19
Hindawi Publishing Corporation Journal of Probability and Statistics Volume 2013, Article ID 491628, 18 pages http://dx.doi.org/10.1155/2013/491628 Research Article The Beta Generalized Half-Normal Distribution: New Properties Gauss M. Cordeiro, 1 Rodrigo R. Pescim, 2 Edwin M. M. Ortega, 2 and Clarice G. B. Demétrio 2 1 Departamento de Estat´ ıstica, Universidade Federal de Pernambuco, 50749-540 Recife, PE, Brazil 2 Departamento de Ciˆ encias Exatas, Universidade de S˜ ao Paulo, ESALQ, 13418-900 Piracicaba, SP, Brazil Correspondence should be addressed to Rodrigo R. Pescim; [email protected] Received 3 May 2013; Revised 1 November 2013; Accepted 6 November 2013 Academic Editor: Ricardas Zitikis Copyright © 2013 Gauss M. Cordeiro et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study some mathematical properties of the beta generalized half-normal distribution recently proposed by Pescim et al. (2010). is model is quite flexible for analyzing positive real data since it contains as special models the half-normal, exponentiated half- normal, and generalized half-normal distributions. We provide a useful power series for the quantile function. Some new explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability, and entropy. We demonstrate that the density function of the beta generalized half-normal order statistics can be expressed as a mixture of generalized half-normal densities. We obtain two closed-form expressions for their moments and other statistical measures. e method of maximum likelihood is used to estimate the model parameters censored data. e beta generalized half-normal model is modified to cope with long-term survivors may be present in the data. e usefulness of this distribution is illustrated in the analysis of four real data sets. 1. Introduction Cooray and Ananda [1] pioneered the generalized half- normal (GHN) distribution with shape parameter >0 and scale parameter >0 defined by the cumulative distribution function (cdf) , () = 2Φ [( ) ]−1= erf [ (/) 2 ], (1) where the standard normal cdf Φ() and the error function erf () are given by Φ () = 1 2 [1 + erf ( 2 )] , erf () = 2 0 2 . (2) Following an idea due to Eugene et al. [2], Pescim et al. [3] proposed the beta generalized half-normal (BGHN) distribution, which seems to be superior over the GHN model for some applications. e justification for the practicability of this model is based on the fatigue crack growth under variable stress or cyclic load. In this paper, we study several mathematical properties of the BGHN model with the hope that it will attract wider applications in reliability, engineering and in other areas of research. e four-parameter BGHN cdf is defined from (1) by (for >0), () = 2Φ[(/) ]−1 (, ) = 1 (, ) 2Φ[(/) ]−1 0 −1 (1 − ) −1 , (3) where (, ) = [Γ()Γ()]/Γ( + ) is the beta function, (, ) = (, ) −1 0 −1 (1 − ) −1 is the incomplete beta function ratio, and >0 and >0 are two additional shape parameters. e probability density function (pdf) and the hazard rate function (hrf) corresponding to (3) are () = 2 −1 2/ (/) (/) −(1/2)(/) 2 (, ) × {2Φ [( ) ] − 1} −1 {1 − Φ [( ) ]} −1 , (4)

Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Hindawi Publishing CorporationJournal of Probability and StatisticsVolume 2013 Article ID 491628 18 pageshttpdxdoiorg1011552013491628

Research ArticleThe Beta Generalized Half-Normal Distribution New Properties

Gauss M Cordeiro1 Rodrigo R Pescim2 Edwin M M Ortega2 and Clarice G B Demeacutetrio2

1 Departamento de Estatıstica Universidade Federal de Pernambuco 50749-540 Recife PE Brazil2 Departamento de Ciencias Exatas Universidade de Sao Paulo ESALQ 13418-900 Piracicaba SP Brazil

Correspondence should be addressed to Rodrigo R Pescim rrpescimgmailcom

Received 3 May 2013 Revised 1 November 2013 Accepted 6 November 2013

Academic Editor Ricardas Zitikis

Copyright copy 2013 Gauss M Cordeiro et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

We study some mathematical properties of the beta generalized half-normal distribution recently proposed by Pescim et al (2010)This model is quite flexible for analyzing positive real data since it contains as special models the half-normal exponentiated half-normal and generalized half-normal distributions We provide a useful power series for the quantile function Some new explicitexpressions are derived for the mean deviations Bonferroni and Lorenz curves reliability and entropy We demonstrate that thedensity function of the beta generalized half-normal order statistics can be expressed as a mixture of generalized half-normaldensities We obtain two closed-form expressions for their moments and other statistical measures The method of maximumlikelihood is used to estimate themodel parameters censored dataThe beta generalized half-normalmodel ismodified to cope withlong-term survivors may be present in the dataThe usefulness of this distribution is illustrated in the analysis of four real data sets

1 Introduction

Cooray and Ananda [1] pioneered the generalized half-normal (GHN) distribution with shape parameter 120572 gt 0 andscale parameter 120579 gt 0 defined by the cumulative distributionfunction (cdf)

119866120572120579

(119909) = 2Φ[(

119909

120579

)

120572

] minus 1 = erf [(119909120579)120572

radic2

] (1)

where the standard normal cdf Φ(119909) and the error functionerf(119909) are given by

Φ (119909) =

1

2

[1 + erf ( 119909

radic2

)] erf (119909) = 2

radic120587

int

119909

0

119890minus1199052

119889119905

(2)

Following an idea due to Eugene et al [2] Pescim etal [3] proposed the beta generalized half-normal (BGHN)distributionwhich seems to be superior over theGHNmodelfor some applications The justification for the practicabilityof this model is based on the fatigue crack growth undervariable stress or cyclic load In this paper we study severalmathematical properties of the BGHN model with the hope

that it will attract wider applications in reliability engineeringand in other areas of research

The four-parameter BGHN cdf is defined from (1) by (for119909 gt 0)

119865 (119909) = 1198682Φ[(119909120579)

120572]minus1

(119886 119887)

=

1

119861 (119886 119887)

int

2Φ[(119909120579)120572]minus1

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908

(3)

where 119861(119886 119887) = [Γ(119886)Γ(119887)]Γ(119886 + 119887) is the beta function119868119910(119886 119887) = 119861(119886 119887)

minus1

int

119910

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908 is the incompletebeta function ratio and 119886 gt 0 and 119887 gt 0 are two additionalshape parameters

The probability density function (pdf) and the hazard ratefunction (hrf) corresponding to (3) are

119891 (119909) =

2119887minus1

radic2120587 (120572119909) (119909120579)120572

119890minus(12)(119909120579)

2120572

119861 (119886 119887)

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909

120579

)

120572

]

119887minus1

(4)

2 Journal of Probability and Statistics

ℎ (119909) = (2119887minus1

radic2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909

120579

)

120572

]

119887minus1

)

times (119861 (119886 119887) 1 minus 1198682Φ[(119909120579)

120572]minus1

(119886 119887))minus1

(5)

respectively Hereafter a random variable with pdf (4) isdenoted by119883 sim BGHN (120572 120579 119886 119887)

Pescim et al [3] demonstrated that the cdf and pdf of119883 can be expressed as infinite power series of the GHNcumulative distribution Here all expansions in power seriesare around the point zero If 119887 gt 0 is a real noninteger we canexpand the binomial term in (3) to obtain

119865 (119909) =

infin

sum

119895=0

1199081198952Φ[(

119909

120579

)

120572

] minus 1

119886+119895

(6)

where 119908119895= 119908

119895(119886 119887) = (minus1)

119895

119861(119886 119887)minus1

(119886 + 119895)minus1

(119887minus1

119895)

The pdf corresponding to (6) can be expressed as

119891 (119909) = radic2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119895=0

1199081198952Φ[(

119909

120579

)

120572

] minus 1

119886+119895minus1

(7)

If 119886 gt 0 is an integer (7) provides the BGHN density func-tion as an infinite power series of the GHN cumulative dis-tribution If 119887 is an integer the index 119895 in the previous sumstops at 119887 minus 1 Otherwise if 119886 is a real noninteger we canexpand 2Φ[(119909120579)120572] minus 1119886+119895minus1 as follows

2Φ[(

119909

120579

)

120572

] minus 1

119886+119895minus1

=

infin

sum

119903=0

119904119903(119886 + 119895 minus 1) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(8)

where

119904119903(119886 + 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886 + 119895

(

119886 + 119895 minus 1

119896)(

119896

119903) (9)

Hence

119891 (119909) = radic2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572infin

sum

119903=0

119887119903erf [(119909120579)

120572

radic2

]

119903

(10)

whose coefficients are

119887119903= 119887

119903(119886 119887) =

1

119861 (119886 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886 + 119895 minus 1) (11)

TheBGHNdensity function (4) allows for greater flexibil-ity of its tails and can be widely applied inmany areas of engi-neering and biology We study the mathematical properties

of this distribution because it extends some important dis-tributions previously considered in the literature In fact theGHN model with parameters 120572 and 120579 is clearly an import-ant special case for 119886 = 119887 = 1 with a continuous crossovertowards models with different shapes for example a par-ticular combination of skewness and kurtosis The BGHNdistribution also contains the exponentiated generalized half-normal (EGHN) and half-normal (HN) distributions assubmodels for 119887 = 1 and 119886 = 119887 = 120572 = 1 respectively More-over while the transformation (3) is not analytically tractablein the general case the formulas related to the BGHNdistribution turn outmanageable andwith the use ofmoderncomputer resources with analytic and numerical capabilitiesmay turn into adequate tools comprising the arsenal ofapplied statisticians

The paper is outlined as follows We derive an expansionfor the quantile function in Section 2 Some statistical mea-sures for the BGHN distribution such as moments generat-ing function mean deviations Renyi entropy and reliabilityare studied in Section 3 The computational issues relatingto the infinite series for structural properties of the BGHNdistribution are discussed in Section 4 In Section 5 we derivealgebraic expressions for the moments moment generatingfunction (mgf) mean deviations and Renyi entropy for theorder statistics The estimation by maximum likelihoodmdashincluding the case of censoringmdashis presented in Section 6In Section 7 we propose a BGHN mixture model for sur-vival data with long-term survivors Section 8 illustrates theimportance of the BGHN distribution applied to four realdata sets Finally concluding remarks are given in Section 9

