Review of Quantum Mechanics Part 1 for Students

  • View
    215

  • Download
    0

Embed Size (px)

DESCRIPTION

Review of Quantum Mechanics

Citation preview

  • Review of Quantum Mechanics p1 Tien-chang Lu

    RREEVVIIEEWW OOFF QQUUAANNTTUUMM TTHHEEOORRYY

    Content

    Chapter 1 Schrdinger Equation -- Approach to quantum mechanics 1-1 Origin of Schrodinger Equation 1-2 Time independent and dependent Schrdinger Equation 1-3 Physical Interpretation and Implication of Schrdinger Equation

    Chapter 2 Applications of Schrdinger Equation to Time Independent Potential 2-1 Free Particle in 1D space 2-2 A particle in a 1D infinite potential well 2-3 Particle in 3-D Box (with infinite potential walls)

    2-4 Position wave function and momentum wave function -Fourier transform

    2-5 Step Potential Wall 2-6 Single Potential Barrier: tunneling effect

    Chapter 3 The Hydrogen atom 3-1 Schrodinger equation and solution of Hydrogen atom 3-2 Angular momentum 3-3 Zeeman effect 3-4 Spin of electron 3-5 Spin-orbit coupling Chapter 4 Total Angular Momentum Chapter 5 Harmonic Oscillator

  • Review of Quantum Mechanics p2 Tien-chang Lu

    Chapter 1 Schrdinger Equation -- Approach to quantum mechanics

    1-1 Origin of Schrodinger Equation key observable properties of a particle mass m position x, y, z momentum px py pz energy E Based on the classical wave equation and De Broglies matter wave concept, Schrdinger postulated

    [wave equation] must be valid and applicable in describing the matter wave like particle, regardless of the specific energy or momentum

    We except the solution to the wave equation must have the familiar form (a) ( )( , ) j kx tx t Ae --------------- (1) (assume 1D case) (b) The wave equation contains appropriate derivatives of with respect to

    coordinate and time 22

    , ,d d ddx dtdx

    (c) Wave equation must be valid independent of the specific energy or momentum total energy of particle

    2

    2PE Vm

    (2)

    kineticenergy Potentialenergy

  • Review of Quantum Mechanics p3 Tien-chang Lu

    (1) Lets take the first derivatives of with respect to time

    ( )j kx td jA edt

    Energy ( E ) (2) Second derivatives with respect to coordinates

    22 ( )

    2j kx tAk e

    x

    2 2( )k P Therefore, we can set the wave equation as

    22( )a bVt x

    2

    2PE Vm

    (3) a, b constants to be determined substitute (1), (2) into (3) We obtain 2a j m

    , jb The wave equation becomes

    2 222j Vt m x

    1D

    22

    2j Vt m

    3D TimedependentSchrdinger Eq.

  • Review of Quantum Mechanics p4 Tien-chang Lu

    Solution of Schrdinger equation ( , ) ( ) (t)x t x X We obtain (1) ( , ) ( ) (t)x t x X

    2

    ( ( ) ( )) ( ) ( )( ) ( )

    ( )hE jj t j th

    j x X t E x X tt

    X t Ej X tt

    X t e e e

    (2)2

    2[ ] =E2 Vm

    or 2

    22

    8( )( ) 0m E Vh

    Time independent Schrdinger equation In classical mechanics, a particles total energy E can be expressed as

    2 2 2 21 1( ) ( , ) P ( , ) ( , )2 2x y zE P P P V r t r t V r tm m Also the Hamiltonian of a system total energy i.e. 2 2 2x y z1 [P +P +P ]+V(r,t)2H E m Thus , (1) Schrdinger equation can be written in Hamiltonian form (operator form) as

    ( , ) ( , )r tj H r tt

    where, 2

    2( )2H Vm --- Hamiltonian operator

    (2) Comparison of classical mechanics expression with the wave equation:

  • Review of Quantum Mechanics p5 Tien-chang Lu

    22

    2

    ( )2

    2

    j Vt mpE Vm

    Quantum Mechanics Classical

    jt E 2 2 2P

    V V x, y, z x, y, z m m Thus , Schrdinger proposed & defined Energy operator: E j

    t

    Momentum operator 2xp 2 2x

    2yp 2 2y 2zp 2 2z

    xp j x

    yp j y

    zp j z

    Schrdinger equation in operator form becomes

    E=H

    observable!

