45
Review for Exam 1 10. 13. 2014 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering e-mail: [email protected]

Review for Exam 1 - University of Iowa

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Review for Exam 1

10. 13. 2014

Hyunse Yoon, Ph.D. Assistant Research Scientist

IIHR-Hydroscience & Engineering e-mail: [email protected]

Chapter 1. Introduction - Fluid properties

1. Fluids and No-slip condition 2. Dimensions and Units 3. Weight and Mass 4. Properties involving mass or weight of fluid 5. Viscosity 6. Vapor pressure and Cavitation 7. Surface tension

2 Review for Exam 1 2014

1. Fluids and No-slip condition

β€’ Fluid: Deforms continuously (i.e., flows) when subjected to a shearing stress – Solid: Resists to shearing stress by a static deflection

β€’ No-slip condition: No relative motion between fluid and boundary at the contact – The fluid β€œsticks” to the solid

boundaries 3

A fluid flowing over a stationary surface comes to a complete stop at the surface because of the no-slip condition (left) and the development of a velocity profile due to the no-slip condition as a fluid flows over a blunt nose (right) Review for Exam 1 2014

2. Dimensions and Units

Variable Dimension SI unit BG unit

Velocity 𝑽𝑽 𝐿𝐿 𝑇𝑇⁄ m s⁄ ft s⁄

Acceleration 𝒂𝒂 𝐿𝐿 𝑇𝑇2⁄ m s2⁄ ft s2⁄

Force 𝑭𝑭 𝑀𝑀𝐿𝐿 𝑇𝑇2⁄ N (Kg β‹… m s2⁄ ) lbf

Pressure 𝒑𝒑 𝐹𝐹 𝐿𝐿2⁄ Pa (N m2⁄ ) lbf ft2⁄

Density 𝝆𝝆 𝑀𝑀 𝐿𝐿3⁄ Kg m3⁄ slug ft3⁄

Internal energy 𝒖𝒖 𝐹𝐹𝐿𝐿 𝑀𝑀⁄ J Kg⁄ (N β‹… m kg⁄ ) BTU lbm⁄

β€’ Dimension: Quantitative expression of a physical variable (without numerical values) o Primary dimensions: Mass (𝑀𝑀), length (𝐿𝐿), time (𝑇𝑇 or 𝑑𝑑), and

temperature (Θ or 𝑇𝑇). Also referred to as basic dimensions o Secondary dimensions: All other dimensions can be derived from the

primary dimensions

β€’ Unit: A way of attaching a number to quantitative dimensions o For example, length is dimension and meter or feet are units o SI unit system, BG unit system, EE unit system, and etc.

4 Review for Exam 1 2014

2. Dimensions and Units –Contd. β€’ Dimensional homogeneity: All equations must be dimensionally

homogeneous. Each additive term in an equation must have the same dimensions

β€’ Consistent units: Each additive terms must have the same units

Ex): Bernoulli equation

𝑝𝑝 +12πœŒπœŒπ‘‰π‘‰2 + 𝜌𝜌𝜌𝜌𝜌𝜌 = constant

π‘€π‘€πΏπΏπ‘‡π‘‡βˆ’2 + βˆ’ 𝑀𝑀𝐿𝐿3 𝐿𝐿2π‘‡π‘‡βˆ’2

= π‘€π‘€π‘€π‘€π‘‡π‘‡βˆ’2+ π‘€π‘€πΏπΏβˆ’3 πΏπΏπ‘‡π‘‡βˆ’2 𝐿𝐿

= π‘€π‘€π‘€π‘€π‘‡π‘‡βˆ’2= π‘€π‘€πΏπΏπ‘‡π‘‡βˆ’2

o SI units: Nm2 + βˆ’ kg

m3ms

2+ kg

m3ms2

m ; (N) = (kg)(m/s2)

o BG units: lbfft2

+ βˆ’ slugsft2

fts

2+ slugs

ft2fts2

ft ; lbf = slugs ft/s2

5 Review for Exam 1 2014

3. Weight and Mass

β€’ Weight π‘Šπ‘Š is a force dimension, i.e., π‘Šπ‘Š = π‘šπ‘š β‹…g – In SI unit: π‘Šπ‘Š N = π‘šπ‘š kg β‹…g, where g = 9.81 m/s2

– In BG unit: π‘Šπ‘Š lbf = π‘šπ‘š slug β‹…g, where g = 32.2 ft/s2

– In EE unit: π‘Šπ‘Š lbf = π‘šπ‘š lbm /gcβ‹…g, where g = 32.2 ft/s2

o 1 N = 1 kg Γ— 1 m/s2

o 1 lbf = 1 slug Γ— 1 ft/s2

o gc = 32.2 lbm/slug o 1 slug = 32.2 lbm

6

Unit System Mass Weight

SI 1 kg 9.81 N (= 1 kgf)

BG 1 slug 32.2 lbf

EE 1 lbm 1 lbf

Review for Exam 1 2014

4. Properties involving mass or weight of fluid

β€’ Density

𝜌𝜌 = mass (π‘šπ‘š)volume 𝑉𝑉

(kg/m3 or slugs/ft3)

β€’ Specific Weight

𝛾𝛾 = weight (π‘šπ‘šπ‘šπ‘š)volume (𝑉𝑉)

