Results and Discussion Practice HEAT TRANSFER BY RADIATION

Embed Size (px)

Citation preview

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    1/9

    RESULTS AND DISCUSSION: First experiment 12 V

    During the pratie! "e ma#e t"$ #i%%erent experiments "ith #i%%erent &$'tages! in

    this %irst part $% $ur resu'ts "e sh$" the $(taine# #ata %$r the heat trans%er ()

    ra#iati$n at #i%%erent #istanes "ith a &$'tage e*ua' t$ 12 V+

    The $n#ense# #ata %$r this %irst experiment is sh$"n in the %$''$"ing ta('e:

    Obtained Data (At 12 Volts):

    Distance(mm)

    Temperature (C)

    Temperature (K)

    Radiometerreading(!m"2)

    Voltage (V)

    #eaterCurrent

    (A)

    AmbientTemperatur

    e(K)

    134 197.2 470.35 310 12 4 301.25

    200 196.6 469.75 151 12 4 301.45

    220 197.2 470.35 126 12 4 301.35

    240 197.2 470.35 108 12 4 301.35

    T$ ma,e the $rresp$n#ing a'u'ati$ns "e nee# t$ ta,e in $unt s$me p$ints:

    Ratio: 50mm

    Area: -./0 mm

    Stefan-Boltzman Constant: /+/ E3. 45m62760

    An# a's$:

    Distance (mm) /

    x

    R (Radiometer

    reading)

    Ln R Lnx

    !" 813 /+-8/-229- 0+.9-.89.

    #00 1/1 /+31-2-9.8- /+29.81-8-

    ##0 12 0+.82.193- /+8982-/0

    #"0 13. 0+.218122- /+0.38.928

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    2/9

    4.6 4.8 5 5.2 5.4 5.6 5.8

    4.6

    4.7

    4.8

    4.9

    5

    5.1

    5.2

    5.3

    5.4

    5.5

    5.6

    f(x) = - 0.55x + 8.07

    R = 1

    lnx

    Linear (lnx)

    ln $

    ln R

    N$"! ma,ing a graph $% 'n R &s 'n x t$ he, the s'$pe:

    As "e an n$te! the s'$pe in#iates the temperature #i# n$t sta(i'ie (e%$re "e

    t$$, the #ata+

    The next step is a'u'ate the shape %at$r! t$ #$ that! "e nee# t$ ,n$" the existing

    ang'e (et"een the #istane $% the ra#i$meter an# the #is, rati$+

    F$r that! "e supp$rt $n the next #iagram:

    Or the next $ne:

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    3/9

    As "e ,n$"! the %$rmu'a t$ a'u'ate the ang'e is:

    =arctan (Rx)

    ;a,ing an examp'e %$r the %irst #istane:

    =arctan( 50mm134mm )=0.357134

    An# the shape %at$r:

    F=(sin())2

    F$r the ang'e $% the %irst #istane:

    F=(sin(0.357134011))2=0.12221

    An# %$r the $ther #istanes an# its $rresp$n#ing ang'es an# shape %at$rs:

    A1($!O%C)!mm

    #&potenuse(mm) R(mm)

    '()arctan(R!$) *sen"2 *

    134 143.0244734 50 0.357134011 0.122213531 F1

    200 206.1552813 50 0.244978663 0.058823529 F2

    220 225.6102835 50 0.223476601 0.049115914 F3

    240 245.1530134 50 0.205395389 0.041597338 F4

    T$ $(tain *( "e use# the %$''$"ing %$rmu'a:

    qb=sb(Tsuf4

    Tenv4

    )

    C$ntinuing the examp'e %$r the %irst #istane:

    qb=5.67x108 W

    m2K

    4(470.35K4301.25K4)

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    4/9

    qb=2308.206726W

    m2

    A'' the *( $(taine# are in the next ta('e:

    Distance+b,sb-(Ts"./

    Ten0".)

