtheappropriateenergyisoneofthemainperformancerequirements.

    Currentcodesand standards specify the levelofimpact energy tobeabsorbed during shipimpact

    (typically4MJ)butthisisnotrelatedtomaterialspropertiesoryieldstrength,evenformediumgrade

    steels.

    High speed impacts can be the result ofexplosions and theenergies ofprojectiles can vary fromseveral kilojoules to several hundred kilojoules. There is no published guidance on the required

    materialpropertiesandthepossibleeffectofyieldstrength.

    4.9 HIGHTEMPERATUREPROPERTIESHigh strengthsteelcomponents offshorecanbe subjected tohigh temperatures asa resultof fire,

    eitherontheseaorfromajetfire.Unprotectedsteelscanexperiencetemperaturesupto1200oCina

    short space of time. Guidance is normally associated with either limiting temperatures (e.g. by

    passive protection requirements) or bydesign based on data for lower strength steels at elevated

    temperatures[4.16].SomenewdatahaverecentlybeenobtainedforsteelswithYS~450MPa[4.17]

    (see section 10). For even higher strength steels the data on high temperature performance are

    extremelylimited.

    REFERENCES

    4.01 ASTMstandardA514,’Standardspecificationforhighyieldstrength,Q&Talloysteelplatesuitableforwelding’,2000,ASTM

    4.02 ASTMstandardA808,’Standardspecificationforhighstrength,lowalloycarbon,

    manganese,columbium,vanadiumsteelofstructuralqualitywithimprovednotchtoughness’,

    2000,ASTM

    4.03 AWSStructuralWeldingCode,Steel,D1.1-96

    4.04 DNVOffshoreStandard,DesignofOffshoreSteelStructures,General(LRFD),2000

    26

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    38/130

    4.05 Dept.ofEnergy,’OffshoreInstallations-GuidanceonDesign,Constructionandcertification’,

    HMSO,London,1990

    4.06 BritishStandard’Guidanceonmethodsforassessingtheacceptabilityofflawsinwelded

    structures,BS7910,1991

    4.07 HSE,’OffshoreInstallations-GuidanceonDesign,ConstructionandCertification’,HSE

    Books,1995,amendmentno.5

    4.08 HSE, ’OffshoreInstallations&Wells(Design&Constructionetc)Regulations’,HSEBooks,

    1996

    4.09 NORSOK,’DesignofSteelStructures’N-004,1998

    4.10 ISO’Petroleum&NaturalGasIndustries,’FixedSteelOffshoreStructures,ISOCD19902,

    tobepublished

    4.11 InternationalAssociationofClassificationSocieties(IACS),‘Unifiedrequirements,Section

    W16,HighStrengthQ&TsteelsforWeldedStructures’,IACS,London,1994.

    4.12 DnVOffshorestandard,Metallicmaterials,OS-B101,2000

    4.13  Abernethy, K, Fowler, C M, Jacob, R, Davey V.S.,'Hydrogencrackingoflegsandspudcans

    onjack-updrillingrigs-asummaryofresultsofaninvestigation',HSEReportOTH91351,

    HSEBooks

    4.14 NORSOK,'CathodicProtection',M503,1997

    4.15 API,RecommendedPracticeforplanning,designingandconstructingfixedoffshoreplatforms,APIRP2A20

    thedition,API,Washington,USA

    4.16 Talei-Faz B, Dover W D, Brennan F P,‘Staticstrengthofcrackedhighstrengthsteeltubular

     joints’,UCLFinalreportforHSE,2001

    4.17 Steel Construction Institute, 'Experimental data relating to the performance of steel

    components at high temperatures', OffshoreTechnology report, OTI 92 602, HSE Books,

    1992

    4.18 SteelConstructionInstitute,‘Elevatedtemperatureandhighstrainratepropertiesofoffshore

    steels’,OffshoreTechnologyreportOTO0202001,HSEBooks.