= 𝜌𝜌𝜌𝜌 (N/m3 or lbf/ft3)

β€’ Specific Gravity

𝑆𝑆𝑆𝑆 =𝛾𝛾

𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

πœŒπœŒπœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€

7 Review for Exam 1 2014

5. Viscosity β€’ Newtonian fluid

𝜏𝜏 = πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘

- 𝜏𝜏: Shear stress (N/m2 or lbf/ft2) - πœ‡πœ‡: Dynamic viscosity (Nβ‹…s/m2 or lbfβ‹…s/ft2) - 𝜈𝜈 = πœ‡πœ‡ πœŒπœŒβ„ : Kinematic viscosity (m2/s or ft2/s) - Shear force = 𝜏𝜏 β‹… 𝐴𝐴

β€’ Non-Newtonian fluid

𝜏𝜏 βˆπ‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘

𝑛𝑛

8 Review for Exam 1 2014

6. Vapor pressure and cavitation β€’ Vapor pressure: Below which a liquid evaporates, i.e., changes

to a gas

β€’ Cavitation: If the pressure drop is due to fluid velocity – Boiling: if the pressure drop is due to temperature effect

9

β€’ Cavitation number:

𝐢𝐢𝑀𝑀 =𝑝𝑝 βˆ’ 𝑝𝑝𝑣𝑣12πœŒπœŒπ‘‰π‘‰βˆž

2

Note: 𝐢𝐢𝑀𝑀 < 0 implies cavitation

Cavitation formed on a marine propeller Review for Exam 1 2014

7. Surface tension

β€’ Surface tension force: The force developed at the interface of two immiscible fluids (e.g., liquid-gas) due to the unbalanced molecular cohesive forces at the fluid surface.

10

𝐹𝐹𝜎𝜎 = 𝜎𝜎 β‹… 𝐿𝐿

- 𝐹𝐹𝜎𝜎 = Line force with direction normal to the cut - 𝐿𝐿 = Length of cut through the interface - 𝜎𝜎 = Surface tension [N/m], the intensity of the

molecular attraction per unit length along 𝐿𝐿

Attractive forces acting on a liquid molecule at the surface and deep inside the liquid

Review for Exam 1 2014

7. Surface tension – Contd.

β€’ Capillary Effect: The rise (or fall) of a liquid in a small-diameter tube inserted into a the liquid.

11

β€’ Capillary rise:

β„Ž =2𝜎𝜎𝜌𝜌𝜌𝜌𝜌𝜌

cosπœ™πœ™

Note: πœ™πœ™ = contact angle

The forces acting on a liquid column that has risen in a tube due to the capillary effect

Review for Exam 1 2014

Chapter 2. Fluid Statics

1. Absolute pressure, gage pressure, and vacuum 2. Pressure variation with elevation 3. Pressure measurements (Manometry) 4. Hydrostatic forces on plane surfaces 5. Hydrostatic forces on curved surfaces 6. Buoyancy 7. Stability 8. Fluids in rigid-body motion

12 Review for Exam 1 2014

1. Absolute pressure, gage pressure, and vacuum

13

β€’ Absolute pressure: The actual pressure measured relative to absolute vacuum β€’ Gage pressure: Pressure measured relative to local atmospheric pressure β€’ Vacuum pressure: Pressures below atmospheric pressure

Review for Exam 1 2014

2. Pressure variation with elevation

14

β€’ Force balance in an incompressible static fluid (Newton’s 2nd law per unit volume):

𝜌𝜌 π‘Žπ‘ŽβŸ=0

= βˆ’πœŒπœŒπœŒπœŒπ‘˜π‘˜οΏ½ βˆ’ 𝛻𝛻𝑝𝑝 + πœ‡πœ‡ 𝛻𝛻2𝑉𝑉�=0

∴ 𝛻𝛻𝑝𝑝 = βˆ’π›Ύπ›Ύπ’Œπ’ŒοΏ½

or, πœ•πœ•π‘π‘πœ•πœ•πœ•πœ•

= 0; πœ•πœ•π‘π‘πœ•πœ•π‘‘π‘‘

= 0; πœ•πœ•π‘π‘πœ•πœ•πœŒπœŒ

= βˆ’π›Ύπ›Ύ

β€’ Since 𝛾𝛾 = constant (e.g., liquids),

𝑝𝑝 = βˆ’π›Ύπ›ΎπœŒπœŒ + 𝑝𝑝0 By taking 𝑝𝑝0 = 0 (gage) at 𝜌𝜌 = 0,

∴ 𝑝𝑝 = βˆ’π›Ύπ›ΎπœŒπœŒ Thus, the pressure increases linearly with depth

Review for Exam 1 2014

3. Pressure measurements (1): Piezometer tube

15

β€’ The simplest type of manometer

𝑝𝑝𝐴𝐴 = 𝛾𝛾1β„Ž1

β€’ The fluid must be a liquid β€’ Suitable only if 𝑝𝑝𝐴𝐴 > π‘π‘π‘€π‘€π‘€π‘€π‘šπ‘š β€’ 𝑝𝑝𝐴𝐴 must be relatively small so that β„Ž1 is reasonable

