4
SW4 - 1 EVALUATION OF LEACHATE TREATMENT PLANT IN SUWUNG LANDFILL DENPASAR CITY Camelia Indah Murniwati 1 and Tri Padmi 2 Department of Environmental Engineering Faculty of Civil Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132 1 [email protected] and 2 [email protected] INTRODUCTION The main problem encountered in the application of landfilling waste or other solid waste into the ground is the possibility of water pollution by leachate, the liquid waste arising from the entry of external water into the landfill (Damanhuri, 2008). One of landfill, equipped with leachate treatment plant is Suwung Landfill, Denpasar City. EXISTING CONDITION OF LEACHATE TREATMENT PLANT Leachate treatment plant of Suwung Landfill consists of stabilization ponds including anaerobic ponds, facultative ponds, aerobic ponds, and constructed wetland. Each plant consists of two units located in parallel (Figure 1). Figure 1 Configuration of leachate treatment EVALUATION OF LEACHATE TREATMENT PLANT Leachate generation recalculates using the Thornthwaite Water Balance Method. Based on calculation result, the generation of leachate in Suwung landfill is 1.6 L/s. Leachate characterization entering the leachate treatment plant can be seen in Table 1. Performance of leachate treatment plant is evaluated by testing the leachate characterization in each inlet and outlet treatment ponds. The value of the effluent parameter is compared with KEP- 51/MENLH/10/1995 on wastewater quality standards class II. Table 1 Characteristics of leachate influent Parameter Unit December 2010* May 2011 TDS mg/L 4,180.40 13,161.78 TSS mg/L 525.25 533.33 Temperature o C 29.0 30.8 Conductivity μS/cm 22.81 pH 7.60 8.04 DO mg/L 1.75 BOD mg/L 198.40 3,667.67 COD mg/L 224.20 8,341.33 Ammonium (NH4 + N) mg/L 360.91 Ammonia (NH3N) mg/L 19.75 53.16 Nitrite (NO2 - N) mg/L 4.00 1.77 Nitrate (NO3 - N) mg/L 16.20 20.26 Organic Nitrogen mg/L 431.17 TKN (NH3N) mg/L 484.33 Total Phosphate (PO4 -3 P) mg/L 1.41 Ortho Phosphate (PO4 -3 P) mg/L 0.81 Sulphate mg/L 1,061.96 Chloride mg/L 1,405.80 Fe mg/L 4.10 36.90 Cu mg/L 2.60 Zn mg/L 6.70 Cr mg/L 1.20 Cd mg/L 0.16 Pb mg/L 0.45 Source : (*)Puslitbang Permukiman Kementerian PU Temperature of leachate in treatment plant (Figure 2) is at optimum condition for activity of bacteria, ranging between 25 35 o C (Metcalf & Eddy, 2004). The suitable pH for biological life is 6 9(Metcalf & Eddy, 2004). pH of leachate in treatment plant (Figure 3) tends to be alkaline which is typical pH of leachate pH in Indonesia (Damanhuri, 2008). Figure 2 Condition of temperature Figure 3 Condition of pH 26 28 30 32 34 Anaerobic Influent Anaerobic Effluent Facultative Effluent Aerobic Effluent Constructed Wetland Effluent Temperature ( o C) Dec-10 May-11 6,5 7 7,5 8 8,5 9 Anaerobic Influent Anaerobic Effluent Facultative Effluent Aerobic Effluent Constructed Wetland Effluent pH Dec-10 May-11

Resume Seminar Instalasi Pengolahan Lindi Suwung

Embed Size (px)

DESCRIPTION

Resume ini dibuat untuk memenuhi tugas Seminar Materi Tugas Akhir di Teknik Lingkungan ITB pada tahun 2011.

Citation preview

  • SW4 - 1

    EVALUATION OF LEACHATE TREATMENT PLANT

    IN SUWUNG LANDFILL DENPASAR CITY

    Camelia Indah Murniwati1 and Tri Padmi

    2

    Department of Environmental Engineering

    Faculty of Civil Environmental Engineering, Institut Teknologi Bandung,

    Jl. Ganesha No. 10 Bandung 40132 [email protected] and [email protected]

    INTRODUCTION

    The main problem encountered in the

    application of landfilling waste or other solid

    waste into the ground is the possibility of

    water pollution by leachate, the liquid waste

    arising from the entry of external water into

    the landfill (Damanhuri, 2008). One of

    landfill, equipped with leachate treatment plant

    is Suwung Landfill, Denpasar City.