2 Power Series for the Quantile Function

Power series methods are at the heart of many aspects ofapplied mathematics and statistics Quantile functions arein widespread use in probability distributions and generalstatistics and often find representations in terms of powerseriesThe quantile function for a probability distribution hasmany uses in both the theory and application of probabilityIt may be used to generate values of a random variable having119865(119909) as its distributions functionThis fact serves as the basisof a method for simulating a sample from an arbitrary distri-bution with the aid of a uniform random number generator

The quantile function of 119883 say 119909 = 119876BGHN(119906) = 119865minus1

(119906)can be obtained by inverting the cumulative function (3)Now we provide a power series expansion for 119876BGHN(119906)that can be useful to determine some mathematical mea-sures of the BGHN distribution First an expansion forthe inverse of the incomplete beta function 119868

119909(119886 119887) = 119906

can be found in wolfram website (httpfunctionswolframcom062306000401) as

119911 = 119876119861(119906) =

infin

sum

119894=0

119889119894119906119894119886

(12)

where119876119861(119906) is the beta quantile function 119889

119894= 119890

119894[119886119861(119886 119887)]

1119886

for 119886 gt 0 and 1198900= 0 119890

1= 1 119890

2= (119887 minus 1)(119886 + 1)

Journal of Probability and Statistics 3

The coefficients 1198901015840119894s for 119894 ge 2 can be obtained from a cubic

recursion of the form

119890119894=

1

[1198942+ (120572 minus 2) 119894 + (1 minus 120572)]

times (1 minus 1205751198942)

119894minus1

sum

119903=2

119890119903119890119894+1minus119903

times [119903 (1 minus 119886) (119894 minus 119903) minus 119903 (119903 minus 1)]

+

119894minus1

sum

119903=1

119894minus119903

sum

119904=1

119890119903119890119904119890119894+1minus119903minus119904

times [119903 (119903 minus 119886) + 119904 (119886 + 119887 minus 2) (119894 + 1 minus 119903 minus 119904)]

(13)

where 1205751198942= 1 if 119894 = 2 and 120575

1198942= 0 if 119894 = 2 In the last equation

we note that the quadratic term only contributes for 119894 ge 3Following Steinbrecher [4] the quantile function of the

standard normal distribution say 119876119873(119906) = Φ

minus1

(119906) can beexpanded as

119876119873(119906) = Φ

minus1

(119906) =

infin

sum

119896=0

1198871198961205772119896+1

(14)

where 120577 = radic2120587(119906 minus 12) and the 1198871015840119896s can be calculated from

1198870= 1 and

119887119896+1

=

1

2 (2119896 + 3)

119896

sum

119903=0

(2119903 + 1) (2119896 minus 2119903 + 1) 119887119903119887119896minus119903

(119903 + 1) (2119903 + 1)

(15)

Here 1198871= 16 119887

2= 7120 119887

3= 1277560

The function 119876119873(119906) can be expressed as a power series

given by

119876119873(119906) =

infin

sum

119895=0

119891119895119906119895

(16)

where 119891119895= sum

infin

119896=119895(minus12)

119896minus119895

(119896

119895) 119892

119896and the quantities 119892

119896are

defined from the coefficients in (14) by 119892119896

= 0 for 119896 =

0 2 4 and 119892119896= (2120587)

1198962

119887(119896minus1)2

for 119896 = 1 3 5 By inverting the normal cumulative function in 119911 =

2Φ[(119909120579)120572

] minus 1 and using (16) we can express the quantilefunction of119883 in terms of 119911 as

119909 = 120579[119876119873(

119911 + 1

2

)]

1120572

= 120579[

[

infin

sum

119895=0

119891119895(

119911 + 1

2

)

119895

]

]

1120572

= 120579[

[

infin

sum

119895=0

119895

sum

119901=0

119891119895

2119895(

119895

119901) 119911

119901]

]

1120572

(17)

Replacingsuminfin

119895=0sum119895

119901=0bysuminfin

119901=0suminfin

119895=119901in last equation we obtain

119909 = 120579 (

infin

sum

119901=0

ℎ119901119911119901

)

1120572

(18)

where ℎ119901= sum

infin

119895=1199012minus119895

119891119895(119895

119901) Using the same steps of (8) we

can write

(

infin

sum

119901=0

ℎ119901119911119901

)

1120572

=

infin

sum

119903=0

119904119903(120572

minus1

)(

infin

sum

119901=0

ℎ119901119911119901

)

119903

(19)

where 119904119903(120572

minus1

) = suminfin

119895=119903(minus1)

119903+119895

(120572minus1

119895) (

119895

119903)

We use throughout an equation of Gradshteyn andRyzhik [5] for a power series raised to a positive integer 119895

(

infin

sum

119894=0

119886119894119909119894

)

119895

=

infin

sum

119894=0

119888119895119894119909119894

(20)

where the coefficients 119888119895119894(for 119894 = 1 2 ) are easily obtained

from the recurrence equation

119888119895119894= (119894119886

0)minus1

119894

sum

119898=1

[119898 (119895 + 1) minus 119894] 119886119898119888119895119894minus119898

(21)

and 1198881198950

= 119886119895

0 From (19) and (20) we have

119909 =

infin

sum

119901=0

ℎ⋆

119901119911119901

(22)

where ℎ⋆

119901= 120579sum

infin

119903=0119904119903(120572

minus1

) ℎ119903119901

for 119901 ge 0 ℎ119903119901

=

(119901ℎ0)minus1

sum119901

119898=1[119898(119903 + 1) minus 119901] ℎ

119898ℎ119903119901minus119898

for 119901 ge 1 and ℎ1199030

= ℎ119903

0

By inserting (12) in (22) we obtain

119909 = 119876BGHN (119906) =infin

sum

119901=0

ℎ⋆

119901(

infin

sum

119894=0

119889119894119906119894119886

)

119901

(23)

From (20) it follows (suminfin

119894=0119889119894119906119894119886

)

119901

= suminfin

119894=0119889119901119894119906119894119886 where the

quantities 119889119901119894

are determined recursively from 1198890119894= 119889

119894

0and

119889119901119894

= (1198941198890)minus1

sum119894

119898=1[119898 (119901 + 1) minus 119894]119889

119898119889119901119894minus119898

(for 119894 = 1 2 )Finally we obtain

119909 = 119876BGHN (119906) =infin

sum

119894=0

V119894119906119894119886

(24)

where V119894= sum

infin

119901=0ℎ⋆

119901119889119901119894 Equation (24) gives the BGHN

quantile function as a power series and represents the mainresult of this section

3 BGHN Properties

31Moments andGenerating Function Here we provide newexpressions for the moments and mgf of 119883 based upon thepower series for its quantile function as alternative resultsform those obtained by Pescim et al [3]

We can write from (24)

1205831015840

119904(120572 120579 119886 119887) = 119864 (119883

119904

) = int

infin

0

119909119904

119891 (119909) 119889119909

= int

1

0

(

infin

sum

119894=0

V119894119906119894119886

)

119904

119889119906

(25)

4 Journal of Probability and Statistics

and then using (20) we obtain

1205831015840

119904(120572 120579 119886 119887) = 119886

infin

sum

119894=0

V119904119894

(119894 + 119886)

(26)

where the quantities V119904119894(for 119894 = 1 2 ) are easily determined

from the recurrence equation

V119904119894= (119894V

0)minus1

119894

sum

119898=1

[119898 (119904 + 1) minus 119894] V119898V119904119894minus119898

(27)

with V1199040

= V1199040

We now provide a new alternative representation for themgf of 119883 say 119872

120572120579119886119887(119905) = 119864(119890

119905119883

) based on the quantilepower series (24) We can write

119872120572120579119886119887

(119905) = int

infin

0

119890119905119909

119891 (119909) 119889119909

= int

1

0

exp[119905(infin

sum

119894=0

V119894119906119894119886

)]119889119906

(28)

We expand the exponential function and use the same algebrathat leads to (26)

119872120572120579119886119887

(119905) =

infin

sum

119903=0

119905119903

119903

int

1

0

(

infin

sum

119894=0

V119894119906119894119886

)

119903

119889119906

=

infin

sum

119903119894=0

119905119903V119903119894

119903

int

1

0

119906119894119886

119889119906

(29)

and then

119872120572120579119886119887

(119905) = 119886

infin

sum

119903119894=0

119905119903V119903119894

(119886 + 119894) 119903

(30)

Equations (26) and (30) are the main results of this section

32 Mean andMedian Deviations The amount of scatter in apopulation is evidently measured to some extent by the meandeviations in relation to the mean and the median defined by

1205751(119883) = int

infin

0

10038161003816100381610038161003816119909 minus 120583

1015840

1

10038161003816100381610038161003816119891 (119909) 119889119909

1205752(119883) = int

infin

0

|119909 minus119872|119891 (119909) 119889119909

(31)

respectively where 1205831015840

1= 119864(119883) and 119872 = Median(119883)

denotes the median Here119872 is calculated as the solution ofthe nonlinear equation 119868

2Φ[(119872120579)120572]minus1(119886 119887) = 12 We define

119879(119902) = int

infin

119902

119909119891(119909)119889119909 which is determined below The mea-sures 120575

1(119883) and 120575

2(119883) can be written in terms of 1205831015840

1and 119879(119902)

as

1205751(119883) = 2120583

1015840

1119865 (120583

1015840

1) minus 2120583

1015840

1+ 2119879 (120583

1015840

1)

1205752(119883) = 2119879 (119872) minus 120583

1015840

1

(32)

For more details see Paranaıba et al [6] Clearly 119865(119872) and119865(120583

1015840

1) are determined from (3) From (10) we have

119879 (119902)

= 120572radic2

120587

infin

sum

119903=0

119887119903int

infin

119902

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

erf [(119909120579)120572

radic2

]

119903

119889119909

(33)

Setting 119906 = (119909120579)120572 in the last equation gives

119879 (119902)

= 120579radic2

120587

infin

sum

119903=0

119887119903int

infin

(119902120579)1205721199061120572

119890minus11990622

[erf ( 119906

radic2

)]

119903

119889119906

(34)

Using the power series for the error function erf(119909) =

(2radic120587)suminfin

119898=0((minus1)

119898

1199092119898+1

(2119898 + 1)119898) (see eg [7]) weobtain after some algebra

119879 (119902) = 120579radic2

120587

infin

sum

119903=0

119887119903(

2

radic120587

)