Review for Exam 1 2014

3. Pressure measurements (2) U-Tube manometer

16

β€’ Starting from one end, add pressure when move downward and subtract when move upward:

𝑝𝑝𝐴𝐴 + 𝛾𝛾1β„Ž1 βˆ’ 𝛾𝛾2β„Ž2 = 0 Thus,

𝑝𝑝𝐴𝐴 = 𝛾𝛾2β„Ž2 βˆ’ 𝛾𝛾1β„Ž1 or

𝑝𝑝𝐴𝐴 = 𝛾𝛾2 β„Ž2 βˆ’π›Ύπ›Ύ1𝛾𝛾2β„Ž1

β€’ If 𝛾𝛾1 β‰ͺ 𝛾𝛾2 (e.g., 𝛾𝛾1 is a gas and 𝛾𝛾2 a

liquid),

∴ 𝑝𝑝𝐴𝐴 β‰ˆ 𝛾𝛾2β„Ž2

Review for Exam 1 2014

3. Pressure measurements (3) Differential U-Tube manometer

17

β€’ To measure the difference in pressure: 𝑝𝑝𝐴𝐴 + 𝛾𝛾1β„Ž1 βˆ’ 𝛾𝛾2β„Ž2 βˆ’ 𝛾𝛾3β„Ž3 = 𝑝𝑝𝐡𝐡

or 𝑝𝑝𝐴𝐴 βˆ’ 𝑝𝑝𝐡𝐡 = 𝛾𝛾2β„Ž2 + 𝛾𝛾3β„Ž3 βˆ’ 𝛾𝛾1β„Ž1

β€’ For a pipe flow where 𝛾𝛾1 = 𝛾𝛾3 as shown in the boxed figure,

𝑝𝑝𝐴𝐴 βˆ’ 𝑝𝑝𝐡𝐡 = 𝛾𝛾2 1 βˆ’π›Ύπ›Ύ1𝛾𝛾2β„Ž2

if 𝛾𝛾1 β‰ͺ 𝛾𝛾2, ∴ 𝑝𝑝𝐴𝐴 βˆ’ 𝑝𝑝𝐡𝐡 β‰ˆ 𝛾𝛾2β„Ž2

Ex:

Review for Exam 1 2014

4. Hydrostatic forces on plane surfaces (1) Horizontal surfaces

18

β€’ Pressure is uniform on horizontal surfaces (e.g., the tank bottom) as

𝑝𝑝 = π›Ύπ›Ύβ„Ž β€’ The magnitude of the resultant

force is simply

𝐹𝐹𝑅𝑅 = 𝑝𝑝𝐴𝐴 = π›Ύπ›Ύβ„Žπ΄π΄

Review for Exam 1 2014

4. Hydrostatic forces on plane surfaces (2) Inclined surfaces

19

β€’ Average pressure on the surface

�̅�𝑝 = π›Ύπ›Ύβ„Žπ‘π‘ β€’ Resultant pressure force

𝐹𝐹𝑅𝑅 = �̅�𝑝𝐴𝐴 = π›Ύπ›Ύβ„Žπ‘π‘π΄π΄

β€’ Pressure center

𝑑𝑑𝑅𝑅 = 𝑑𝑑𝑐𝑐 +𝐼𝐼π‘₯π‘₯𝑐𝑐𝑑𝑑𝑐𝑐𝐴𝐴

Review for Exam 1 2014

5. Hydrostatic forces on curved surfaces

20

β€’ Horizontal force component: 𝐹𝐹𝐻𝐻 = �̅�𝑝𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝 β‹… 𝐴𝐴𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝 β€’ Vertical force component: 𝐹𝐹𝑉𝑉 = 𝛾𝛾𝑉𝑉 (weight of fluid above surface)

β€’ Resultant force: 𝐹𝐹𝑅𝑅 = 𝐹𝐹𝐻𝐻2 + 𝐹𝐹𝑉𝑉2

Review for Exam 1 2014

6. Buoyancy (1) Immersed bodies

21

𝐹𝐹𝐡𝐡 = 𝐹𝐹𝑉𝑉2 βˆ’ 𝐹𝐹𝑉𝑉1 = 𝛾𝛾𝑉𝑉

β€’ Fluid weight equivalent to body volume 𝑉𝑉

β€’ Line of action (or the center of buoyancy) is through the centroid of 𝑉𝑉

Review for Exam 1 2014

6. Buoyancy (2) Floating bodies

22 Review for Exam 1 2014

7. Stability (1) Immersed bodies

23

β€’ If 𝐢𝐢 is above 𝑆𝑆: Stable (righting moment when heeled) β€’ If 𝑆𝑆 is above 𝐢𝐢: Unstable (heeling moment when heeled)

Review for Exam 1 2014

7. Stability (2) Floating bodies

24

β€’ 𝑆𝑆𝑀𝑀 > 0: Stable (𝑀𝑀 is above 𝑆𝑆) β€’ 𝑆𝑆𝑀𝑀 < 0: Unstable (𝑆𝑆 is above 𝑀𝑀)