    134 2308.206726

    200 2292.831654

    220 2307.586331

    240 2307.586331

    N$"! the emmisi&it) is a'u'ate# as:

    = R

    qbF

    A's$ %$r the %irst #istane

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    5/9

    * +bmmisi0it&

    0.357134011

    0.122213531

    2308.20673 1.0989241

    0.244978663

    0.058823529

    2292.83165

    1.119576309

    0.223476601

    0.049115914

    2307.58633

    1.111707053

    0.205395389

    0.041597338

    2307.58633

    1.125123669

    SECOND E>?ERI;ENT 10 V:

    The $n#ense# #ata %$r this %irst experiment is sh$"n in the %$''$"ing ta('e:

    Distance(mm)

    Temperature (C)

    Temperature (K)

    Radiometerreading(!m"2)

    Voltage (V)

    #eaterCurrent(A)

    AmbientTemperatu

    re

    134 236.4 509.55 333 14 4.6 301.95

    200 236.7 509.85 217 14 4.7 301.95

    220 236.1 509.25 184 14 4.6 302.15

    240 235.8 508.95 158 14 4.7 302.35

    T$ ma,e the $rresp$n#ing a'u'ati$ns "e nee# t$ ta,e in $unt s$me p$ints:

    Ratio: 50mm

    Area: -./0 mm

    Stefan-Boltzman Constant: /+/ E3. 45m62760

    An# a's$:

    Distance($

    )

    R(Radiometer

    Reading) ln R ln$

    134 3335.808142

    49 4.8978398

    200 2175.379897

    354 5.298317367

    220 1845.214935

    758 5.393627546240 158 5.062595 5.480638923

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    6/9

    033

    5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

    4.6

    4.7

    4.8

    4.9

    5

    5.1

    5.2

    5.35.4

    5.5

    5.6

    f(x) = - 0.79x + 9.53

    lnx

    Linear (lnx)

    Linear (lnx)

    ln $

    ln R

    N$" ma,ing a

    p'$t 'n R an# 'n x t$ he, the s'$pe:

    As "e an n$te! the s'$pe in#iates the temperature #i# n$t sta(i'ie (e%$re "e

    t$$, the #ata+

    The next step is a'u'ate the shape %at$r! t$ #$ that! "e nee# t$ ,n$" the existing

    ang'e (et"een the #istane $% the ra#i$meter an# the #is, rati$+

    F$r that! "e supp$rt $n the next #iagram:

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    7/9

    As "e ,n$"! the %$rmu'a t$

    a'u'ate the ang'e is:

    =arctan (Rx)

    ;a,ing an examp'e %$r the se$n# #istane! (eause "e $(taine# a &a'ue e*ua' t$

    888 "hih is the maximum gi&en () the e*uipment:

    =arctan( 50mm200mm)=0.244978663

    An# the shape %at$r:

    F=(sin())2

    F$r the ang'e $% the se$n# #istane:

    F=(sin(0.244978667))2=0.058823529

    An# %$r the $ther #istanes an# its $rresp$n#ing ang'es an# shape %at$rs:

    $!mm#&potenuse

    (mm) R(mm)'()arctan

    (R!$) *sen"2 *

    134 143.0244734 50 0.357134011 0.122213531 F1

    200 206.1552813 50 0.244978663 0.058823529 F2

    220 225.6102835 50 0.223476601 0.049115914 F3

    240 245.1530134 50 0.205395389 0.041597338 F4

    T$ $(tain *( "e use# the %$''$"ing %$rmu'a:

    qb=sb(Tsuf4Tenv

    4)

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    8/9

    C$ntinuing the examp'e %$r the se$n# #istane

  • 7/23/2019 Results and Discussion Practice HEAT TRANSFER BY RADIATION

    9/9

    A'' the a'u'ate# in%$rmati$n is sh$"n in the next ta('e:

    * +b mmisi0

    it&

    3%561

    .311

    0.122213

    531

    3351.23

    746

    0.813054

    6493%2..76

    899

    0.058823

    529

    3360.24

    77

    1.097835

    7333%22.6

    9931

    0.049115

    914

    3340.99

    304

    1.121295

    363%2357

    587

    0.041597

    338

    3330.76

    202

    1.140375

    678

    ;a,ing a $mparis$n (et"een the emissi&it) "e %$un# %$r the %irst experiment an#

    the se$n# $ne:

    mmisi0it&mmisi0it&2 rror

    1.09892410.8130546

    490.260135

    756

    1.1195763091.0978357

    330.019418

    575

    1.1117070531.1212953

    60.008551

    099

    1.1251236691.1403756

    780.013374

    548

    4e an see that the emissi&it) is appr$ximate#+ This is (eause the %irst

    in%$rmati$n an# se$n# in%$rmati$n "ere ta,en "ith #i%%erent $n#iti$ns+

    It@s neessar) t$ (e 'ear "ith the emmisi&it) &a'ues! the rep$rte# &a'ue %$r the

    materia' "e "$r,e# "ith is 3+..! an# the &a'ues "e $(taine# are $&er 1! "hih

    in#iate# "e #i# n$t "ait en$ugh time t$ 'et the s)stem sta(i'ie+