119903

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119903=0

(minus1)1198981+sdotsdotsdot+119898

119903

(21198981+ 1) sdot sdot sdot (2119898

119903+ 1)119898

1 sdot sdot sdot 119898

119903

times Γ [(1198981+ sdot sdot sdot + 119898

119903+

119903

2

+

1

2120572

+

1

2

)

1

2

(

119902

120579

)

120572

]

(35)

where Γ(119901 119909) = int

infin

119909

V119901minus1119890minusV119889V denotes the complementaryincomplete gamma function for 119901 gt 0 The measures 120575

1(119883)

and 1205752(119883) are immediately calculated from (35)

Bonferroni and Lorenz curves have applications not onlyin economics to study income and poverty but also inother fields such as reliability demography insurance andmedicine They are defined by

119861 (120588) =

1

1205881205831015840

1

int

119902

0

119909119891 (119909) 119889119909

119871 (120588) =

1

1205831015840

1

int

119902

0

119909119891 (119909) 119889119909

(36)

respectively where 119902 = 119876BGHN(120588) = 119876119861(]) and ] =

2Φ[(120588120579)120572

] minus 1 (Section 2) for a given probability 120588 Fromint

119902

0

119909119891(119909)119889119909 = 1205831015840

1minus 119879(120588) we obtain 119861(120588) = 120588

minus1

[1 minus 119879(120588)1205831015840

1]

and 119871(120588) = 1 minus 119879(120588)1205831015840

1

33 Renyi Entropy The Renyi information of order 120585 for acontinuous random variable with density function 119891(119909) isdefined as

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (37)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 Applicationsof the Renyi entropy can be found in several areas suchas physics information theory and engineering to describe

Journal of Probability and Statistics 5

many nonlinear dynamical or chaotic systems [8] and instatistics as certain appropriately scaled test statistics (relativeRenyi information) for testing hypotheses in parametricmodels [9] Renyi [10] generalized the concept of informationtheory which allows for different averaging of probabilitiesvia 120585

For the BGHN distribution (4) the Renyi entropy isdefined by

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (38)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 From (4) we have

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

120585(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120585(119887minus1)

119889119909

(39)

For |119911| lt 1 and 119887 is a real noninteger the power series holds

(1 minus 119911)119887minus1

=

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119911

119895

(40)

where the binomial coefficient is defined for any real Using(40) in (39) twice 119868(120585) can be expressed as

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times

infin

sum

119895119896=0

(minus1)119895+119896

2119895

(

120585 (119886 minus 1) + 1

119895)

times (

120585 (119887 minus 1) + 119895 + 1

119896)

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

Φ[(

119909

120579

)

120572

]

119896

119889119909

(41)

Substituting Φ(119909) by the error function and setting 119906 =

(119909120579)120572 119868(120585) reduces to

119868 (120585) = 120572120585minus1

1205791minus120585

2120585(119887minus1)

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times int

infin

0

119906((120585(120572minus1)+1)120572)minus1

119890minus(1205852)119906

2

[erf ( 119906

radic2

)]

119897

119889119906

(42)

Following similar algebra that lead to (35) we obtain

119868 (120585) = 120572120585minus1

1205791minus120585

2[120585(119887minus1)+(120585(120572minus1)+1)2120572minus1]

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

(21198981+ 1) sdot sdot sdot (2119898

119897+ 1)119898

1 sdot sdot sdot 119898

119897

times 120585minus[1198981+sdotsdotsdot+119898

119897+1198972+(120585(120572minus1)+1)2120572]

times Γ(1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

)

(43)

Finally the Renyi entropy reduces to

120485119877(120585) = (1 minus 120585)

minus1

times

(120585 minus 1) log (120572) + (1 minus 120585) log (120579)

+ [120585 (119887 minus 1) +

120585 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120585 log(radic 2

120587

) + log[

[

infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)]

]

+ log[infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

times ((21198981+ 1) sdot sdot sdot (2119898

119897+ 1)

times 1198981 sdot sdot sdot 119898

119897)minus1

]

minus [1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

] log (120585)

+ log [Γ(1198981+sdot sdot sdot+119898

119897+

119897

2

+

120585 (120572minus1) + 1

2120572

)]

(44)

34 Reliability In the context of reliability the stress-strengthmodel describes the life of a component which has a randomstrength 119883

1that is subjected to a random stress 119883

2 The

component fails at the instant that the stress applied toit exceeds the strength and the component will functionsatisfactorily whenever 119883

1gt 119883

2 Hence 119877 = Pr(119883

2lt

1198831) is a measure of component reliability Here we derive

119877 when 1198831and 119883

2have independent BGHN(120572 120579 119886

1 1198871)

and BGHN(120572 120579 1198862 1198872) distributions with the same shape

parameters 120572 and 120579 The reliability 119877 becomes

119877 = int

infin

0

1198911(119909) 119865

2(119909) 119889119909 (45)

6 Journal of Probability and Statistics

where the cdf of 1198832and the density of 119883

1are obtained from

(6) and (10) as

1198652(119909) =

infin

sum

119895=0

119908119895(119886

2 1198872) 2Φ [(

119909

120579

)

120572

] minus 1

1198862+119895

1198911(119909) = radic

2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119903=0

119887119903(119886

1 1198871) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(46)

respectively where

119908119895(119886

2 1198872) =

(minus1)119895

119861 (1198862 1198872)

(

1198872minus 1

119895)

119887119903(119886

1 1198871) =

infin

sum

119895=0

(minus1)119895

119861 (1198861 1198871)

(

1198871minus 1

119895) 119904

119903(119886

1+ 119895 minus 1)

(47)

refer to1198832and119883

1 respectively Hence

119877 = 120572radic2

120587

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

times int

infin

0

119909minus1

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

1198862+119895+119903

119889119909

(48)

Setting 119906 = 2Φ[(119909120579)120572

] minus 1 in the last integral the reli-ability of119883 reduces to

119877 =

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

1198862+ 119895 + 119903 + 1

(49)

4 Computational Issues

Here we show the practical use of (24) (26) (30) (35) and(49) If we truncate these infinite power series we have asimple way to compute the quantile function moments mgfmean deviations and reliability of the BGHN distributionThe question is how large the truncation limit should be

We now provide evidence that each infinite summationcan be truncated at twenty to yield sufficient accuracy Let119863

1

denote the absolute difference between the integrated version

1

119861 (119886 119887)

int

2Φ[(119909120579)120572]minus1

0

119905119886minus1

(1 minus 119905)119887minus1

119889119905 = 119880 (50)

where 119880 sim 119880(0 1) is a uniform variate on the unit intervaland the truncated version of (24) averaged over (all with step001) 119909 = 001 5 119886 = 001 10 119887 = 001 10

120572 = 001 10 and 120579 = 001 10 Let 1198632denote the

absolute difference between integrated version

1205831015840

119904=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

119909119904

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(51)

and the truncated version of (26) averaged over 119909 =

001 5 119886 = 001 10 119887 = 001 10120572 = 001 10

and 120579 = 001 10 Let 1198633denote the absolute difference

between the truncated version of (30) and the integratedversion

119872120572120579119886119887

(119905)

=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

(

120572

119909

)(

119909

120579

)

120572

exp [119905119909 minus 1

2

(

119909

120579

)

2120572

]

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(52)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198634denote

the absolute difference between the truncated version of (35)and the integrated version

119879 (119902) =

120572 2119887minus1

119861 (119886 119887)

radic2

120587

int

119902

0

(

119909

120579

)

120572

times exp [minus12

(

119909

120579

)

2120572

] 2Φ[(

119909

120579

)

120572

]minus1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(53)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198635denote

the absolute difference between the truncated version of (49)and the integrated version (45) averaged over 119909 = 001 5119886 = 001 10 119887 = 001 10 120572 = 001 10 and 120579 =

001 10We obtain the following estimates after extensive compu-

tations1198631= 231times10

minus201198632= 847times10

minus181198633= 122times10

minus211198634= 151 times 10

minus22 and1198635= 941 times 10

minus19 These estimates aresmall enough to suggest that the truncated versions of (24)(26) (30) (35) and (49) are reasonable practical use

It would be important to verify that each (untruncated)infinite series (such as (24) (26) (30) (35) and (49)) is con-vergent and provide valid values for its arguments Howeverthis will be a difficult mathematical problem that could beinvestigated in future work

Journal of Probability and Statistics 7

5 Properties of the BGHN Order Statistics

Order statistics have been used in a wide range of prob-lems including robust statistical estimation and detectionof outliers characterization of probability distributions andgoodness-of-fit tests entropy estimation analysis of censoredsamples reliability analysis quality control and strength ofmaterials

51 Mixture Form Suppose 1198831 119883

119899is a random sample

of size 119899 from a continuous distribution and let1198831119899

lt 1198832119899

lt

sdot sdot sdot lt 119883119899119899

denote the corresponding order statistics Therehas been a large amount of work relating tomoments of orderstatistics119883

119894119899 See Arnold et al [11] David and Nagaraja [12]

and Ahsanullah and Nevzorov [13] for excellent accounts Itis well known that the density function of119883

119894119899is given by

119891119894119899(119909) =

119891 (119909)

119861 (119894 119899 minus 119894 + 1)

119865(119909)119894minus1

[1 minus 119865 (119909)]119899minus119894

(54)

For the BGHN distribution Pescim et al [3] obtained

119891119894119899(119909) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119891119896119872119896(119909) (55)

where 119872119896denotes a sequence (119898

1 119898

119894+119896minus1) of 119894 + 119896 minus 1

nonnegative integers 119891119896119872119896

(119909) denotes the BGHN(120572 120579 (119894 +119896)119886 + sum

119894+119896minus1

119895=1119898119895 119887) density function defined under 119872

119896and

the constants 120578119896119872119896

are given by

120578119896119872119896

=

(minus1)119896+sum119894+119896minus1

119895=1119898119895(119899minus119894

119896) 119861 (119886 (119894 + 119896)+sum

119894+119896minus1

119895=1119898119895 119887) Γ(119887)

119894+119896minus1

119861(119886 119887)119894+119896

119861 (119894 119899minus 119894+1)prod119894+119896minus1

119895=1Γ (119887minus119898

119895)119898

119895 (119886+119898

119895)

(56)

The quantities 120578119896119872119896

are easily obtained given 119896 and asequence 119872

119896of indices 119898

1 119898

119894+119896minus1 The sums in (55)

extend over all (119894 + 119896)-tuples (1198961198981 119898

119894+119896minus1) and can be

implementable on a computer If 119887 gt 0 is an integer (55)holds but the indices 119898