𝑆𝑆𝑀𝑀 =𝐼𝐼00π‘‰π‘‰βˆ’ 𝐢𝐢𝑆𝑆

Review for Exam 1 2014

8. Fluids in rigid-body motion (1) Translation

25

β€’ 𝛻𝛻𝑝𝑝 = 𝜌𝜌 𝜌𝜌 βˆ’ π‘Žπ‘Ž o π‘Žπ‘Ž = π‘Žπ‘Žπ‘₯π‘₯οΏ½Μ‚οΏ½π’Š + π‘Žπ‘Žπ‘§π‘§π’Œπ’ŒοΏ½ (constant) o 𝜌𝜌 = βˆ’πœŒπœŒπ‘˜π‘˜οΏ½

β€’ πœ•πœ•π‘π‘

πœ•πœ•πœ•πœ•= βˆ’πœŒπœŒπ‘†π‘†

β€’ 𝑝𝑝 = πœŒπœŒπ‘†π‘†πœŒπœŒ

o 𝑆𝑆 = π‘Žπ‘Žπ‘₯π‘₯2 + 𝜌𝜌 + π‘Žπ‘Žπ‘§π‘§ 212

o πœƒπœƒ = tanβˆ’1 𝑀𝑀π‘₯π‘₯π‘šπ‘š+𝑀𝑀𝑧𝑧

Ex:

Review for Exam 1 2014

8. Fluids in rigid-body motion (2) Rotation

26

β€’ 𝛻𝛻𝑝𝑝 = 𝜌𝜌 𝜌𝜌 βˆ’ π‘Žπ‘Ž o π‘Žπ‘Ž = βˆ’π‘Ÿπ‘ŸΞ©2𝒆𝒆�𝒓𝒓 (constant Ξ©) o 𝜌𝜌 = βˆ’πœŒπœŒπ‘˜π‘˜οΏ½

β€’ πœ•πœ•π‘π‘

πœ•πœ•π‘€π‘€= πœŒπœŒπ‘Ÿπ‘ŸΞ©2 and πœ•πœ•π‘π‘

πœ•πœ•π‘§π‘§= βˆ’πœŒπœŒπœŒπœŒ

β€’ 𝑝𝑝 = 𝜌𝜌

2π‘Ÿπ‘Ÿ2Ξ©2 βˆ’ 𝜌𝜌𝜌𝜌𝜌𝜌 + 𝐢𝐢

β€’ 𝜌𝜌 = 𝑝𝑝0βˆ’π‘π‘πœŒπœŒπ‘šπ‘š

+ Ξ©2

2π‘šπ‘šπ‘Ÿπ‘Ÿ2 Ex:

Review for Exam 1 2014

Chapter 3. Elementary Fluid Dynamics - The Bernoulli equation

1. Flow patterns 2. Streamline coordinates 3. Bernoulli equation 4. Application of Bernoulli equation

27 Review for Exam 1 2014

1. Flow patterns

28

β€’ Streamline: A line that is everywhere tangent to the velocity vector at a given instant

β€’ Pathline: The actual path traveled by a given fluid particle β€’ Streakline: The locus of particles which have earlier passed through

a particular point β€’ For steady flow, all three lines coincide

Streamline Pathline Streakline Review for Exam 1 2014

2. Streamline coordinates

29

β€’ Velocity 𝑉𝑉 = π‘£π‘£πœ•πœ•π’”π’”οΏ½ + 𝑣𝑣𝑛𝑛�

=0𝒏𝒏�

Note: 𝑉𝑉 = π‘£π‘£πœ•πœ• = 𝑉𝑉

β€’ Acceleration

π‘Žπ‘Ž = π‘Žπ‘Žπœ•πœ•π’”π’”οΏ½ + π‘Žπ‘Žπ‘›π‘›π’π’οΏ½

o π‘Žπ‘Žπœ•πœ• = πœ•πœ•π‘£π‘£π‘ π‘ πœ•πœ•π‘€π‘€

+ π‘£π‘£πœ•πœ•πœ•πœ•π‘£π‘£π‘ π‘ πœ•πœ•πœ•πœ•

o π‘Žπ‘Žπ‘›π‘› = πœ•πœ•π‘£π‘£π‘›π‘›πœ•πœ•π‘€π‘€

+ 𝑣𝑣𝑠𝑠2

β„œ

Review for Exam 1 2014

2. Streamline coordinates – Contd.

30

β€’ Euler equation: Application of Newton’s 2nd law (π‘šπ‘šπ‘Žπ‘Ž = βˆ‘πΉπΉ) to inviscid (i.e., frictionless or πœ‡πœ‡ = 0) and incompressible* fluid motions

πœŒπœŒπ‘Žπ‘ŽοΏ½β‰ 0

= βˆ’πœŒπœŒπœŒπœŒπ’Œπ’ŒοΏ½ βˆ’ 𝛻𝛻𝑝𝑝 + πœ‡πœ‡π›»π›»2𝑉𝑉=0

β€’ The Euler equation in streamline coordinates

πœŒπœŒπ‘Žπ‘Ž = βˆ’π›»π›» 𝑝𝑝 + π›Ύπ›ΎπœŒπœŒ

where,

𝛻𝛻 =πœ•πœ•πœ•πœ•πœŒπœŒπ’”π’”οΏ½ +

πœ•πœ•πœ•πœ•πœ•πœ•

𝒏𝒏�

or 𝜌𝜌 πœ•πœ•π‘£π‘£π‘ π‘ 

πœ•πœ•π‘€π‘€+ π‘£π‘£πœ•πœ•

πœ•πœ•π‘£π‘£π‘ π‘ πœ•πœ•πœ•πœ•

= βˆ’ πœ•πœ•πœ•πœ•πœ•πœ•

𝑝𝑝 + π›Ύπ›ΎπœŒπœŒ

𝜌𝜌 πœ•πœ•π‘£π‘£π‘›π‘›πœ•πœ•π‘€π‘€

+ 𝑣𝑣𝑠𝑠2

β„œ= βˆ’ πœ•πœ•

πœ•πœ•π‘›π‘›(𝑝𝑝 + π›Ύπ›ΎπœŒπœŒ)

* Note: There is another version of Euler equation available for compressible fluid flows as well.