    EXISTING CONDITION OF LEACHATE

    TREATMENT PLANT

    Leachate treatment plant of Suwung

    Landfill consists of stabilization ponds

    including anaerobic ponds, facultative ponds,

    aerobic ponds, and constructed wetland. Each

    plant consists of two units located in parallel

    (Figure 1).

    Figure 1 Configuration of leachate treatment

    EVALUATION OF LEACHATE

    TREATMENT PLANT Leachate generation recalculates using the Thornthwaite Water Balance Method.

    Based on calculation result, the generation of

    leachate in Suwung landfill is 1.6 L/s.

    Leachate characterization entering the leachate

    treatment plant can be seen in Table 1. Performance of leachate treatment

    plant is evaluated by testing the leachate

    characterization in each inlet and outlet

    treatment ponds. The value of the effluent

    parameter is compared with KEP-

    51/MENLH/10/1995 on wastewater quality

    standards class II.

    Table 1 Characteristics of leachate influent

    Parameter Unit

    December

    2010*

    May

    2011

    TDS mg/L 4,180.40 13,161.78

    TSS mg/L 525.25 533.33

    Temperature oC 29.0 30.8

    Conductivity S/cm 22.81

    pH 7.60 8.04

    DO mg/L 1.75

    BOD mg/L 198.40 3,667.67

    COD mg/L 224.20 8,341.33

    Ammonium (NH4+N) mg/L 360.91

    Ammonia (NH3N) mg/L 19.75 53.16

    Nitrite (NO2-N) mg/L 4.00 1.77

    Nitrate (NO3-N) mg/L 16.20 20.26

    Organic Nitrogen mg/L 431.17

    TKN (NH3N) mg/L 484.33

    Total Phosphate (PO4-3P) mg/L 1.41

    Ortho Phosphate (PO4-3P) mg/L 0.81

    Sulphate mg/L 1,061.96

    Chloride mg/L 1,405.80

    Fe mg/L 4.10 36.90

    Cu mg/L 2.60

    Zn mg/L 6.70

    Cr mg/L 1.20

    Cd mg/L 0.16

    Pb mg/L 0.45 Source : (*)Puslitbang Permukiman Kementerian PU

    Temperature of leachate in treatment

    plant (Figure 2) is at optimum condition for

    activity of bacteria, ranging between 25 35oC (Metcalf & Eddy, 2004). The suitable pH for

    biological life is 6 9(Metcalf & Eddy, 2004). pH of leachate in treatment plant (Figure 3)

    tends to be alkaline which is typical pH of

    leachate pH in Indonesia (Damanhuri, 2008).

    Figure 2 Condition of temperature

    Figure 3 Condition of pH

    26

    28

    30

    32

    34

    Anaerobic

    Influent

    Anaerobic

    Effluent

    Facultative

    Effluent

    Aerobic

    Effluent

    Constructed

    Wetland

    Effluent

    Tem

    pera

    ture (

    oC

    )

    Dec-10 May-11

    6,5

    7

    7,5

    8

    8,5

    9

    Anaerobic

    Influent

    Anaerobic

    Effluent

    Facultative

    Effluent

    Aerobic

    Effluent

    Constructed

    Wetland

    Effluent

    pH

    Dec-10 May-11

  • SW4 - 2

    The value of TSS (Figure 4) in May

    2011, at the outlet of constructed wetland does

    not comply with quality standard. Whereas,

    the quality standard of TSS is 400 mg/L.

    Based on calculation, detention time in

    facultative pond, aerobic pond, and

    constructed wetland is very short and does not

    comply with design criteria. It is possible

    causing the value of TSS at outlet of treatment

    plant which does not comply with quality

    standard.