1 119898

119894+119896minus1vary from zero to 119887 minus 1

Equation (55) reveals that the density function of the BGHNorder statistics can be expressed as an infinite mixture ofBGHN densities

52 Moments of Order Statistics Themoments of the BGHNorder statistics can be written directly in terms of themoments of BGHNdistributions from themixture form (55)We have

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119864 (119883119904

119894119896) (57)

where119883119894119896sim BGHN(120572 120579 (119894 + 119896)119886 + sum119894+119896minus1

119895=1119898119895 119887) and 119864(119883119904

119894119896)

can be determined from (26) Inserting (26) in (57) andchanging indices we can write

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

infin

sum

119902=0

119886⋆V

119904119902

(119902 + 119886⋆)

(58)

where

119886⋆

= (119894 + 119896) 119886 +

119894+119896minus1

sum

119895=1

119898119895 (59)

The moments 119864(119883119904

119894119899) can be determined based on the

explicit sum (58) using the software Mathematica They arealso computed from (55) by numerical integration using thestatistical software R [14] The values from both techniquesare usually close wheninfin is replaced by a moderate numbersuch as 20 in (58) For some values 119886 = 2 119887 = 3 and 119899 = 5Table 1 lists the numerical values for the moments 119864(119883119904

119894119899)

(119904 = 1 4 119894 = 1 5) and for the variance skewness andkurtosis

53 Generating Function The mgf of the BGHN orderstatistics can be written directly in terms of the BGHNmgf rsquosfrom the mixture form (55) and (30) We obtain

119872119894119899(119905) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119872120572120579119886⋆119887(119905) (60)

where119872120572120579119886⋆119887(119905) is the mgf of the BGHN(120572 120579 119886⋆ 119887) distri-

bution obtained from (30)

54 Mean Deviations The mean deviations of the orderstatistics in relation to the mean and the median are definedby

1205751(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 120583

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

1205752(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 119872

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

(61)

respectively where 120583119894= 119864(119883

119894119899) and 119872

119894= Median(119883

119894119899)

denotes the median Here 119872119894is obtained as the solution of

the nonlinear equation119899

sum

119903=119894

(

119899

119903) 119868

2Φ[(119872119894120579)120572]minus1

(119886 119887)

119903

times 1 minus 1198682Φ[(119872

119894120579)120572]minus1

(119886 119887)

119899minus119903

=

1

2

(62)

The measures 1205751(119883

119894119899) and 120575

2(119883

119894119899) follow from

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(63)

where 119869119894(119902) = int

infin

119902

119909119891119894119899(119909)119889119909 Using (55) we have

119869119894(119902) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119894119872119896

119879 (119902) (64)

where 119879(119902) is obtained from (35) using 119886⋆ given by (59) and

119887⋆

119903= 119887

119903(119886

119887) =

1

119861 (119886⋆ 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886

+ 119895 minus 1)

(65)

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

2 Journal of Probability and Statistics

ℎ (119909) = (2119887minus1

radic2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909

120579

)

120572

]

119887minus1

)

times (119861 (119886 119887) 1 minus 1198682Φ[(119909120579)

120572]minus1

(119886 119887))minus1

(5)

respectively Hereafter a random variable with pdf (4) isdenoted by119883 sim BGHN (120572 120579 119886 119887)

Pescim et al [3] demonstrated that the cdf and pdf of119883 can be expressed as infinite power series of the GHNcumulative distribution Here all expansions in power seriesare around the point zero If 119887 gt 0 is a real noninteger we canexpand the binomial term in (3) to obtain

119865 (119909) =

infin

sum

119895=0

1199081198952Φ[(

119909

120579

)

120572

] minus 1

119886+119895

(6)

where 119908119895= 119908

119895(119886 119887) = (minus1)

119895

119861(119886 119887)minus1

(119886 + 119895)minus1

(119887minus1

119895)

The pdf corresponding to (6) can be expressed as

119891 (119909) = radic2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119895=0

1199081198952Φ[(

119909

120579

)

120572

] minus 1

119886+119895minus1

(7)

If 119886 gt 0 is an integer (7) provides the BGHN density func-tion as an infinite power series of the GHN cumulative dis-tribution If 119887 is an integer the index 119895 in the previous sumstops at 119887 minus 1 Otherwise if 119886 is a real noninteger we canexpand 2Φ[(119909120579)120572] minus 1119886+119895minus1 as follows

2Φ[(

119909

120579

)

120572

] minus 1

119886+119895minus1

=

infin

sum

119903=0

119904119903(119886 + 119895 minus 1) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(8)

where

119904119903(119886 + 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886 + 119895

(

119886 + 119895 minus 1

119896)(

119896

119903) (9)

Hence

119891 (119909) = radic2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572infin

sum

119903=0

119887119903erf [(119909120579)

120572

radic2

]

119903

(10)

whose coefficients are

119887119903= 119887

119903(119886 119887) =

1

119861 (119886 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886 + 119895 minus 1) (11)

TheBGHNdensity function (4) allows for greater flexibil-ity of its tails and can be widely applied inmany areas of engi-neering and biology We study the mathematical properties

of this distribution because it extends some important dis-tributions previously considered in the literature In fact theGHN model with parameters 120572 and 120579 is clearly an import-ant special case for 119886 = 119887 = 1 with a continuous crossovertowards models with different shapes for example a par-ticular combination of skewness and kurtosis The BGHNdistribution also contains the exponentiated generalized half-normal (EGHN) and half-normal (HN) distributions assubmodels for 119887 = 1 and 119886 = 119887 = 120572 = 1 respectively More-over while the transformation (3) is not analytically tractablein the general case the formulas related to the BGHNdistribution turn outmanageable andwith the use ofmoderncomputer resources with analytic and numerical capabilitiesmay turn into adequate tools comprising the arsenal ofapplied statisticians

The paper is outlined as follows We derive an expansionfor the quantile function in Section 2 Some statistical mea-sures for the BGHN distribution such as moments generat-ing function mean deviations Renyi entropy and reliabilityare studied in Section 3 The computational issues relatingto the infinite series for structural properties of the BGHNdistribution are discussed in Section 4 In Section 5 we derivealgebraic expressions for the moments moment generatingfunction (mgf) mean deviations and Renyi entropy for theorder statistics The estimation by maximum likelihoodmdashincluding the case of censoringmdashis presented in Section 6In Section 7 we propose a BGHN mixture model for sur-vival data with long-term survivors Section 8 illustrates theimportance of the BGHN distribution applied to four realdata sets Finally concluding remarks are given in Section 9

2 Power Series for the Quantile Function

Power series methods are at the heart of many aspects ofapplied mathematics and statistics Quantile functions arein widespread use in probability distributions and generalstatistics and often find representations in terms of powerseriesThe quantile function for a probability distribution hasmany uses in both the theory and application of probabilityIt may be used to generate values of a random variable having119865(119909) as its distributions functionThis fact serves as the basisof a method for simulating a sample from an arbitrary distri-bution with the aid of a uniform random number generator

The quantile function of 119883 say 119909 = 119876BGHN(119906) = 119865minus1

(119906)can be obtained by inverting the cumulative function (3)Now we provide a power series expansion for 119876BGHN(119906)that can be useful to determine some mathematical mea-sures of the BGHN distribution First an expansion forthe inverse of the incomplete beta function 119868

119909(119886 119887) = 119906

can be found in wolfram website (httpfunctionswolframcom062306000401) as

119911 = 119876119861(119906) =

infin

sum

119894=0

119889119894119906119894119886

(12)

where119876119861(119906) is the beta quantile function 119889

119894= 119890

119894[119886119861(119886 119887)]

1119886

for 119886 gt 0 and 1198900= 0 119890

1= 1 119890

2= (119887 minus 1)(119886 + 1)

Journal of Probability and Statistics 3

The coefficients 1198901015840119894s for 119894 ge 2 can be obtained from a cubic

recursion of the form

119890119894=

1

[1198942+ (120572 minus 2) 119894 + (1 minus 120572)]

times (1 minus 1205751198942)

119894minus1

sum

119903=2

119890119903119890119894+1minus119903

times [119903 (1 minus 119886) (119894 minus 119903) minus 119903 (119903 minus 1)]

+

119894minus1

sum

119903=1

119894minus119903

sum

119904=1

119890119903119890119904119890119894+1minus119903minus119904

times [119903 (119903 minus 119886) + 119904 (119886 + 119887 minus 2) (119894 + 1 minus 119903 minus 119904)]

(13)

where 1205751198942= 1 if 119894 = 2 and 120575

1198942= 0 if 119894 = 2 In the last equation

we note that the quadratic term only contributes for 119894 ge 3Following Steinbrecher [4] the quantile function of the

standard normal distribution say 119876119873(119906) = Φ

minus1

(119906) can beexpanded as

119876119873(119906) = Φ

minus1

(119906) =

infin

sum

119896=0

1198871198961205772119896+1

(14)

where 120577 = radic2120587(119906 minus 12) and the 1198871015840119896s can be calculated from

1198870= 1 and

119887119896+1

=

1

2 (2119896 + 3)

119896

sum

119903=0

(2119903 + 1) (2119896 minus 2119903 + 1) 119887119903119887119896minus119903

(119903 + 1) (2119903 + 1)

(15)

Here 1198871= 16 119887

2= 7120 119887

3= 1277560

The function 119876119873(119906) can be expressed as a power series

given by

119876119873(119906) =

infin

sum

119895=0

119891119895119906119895

(16)

where 119891119895= sum

infin

119896=119895(minus12)

119896minus119895

(119896

119895) 119892

119896and the quantities 119892

119896are

defined from the coefficients in (14) by 119892119896

= 0 for 119896 =

0 2 4 and 119892119896= (2120587)

1198962

119887(119896minus1)2

for 119896 = 1 3 5 By inverting the normal cumulative function in 119911 =

2Φ[(119909120579)120572

] minus 1 and using (16) we can express the quantilefunction of119883 in terms of 119911 as

119909 = 120579[119876119873(

119911 + 1

2

)]

1120572

= 120579[

[

infin

sum

119895=0

119891119895(

119911 + 1

2

)

119895

]

]