Review for Exam 1 2014

3. Bernoulli equation (1) Along streamline

β€’ By integrating the Euler equation along 𝜌𝜌-direction (i.e., along a streamline) for a steady flow,

οΏ½πœŒπœŒπœ•πœ•π‘£π‘£πœ•πœ•πœ•πœ•π‘‘π‘‘οΏ½=0

∡steady

+ π‘£π‘£πœ•πœ•πœ•πœ•π‘£π‘£πœ•πœ•πœ•πœ•πœŒπœŒ

π‘‘π‘‘πœŒπœŒ = βˆ’οΏ½πœ•πœ•πœ•πœ•πœŒπœŒ

𝑝𝑝 + π›Ύπ›ΎπœŒπœŒ π‘‘π‘‘πœŒπœŒ

or

οΏ½πœ•πœ•πœ•πœ•πœŒπœŒ

𝑝𝑝 +12πœŒπœŒπ‘£π‘£πœ•πœ•2 + π›Ύπ›ΎπœŒπœŒ π‘‘π‘‘πœŒπœŒ

2

1= 0

∴ 𝑝𝑝2 +12πœŒπœŒπ‘‰π‘‰22 + π›Ύπ›ΎπœŒπœŒ2 = 𝑝𝑝1 +

12πœŒπœŒπ‘‰π‘‰12 + π›Ύπ›ΎπœŒπœŒ1 ∡ π‘£π‘£πœ•πœ• = 𝑉𝑉

31 Review for Exam 1 2014

3. Bernoulli equation (2) Across streamline

β€’ By integrating the Euler equation along πœ•πœ•-direction (i.e., across streamlines) for a steady flow,

οΏ½πœŒπœŒπœ•πœ•π‘£π‘£π‘›π‘›πœ•πœ•π‘‘π‘‘οΏ½=0

∡steady

+π‘£π‘£πœ•πœ•2

β„œπ‘‘π‘‘πœ•πœ• = βˆ’οΏ½

πœ•πœ•πœ•πœ•πœ•πœ•

𝑝𝑝 + π›Ύπ›ΎπœŒπœŒ π‘‘π‘‘πœ•πœ•

or

οΏ½ πœŒπœŒπ‘£π‘£πœ•πœ•2

β„œπ‘‘π‘‘πœ•πœ• +

πœ•πœ•πœ•πœ•πœ•πœ•

𝑝𝑝 + π›Ύπ›ΎπœŒπœŒ π‘‘π‘‘πœ•πœ•2

1= 0

∴ 𝑝𝑝2 + πœŒπœŒοΏ½π‘‰π‘‰2

β„œπ‘‘π‘‘πœ•πœ•

2

1+ π›Ύπ›ΎπœŒπœŒ2 = 𝑝𝑝1 + π›Ύπ›ΎπœŒπœŒ1 ∡ π‘£π‘£πœ•πœ• = 𝑉𝑉

32 Review for Exam 1 2014

3. Bernoulli equation (3) Restrictions and alternative forms

β€’ Restrictions 1) Inviscid flow (i.e., no friction) 2) Incompressible flow (i.e., 𝜌𝜌 = constant) 3) Steady flow

β€’ Static, stagnation dynamic, and Total pressure

π‘π‘βŸstatic

pressure

+12πœŒπœŒπ‘‰π‘‰2

dynamicpressure

stagnation pressure

+ π›Ύπ›ΎπœŒπœŒοΏ½hydrostaticpressure

= 𝑝𝑝𝑇𝑇�Total

pressure

β€’ Head form

βˆ΄π‘π‘π›Ύπ›ΎβŸ

pressurehead

+𝑉𝑉2

2𝜌𝜌�velocityhead

+ 𝜌𝜌⏟elevationhead

= 𝐻𝐻⏟totalhead

33 Review for Exam 1 2014

4. Application of Bernoulli equation Example (1): Stagnation tube

34

𝑝𝑝1 + πœŒπœŒπ‘‰π‘‰12

2+ π›Ύπ›ΎπœŒπœŒ1 = 𝑝𝑝2 + 𝜌𝜌

𝑉𝑉22

2+ π›Ύπ›ΎπœŒπœŒ2

Since 𝑉𝑉2 = 0 (stagnation point) and 𝜌𝜌1 = 𝜌𝜌2,

𝑝𝑝1 + πœŒπœŒπ‘‰π‘‰12

2= 𝑝𝑝2

Solve for 𝑉𝑉1:

𝑉𝑉1 =2 𝑝𝑝2 βˆ’ 𝑝𝑝1

𝜌𝜌

Also, 𝑝𝑝1 = 𝛾𝛾𝑑𝑑 and 𝑝𝑝2 = 𝛾𝛾 𝑑𝑑 + β„“

∴ 𝑉𝑉1 = 2πœŒπœŒβ„“

Review for Exam 1 2014

4. Application of Bernoulli equation Example (2): Pitot tube

35

𝑝𝑝1 + πœŒπœŒπ‘‰π‘‰12

2+ π›Ύπ›ΎπœŒπœŒ1 = 𝑝𝑝2 + 𝜌𝜌

𝑉𝑉22

2+ π›Ύπ›ΎπœŒπœŒ2

where 𝑉𝑉1 = 0 (stagnation point),

𝑝𝑝1 + π›Ύπ›ΎπœŒπœŒ1 = 𝑝𝑝2 + πœŒπœŒπ‘‰π‘‰22

2+ π›Ύπ›ΎπœŒπœŒ2

Solve for 𝑉𝑉2:

𝑉𝑉2 = 2πœŒπœŒπ‘π‘1𝛾𝛾

+ 𝜌𝜌1

=β„Ž1

βˆ’π‘π‘2𝛾𝛾

+ 𝜌𝜌2

=β„Ž2

Thus,

∴ 𝑉𝑉 = 𝑉𝑉2 = 2𝜌𝜌 β‹… β„Ž1 βˆ’ β„Ž2from manometer

Review for Exam 1 2014

4. Application of Bernoulli equation Example (3): Free jets

36

Applying the B.E. between (1) and (2),

𝑝𝑝1 + πœŒπœŒπ‘‰π‘‰12

2+ π›Ύπ›ΎπœŒπœŒ1 = 𝑝𝑝2 + 𝜌𝜌

𝑉𝑉22

2+ π›Ύπ›ΎπœŒπœŒ2

Since 𝑝𝑝1 = 𝑝𝑝2 = 0 and 𝑉𝑉1 β‰ˆ 0, and 𝜌𝜌1 βˆ’ 𝜌𝜌2 = β„Ž,

π›Ύπ›Ύβ„Ž = πœŒπœŒπ‘‰π‘‰22

2

Solve for 𝑉𝑉2:

𝑉𝑉2 = 2π›Ύπ›Ύβ„ŽπœŒπœŒ

= 2πœŒπœŒβ„Ž

Review for Exam 1 2014

Note: Simplified Form of Continuity Equation

β€’ Volume flow rate 𝑄𝑄 = 𝑉𝑉𝐴𝐴

β€’ Mass flow rate

οΏ½Μ‡οΏ½π‘š = πœŒπœŒπ‘„π‘„ = πœŒπœŒπ‘‰π‘‰π΄π΄ β€’ Conservation of mass

𝜌𝜌1𝑉𝑉1𝐴𝐴1 = 𝜌𝜌2𝑉𝑉2𝐴𝐴2 β€’ Incompressible flow (i.e., 𝜌𝜌 = const.)

𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2

37 Review for Exam 1 2014

4. Application of Bernoulli equation Example (4): Venturimeter

38

Since 𝜌𝜌1 = 𝜌𝜌2,

𝑝𝑝1 + πœŒπœŒπ‘‰π‘‰12

2= 𝑝𝑝2 + 𝜌𝜌

𝑉𝑉22

2

From continuity,

𝑉𝑉1 =𝐴𝐴2𝐴𝐴1

𝑉𝑉2 =𝐷𝐷2𝐷𝐷1

2

𝑉𝑉2

Thus,

𝑝𝑝1 +12𝜌𝜌

𝐷𝐷2𝐷𝐷1

2

𝑉𝑉2

2

= 𝑝𝑝2 + πœŒπœŒπ‘‰π‘‰22

2

Solve for 𝑉𝑉2,

𝑉𝑉2 =2 𝑝𝑝1 βˆ’ 𝑝𝑝2

𝜌𝜌 1 βˆ’ 𝐷𝐷2 𝐷𝐷1⁄ 4

Then, 𝑄𝑄 = 𝑉𝑉2𝐴𝐴2

Review for Exam 1 2014

Chapter 4. Fluid Kinematics

1. Velocity and Description methods 2. Acceleration and Material derivatives 3. Euler equation 4. Flow classification 5. Control-volume approach and RTT

39 Review for Exam 1 2014

1. Velocity and Description methods

40

β€’ Lagrangian description: Keep track of individual fluid particles 𝑉𝑉𝑝𝑝 𝑑𝑑 = 𝑑𝑑𝑝𝑝(𝑑𝑑)οΏ½Μ‚οΏ½π’Š + 𝑣𝑣𝑝𝑝(𝑑𝑑)𝒋𝒋̂ + 𝑀𝑀𝑝𝑝(𝑑𝑑)π’Œπ’ŒοΏ½

β€’ Eulerian description: Focus attention on a fixed point in space

𝑉𝑉 πœ•πœ•, 𝑑𝑑 = 𝑑𝑑 πœ•πœ•, 𝑑𝑑 οΏ½Μ‚οΏ½π’Š + 𝑣𝑣 πœ•πœ•, 𝑑𝑑 𝒋𝒋̂ + 𝑀𝑀 πœ•πœ•, 𝑑𝑑 π’Œπ’ŒοΏ½