    Figure 4 Condition of TSS

    Organic parameter is indicated by the

    value of BOD and COD (Figure 5 and Figure

    6). The quality standard of BOD and COD are

    150 mg/L and 300 mg/L. In Desember 2010,

    the value of BOD at the outlet of constructed

    wetland does not comply with quality

    standard. Likewise, the COD concentration

    tends to increase after passing through the

    constructed wetland. The increase of

    concentration also happens to the parameter of

    TSS. It is because there is not vegetation in

    constructed wetland so there is not removal of

    pollutant. Besides that, it is possible that there

    is organic matter which comes from dead

    vegetation in constructed wetland, causing the

    increases of BOD, COD, and TSS at the outlet

    of treatment.

    Figure 5 Condition of BOD

    Figure 6 Condition of COD

    Every unit in leachate treatment plant,

    anaerobic pond, facultative pond, aerobic

    pond, and also constructed wetland, is checked

    for the design and compared to the design

    criteria (Table 2). Depth, detention time,

    organic loading rate in facultative pond,

    aerobic pond, and constructed wetland are not

    suitable to the design criteria.

    Table 2 Comparison of existing design and

    design criteria

    *V = comply with criteria

    X = not comply with criteria

    CONCLUSION Leachate treatment plant in Suwung

    Landfill is not completed with equalization

    basin. It causes the quantity and the

    characteristic of leachate influent fluctuating

    so that the treatment in anaerobic basin is not

    optimum and the removal efficiency is low.

    The checking of leachate treatment plant

    design with the design criteria shows that the

    organic loading rate in facultative pond,

    aerobic pond, and constructed wetland are not

    comply with the design criteria. The value of

    BOD and COD of leachate treatment plant

    effluent in Mei 2011 are not comply with the

    quality standard.

    REFERENCES Benefield & Randall. (1980). Biological Process Design for

    Wastewater Treatment. USA: Prentice-Hall, Inc.

    Crites & Tchobanoglous. (1998). Small and Decentralized Wastewater Management Systems. Singapore: McGraw-

    Hill, Inc.

    Damanhuri, Enri. (2008). Diktat Kuliah Landfill. Bandung: Teknik Lingkungan ITB.

    Metcalf & Eddy. (2004). Wastewater Engineering: Treatment

    and Reuse Fourth Edition. Singapore: McGraw-Hill, Inc. Qasim, Syed R. (1985). Wastewater Treatment Plant, Planning,

    Design, and Operational. New York: College Publishing.

    WHO. (1987). Wastewater Stabilization Ponds: Principles of Planning and Practice. Alexandria: WHO EMRO

    Technical Publication No. 10.

    0

    500

    1000

    1500

    2000

    Anaerobic

    Influent

    Anaerobic

    Effluent

    Facultative

    Effluent

    Aerobic

    Effluent

    Constructed

    Wetland

    Effluent

    TS

    S (

    mg/L

    )

    Dec-10 May-11

    0

    1000

    2000

    3000

    4000

    Anaerobic

    Influent

    Anaerobic

    Effluent

    Facultative

    Effluent

    Aerobic

    Effluent

    Constructed

    Wetland

    Effluent

    BO

    D (

    mg

    /L)

    Dec-10 May-11

    0

    2000

    4000

    6000

    8000

    10000

    Anaerobic

    Influent

    Anaerobic

    Effluent

    Facultative

    Effluent

    Aerobic

    Effluent

    Constructed

    Wetland

    Effluent

    CO

    D (

    mg/L

    )

    Dec-10 May-11

    Parameter Unit Existing

    Condition

    Design

    Criteria

    Info

    * Source

    Anaerobic Pond

    Depth m 2.5 2.5 5 V Qasim, 1985

    Min. Detention Time day 17.6 2 5 V WHO, 1987

    Org. Loading Rate kg/m3.day 0.21 0.3 V WHO, 1987

    BOD Removal % 38.21 / 17.66 60 90 X Qasim, 1985

    Facultative Pond

    Depth m 0.4 0.75 1 2 X Qasim, 1985

    Detention Time day 2 7 50 X Benefield & Randall, 1980

    Org. Loading Rate kg/ha.day 6,050.5 15 120 X Qasim, 1985

    BOD Removal % 5.30 / 86.69 70 95 X Benefield & Randall, 1980

    Aerobic Pond

    Depth m 1.4 0.3 1.0 X Qasim, 1985

    Detention Time day 2.1 5 20 X Qasim, 1985

    Org. Loading Rate kg/ha.day 2,691.25 40 120 X Qasim, 1985

    BOD Removal % 12.02 / 0.17 40 80 X Qasim, 1985

    Constr. Wetland

    Detention Time day 1 3 4 (BOD) 6 10 (N)