1120572

= 120579[

[

infin

sum

119895=0

119895

sum

119901=0

119891119895

2119895(

119895

119901) 119911

119901]

]

1120572

(17)

Replacingsuminfin

119895=0sum119895

119901=0bysuminfin

119901=0suminfin

119895=119901in last equation we obtain

119909 = 120579 (

infin

sum

119901=0

ℎ119901119911119901

)

1120572

(18)

where ℎ119901= sum

infin

119895=1199012minus119895

119891119895(119895

119901) Using the same steps of (8) we

can write

(

infin

sum

119901=0

ℎ119901119911119901

)

1120572

=

infin

sum

119903=0

119904119903(120572

minus1

)(

infin

sum

119901=0

ℎ119901119911119901

)

119903

(19)

where 119904119903(120572

minus1

) = suminfin

119895=119903(minus1)

119903+119895

(120572minus1

119895) (

119895

119903)

We use throughout an equation of Gradshteyn andRyzhik [5] for a power series raised to a positive integer 119895

(

infin

sum

119894=0

119886119894119909119894

)

119895

=

infin

sum

119894=0

119888119895119894119909119894

(20)

where the coefficients 119888119895119894(for 119894 = 1 2 ) are easily obtained

from the recurrence equation

119888119895119894= (119894119886

0)minus1

119894

sum

119898=1

[119898 (119895 + 1) minus 119894] 119886119898119888119895119894minus119898

(21)

and 1198881198950

= 119886119895

0 From (19) and (20) we have

119909 =

infin

sum

119901=0

ℎ⋆

119901119911119901

(22)

where ℎ⋆

119901= 120579sum

infin

119903=0119904119903(120572

minus1

) ℎ119903119901

for 119901 ge 0 ℎ119903119901

=

(119901ℎ0)minus1

sum119901

119898=1[119898(119903 + 1) minus 119901] ℎ

119898ℎ119903119901minus119898

for 119901 ge 1 and ℎ1199030

= ℎ119903

0

By inserting (12) in (22) we obtain

119909 = 119876BGHN (119906) =infin

sum

119901=0

ℎ⋆

119901(

infin

sum

119894=0

119889119894119906119894119886

)

119901

(23)

From (20) it follows (suminfin

119894=0119889119894119906119894119886

)

119901

= suminfin

119894=0119889119901119894119906119894119886 where the

quantities 119889119901119894

are determined recursively from 1198890119894= 119889

119894

0and

119889119901119894

= (1198941198890)minus1

sum119894

119898=1[119898 (119901 + 1) minus 119894]119889

119898119889119901119894minus119898

(for 119894 = 1 2 )Finally we obtain

119909 = 119876BGHN (119906) =infin

sum

119894=0

V119894119906119894119886

(24)

where V119894= sum

infin

119901=0ℎ⋆

119901119889119901119894 Equation (24) gives the BGHN

quantile function as a power series and represents the mainresult of this section

3 BGHN Properties

31Moments andGenerating Function Here we provide newexpressions for the moments and mgf of 119883 based upon thepower series for its quantile function as alternative resultsform those obtained by Pescim et al [3]

We can write from (24)

1205831015840

119904(120572 120579 119886 119887) = 119864 (119883

119904

) = int

infin

0

119909119904

119891 (119909) 119889119909

= int

1

0

(

infin

sum

119894=0

V119894119906119894119886

)

119904

119889119906

(25)

4 Journal of Probability and Statistics

and then using (20) we obtain

1205831015840

119904(120572 120579 119886 119887) = 119886

infin

sum

119894=0

V119904119894

(119894 + 119886)

(26)

where the quantities V119904119894(for 119894 = 1 2 ) are easily determined

from the recurrence equation

V119904119894= (119894V

0)minus1

119894

sum

119898=1

[119898 (119904 + 1) minus 119894] V119898V119904119894minus119898

(27)

with V1199040

= V1199040

We now provide a new alternative representation for themgf of 119883 say 119872

120572120579119886119887(119905) = 119864(119890

119905119883

) based on the quantilepower series (24) We can write

119872120572120579119886119887

(119905) = int

infin

0

119890119905119909

119891 (119909) 119889119909

= int

1

0

exp[119905(infin

sum

119894=0

V119894119906119894119886

)]119889119906

(28)

We expand the exponential function and use the same algebrathat leads to (26)

119872120572120579119886119887

(119905) =

infin

sum

119903=0

119905119903

119903

int

1

0

(

infin

sum

119894=0

V119894119906119894119886

)

119903

119889119906

=

infin

sum

119903119894=0

119905119903V119903119894

119903

int

1

0

119906119894119886

119889119906

(29)

and then

119872120572120579119886119887

(119905) = 119886

infin

sum

119903119894=0

119905119903V119903119894

(119886 + 119894) 119903

(30)

Equations (26) and (30) are the main results of this section

32 Mean andMedian Deviations The amount of scatter in apopulation is evidently measured to some extent by the meandeviations in relation to the mean and the median defined by

1205751(119883) = int

infin

0

10038161003816100381610038161003816119909 minus 120583

1015840

1

10038161003816100381610038161003816119891 (119909) 119889119909

1205752(119883) = int

infin

0

|119909 minus119872|119891 (119909) 119889119909

(31)

respectively where 1205831015840

1= 119864(119883) and 119872 = Median(119883)

denotes the median Here119872 is calculated as the solution ofthe nonlinear equation 119868

2Φ[(119872120579)120572]minus1(119886 119887) = 12 We define

119879(119902) = int

infin

119902

119909119891(119909)119889119909 which is determined below The mea-sures 120575

1(119883) and 120575

2(119883) can be written in terms of 1205831015840

1and 119879(119902)

as

1205751(119883) = 2120583

1015840

1119865 (120583

1015840

1) minus 2120583

1015840

1+ 2119879 (120583

1015840

1)

1205752(119883) = 2119879 (119872) minus 120583

1015840

1

(32)

For more details see Paranaıba et al [6] Clearly 119865(119872) and119865(120583

1015840

1) are determined from (3) From (10) we have

119879 (119902)

= 120572radic2

120587

infin

sum

119903=0

119887119903int

infin

119902

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

erf [(119909120579)120572

radic2

]

119903

119889119909

(33)

Setting 119906 = (119909120579)120572 in the last equation gives

119879 (119902)

= 120579radic2

120587

infin

sum

119903=0

119887119903int

infin

(119902120579)1205721199061120572

119890minus11990622

[erf ( 119906

radic2

)]

119903

119889119906

(34)

Using the power series for the error function erf(119909) =

(2radic120587)suminfin

119898=0((minus1)

119898

1199092119898+1

(2119898 + 1)119898) (see eg [7]) weobtain after some algebra

119879 (119902) = 120579radic2

120587

infin

sum

119903=0

119887119903(

2

radic120587

)

119903

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119903=0

(minus1)1198981+sdotsdotsdot+119898

119903

(21198981+ 1) sdot sdot sdot (2119898

119903+ 1)119898

1 sdot sdot sdot 119898

119903

times Γ [(1198981+ sdot sdot sdot + 119898

119903+

119903

2

+

1

2120572

+

1

2

)

1

2

(

119902

120579

)

120572

]

(35)

where Γ(119901 119909) = int

infin

119909

V119901minus1119890minusV119889V denotes the complementaryincomplete gamma function for 119901 gt 0 The measures 120575

1(119883)

and 1205752(119883) are immediately calculated from (35)

Bonferroni and Lorenz curves have applications not onlyin economics to study income and poverty but also inother fields such as reliability demography insurance andmedicine They are defined by

119861 (120588) =

1

1205881205831015840

1

int

119902

0

119909119891 (119909) 119889119909

119871 (120588) =

1

1205831015840

1

int

119902

0

119909119891 (119909) 119889119909

(36)

respectively where 119902 = 119876BGHN(120588) = 119876119861(]) and ] =

2Φ[(120588120579)120572

] minus 1 (Section 2) for a given probability 120588 Fromint

119902

0

119909119891(119909)119889119909 = 1205831015840

1minus 119879(120588) we obtain 119861(120588) = 120588

minus1

[1 minus 119879(120588)1205831015840

1]

and 119871(120588) = 1 minus 119879(120588)1205831015840

1

33 Renyi Entropy The Renyi information of order 120585 for acontinuous random variable with density function 119891(119909) isdefined as

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (37)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 Applicationsof the Renyi entropy can be found in several areas suchas physics information theory and engineering to describe

Journal of Probability and Statistics 5

many nonlinear dynamical or chaotic systems [8] and instatistics as certain appropriately scaled test statistics (relativeRenyi information) for testing hypotheses in parametricmodels [9] Renyi [10] generalized the concept of informationtheory which allows for different averaging of probabilitiesvia 120585

For the BGHN distribution (4) the Renyi entropy isdefined by

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (38)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 From (4) we have

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

120585(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120585(119887minus1)

119889119909

(39)

For |119911| lt 1 and 119887 is a real noninteger the power series holds

(1 minus 119911)119887minus1

=

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119911

119895

(40)

where the binomial coefficient is defined for any real Using(40) in (39) twice 119868(120585) can be expressed as

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times

infin

sum

119895119896=0

(minus1)119895+119896

2119895

(

120585 (119886 minus 1) + 1

119895)

times (

120585 (119887 minus 1) + 119895 + 1

119896)

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

Φ[(

119909

120579

)

120572

]

119896

119889119909

(41)

Substituting Φ(119909) by the error function and setting 119906 =

(119909120579)120572 119868(120585) reduces to

119868 (120585) = 120572120585minus1

1205791minus120585

2120585(119887minus1)

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times int

infin

0

119906((120585(120572minus1)+1)120572)minus1

119890minus(1205852)119906

2

[erf ( 119906

radic2

)]

119897

119889119906

(42)

Following similar algebra that lead to (35) we obtain

119868 (120585) = 120572120585minus1

1205791minus120585

2[120585(119887minus1)+(120585(120572minus1)+1)2120572minus1]

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

(21198981+ 1) sdot sdot sdot (2119898

119897+ 1)119898

1 sdot sdot sdot 119898

119897

times 120585minus[1198981+sdotsdotsdot+119898

119897+1198972+(120585(120572minus1)+1)2120572]

times Γ(1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

)

(43)

Finally the Renyi entropy reduces to

120485119877(120585) = (1 minus 120585)

minus1

times

(120585 minus 1) log (120572) + (1 minus 120585) log (120579)