Review for Exam 1 2014

2. Acceleration and Material derivatives

β€’ Lagrangian:

π‘Žπ‘Žπ‘π‘ =𝑑𝑑𝑉𝑉𝑝𝑝𝑑𝑑𝑑𝑑

= π‘Žπ‘Žπ‘₯π‘₯πš€πš€Μ‚ + π‘Žπ‘Žπ‘¦π‘¦πš₯πš₯Μ‚ + π‘Žπ‘Žπ‘§π‘§π‘˜π‘˜οΏ½

π‘Žπ‘Žπ‘₯π‘₯ =𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑

, π‘Žπ‘Žπ‘¦π‘¦ =𝑑𝑑𝑣𝑣𝑝𝑝𝑑𝑑𝑑𝑑

,π‘Žπ‘Žπ‘§π‘§ =𝑑𝑑𝑀𝑀𝑝𝑝𝑑𝑑𝑑𝑑

β€’ Eulerian:

π‘Žπ‘Ž =𝐷𝐷𝑉𝑉𝐷𝐷𝑑𝑑

= π‘Žπ‘Žπ‘₯π‘₯πš€πš€Μ‚ + π‘Žπ‘Žπ‘¦π‘¦πš₯πš₯Μ‚ + π‘Žπ‘Žπ‘§π‘§π‘˜π‘˜οΏ½

π‘Žπ‘Žπ‘₯π‘₯ =πœ•πœ•π‘‘π‘‘πœ•πœ•π‘‘π‘‘

+ π‘‘π‘‘πœ•πœ•π‘‘π‘‘πœ•πœ•πœ•πœ•

+ π‘£π‘£πœ•πœ•π‘‘π‘‘πœ•πœ•π‘‘π‘‘

+ π‘€π‘€πœ•πœ•π‘‘π‘‘πœ•πœ•πœŒπœŒ

π‘Žπ‘Žπ‘¦π‘¦ =πœ•πœ•π‘£π‘£πœ•πœ•π‘‘π‘‘

+ π‘‘π‘‘πœ•πœ•π‘£π‘£πœ•πœ•πœ•πœ•

+ π‘£π‘£πœ•πœ•π‘£π‘£πœ•πœ•π‘‘π‘‘

+ π‘€π‘€πœ•πœ•π‘£π‘£πœ•πœ•πœŒπœŒ

π‘Žπ‘Žπ‘§π‘§ =πœ•πœ•π‘€π‘€πœ•πœ•π‘‘π‘‘

+ π‘‘π‘‘πœ•πœ•π‘€π‘€πœ•πœ•πœ•πœ•

+ π‘£π‘£πœ•πœ•π‘€π‘€πœ•πœ•π‘‘π‘‘

+ π‘€π‘€πœ•πœ•π‘€π‘€πœ•πœ•πœŒπœŒ

41 Review for Exam 1 2014

2. Acceleration and material derivatives –Contd.

42

Lagrangian Eulerian

𝑑𝑑𝑝𝑝 𝑑𝑑 𝑑𝑑𝑝𝑝 𝑑𝑑 + 𝛿𝛿𝑑𝑑

π‘Žπ‘Žπ‘π‘ 𝑑𝑑 = lim𝛿𝛿𝑀𝑀→0

𝑑𝑑𝑝𝑝 𝑑𝑑 + 𝛿𝛿𝑑𝑑 βˆ’ 𝑑𝑑𝑝𝑝 𝑑𝑑𝛿𝛿𝑑𝑑

∴ π‘Žπ‘Žπ‘π‘(𝑑𝑑) =𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑

𝑑𝑑(πœ•πœ•, 𝑑𝑑) 𝑑𝑑(πœ•πœ• + 𝑑𝑑𝛿𝛿𝑑𝑑, 𝑑𝑑 + 𝛿𝛿𝑑𝑑)

π‘Žπ‘Ž πœ•πœ•, 𝑑𝑑 = lim𝛿𝛿𝑀𝑀→0

𝑑𝑑(πœ•πœ• + 𝑑𝑑𝛿𝛿𝑑𝑑, 𝑑𝑑 + 𝛿𝛿𝑑𝑑) βˆ’ 𝑑𝑑 πœ•πœ•, 𝑑𝑑𝛿𝛿𝑑𝑑

= lim𝛿𝛿𝑀𝑀→0

𝑑𝑑(πœ•πœ• + 𝑑𝑑𝛿𝛿𝑑𝑑, 𝑑𝑑 + 𝛿𝛿𝑑𝑑) βˆ’ 𝑑𝑑 πœ•πœ•, 𝑑𝑑 + 𝛿𝛿𝑑𝑑 + 𝑑𝑑 πœ•πœ•, 𝑑𝑑 + 𝛿𝛿𝑑𝑑 βˆ’ 𝑑𝑑(πœ•πœ•, 𝑑𝑑)𝛿𝛿𝑑𝑑