    27

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    39/130

    Table4.1

    Offshore MaterialsPerformance Codes&Standardsfor Comments

    Hazard

    Structural

    Failure

    Requirement

    Materialsspecifications

    HSS

    ASTMstandards,

    A514,A808[4.01,4.02],

    DnVStandard[4.04]

    DnVcode[4.04]covers

    steelgradesupto

    690MPa

    Weldingspecifications AWSCode[4.03] Coverssteelgradesupto

    690MPa

    Fatigueofwelded

     joints,members

    Limited Mostcodesprovidea

    limitof500MPaon

    yieldstrength(YS)for

    applicability.Specific

    testsareproposedfor

    highstrengthsteels(HSS)todevelop

    datatosupport

    application

    Fracturetoughnessof

    steels

    IACSrecommendations

    [4.11]

    MinimumCharpyvalues

    ofYS/10

    Hydrogen

    Embrittlement HSEGuidance[4.05,

    4.07],DnVRules[4.04]

    Controlofhydrogen

    assistedcrackingisbest

    describedinHSE

    GuidanceNotes[4.04]

    Staticstrengthoftubular

     joints

    Factortobeappliedfor

    higherstrengthsteelsin

    severalstandards,

    includingdraftISO

    Modifiedfactor,based

    onyieldratio(under

    discussionindraftISO

    standard)

    Defectacceptance

    criteria

    BS7910[4.06] DataavailableforHSS

    (yieldstrengthupto

    600MPa)

    Corrosionprotection Limited,HSEGuidance,

    DnVcode[4.04]

    Mostdataprovidedfor

    mediumstrengthsteels

    Inspection&repair Verylimited -

    Boat

    Impact

    Impactperformance,

    largestraincapacity

    None LackofdataforHSS

    Fire(onthe

    sea,jetfire

    etc.)

    Hightemperature

    performance

    Verylimited LackofdataforHSS

    Blast Highstrainrate

    performance

    Verylimited LackofdataforHSS

    28

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    40/130

    5.FABRICATIONANDWELDING

    Mosthighstrengthsteelapplicationsoffshoreinvolveweldedfabrication.Formingandweldingcosts

    arethemostsignificantiteminthecostofajacketstructure,comprisingupto57%oftotalcostsin

    onereportedanalysis[5.01].Improvementsinthisareaarelikelytocomefromweldingsincecold

    forming of plates is generally considered to be an efficient and economical process. Weldingprocesseswhichgivegreaterproductivityand/orincorporateareductionoreliminationofpre-and

    post-welding heating could provide major cost savings, and significant progress has been made.

    However,asthestrengthofthesteelincreasesthepre-heatingrequirementbecomesgreaterassuch

    steelsare usually more highly alloyed. If plate thickness is less than40mm, stress relieving heat

    treatmentisnotrequiredforgradeswithyieldstrengthsupto450MPa.Thiscanleadtosignificant

    timeandcostsavingsinthefabricationprocedures.Otherareastoconsiderarethedevelopmentof

    weldingprocesseswithimprovedwelddepositionrates.

    Reportsfromfabricators[5.02;5.03;5.04]indicatethatatleastupto450MPastrengthlevels,welding

    isnomoreexpensiveordifficultforawellorganisedyardthanweldingthenormal355grade.With

    thehigheststrengthgrades,however,moreprecautionshavetobetaken.

    Weldabilityofsteel isa termthatisusedto indicatetheeasewithwhichsoundweldmentscanbe

    produced using normal welding procedures. The weldment comprises both the weld and the

    associatedheataffectedzone.Weldingdefectssuchasporesandcrackscanbeproducedaswellas

    undesirablemicrostructures in the weld andits associated heat affected zonewhichcan lower the

    resultingmechanicalpropertiesofthejoint.

    Variations in the welding process, such as steel dimensions, weld geometry, heat input and steel

    compositionallinfluence theresultingmicrostructure.Nomogramsinvolvingthermalseverity- joint

    thickness (mm),heat input of the weld (kJ/mm) and weld preheat required (ºC) are oftenused to

    indicate the necessary welding procedure to be followed to produce a sound crack-free joint in

    relationtotheparticularcompositionofthesteelusedwhichisusuallyrelatedtocarbonequivalent

    value.Ingeneralasteelwithlowercarbonequivalentvaluehasimprovedweldabilitycomparedtoahighercarbonequivalentsteel.Thetwomostcommonlyspecifiedcarbonequivalentequationsare

    thatrecommendedbytheInternationalInstituteofWeldingwhichcoversawiderangeofsteels:

    Mn Cr& Mo& V Ni& CuCE- CE IIW- C& & &

    6 5 15

    andtheItoandBessyoequivalentwhichisoftenpreferredformodernlowcarbonsteels:

    Si Mn& Cu& Cr Ni Mo VCE- PCM - C& & & & & & B5

    30 20 60 15 10

    ThislatterequationistheoneusedforhighstrengthsteelsinthedraftDNVMetallicMaterialsOS-

    B101 Standard (May 2000). In this guidance document, steels with improved weldability have

    reduced carbon contents and limitations on the levels of chromium, nickel and molybdenum

    comparedtosteelsofnormalweldability,i.e.theymusthavereducedCEvalues.