    X Crites & Tchobanoglous, 1998

    Water Depth m 1.5 0.3 0.6 X Crites & Tchobanoglous, 1998

    Thickness of Media m 1.3 0.5 0.8 X Crites & Tchobanoglous, 1998

    BOD Loading kg/ha.day 1,789.67 < 112 X Crites & Tchobanoglous, 1998

    Hidraulic Loading m3/m

    2.day 0.446 0.015 0.05 X Metcalf & Eddy, 2004

    Specific Area ha/(103m

    3/day) 0.224 2.2 7.2 X Metcalf & Eddy, 2004

    BOD Removal % 9.35 / 0 65 88 X Crites & Tchobanoglous, 1998

  • SW4 - 1

    EVALUASI INSTALASI PENGOLAHAN LINDI

    DI TPA SUWUNG KOTA DENPASAR

    Camelia Indah Murniwati1 dan Tri Padmi

    2

    Program Studi Teknik Lingkungan

    Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung,

    Jl. Ganesha No. 10 Bandung 40132 [email protected] dan [email protected]

    PENDAHULUAN

    Masalah utama yang dijumpai dalam

    aplikasi penimbunan atau pengurugan sampah

    atau limbah padat lainnya ke dalam tanah

    adalah kemungkinan pencemaran air oleh

    lindi, yaitu limbah cair yang timbul akibat

    masuknya air eksternal ke dalam timbunan

    sampah (Damanhuri, 2008). Salah satu Tempat

    Pemrosesan Akhir (TPA) sampah yang

    dilengkapi dengan Instalasi Pengolahan Lindi

    (IPL) adalah TPA Suwung, Kota Denpasar.

    KONDISI EKSISTING IPL

    Sistem pengolahan terdiri dari kolam

    stabilisasi dan constructed wetland yang

    masing-masing terdiri dari dua unit yang

    terletak secara paralel. Kolam stabilisasi terdiri

    dari kolam anaerob, kolam fakultatif, dan

    kolam aerob seperti terlihat pada Gambar 1.

    Gambar 1 Konfigurasi IPL TPA Suwung

    EVALUASI IPL

    Timbulan lindi dihitung kembali dengan menggunakan Metode Neraca Air

    Thornthwaite. Berdasarkan hasil perhitungan

    didapat kesimpulan yaitu timbulan lindi yang

    dihasilkan TPA Suwung diperkirakan sebesar

    1,6 L/detik. Karakteristik lindi yang masuk ke

    dalam IPL TPA Suwung dapat dilihat pada Tabel 1.

    Kinerja instalasi pengolahan lindi

    dievaluasi dengan melakukan pengujian

    karakteristik lindi pada masing-masing inlet

    dan outlet kolam pengolahan. Nilai setiap

    parameter efluen IPL dibandingkan dengan

    baku mutu KEP-51/MENLH/10/1995 tentang

    baku mutu limbah cair golongan II.

    Tabel 1 Karakteristik influen IPL Parameter Satuan Desember 2010* Mei 2011

    TDS mg/L 4.180,40 13.161,78

    TSS mg/L 525,25 533,33

    Temperatur oC 29,0 30,8

    DHL S/cm 22,81

    pH 7,60 8,04

    DO mg/L 1,75

    BOD mg/L 198,40 3.667,67

    COD mg/L 224,20 8.341,33

    Amonium (NH4+N) mg/L 360,91

    Amoniak (NH3N) mg/L 19,75 53,16

    Nitrit (NO2-N) mg/L 4,00 1,77

    Nitrat (NO3-N) mg/L 16,20 20,26

    Nitrogen Organik mg/L 431,17

    NTK (NH3N) mg/L 484,33

    Total Fosfat (PO4-3P) mg/L 1,41

    Ortho Fosfat (PO4-3P) mg/L 0,81

    Sulfat mg/L 1.061,96

    Klorida mg/L 1.405,80

    Fe mg/L 4,10 36,90

    Cu mg/L 2,60

    Zn mg/L 6,70

    Cr mg/L 1,20

    Cd mg/L 0,16

    Pb mg/L 0,45 Sumber : (*)Puslitbang Permukiman Kementerian PU

    Temperatur lindi IPL (Gambar 2)