= lim𝛿𝛿𝑀𝑀→0

𝑑𝑑 πœ•πœ• + 𝑑𝑑𝛿𝛿𝑑𝑑, 𝑑𝑑 + 𝛿𝛿𝑑𝑑 βˆ’ 𝑑𝑑 πœ•πœ•, 𝑑𝑑 + π›Ώπ›Ώπ‘‘π‘‘πœ•πœ• + 𝑑𝑑𝛿𝛿𝑑𝑑 βˆ’ πœ•πœ•

β‹…πœ•πœ• + 𝑑𝑑𝛿𝛿𝑑𝑑 βˆ’ πœ•πœ•

𝛿𝛿𝑑𝑑

+ lim𝛿𝛿𝑀𝑀→0

𝑑𝑑 πœ•πœ•, 𝑑𝑑 + 𝛿𝛿𝑑𝑑 βˆ’ 𝑑𝑑 πœ•πœ•, 𝑑𝑑𝛿𝛿𝑑𝑑

=πœ•πœ•π‘‘π‘‘πœ•πœ•πœ•πœ•

β‹… 𝑑𝑑 +πœ•πœ•π‘‘π‘‘πœ•πœ•π‘‘π‘‘

∴ π‘Žπ‘Ž πœ•πœ•, 𝑑𝑑 =πœ•πœ•π‘‘π‘‘πœ•πœ•π‘‘π‘‘

+ π‘‘π‘‘πœ•πœ•π‘‘π‘‘πœ•πœ•πœ•πœ•

For 1D flow,

Review for Exam 1 2014

2. Acceleration and material derivatives –Contd.

β€’ Material derivative*: 𝐷𝐷𝐷𝐷𝑑𝑑

=πœ•πœ•πœ•πœ•π‘‘π‘‘

+ 𝑉𝑉 β‹… 𝛻𝛻

where

𝛻𝛻 =πœ•πœ•πœ•πœ•πœ•πœ•

πš€πš€Μ‚ +πœ•πœ•πœ•πœ•π‘‘π‘‘

πš₯πš₯Μ‚ +πœ•πœ•πœ•πœ•πœŒπœŒπ‘˜π‘˜οΏ½

β€’ Acceleration

π‘Žπ‘Ž =𝐷𝐷𝑉𝑉𝐷𝐷𝑑𝑑

=πœ•πœ•π‘‰π‘‰πœ•πœ•π‘‘π‘‘οΏ½Localacc.

+ 𝑉𝑉 β‹… 𝛻𝛻 𝑉𝑉Convective

acc.

oπœ•πœ•π‘‰π‘‰πœ•πœ•π‘€π‘€

= Local or temporal acceleration. Velocity changes with respect to time at a given point

o 𝑉𝑉 β‹… 𝛻𝛻 𝑉𝑉 = Convective acceleration. Spatial gradients of velocity

43

*Note: Also referred as substantial derivative or total derivative

Review for Exam 1 2014

3. Euler equation

β€’ In Cartesian coordinates

πœŒπœŒπ‘Žπ‘Ž = 𝜌𝜌𝜌𝜌 βˆ’ 𝛻𝛻𝑝𝑝

or

πœŒπœŒπœ•πœ•π‘‘π‘‘πœ•πœ•π‘‘π‘‘

+ π‘‘π‘‘πœ•πœ•π‘‘π‘‘πœ•πœ•πœ•πœ•

+ π‘£π‘£πœ•πœ•π‘‘π‘‘πœ•πœ•π‘‘π‘‘

+ π‘€π‘€πœ•πœ•π‘‘π‘‘πœ•πœ•πœŒπœŒ

= 𝜌𝜌𝜌𝜌π‘₯π‘₯ βˆ’πœ•πœ•π‘π‘πœ•πœ•πœ•πœ•

πœŒπœŒπœ•πœ•π‘£π‘£πœ•πœ•π‘‘π‘‘

+ π‘‘π‘‘πœ•πœ•π‘£π‘£πœ•πœ•πœ•πœ•

+ π‘£π‘£πœ•πœ•π‘£π‘£πœ•πœ•π‘‘π‘‘

+ π‘€π‘€πœ•πœ•π‘£π‘£πœ•πœ•πœŒπœŒ

= πœŒπœŒπœŒπœŒπ‘¦π‘¦ βˆ’πœ•πœ•π‘π‘πœ•πœ•π‘‘π‘‘

πœŒπœŒπœ•πœ•π‘€π‘€πœ•πœ•π‘‘π‘‘

+ π‘‘π‘‘πœ•πœ•π‘€π‘€πœ•πœ•πœ•πœ•

+ π‘£π‘£πœ•πœ•π‘€π‘€πœ•πœ•π‘‘π‘‘

+ π‘€π‘€πœ•πœ•π‘€π‘€πœ•πœ•πœŒπœŒ

= πœŒπœŒπœŒπœŒπ‘§π‘§ βˆ’πœ•πœ•π‘π‘πœ•πœ•πœŒπœŒ

44 Review for Exam 1 2014

4. Flow classification

β€’ One-, Two-, and Three-dimensional flow β€’ Steady vs. Unsteady flow β€’ Incompressible vs. Compressible flow β€’ Viscous vs. Inciscid flow β€’ Rotational vs. Irrotational flow β€’ Laminar vs. Trubulent viscous flow β€’ Internal vs. External flow β€’ Separated vs. Unseparated flow

45 Review for Exam 1 2014