+ [120585 (119887 minus 1) +

120585 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120585 log(radic 2

120587

) + log[

[

infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)]

]

+ log[infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

times ((21198981+ 1) sdot sdot sdot (2119898

119897+ 1)

times 1198981 sdot sdot sdot 119898

119897)minus1

]

minus [1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

] log (120585)

+ log [Γ(1198981+sdot sdot sdot+119898

119897+

119897

2

+

120585 (120572minus1) + 1

2120572

)]

(44)

34 Reliability In the context of reliability the stress-strengthmodel describes the life of a component which has a randomstrength 119883

1that is subjected to a random stress 119883

2 The

component fails at the instant that the stress applied toit exceeds the strength and the component will functionsatisfactorily whenever 119883

1gt 119883

2 Hence 119877 = Pr(119883

2lt

1198831) is a measure of component reliability Here we derive

119877 when 1198831and 119883

2have independent BGHN(120572 120579 119886

1 1198871)

and BGHN(120572 120579 1198862 1198872) distributions with the same shape

parameters 120572 and 120579 The reliability 119877 becomes

119877 = int

infin

0

1198911(119909) 119865

2(119909) 119889119909 (45)

6 Journal of Probability and Statistics

where the cdf of 1198832and the density of 119883

1are obtained from

(6) and (10) as

1198652(119909) =

infin

sum

119895=0

119908119895(119886

2 1198872) 2Φ [(

119909

120579

)

120572

] minus 1

1198862+119895

1198911(119909) = radic

2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119903=0

119887119903(119886

1 1198871) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(46)

respectively where

119908119895(119886

2 1198872) =

(minus1)119895

119861 (1198862 1198872)

(

1198872minus 1

119895)

119887119903(119886

1 1198871) =

infin

sum

119895=0

(minus1)119895

119861 (1198861 1198871)

(

1198871minus 1

119895) 119904

119903(119886

1+ 119895 minus 1)

(47)

refer to1198832and119883

1 respectively Hence

119877 = 120572radic2

120587

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

times int

infin

0

119909minus1

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

1198862+119895+119903

119889119909

(48)

Setting 119906 = 2Φ[(119909120579)120572

] minus 1 in the last integral the reli-ability of119883 reduces to

119877 =

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

1198862+ 119895 + 119903 + 1

(49)

4 Computational Issues

Here we show the practical use of (24) (26) (30) (35) and(49) If we truncate these infinite power series we have asimple way to compute the quantile function moments mgfmean deviations and reliability of the BGHN distributionThe question is how large the truncation limit should be

We now provide evidence that each infinite summationcan be truncated at twenty to yield sufficient accuracy Let119863

1

denote the absolute difference between the integrated version

1

119861 (119886 119887)

int

2Φ[(119909120579)120572]minus1

0

119905119886minus1

(1 minus 119905)119887minus1

119889119905 = 119880 (50)

where 119880 sim 119880(0 1) is a uniform variate on the unit intervaland the truncated version of (24) averaged over (all with step001) 119909 = 001 5 119886 = 001 10 119887 = 001 10

120572 = 001 10 and 120579 = 001 10 Let 1198632denote the

absolute difference between integrated version

1205831015840

119904=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

119909119904

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(51)

and the truncated version of (26) averaged over 119909 =

001 5 119886 = 001 10 119887 = 001 10120572 = 001 10

and 120579 = 001 10 Let 1198633denote the absolute difference

between the truncated version of (30) and the integratedversion

119872120572120579119886119887

(119905)

=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

(

120572

119909

)(

119909

120579

)

120572

exp [119905119909 minus 1

2

(

119909

120579

)

2120572

]

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(52)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198634denote

the absolute difference between the truncated version of (35)and the integrated version

119879 (119902) =

120572 2119887minus1

119861 (119886 119887)

radic2

120587

int

119902

0

(

119909

120579

)

120572

times exp [minus12

(

119909

120579

)

2120572

] 2Φ[(

119909

120579

)

120572

]minus1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(53)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198635denote

the absolute difference between the truncated version of (49)and the integrated version (45) averaged over 119909 = 001 5119886 = 001 10 119887 = 001 10 120572 = 001 10 and 120579 =

001 10We obtain the following estimates after extensive compu-

tations1198631= 231times10

minus201198632= 847times10

minus181198633= 122times10

minus211198634= 151 times 10

minus22 and1198635= 941 times 10

minus19 These estimates aresmall enough to suggest that the truncated versions of (24)(26) (30) (35) and (49) are reasonable practical use

It would be important to verify that each (untruncated)infinite series (such as (24) (26) (30) (35) and (49)) is con-vergent and provide valid values for its arguments Howeverthis will be a difficult mathematical problem that could beinvestigated in future work

Journal of Probability and Statistics 7

5 Properties of the BGHN Order Statistics

Order statistics have been used in a wide range of prob-lems including robust statistical estimation and detectionof outliers characterization of probability distributions andgoodness-of-fit tests entropy estimation analysis of censoredsamples reliability analysis quality control and strength ofmaterials

51 Mixture Form Suppose 1198831 119883

119899is a random sample

of size 119899 from a continuous distribution and let1198831119899

lt 1198832119899

lt

sdot sdot sdot lt 119883119899119899

denote the corresponding order statistics Therehas been a large amount of work relating tomoments of orderstatistics119883

119894119899 See Arnold et al [11] David and Nagaraja [12]

and Ahsanullah and Nevzorov [13] for excellent accounts Itis well known that the density function of119883

119894119899is given by

119891119894119899(119909) =

119891 (119909)

119861 (119894 119899 minus 119894 + 1)

119865(119909)119894minus1

[1 minus 119865 (119909)]119899minus119894

(54)

For the BGHN distribution Pescim et al [3] obtained

119891119894119899(119909) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119891119896119872119896(119909) (55)

where 119872119896denotes a sequence (119898

1 119898

119894+119896minus1) of 119894 + 119896 minus 1

nonnegative integers 119891119896119872119896

(119909) denotes the BGHN(120572 120579 (119894 +119896)119886 + sum

119894+119896minus1

119895=1119898119895 119887) density function defined under 119872

119896and

the constants 120578119896119872119896

are given by

120578119896119872119896

=

(minus1)119896+sum119894+119896minus1

119895=1119898119895(119899minus119894

119896) 119861 (119886 (119894 + 119896)+sum

119894+119896minus1

119895=1119898119895 119887) Γ(119887)

119894+119896minus1

119861(119886 119887)119894+119896

119861 (119894 119899minus 119894+1)prod119894+119896minus1

119895=1Γ (119887minus119898

119895)119898

119895 (119886+119898

119895)

(56)

The quantities 120578119896119872119896

are easily obtained given 119896 and asequence 119872

119896of indices 119898

1 119898

119894+119896minus1 The sums in (55)

extend over all (119894 + 119896)-tuples (1198961198981 119898

119894+119896minus1) and can be

implementable on a computer If 119887 gt 0 is an integer (55)holds but the indices 119898

1 119898

119894+119896minus1vary from zero to 119887 minus 1

Equation (55) reveals that the density function of the BGHNorder statistics can be expressed as an infinite mixture ofBGHN densities

52 Moments of Order Statistics Themoments of the BGHNorder statistics can be written directly in terms of themoments of BGHNdistributions from themixture form (55)We have

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119864 (119883119904

119894119896) (57)

where119883119894119896sim BGHN(120572 120579 (119894 + 119896)119886 + sum119894+119896minus1

119895=1119898119895 119887) and 119864(119883119904

119894119896)

can be determined from (26) Inserting (26) in (57) andchanging indices we can write

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

infin

sum

119902=0

119886⋆V

119904119902

(119902 + 119886⋆)

(58)

where

119886⋆

= (119894 + 119896) 119886 +

119894+119896minus1

sum

119895=1

119898119895 (59)

The moments 119864(119883119904

119894119899) can be determined based on the

explicit sum (58) using the software Mathematica They arealso computed from (55) by numerical integration using thestatistical software R [14] The values from both techniquesare usually close wheninfin is replaced by a moderate numbersuch as 20 in (58) For some values 119886 = 2 119887 = 3 and 119899 = 5Table 1 lists the numerical values for the moments 119864(119883119904

119894119899)

(119904 = 1 4 119894 = 1 5) and for the variance skewness andkurtosis

53 Generating Function The mgf of the BGHN orderstatistics can be written directly in terms of the BGHNmgf rsquosfrom the mixture form (55) and (30) We obtain

119872119894119899(119905) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119872120572120579119886⋆119887(119905) (60)

where119872120572120579119886⋆119887(119905) is the mgf of the BGHN(120572 120579 119886⋆ 119887) distri-

bution obtained from (30)

54 Mean Deviations The mean deviations of the orderstatistics in relation to the mean and the median are definedby

1205751(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 120583

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

1205752(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 119872

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

(61)

respectively where 120583119894= 119864(119883

119894119899) and 119872

119894= Median(119883

119894119899)

denotes the median Here 119872119894is obtained as the solution of

the nonlinear equation119899

sum

119903=119894

(

119899

119903) 119868

2Φ[(119872119894120579)120572]minus1

(119886 119887)

119903

times 1 minus 1198682Φ[(119872

119894120579)120572]minus1

(119886 119887)

119899minus119903

=

1

2

(62)

The measures 1205751(119883

119894119899) and 120575

2(119883

119894119899) follow from

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(63)

where 119869119894(119902) = int

infin

119902

119909119891119894119899(119909)119889119909 Using (55) we have

119869119894(119902) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119894119872119896

119879 (119902) (64)

where 119879(119902) is obtained from (35) using 119886⋆ given by (59) and

119887⋆

119903= 119887

119903(119886

119887) =

1

119861 (119886⋆ 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886

+ 119895 minus 1)

(65)

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 3

The coefficients 1198901015840119894s for 119894 ge 2 can be obtained from a cubic

recursion of the form

119890119894=

1

[1198942+ (120572 minus 2) 119894 + (1 minus 120572)]

times (1 minus 1205751198942)

119894minus1

sum

119903=2

119890119903119890119894+1minus119903

times [119903 (1 minus 119886) (119894 minus 119903) minus 119903 (119903 minus 1)]

+

119894minus1

sum

119903=1

119894minus119903

sum

119904=1

119890119903119890119904119890119894+1minus119903minus119904

times [119903 (119903 minus 119886) + 119904 (119886 + 119887 minus 2) (119894 + 1 minus 119903 minus 119904)]