    An alternative approachmore commonlyused inotherpartsofthe world is the Gravillediagram

    showninFigure5.1whichseparatesthesteelsintothreezonesratedbytheireaseofweldability–

    zoneIeasilyweldable,zoneIIweldablewithcare,andzoneIIIdifficulttoweld,Fromthisdiagram

    itcanbeseenthatweldabilitydecreasesasthecarbonequivalentvalueincreasesbutthediagramalso

    emphasises theextremelyimportanteffect ofcarboncontent onweldability. Reducing thecarbon

    contentofasteelisthemosteffectivewaytoimproveitsweldability.

    29

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    41/130

    Astheparentstrengthincreases,greaterprecautionsareneededtoensurethatweldingproceduresare

    satisfactory. The strength increases in the weld are normally produced by alloying since

    strengtheningproceduressuchasthermomechanicalprocessingcannotbeutilisedintheweldmetal.

    Thewelds therefore become more hardenable andprecautions are required toprevent weld metal

    hydrogencracking. Theweldability ofmodern steels hasbeengreatly improvedbytheirextreme

    cleanliness, and by their low carbon content and low carbon equivalent values. Low hydrogen

    consumablesare important inreducingthepossibilityofhydrogencrackingandcanalsoleadto a

    reductioninthepre-heatingrequirements.Nomajorproblemshavebeenreportedinweldingsteels

    upto500MPayieldstrength[5.04]inmoderatesectionsizes.Athighstrengthlevels,preheatingis

    requiredand steelmakersaredevotingconsiderable attention to improving the weldabilityof such

    steelstotrytoreducefabricationcosts.For690gradesteels,forexample,preheattemperaturesof

    125ºCarerecommended,andelectrodesandfluxeswithverylowhydrogencontentmustbeusedin

    ordertopreventhydrogencracking[5.05].

    TheformationofhardorbrittlephasesintheweldHAZor,indeed,inthewelditselfduringmulti

    passwelding,canaffectthetoughnessoftheweldanditsabilitytowithstandexposuretohydrogen.

    Important factors are the grain size in the grain coarsened HAZ near to the fusion line and the

    microstructural changes that occur in the weld metal during subsequent weld depositions duringmulti-pass welding. In general, the Charpy toughnessof the coarse grained HAZ decreaseswith

    increasingheatinputandincreasingimpuritycontent. Becauseof thisthereareoftenrestrictionsin

    the upper levels of heat input that can be used (e.g. 3.5kJ/mm for submerged arc welding) but

    productivity is not greatly compromised because of the generally thinner sections and smaller

    volumesofdeposited weld metalutilised. Steel that couldbewelded satisfactorilyathigherheat

    inputlevelswouldoffereconomicadvantages[5.06]andrecentwork[5.07;5.08]showedthatcertain

    steels and weld consumables did satisfy these requirements and could offer further economic

    advantages.

    Published literature indicates that there are weld consumables which can produce the necessary

    materialpropertiesrequiredinservice,evenforthe690gradesteels[5.09].However,atthehighest

    strength levels envisagedthereis muchlessexperienceandavailability ofweldconsumableswithsuitable properties, particularly in respect of toughness. In addition, significant pre-heating and

    interpass control are necessary in order to avoid hydrogen cracking problems. Weld metal

    microstructuresaredeterminedprimarily by thechemicalcomposition, theamountofnon-metallic

    inclusionspresentinthemicrostructurewhichaffectphasenucleation,andbythecoolingrate.Alloy

    design aims to maximise the amount of acicular ferrite present and to minimise the effects of

    undesirable microstructures such as coarse grain size, grain boundary ferrite and coarse

    martensite/austenite/carbideconstituents(MAC).

    The welding consumables employ sophisticated alloying techniques, incorporating the optimum

    balance ofdeoxidisingelements (aluminium,siliconand manganese) toproduce ahigh densityof

    small non-metallicinclusionswhichareknown to act as intragranularnucleationsitesforacicular

    ferrite. Thecarbon content is generally kept low to aid weldability, so the increased strength isachievedthroughadditionsofmolybdenuminSAWwiresandtitanium-boroninFCAWwires,and

    theimpacttoughnessisimprovedwithnickeladditions.IntheCranfieldstudy[5.08]consumablesup

    to550MPayieldstrengthshowedadequatetoughnessthroughouttheweld,withuppershelfvalues

    >150Jandthe50Jimpacttransitiontemperaturesbelow-60°C.Allweldshadlowhardnessvalues

    and showed no indication of hydrogen cracking. Acicular ferrite was the major microstructural

    featureoftheweldsandmicrostructuresgenerallycoarsenedasheatinputincreased.