    Allobservablesareexpressedinoperationform

    E:eigenvalueoftheoperatorH

    eigenfunction

  • Review of Quantum Mechanics p6 Tien-chang Lu

    1-2 Time independent and dependent Schrdinger Equation Assume a solution of Schrdinger equation is

    ( , ) ( ) ( )x t x X t

    Then , substitute it into Schrdinger equation We have (1)

    ( , ) ( , )x tj E x tt

    1

    ( ) =Ej t j tX t e e

    E (2)

    2 22 ( )2 V x Em x

    --- Time independent Schrdinger equation or If V is known, then all allowed and E can be calculated.

    22[ ( )]2 V r Em

    22

    22

    22

    2

    2 [ ] 08( )( ) 0

    ( ) 02

    m E V

    m E Vh

    E Vm

  • Review of Quantum Mechanics p7 Tien-chang Lu

    Multiple solutions for & E

    1 E1

    2 E2

    3 E3

    Only very particular V(r) can be solved analytically e. g. Square Quantum well

    Atom

    Periodical atom ( ) ( )V x V x a

    Parabolic well (Harmonic

    oscillator)

    12

    2E

    1E

    a

  • Review of Quantum Mechanics p8 Tien-chang Lu

    1-3 Physical Interpretation and Implication of Schrdinger Equation (1) Schrdinger -- dont exactly know -- but can explain atomic spectrum well * -- cant explain photoelectric effect * -- cant fit plank formula (2) Max Born(1926) -- : probability amplitude of electron @ particular position in time

    -- 2 physical probability density of the presence of associate particle

    -- Atomic picture becomes

    Bohr Characteristics of Schrdinger equation:

    (1) Probability density suppose is a complex function of a particle 2* = = real quantity

    2

    r

    x

    0x

    2

  • Review of Quantum Mechanics p9 Tien-chang Lu

    If 2 has a functional dependence (as previous pic.)

    then 2* dx dx

    then * .b

    a

    dx const In 3-D case (particle in confined volume-V)

    3* 1dr --- Normalization 1 Dirac representation (bracket expression or Dirac notation)

    ( )x Kat one state in QM system

    *( )x Bra conjugate of

    (2) orthogonality In Cartesian coordinates 3-coordinates

    1 2 3, ,e e e are orthogonal

    jiji

    ee ijji ,0,1

    These unit vectors form a complete orthogonal set Similar iii EH

    There are many 1 2,, eigen function

    corresponding to 1 2,,E E eigen value

    If s are normalized and form a complete orthogonal set then

    * 3 1,0,i j ij

    i jdr

    i j

  • Review of Quantum Mechanics p10 Tien-chang Lu

    (3) Expectation value Define a position r for state (observable) < r > = expectation values

    3 * 3 P(r,t)d ( , ) ( , )r r t r r t d r r 2 3rd r r similar

    3*E j d r Et

    3*( )P j d r From i i iH E ** i * * *i i i i i i i iH dV E dV E dV *j jE H dV H

    H E Example If 122( ) sin x

    L L 0 x L 1D infinite potential

    *x x dx 2

    0

    2( ) sin ( ) 2L x Lx dx

    L L

    2( ) sin( ) cos( ) 0x xP j dxL L L L

    1

    2L

  • Review of Quantum Mechanics p11 Tien-chang Lu

    (4) Heisenberg's Uncertainty Principle (HUP)

    Definition the root-mean-squared deviation from the mean

    similar 2 2 2

    x x xp p p where

    *

    2 * 2

    22 2

    2

    j j

    j j

    jx j

    jx j

    x x dx

    x x dx

    p j dxx

    p dxx

    From previous example

    122( ) ( ) sin( )xxL L

    2 2 2 22

    1 1 1( )3 2 4x x x L 0.17x L

    2

    2 2

    2 2

    2 2 2

    2 2

    ( )2

    22

    x xx x x xx x x xx x xx x

    2x

  • Review of Quantum Mechanics p12 Tien-chang Lu

    Similar

    pL

    So

    2155.017.0

    LLpx meet HUP!