    berada pada kondisi optimum untuk aktivitas

    bakteri yang berkisar antara 25 35oC (Metcalf & Eddy, 2004). pH yang cocok untuk

    kehidupan biologi berkisar antara 6 9 (Metcalf & Eddy, 2004). pH lindi pada IPL

    (Gambar 3) cenderung basa yang merupakan

    tipikal pH lindi di Indonesia (Damanhuri,

    2008).

    Gambar 2 Kondisi temperatur

    Gambar 3 Kondisi pH

    26

    28

    30

    32

    34

    Influen

    Anaerob

    Efluen

    Anaerob

    Efluen

    Fakultatif

    Efluen

    Aerob

    Efluen

    Constructed

    Wetland

    Tem

    pera

    tur (

    oC

    )

    Des-10 Mei-11

    6

    7

    8

    9

    Influen

    Anaerob

    Efluen

    Anaerob

    Efluen

    Fakultatif

    Efluen

    Aerob

    Efluen

    Constructed

    Wetland

    pH

    Des-10 Mei-11

  • SW4 - 2

    Nilai TSS (Gambar 4) pada Mei

    2011, pada outlet constructed wetland belum

    memenuhi baku mutu. Sedangkan baku mutu

    TSS adalah 400 mg/L. Berdasarkan

    perhitungan, waktu detensi pada kolam

    fakultatif, kolam aerob, dan constructed

    wetland sangat singkat dan tidak memenuhi

    kriteria desain. Hal tersebut yang

    kemungkinan menyebabkan nilai TSS belum

    memenuhi baku mutu.

    Gambar 4 Kondisi TSS

    Parameter organik ditunjukkan dengan

    nilai BOD dan COD (Gambar 5 dan Gambar

    6). Baku mutu BOD dan COD adalah 150

    mg/L dan 300 mg/L. Pada Desember 2010,

    nilai BOD pada constructed wetland belum

    memenuhi baku mutu. Demikian juga dengan

    parameter COD yang cenderung naik kembali

    konsentrasinya setelah melewati constructed

    wetland. Kenaikan nilai konsentrasi juga

    terjadi pada parameter TSS. Hal ini

    kemungkinan disebabkan oleh sudah tidak

    adanya tumbuhan di dalam constructed

    wetland sehingga penyisihan pencemar tidak

    terjadi. Selain itu, kemungkinan terdapat sisa-

    sisa materi organik yang masih terkandung di

    dalam media constructed wetland yang berasal

    dari sisa-sisa tumbuhan yang mati yang

    menyebabkan nilai BOD, COD, dan TSS naik

    kembali di akhir pengolahan.

    Gambar 5 Kondisi BOD

    Gambar 6 Kondisi COD

    Setiap unit IPL yang ada yaitu kolam

    anaerob, kolam fakultatif, kolam aerob, dan

    constructed wetland diperiksa desainnya dan

    dibandingkan dengan kriteria desain (Tabel 2).

    Kedalaman, waktu detensi, dan organic

    loading rate pada kolam fakultatif, kolam

    aerob, dan constructed wetland tidak sesuai

    dengan kriteria desain.

    Tabel 2 Perbandingan desain eksisting dengan

    kriteria desain

    *V = memenuhi kriteria

    X = tidak memenuhi kriteria

    PENUTUP IPL TPA Suwung tidak dilengkapi

    dengan bak pengumpul. Hal ini menyebabkan

    debit dan karakteristik lindi yang masuk ke

    dalam kolam anaerob berfluktuasi sehingga

    pengolahan pada kolam anaerob tidak berjalan

    maksimal dan efisiensi penyisihan pencemar

    rendah. Pengecekan desain IPL dengan kriteria

    desain menunjukkan bahwa besarnya organic

    loading rate kolam pengolahan pada kolam

    fakultatif, kolam aerob, dan constructed

    wetland tidak memenuhi kriteria desain. Nilai

    TSS, BOD, dan COD pada Mei 2011 di outlet

    IPL belum memenuhi baku mutu.