    ForbothSAWandFCAW,690MPaconsumablesshowedmixedmicrostructurescontainingacicular

    ferrite,martensiteandpolygonalferrite.Impactpropertieswereinferiortothe550MPaweldswith

    uppershelfvaluesrangingfrom80-100Jand50Jimpacttransitiontemperaturesbetween–50and-

    80°C.Itwasconcludedinthisstudythatmoredevelopmentworkisneededbeforetheseconsumables

    canbespecifiedgenerallyforoffshoreapplication.

    30

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    42/130

    Inmostweldedstructuresitisconsidereddesirabletoovermatchtheyieldstrengthoftheparentplate

    andtherelatedHAZ.Thisisbecauseiftheweldsundermatchthenanyenforceddeformationwillbe

    concentratedintherelativelysmallweldmetalvolumesleadingtohighstraininthesezones.Ifsuch

    zoneshavereducedtoughnessvalues,whichisgenerallythecaseatthehigheststrengthlevels,then

    there is an increased likelihood of failure. Weld metal specifications often call for 20 to 30%

    overmatch which is easily achievable in 450 and 550 grades with satisfactory weld property

    performance.Theproblemarisesinproducingthenecessarycombinationofpropertiesintheweld

    metal requiredat the highest strength levels, i.e. 690 grade. In otherapplications such asstorage

    tanks,undermatching weldshavebeenused inhigh strengthsteel structures which have generally

    performed satisfactorily because the weld metals have good toughness. The normal statistical

    variationsinyieldstrengththatoccurinsteelplate(discussedinSection3),alsooccurinweldmetals.

    Thisposesanadditionalproblembecausethereisadistinctpossibilitythat,unlesssignificantlevels

    ofovermatcharespecified,thelowerstrengthweldmetalswillundermatchthehigheststrengthparent

    materialinparticularprojectfabricationprogrammes,leadingtocertainjointsbeingundermatched.

    The importance of this effect is provoking considerable interest at the moment, particularly with

    regardtothehighergradesteels.

    Ithasbeenreportedthattheresidualstressesinrestrainedhighstrengthsteeljointsarelessthanthoseencounteredinlowerstrengthsteelswhichcanhaveanimportantinfluenceonsubsequentfatigueand

    fracturebehaviour.Bennettetal[5.05]claimedthattheresidualstressesina40mmthickrestrained

     jointwereonlyapproximatelyonehalfofthoseobtainedwithmildsteelandwerelargelyindependent

    ofheatinput. Theexplanationofthiseffectwasthoughttobepartialcounterbalancingofthethermal

    contraction stressesby themartensitic/bainitic transformationwhich occurredduring cooling. The

    potential benefit of this different behaviour seems not to have been utilised significantly to date.

    Furtherworkisneededtoprovideconfidenceinthisapproach.

    ArecentreportdetailstheweldingpracticesandproceduresusedforweldingtheElginjacket[5.09].

    Highstrengthsteels,Superelso500andSuperelso600,wereusedontheprojectinlegchords.These

    materialshavespecifiedminimumyieldstrengthsof450MPaand550MPsandyieldratiosof0.78

    and 0.80. Significantuse was made ofMMA welding during thefabricationbecause of its fullypositionalweldingonsitecapability.Oerlikonelectrodes,Tenacito70,wereusedwhichgaveyield

    strengthsbetween490and550MPaandexcellentCharpyV-notchtoughnessvaluesof130Jat-40ºC.

    Thewelding of thechord to theprefabricated 160mmthick rack sections was carried out with a

    minimumpreheating temperature of150ºC followedbya dehydrogenationtreatmentof2 hours at

    200ºC. Verylowrepairrates(

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    43/130

    5.07 HighStrengthSteelsinOffshoreEngineering,MTDPublication95/100,ISBN1-870553-21-

    7,1995

    5.08  Billingham J, Blackman S, and Norrish J, ‘Furtherassessmentofhighstrengthweldmetals

    foruseinoffshoreengineeringapplications’,CranfieldFinalReport,January1998

    5.09  Bews R, ‘MMAWeldingGasfromStrengthtoStrength’WeldingandMaterialsFabrication,

    July/August2000.