    (5) Probability density flow

    For quantum system

    --- (1) --- (2) We use )2()1( * to eliminate V

    * 22 * 2 *

    22 * *

    2* *

    2* *

    [ ]2[ ]2[ ]2

    [ ]2

    jt m

    jt m

    m

    m

    The above equation is similar to the continuity equation of charge density

    Jt 0Jt

    2 * *[ ]2 Jt mj

    22

    * 22 * *

    2

    2

    j Vt m

    j Vt m

    conjugate

  • Review of Quantum Mechanics p13 Tien-chang Lu

    * *[ ]=2J mj

    Probability density current !!

    We can also obtain probability density current from

    * 3 31d r dr *

    *

    * *( )t t t t

    From eqs. (1) and (2) and multiply the above eq. as * and with

    t &

    *

    t

    * *[ ( )]2t mj

    J

    (6) Non-Commuting Operators The momentum operator in the position representation is a differential operator p j

    x

    Thus [ , ]x p xp px

    operator on

    operator on x

  • Review of Quantum Mechanics p14 Tien-chang Lu

    Find [ , ]x p

    or using bra-ket

    or

    [ , ]x p j

    *( )xp px dx * ** *

    * *

    * * *

    *

    [ ( )]

    [ ( )]

    [ )]

    [ , ]

    xp px dx

    j x x dxx x

    j x x dxx x

    j x x dxx x

    j dx

    jx p xp px j

    j x xx x

    j x xx x

    j

    [ , ]x p

    ( )( ) ( )

    [ ]

    xp px

    x j j xx x

    j x j xx x

    j

    [ , ]x p

  • Review of Quantum Mechanics p15 Tien-chang Lu

    Chapter 2 Applications of Schrdinger Equation to Time Independent Potential

    2-1 Free Particle in 1D space If V = 0 throughout all space, then Schrdinger equation becomes

    22 2

    2 0d m Edx

    Solution --- (1)

    where

    or --- (2) (1) All values of E0 are allowed (2) No quantization of E values (Continuous, not discrete energy) (3) All value of E

  • Review of Quantum Mechanics p16 Tien-chang Lu

    Parabolic curves

    (6) De Broglie wave hp

    2 2mEp k mE

    mE2

    2-2 A particle in a 1D infinite potential well

    V V 0V

    V

    V=, xL : region III

    Now, we list Schrdinger equations for all regions (I, II, III) In region I,

    2 22 2

    2 [ ( )] 0d m E V xdx --- (1)

    E

    k

  • Review of Quantum Mechanics p17 Tien-chang Lu

    Since in region II and III, V ,II III 0 to satisfy (1).

    Inside the well 0V 2

    2 22 0d m E

    dx --- same as free particle

    2jkx jkx

    I Ae Be

    mEk

    Boundary conditions are (a) =0 x=0,L (b) * 1dx

    From the above condition (1) We need to solve for coefficients A and B.

    For non-zero solutions, we must have: 1 1 0jkL jkLe e 0

    jkL jkLe e

    sin( ) 0kL kL n , n is integer

    nkL

    So,

    2 2 2 2 222 2n

    k nEm mL

    --- energy is quantized The wave function becomes

    n nj x j xL L

    n Ae Be

    00 jkL jkL

    A BAe Be

    (2) (3)

  • Review of Quantum Mechanics p18 Tien-chang Lu

    From (2) , A+B=0 , A=B

    n

    [ ]=C [sin ]

    n x n xj jL L

    n A e en x

    L

    *

    * 2 2

    0 0

    1

    sin ( ) 1n n

    L L

    n n n

    dx

    ndx C x dxL

    20

    0

    1 2sin [ sin ]2 4 2L

    Ln x L n x nx LdxL n L L

    122( )nC L

    Thus

    122( ) sin( )n n xL L Standing wave

    121

    122

    123

    2( ) sin( )2 2( ) sin( )2 3( ) sin( )