    DAFTAR PUSTAKA Benefield & Randall. (1980). Biological Process Design for

    Wastewater Treatment. USA: Prentice-Hall, Inc. Crites & Tchobanoglous. (1998). Small and Decentralized

    Wastewater Management Systems. Singapore: McGraw-

    Hill, Inc. Damanhuri, Enri. (2008). Diktat Kuliah Landfill. Bandung:

    Teknik Lingkungan ITB.

    Metcalf & Eddy. (2004). Wastewater Engineering: Treatment and Reuse Fourth Edition. Singapore: McGraw-Hill, Inc.

    Qasim, Syed R. (1985). Wastewater Treatment Plant, Planning,

    Design, and Operational. New York: College Publishing. WHO. (1987). Wastewater Stabilization Ponds: Principles of

    Planning and Practice. Alexandria: WHO EMRO Technical Publication No. 10.

    0

    500

    1000

    1500

    2000

    Influen

    Anaerob

    Efluen

    Anaerob

    Efluen

    Fakultatif

    Efluen

    Aerob

    Efluen

    Constructed

    Wetland

    TS

    S (

    mg/L

    )

    Des-10 Mei-11

    0

    1000

    2000

    3000

    4000

    Influen

    Anaerob

    Efluen

    Anaerob

    Efluen

    Fakultatif

    Efluen

    Aerob

    Efluen

    Constructed

    Wetland

    BO

    D (

    mg

    /L)

    Des-10 Mei-11

    0

    5000

    10000

    Influen

    Anaerob

    Efluen

    Anaerob

    Efluen

    Fakultatif

    Efluen

    Aerob

    Efluen

    Constructed

    Wetland

    CO

    D (

    mg/L

    )

    Des-10 Mei-11

    Parameter Satuan Kondisi

    Eksisting

    Kriteria

    Desain

    Ket

    *

    Sumber

    Kolam Anaerob

    Kedalaman meter 2,5 2,5 5 V Qasim, 1985

    Waktu Detensi Min hari 17,6 2 5 V WHO, 1987

    Org. Loading Rate kg/m3.hari 0,21 0,3 V WHO, 1987

    BOD Removal % 38,21 / 17,66 60 90 X Qasim, 1985

    Kolam Fakultatif

    Kedalaman meter 0,4 0,75 1 2 X Qasim, 1985

    Waktu Detensi hari 2 7 50 X Benefield & Randall, 1980

    Organic Loading

    Rate

    kg/ha.hari 6.050,5 15 120 X Qasim, 1985

    BOD Removal % 5,30 / 86,69 70 95 X Benefield & Randall, 1980

    Kolam Aerob

    Kedalaman meter 1,4 0,3 1,0 X Qasim, 1985

    Waktu Detensi hari 2 5 20 X Qasim, 1985

    Org. Loading Rate kg/ha.hari 2.691,25 40 120 X Qasim, 1985

    BOD Removal % 12,02 / 0,17 40 80 X Qasim, 1985

    Constr. Wetland

    Waktu Detensi hari 1 3 4 (BOD) 6 10 (N)

    X Crites & Tchobanoglous, 1998

    Tinggi Muka Air meter 1,5 0,3 0,6 X Crites & Tchobanoglous, 1998

    Tinggi Media meter 1,3 0,5 0,8 X Crites & Tchobanoglous, 1998

    Beban BOD kg/ha.hari 1.789,67 < 112 X Crites & Tchobanoglous, 1998

    Beban Hidrolis m3/m

    2.hari 0,446 0,015 0,05 X Metcalf & Eddy, 2004

    Area Spesifik ha/(103m

    3/hari) 0,224 2,2 7,2 X Metcalf & Eddy, 2004

    BOD Removal % 9,35 / 0 65 88 X Crites & Tchobanoglous, 1998