    32

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    44/130

    Figure5.1CriteriaofSteelWeldability–CrackingSusceptibility

    33

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    45/130

    6. TOUGHNESS

    Toughness may belooselydescribed asa measureofthe resistance tofailurein thepresenceofa

    crack,notchor similar stress concentrator. High toughness therefore isgenerally recognised asa

    desirablepropertyforoffshoresteels.

    Ahightoughnessmaterialisonewhereaconsiderableamountofplasticdeformationisrequiredat

    thecracktipbeforethecrackcanbemadetoadvance.Conversely,iftheapplicationofstresscauses

    theelasticfailureofatomicbondsatthecracktip,relativelylittleenergyofdeformationisinvolved,

    andtheresultisabrittlefracture.

    Theword‘toughness’isusedfortwoquiteseparatequantities. Theyaremorecorrectlydescribedas

    ‘ImpactToughness’and‘FractureToughness’.

    Impacttoughnessisanenergymeasurement(Joules,orft-lbs)andcommonlyrelatestotheCharpyV

    notchtest.Fracturetoughnessisacalculatedvalueforthecriticalstressintensityfactor(N.m-3/2

    or

    MPa -tip-opening-displacement(CTOD)testsor

    J-integraltests.

    Relationshipsbetweenthesequantitiesareempirical.Therelationshipshavebeenwellvalidatedover

    manyyearsforstructuralsteelsinmoderatesectionthickness.Thishaspermittedthemorereadily

    availableCharpyimpactdatatobeusedasanindicatortotheadequacyofthefracturetoughness.

    Wherethesamerelationshipsbetweenimpacttestingandfracturetoughnessareextendedtothick

    sectionedmaterialandtohighstrengthsteel,specificationsshouldbeviewedwithcautionuntilithas

    beendemonstrated thatadequatefactorsof reserveare incorporated forthenewconditions.Direct

    testing for fracture toughness may be preferable, particularly since it can reduce some of the

    uncertaintiesrelatedtotheeffectofmaterialthickness.

    Inferriticsteels,thefracturetoughnessisaffectedbytemperature,bystrainrateandbygeometry.

    Thelatter influence isalsoknownas ‘the stress state’, ‘thedegreeof triaxiality’ or‘the thickness

    effect’.Theapparentchangesintoughnessthatresultfromthegeometryarenotquantifiedatallby

    theCharpytest,whichalwaysusesastandardsmall(10mmthick)specimen.Despitethis,Charpy

    resultsarewidelyusedinmaterialsselectionandincurrentcodesandstandards.

    6.1 DUCTILETOBRITTLETRANSITION

    Boththeimpacttoughnessandthefracturetoughnessofferriticsteelarecharacterisedbyaductile-to-

    brittletransitionasthetemperatureisreduced.Thiscorrespondswithachangeinthemechanismof

    crackmovement,fromplasticbluntingandplastictearing(ductilecontrol)at thehighertemperaturetocleavage(brittlefracture)atthelowertemperature.Thetransitionoccursoverarelativelynarrow

    range of temperature, typically 30ºC, but often involves considerable experimental scatter. As a

    result,thereareseveraldifferentdefinitionsofthetransitiontemperaturefromthesamedata.Low

    transitiontemperaturesandhigh‘upper-shelf’valuesoftoughnessareseenasbeneficial.

    Thetransition temperature (TT) isnot an invariant propertyof a givenmaterial,even for a fixed

    composition,grainsizeetc. TheTTvarieswiththestateofstress(whichmeansthatitdependsonthe

    sizeandgeometrythathasbeenused)andrateofloading.Increasingthethicknessofthespecimen,

    orincreasingtherateofloading,produceanincreaseintheTT.

    Without these complications, it would be relatively simple to avoid brittle fracture - the basic

    requirementwouldbetoselectmaterialforwhichtheTTwasbelowtheservicetemperaturerange.Itwouldstill benecessary to take into account that fabrication processes such asweldingaffectthe

    34

  • 8/20/2019 Review of the Performance of High Strength Steels Used Offshore

    46/130

    materialanditsTT,bothasaresultofchangesinthematerialfromthethermalcyclingandfromthe

    introductionofflaws(thathavetheeffectofincreasingtheTT).Itwouldalsobenecessarytoensure

    thattheresultsrelatedtothecorrectenvironmentalexposure.

    Unfortunately, the commence