    xL L

    xL L

    xL L

    2 21 2

    2 22 2

    2 23 2

    24292

    EmL

    EmL

    EmL

    Groundstate1stexcitedstate2ndexcitedstate

  • Review of Quantum Mechanics p19 Tien-chang Lu

    1

    2

    3

    4

    5

    6

    7

    8

    9

    nE2 2

    2( )2mL

    21

    22

    23

    1

    2

    3

    0 x L

    1E2E3E

    4E

    5E

    6EnE

    n

  • Review of Quantum Mechanics p20 Tien-chang Lu

    Physical interpretations gained from this example (1) For a confined particle, the solutions of Schrdinger equation

    n n nH E

    have a set of eigen functions n and eigenvalues nE where

    (2) orthogonality of n exist for

    *

    0

    L

    n n mndx (3) Probability of finding the particle anywhere within the well n=1 : ground state

    *1 1 1 1

    0 2L Lx x x dx

    n=21st excited state

    2Lx

    , but the highest probability density occurs at 3,4 4

    L L n=32nd excited state

    2Lx

    , but the highest probability density occurs at 5, ,6 2 6

    L L L (4) The allowed energies become discrete and separation becomes large as n

    increases (5) As n increases to large number, 2n becomes near uniform distribution

    12

    2 2 22

    2( ) sin( )

    2

    n

    n

    n xL LnE

    mL

  • Review of Quantum Mechanics p21 Tien-chang Lu

    1 1 2 1

    1 2 2 2

    1 3 2 3

    ( ) cos sin( ) cos sin( ) C cos sin

    x A k x A k xy B k y B k yz k z C k z

    2-3 Particle in 3-D Box (with infinite potential walls) 0V inside the box V outside the box

    Schrodinger equation inside the box

    22 02 Em

    ( , , )x y z Separation of variables

    set ( , , ) ( ) ( ) ( )x y z x y z Then

    2 2 2 22 2 2

    1 ( ) 1 ( ) 1 ( )[ ]2 ( ) ( ) ( )x y z E

    m x x y y z z

    Then 2 2

    12

    2 222

    2 232

    1 ( )2 ( )

    1 ( )2 ( )

    1 ( )2 ( )

    x Em x x

    y Em y y

    z Em z z

    1 2 3E E E E

    Solutions are (based on previous 1D example)

    y

    z

    x

    L

    L

    L

    V 0V

    11 2

    22 2

    33 2

    2

    2

    2

    mEk

    mEk

    mEk

  • Review of Quantum Mechanics p22 Tien-chang Lu

    Boundary conditions require that 0 at (x,y,z)=0 thus A1=B1=C1=0

    & 0 at (x,y,z)=L thus

    2 22

    1 22 2

    22 2

    2 22

    3 2

    ( )2( )2( )2

    x

    y

    z

    E nmL

    E nmL

    E nmL

    1, 2,31,2,31,2,3

    x

    y

    z

    nnn

    2 22 2 2

    , , 2 [ ]2nx ny nz x y zE n n nmL

    The eigen function

    , , sin( )sin( )sin( )yx znx ny nz xyzn yn x n zA

    L L L

    using 2 1dxdydz 1238( )xyzA L

    322( ) sin( )sin( )sin( )yx zn yn x n zL L L L

    Ex 2, 2, 3x y zn n n

    2 2 2 22 2 2

    322 232 223 2 2[2 2 3 ] 172 2E E E mL mL

    degenerate states !!

  • Review of Quantum Mechanics p23 Tien-chang Lu

    However, the wavefunctions are different!

    23322

    23232

    23223

    2 3 2 2sin( )sin( )sin( )

    2 2 3 2sin( )sin( )sin( )

    2 2 2 3sin( )sin( )sin( )

    x y zL L L L

    x y zL L L L

    x y zL L L L

    Thus, the state is three-fold-degenerate! 2-4 Position wave function and momentum wave function - Fourier transform Sometimes it is desired to represent wave function in spatial frequency domain

    1( ) ( )2jkxx k e dk

    where ( ) Fourier transform of ( )

    spatial frequency related to momentum by

    k xk

    p k

    Thus, ( ) momentum wave functionk Similarly ( )k can be transformed back to position wave function ( )x by

    1( ) ( )2jkxk x e dx

  • Review of Quantum Mechanics p24 Tien-chang Lu

    Example

    22( )4

    1 14 21( ) : Gaussian wave function

    (2 )x

    x e

    Find and x Sol:

    (1) 2

    2( )212

    1 0(2 )

    x

    x e xdx

    (2)

    2 2 2 2x x x x x 2 2x

    x

    Find p Sol:

    2 214

    1( ) ( )22( )

    jkx

    k

    k x e dx

    e

    k 2 2

    2 2

    1 22

    2122

    ( ) ( )

    2( )

    2( ) [ ]40

    k

    x

    k k k dk

    ke dk

    e

    0 xx

    x

  • Review of Quantum Mechanics p25 Tien-chang Lu

    p k

    2p

    HUP

    2 2x p

    2p 2 22 2 2

    22

    22

    [ ]1[ 0]4

    4

    kk k

    2 2

    2

    1 2 22

    1212

    3

    2

    ( ) ( )

    2( )

    ( )2 2( ) 41

    4

    k

    k k k dk

    k e dk

    2k

  • Review of Quantum Mechanics p26 Tien-chang Lu

    2-5 Step Potential Wall Apply to: Schottky barriers Thermionic emission Field emission

    0

    0

    ( ) ( )( ) 1, 0( ) : Heavyside step function ( ) 0, 0

    0

    V x V x

    x xx

    x xV

    Assume 0 : incident energy

  • Review of Quantum Mechanics p27 Tien-chang Lu

    A B Cjk A B rC

    We can express two coefficients &B C in term of A : rA B C

    jk

    2

    -

    C jkA jk rB jk rA jk r

    From2 2

    12 2

    2

    k rBA k r

    where 12 tan rk

    incident & reflected probability are equal

    1 : phase different no transmitted probability

    BA

    @ 0x

    2 2( )( ) 2 1 cos 2

    standing wave

    j kxjkxx A e e

    x A kx

    2k

    2k

    2

    222

    kA

    x

  • Review of Quantum Mechanics p28 Tien-chang Lu

    2 2

    2

    2 2

    1 0

    02

    ( ) 42 ( ) 02

    0 ( ) 2 1 cos 2 tan 1

    0 when , (0) 0

    x x Ak

    x xk

    x x A

    VE

    x V

    :

    :

    :

    :

    Infinite barrier case!

    ExamplePenetration depth

    Assume the incident electron is traveling at a velocity 5 010 / sec into the barrier 2 at 0m V E x

    2 21 21 4.56 10 2.85 102E m J eV

    2

    02

    ( )2

    rxII x A e

    m V Er

    Define Penetration depth as 1e point at x d then 1rd

    2 2 34

    1/ 231 210

    1.054 10 11.62 2 2 2 9.11 10 4.56 10d

    m V E m E E

    ~2 lattice constantd If 0 10V E

    2

    2.92 10d m E E

    0 2V E

    I II

  • Review of Quantum Mechanics p29 Tien-chang Lu

    2-6 Single Potential Barrier: tunneling effect

    0( ) ,00( ) 0,

    V x V x ax

    V xx a

    I II III

    :a Potential barrier width assume it is small! Case(1): 0E V

    1 1

    2 2

    1

    1 1 1 1 2

    00 2 2 2 2 2

    3 3

    2Region I : 0, , 2Region II : , ,

    Region III: 0, ,

    jk x jk x

    jk x jk x

    jk x

    mEV A e B e k

    m E VV V A e B e k

    V A e

    1 22

    only out-going wave

    mEk

    Boundary conditions:

    2 2 1

    2 2 1

    1 1 2 2

    1 1 1 2 2 2

    2 2 3

    2 2 2 1 3

    0 jk a jk a jk a

    jk a jk a jk a

    A B A Bx

    k A B k A B

    A e B e A ex a

    k A e B e k A e

    1 1 2 2 3, , , , 5 unknowns, 4 equationsA B A B A By eliminating 2 2, ,A B

    E

    0 ax

    ( )V x

    0V11

    jk xA e

    11jk xB e

    13jk xA e

    2

    2

    2 1

    2

    22 21 21

    2 2 21 1 2 1 2

    3 1 22 2 21 1 2 1 2

    1 : Reflectance

    4 : Transmittance

    jk a

    jk a

    j k k a

    jk a

    k k eBA k k k k e

    A k k eA k k k k e

  • Review of Quantum Mechanics p30 Tien-chang Lu

    Definition: Probability of transmissionTransmission coefficient Transmission coefficient

    122 2 2 21 2 23

    2 21 1 2

    12 20 2

    0

    02 2

    0 2 0

    sin1 :Tunneling probability4

    sin 1 44 - sin 4

    Similar to FP interfere

    k k k aATA k k

    V k aE E V

    E E VV k a E E V

    nce!!