(13)

where 1205751198942= 1 if 119894 = 2 and 120575

1198942= 0 if 119894 = 2 In the last equation

we note that the quadratic term only contributes for 119894 ge 3Following Steinbrecher [4] the quantile function of the

standard normal distribution say 119876119873(119906) = Φ

minus1

(119906) can beexpanded as

119876119873(119906) = Φ

minus1

(119906) =

infin

sum

119896=0

1198871198961205772119896+1

(14)

where 120577 = radic2120587(119906 minus 12) and the 1198871015840119896s can be calculated from

1198870= 1 and

119887119896+1

=

1

2 (2119896 + 3)

119896

sum

119903=0

(2119903 + 1) (2119896 minus 2119903 + 1) 119887119903119887119896minus119903

(119903 + 1) (2119903 + 1)

(15)

Here 1198871= 16 119887

2= 7120 119887

3= 1277560

The function 119876119873(119906) can be expressed as a power series

given by

119876119873(119906) =

infin

sum

119895=0

119891119895119906119895

(16)

where 119891119895= sum

infin

119896=119895(minus12)

119896minus119895

(119896

119895) 119892

119896and the quantities 119892

119896are

defined from the coefficients in (14) by 119892119896

= 0 for 119896 =

0 2 4 and 119892119896= (2120587)

1198962

119887(119896minus1)2

for 119896 = 1 3 5 By inverting the normal cumulative function in 119911 =

2Φ[(119909120579)120572

] minus 1 and using (16) we can express the quantilefunction of119883 in terms of 119911 as

119909 = 120579[119876119873(

119911 + 1

2

)]

1120572

= 120579[

[

infin

sum

119895=0

119891119895(

119911 + 1

2

)

119895

]

]

1120572

= 120579[

[

infin

sum

119895=0

119895

sum

119901=0

119891119895

2119895(

119895

119901) 119911

119901]

]

1120572

(17)

Replacingsuminfin

119895=0sum119895

119901=0bysuminfin

119901=0suminfin

119895=119901in last equation we obtain

119909 = 120579 (

infin

sum

119901=0

ℎ119901119911119901

)

1120572

(18)

where ℎ119901= sum

infin

119895=1199012minus119895

119891119895(119895

119901) Using the same steps of (8) we

can write

(

infin

sum

119901=0

ℎ119901119911119901

)

1120572

=

infin

sum

119903=0

119904119903(120572

minus1

)(

infin

sum

119901=0

ℎ119901119911119901

)

119903

(19)

where 119904119903(120572

minus1

) = suminfin

119895=119903(minus1)

119903+119895

(120572minus1

119895) (

119895

119903)

We use throughout an equation of Gradshteyn andRyzhik [5] for a power series raised to a positive integer 119895

(

infin

sum

119894=0

119886119894119909119894

)

119895

=

infin

sum

119894=0

119888119895119894119909119894

(20)

where the coefficients 119888119895119894(for 119894 = 1 2 ) are easily obtained

from the recurrence equation

119888119895119894= (119894119886

0)minus1

119894

sum

119898=1

[119898 (119895 + 1) minus 119894] 119886119898119888119895119894minus119898

(21)

and 1198881198950

= 119886119895

0 From (19) and (20) we have

119909 =

infin

sum

119901=0

ℎ⋆

119901119911119901

(22)

where ℎ⋆

119901= 120579sum

infin

119903=0119904119903(120572

minus1

) ℎ119903119901

for 119901 ge 0 ℎ119903119901

=

(119901ℎ0)minus1

sum119901

119898=1[119898(119903 + 1) minus 119901] ℎ

119898ℎ119903119901minus119898

for 119901 ge 1 and ℎ1199030

= ℎ119903

0

By inserting (12) in (22) we obtain

119909 = 119876BGHN (119906) =infin

sum

119901=0

ℎ⋆

119901(

infin

sum

119894=0

119889119894119906119894119886

)

119901

(23)

From (20) it follows (suminfin

119894=0119889119894119906119894119886

)

119901

= suminfin

119894=0119889119901119894119906119894119886 where the

quantities 119889119901119894

are determined recursively from 1198890119894= 119889

119894

0and

119889119901119894

= (1198941198890)minus1

sum119894

119898=1[119898 (119901 + 1) minus 119894]119889

119898119889119901119894minus119898

(for 119894 = 1 2 )Finally we obtain

119909 = 119876BGHN (119906) =infin

sum

119894=0

V119894119906119894119886

(24)

where V119894= sum

infin

119901=0ℎ⋆

119901119889119901119894 Equation (24) gives the BGHN

quantile function as a power series and represents the mainresult of this section

3 BGHN Properties

31Moments andGenerating Function Here we provide newexpressions for the moments and mgf of 119883 based upon thepower series for its quantile function as alternative resultsform those obtained by Pescim et al [3]

We can write from (24)

1205831015840

119904(120572 120579 119886 119887) = 119864 (119883

119904

) = int

infin

0

119909119904

119891 (119909) 119889119909

= int

1

0

(

infin

sum

119894=0

V119894119906119894119886

)

119904

119889119906

(25)

4 Journal of Probability and Statistics

and then using (20) we obtain

1205831015840

119904(120572 120579 119886 119887) = 119886

infin

sum

119894=0

V119904119894

(119894 + 119886)

(26)

where the quantities V119904119894(for 119894 = 1 2 ) are easily determined

from the recurrence equation

V119904119894= (119894V

0)minus1

119894

sum

119898=1

[119898 (119904 + 1) minus 119894] V119898V119904119894minus119898

(27)

with V1199040

= V1199040

We now provide a new alternative representation for themgf of 119883 say 119872

120572120579119886119887(119905) = 119864(119890

119905119883

) based on the quantilepower series (24) We can write

119872120572120579119886119887

(119905) = int

infin

0

119890119905119909

119891 (119909) 119889119909

= int

1

0

exp[119905(infin

sum

119894=0

V119894119906119894119886

)]119889119906

(28)

We expand the exponential function and use the same algebrathat leads to (26)

119872120572120579119886119887

(119905) =

infin

sum

119903=0

119905119903

119903

int

1

0

(

infin

sum

119894=0

V119894119906119894119886

)

119903

119889119906

=

infin

sum

119903119894=0

119905119903V119903119894

119903

int

1

0

119906119894119886

119889119906

(29)

and then

119872120572120579119886119887

(119905) = 119886

infin

sum

119903119894=0

119905119903V119903119894

(119886 + 119894) 119903

(30)

Equations (26) and (30) are the main results of this section

32 Mean andMedian Deviations The amount of scatter in apopulation is evidently measured to some extent by the meandeviations in relation to the mean and the median defined by

1205751(119883) = int

infin

0

10038161003816100381610038161003816119909 minus 120583

1015840

1

10038161003816100381610038161003816119891 (119909) 119889119909

1205752(119883) = int

infin

0

|119909 minus119872|119891 (119909) 119889119909

(31)

respectively where 1205831015840

1= 119864(119883) and 119872 = Median(119883)

denotes the median Here119872 is calculated as the solution ofthe nonlinear equation 119868

2Φ[(119872120579)120572]minus1(119886 119887) = 12 We define

119879(119902) = int

infin

119902

119909119891(119909)119889119909 which is determined below The mea-sures 120575

1(119883) and 120575

2(119883) can be written in terms of 1205831015840

1and 119879(119902)

as

1205751(119883) = 2120583

1015840

1119865 (120583

1015840

1) minus 2120583

1015840

1+ 2119879 (120583

1015840

1)

1205752(119883) = 2119879 (119872) minus 120583

1015840

1

(32)

For more details see Paranaıba et al [6] Clearly 119865(119872) and119865(120583

1015840

1) are determined from (3) From (10) we have

119879 (119902)

= 120572radic2

120587

infin

sum

119903=0

119887119903int

infin

119902

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

erf [(119909120579)120572

radic2

]

119903

119889119909

(33)

Setting 119906 = (119909120579)120572 in the last equation gives

119879 (119902)

= 120579radic2

120587

infin

sum

119903=0

119887119903int

infin

(119902120579)1205721199061120572

119890minus11990622

[erf ( 119906

radic2

)]

119903

119889119906

(34)

Using the power series for the error function erf(119909) =

(2radic120587)suminfin

119898=0((minus1)

119898

1199092119898+1

(2119898 + 1)119898) (see eg [7]) weobtain after some algebra

119879 (119902) = 120579radic2

120587

infin

sum

119903=0

119887119903(

2

radic120587

)

119903

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119903=0

(minus1)1198981+sdotsdotsdot+119898

119903

(21198981+ 1) sdot sdot sdot (2119898

119903+ 1)119898

1 sdot sdot sdot 119898

119903

times Γ [(1198981+ sdot sdot sdot + 119898

119903+

119903

2

+

1

2120572

+

1

2

)

1

2

(

119902

120579

)

120572

]

(35)

where Γ(119901 119909) = int

infin

119909

V119901minus1119890minusV119889V denotes the complementaryincomplete gamma function for 119901 gt 0 The measures 120575

1(119883)

and 1205752(119883) are immediately calculated from (35)

Bonferroni and Lorenz curves have applications not onlyin economics to study income and poverty but also inother fields such as reliability demography insurance andmedicine They are defined by

119861 (120588) =

1

1205881205831015840

1

int

119902

0

119909119891 (119909) 119889119909

119871 (120588) =

1

1205831015840

1

int

119902

0

119909119891 (119909) 119889119909

(36)

respectively where 119902 = 119876BGHN(120588) = 119876119861(]) and ] =

2Φ[(120588120579)120572

] minus 1 (Section 2) for a given probability 120588 Fromint

119902

0

119909119891(119909)119889119909 = 1205831015840

1minus 119879(120588) we obtain 119861(120588) = 120588

minus1

[1 minus 119879(120588)1205831015840

1]

and 119871(120588) = 1 minus 119879(120588)1205831015840

1

33 Renyi Entropy The Renyi information of order 120585 for acontinuous random variable with density function 119891(119909) isdefined as

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (37)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 Applicationsof the Renyi entropy can be found in several areas suchas physics information theory and engineering to describe

Journal of Probability and Statistics 5

many nonlinear dynamical or chaotic systems [8] and instatistics as certain appropriately scaled test statistics (relativeRenyi information) for testing hypotheses in parametricmodels [9] Renyi [10] generalized the concept of informationtheory which allows for different averaging of probabilitiesvia 120585