    Reflection coefficient

    1201

    2 21 0 2

    2 20 2

    2 20 2 0

    0

    41 sinsin :Reflection probabilitysin 4

    reflection exist even

    E E VBRA V k a

    V k aV k a E E V

    E V

    Of course 1R T

    220

    20

    02 2

    2 20 22

    11 sin4

    2

    2

    TV k a

    E E V

    m E Vk a a

    E V k ama

    max 2

    min 220

    0

    22 202

    2

    1 @ , 1, 2,3...1 1 3 5 @ ' , ' , , ...2 2 21 4

    1 11 2

    T k a n n

    T k a n nV

    E E V

    ma VE k a

  • Review of Quantum Mechanics p31 Tien-chang Lu

    Example: V0 = 3 eV, a = 10 A;

    0 5 10 15 20

    0.2

    0.4

    0.6

    0.8

    1.0

    x axis is normalized to 02 2

    22

    E V

    ma

    Example: V0 = 1 eV, a = 5 A;

    0 5 10 15 20

    0.2

    0.4

    0.6

    0.8

    1.0

    x axis is normalized to 02 2

    22

    E V

    ma

    1

    / 2 3 / 2 2 5 / 2 30

    Resonant scatting

    ak2

  • Review of Quantum Mechanics p32 Tien-chang Lu

    2

    0

    2 2

    As

    2

    like a free electron!!

    k aE V

    mEk

    Case(2): 0E V

    From the above result,

    2

    202

    0

    11 sin4

    TV k a

    E E V

    Since 0E V , 02 22 very smallm E Vk a a

    So, we obtain 2

    22

    0

    2k mE V

    , and 2 2sin ,k a k a and 0E V

    2 2

    20 02 2

    0

    1 11 ( ) 14 2

    TV mV ak a

    E E V

    20

    2 depends on 2mV aT

    Case(3): 0E V

    022

    2' m V Ek jk

    Thus

    12 20

    0

    02 2

    0 0

    sinh ' 1 44 sinh ' 4

    V k aTE V E

    E V EV k a E V E

    Note:

    2 2

    Hyperbolic sin:sin sinh

    1sinh 2x x

    jk j k

    x e e

    102 2

    0

    41 sinh 'E V E

    RV k a

  • Review of Quantum Mechanics p33 Tien-chang Lu

    (1) When potential barrier is weak i.e. ' 1k a 22sinh ' 'k a k a

    2 20

    0

    1 1 '4

    TV k a

    E V E

    02 22' m V Ek

    2 2 00

    20

    22 20 00

    22

    1 21 41 1

    11 22

    Tm V EV a

    E V E

    ma V Vma VEE

    2

    00 2plot vs / for 2ma VT E V

    (2) Strong potential barrier ' 1k a

    2 2

    1sinh , 121 2

    1sinh 4

    x x

    x

    x

    x e e x

    e

    x e

    22 '0

    0

    1 11 4 4k a

    TV e

    E V E

    0.2 0.4 0.6 0.8 1EVo

    0.2

    0.4

    0.6

    0.8

    1T

  • Review of Quantum Mechanics p34 Tien-chang Lu

    0 2 '2

    clearly 0 exponential 1 decay!!

    16 k aE V ET eV

    Note that, for the original transmission equation: 0.1 1 5

    Please refer to the following link: http://phet.colorado.edu/en/simulations/translated/zh_TW

    12 20

    0

    02 2

    0 0

    sinh ' 1 44 sinh ' 4

    2 5,1, 0.1,

    V k aTE V E

    E V EV k a E V E

    mIf a then

    0.2 0.4 0.6 0.8 1 EVo

    0.2

    0.4

    0.6

    0.8

    1T