For the BGHN distribution (4) the Renyi entropy isdefined by

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (38)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 From (4) we have

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

120585(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120585(119887minus1)

119889119909

(39)

For |119911| lt 1 and 119887 is a real noninteger the power series holds

(1 minus 119911)119887minus1

=

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119911

119895

(40)

where the binomial coefficient is defined for any real Using(40) in (39) twice 119868(120585) can be expressed as

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times

infin

sum

119895119896=0

(minus1)119895+119896

2119895

(

120585 (119886 minus 1) + 1

119895)

times (

120585 (119887 minus 1) + 119895 + 1

119896)

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

Φ[(

119909

120579

)

120572

]

119896

119889119909

(41)

Substituting Φ(119909) by the error function and setting 119906 =

(119909120579)120572 119868(120585) reduces to

119868 (120585) = 120572120585minus1

1205791minus120585

2120585(119887minus1)

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times int

infin

0

119906((120585(120572minus1)+1)120572)minus1

119890minus(1205852)119906

2

[erf ( 119906

radic2

)]

119897

119889119906

(42)

Following similar algebra that lead to (35) we obtain

119868 (120585) = 120572120585minus1

1205791minus120585

2[120585(119887minus1)+(120585(120572minus1)+1)2120572minus1]

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

(21198981+ 1) sdot sdot sdot (2119898

119897+ 1)119898

1 sdot sdot sdot 119898

119897

times 120585minus[1198981+sdotsdotsdot+119898

119897+1198972+(120585(120572minus1)+1)2120572]

times Γ(1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

)

(43)

Finally the Renyi entropy reduces to

120485119877(120585) = (1 minus 120585)

minus1

times

(120585 minus 1) log (120572) + (1 minus 120585) log (120579)

+ [120585 (119887 minus 1) +

120585 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120585 log(radic 2

120587

) + log[

[

infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)]

]

+ log[infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

times ((21198981+ 1) sdot sdot sdot (2119898

119897+ 1)

times 1198981 sdot sdot sdot 119898

119897)minus1

]

minus [1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

] log (120585)

+ log [Γ(1198981+sdot sdot sdot+119898

119897+

119897

2

+

120585 (120572minus1) + 1

2120572

)]

(44)

34 Reliability In the context of reliability the stress-strengthmodel describes the life of a component which has a randomstrength 119883

1that is subjected to a random stress 119883

2 The

component fails at the instant that the stress applied toit exceeds the strength and the component will functionsatisfactorily whenever 119883

1gt 119883

2 Hence 119877 = Pr(119883

2lt

1198831) is a measure of component reliability Here we derive

119877 when 1198831and 119883

2have independent BGHN(120572 120579 119886

1 1198871)

and BGHN(120572 120579 1198862 1198872) distributions with the same shape

parameters 120572 and 120579 The reliability 119877 becomes

119877 = int

infin

0

1198911(119909) 119865

2(119909) 119889119909 (45)

6 Journal of Probability and Statistics

where the cdf of 1198832and the density of 119883

1are obtained from

(6) and (10) as

1198652(119909) =

infin

sum

119895=0

119908119895(119886

2 1198872) 2Φ [(

119909

120579

)

120572

] minus 1

1198862+119895

1198911(119909) = radic

2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119903=0

119887119903(119886

1 1198871) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(46)

respectively where

119908119895(119886

2 1198872) =

(minus1)119895

119861 (1198862 1198872)

(

1198872minus 1

119895)

119887119903(119886

1 1198871) =

infin

sum

119895=0

(minus1)119895

119861 (1198861 1198871)

(

1198871minus 1

119895) 119904

119903(119886

1+ 119895 minus 1)

(47)

refer to1198832and119883

1 respectively Hence

119877 = 120572radic2

120587

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

times int

infin

0

119909minus1

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

1198862+119895+119903

119889119909

(48)

Setting 119906 = 2Φ[(119909120579)120572

] minus 1 in the last integral the reli-ability of119883 reduces to

119877 =

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

1198862+ 119895 + 119903 + 1

(49)

4 Computational Issues

Here we show the practical use of (24) (26) (30) (35) and(49) If we truncate these infinite power series we have asimple way to compute the quantile function moments mgfmean deviations and reliability of the BGHN distributionThe question is how large the truncation limit should be

We now provide evidence that each infinite summationcan be truncated at twenty to yield sufficient accuracy Let119863

1

denote the absolute difference between the integrated version

1

119861 (119886 119887)

int

2Φ[(119909120579)120572]minus1

0

119905119886minus1

(1 minus 119905)119887minus1

119889119905 = 119880 (50)

where 119880 sim 119880(0 1) is a uniform variate on the unit intervaland the truncated version of (24) averaged over (all with step001) 119909 = 001 5 119886 = 001 10 119887 = 001 10

120572 = 001 10 and 120579 = 001 10 Let 1198632denote the

absolute difference between integrated version

1205831015840

119904=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

119909119904

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(51)

and the truncated version of (26) averaged over 119909 =

001 5 119886 = 001 10 119887 = 001 10120572 = 001 10

and 120579 = 001 10 Let 1198633denote the absolute difference

between the truncated version of (30) and the integratedversion

119872120572120579119886119887

(119905)

=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

(

120572

119909

)(

119909

120579

)

120572

exp [119905119909 minus 1

2

(

119909

120579

)

2120572

]

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(52)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198634denote

the absolute difference between the truncated version of (35)and the integrated version

119879 (119902) =

120572 2119887minus1

119861 (119886 119887)

radic2

120587

int

119902

0

(

119909

120579

)

120572

times exp [minus12

(

119909

120579

)

2120572

] 2Φ[(

119909

120579

)

120572

]minus1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(53)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198635denote

the absolute difference between the truncated version of (49)and the integrated version (45) averaged over 119909 = 001 5119886 = 001 10 119887 = 001 10 120572 = 001 10 and 120579 =

001 10We obtain the following estimates after extensive compu-

tations1198631= 231times10

minus201198632= 847times10

minus181198633= 122times10

minus211198634= 151 times 10

minus22 and1198635= 941 times 10

minus19 These estimates aresmall enough to suggest that the truncated versions of (24)(26) (30) (35) and (49) are reasonable practical use

It would be important to verify that each (untruncated)infinite series (such as (24) (26) (30) (35) and (49)) is con-vergent and provide valid values for its arguments Howeverthis will be a difficult mathematical problem that could beinvestigated in future work

Journal of Probability and Statistics 7

5 Properties of the BGHN Order Statistics

Order statistics have been used in a wide range of prob-lems including robust statistical estimation and detectionof outliers characterization of probability distributions andgoodness-of-fit tests entropy estimation analysis of censoredsamples reliability analysis quality control and strength ofmaterials

51 Mixture Form Suppose 1198831 119883

119899is a random sample

of size 119899 from a continuous distribution and let1198831119899

lt 1198832119899

lt

sdot sdot sdot lt 119883119899119899

denote the corresponding order statistics Therehas been a large amount of work relating tomoments of orderstatistics119883

119894119899 See Arnold et al [11] David and Nagaraja [12]

and Ahsanullah and Nevzorov [13] for excellent accounts Itis well known that the density function of119883

119894119899is given by

119891119894119899(119909) =

119891 (119909)

119861 (119894 119899 minus 119894 + 1)

119865(119909)119894minus1

[1 minus 119865 (119909)]119899minus119894

(54)

For the BGHN distribution Pescim et al [3] obtained

119891119894119899(119909) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119891119896119872119896(119909) (55)

where 119872119896denotes a sequence (119898

1 119898

119894+119896minus1) of 119894 + 119896 minus 1

nonnegative integers 119891119896119872119896

(119909) denotes the BGHN(120572 120579 (119894 +119896)119886 + sum

119894+119896minus1

119895=1119898119895 119887) density function defined under 119872

119896and

the constants 120578119896119872119896

are given by

120578119896119872119896

=

(minus1)119896+sum119894+119896minus1

119895=1119898119895(119899minus119894

119896) 119861 (119886 (119894 + 119896)+sum

119894+119896minus1

119895=1119898119895 119887) Γ(119887)

119894+119896minus1

119861(119886 119887)119894+119896

119861 (119894 119899minus 119894+1)prod119894+119896minus1

119895=1Γ (119887minus119898

119895)119898

119895 (119886+119898

119895)

(56)

The quantities 120578119896119872119896

are easily obtained given 119896 and asequence 119872

119896of indices 119898

1 119898

119894+119896minus1 The sums in (55)

extend over all (119894 + 119896)-tuples (1198961198981 119898

119894+119896minus1) and can be

implementable on a computer If 119887 gt 0 is an integer (55)holds but the indices 119898

1 119898

119894+119896minus1vary from zero to 119887 minus 1

Equation (55) reveals that the density function of the BGHNorder statistics can be expressed as an infinite mixture ofBGHN densities

52 Moments of Order Statistics Themoments of the BGHNorder statistics can be written directly in terms of themoments of BGHNdistributions from themixture form (55)We have

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119864 (119883119904

119894119896) (57)

where119883119894119896sim BGHN(120572 120579 (119894 + 119896)119886 + sum119894+119896minus1

119895=1119898119895 119887) and 119864(119883119904

119894119896)

can be determined from (26) Inserting (26) in (57) andchanging indices we can write

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

infin

sum

119902=0

119886⋆V

119904119902

(119902 + 119886⋆)

(58)

where

119886⋆

= (119894 + 119896) 119886 +

119894+119896minus1

sum

119895=1

119898119895 (59)

The moments 119864(119883119904

119894119899) can be determined based on the

explicit sum (58) using the software Mathematica They arealso computed from (55) by numerical integration using thestatistical software R [14] The values from both techniquesare usually close wheninfin is replaced by a moderate numbersuch as 20 in (58) For some values 119886 = 2 119887 = 3 and 119899 = 5Table 1 lists the numerical values for the moments 119864(119883119904

119894119899)

(119904 = 1 4 119894 = 1 5) and for the variance skewness andkurtosis

53 Generating Function The mgf of the BGHN orderstatistics can be written directly in terms of the BGHNmgf rsquosfrom the mixture form (55) and (30) We obtain

119872119894119899(119905) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119872120572120579119886⋆119887(119905) (60)

where119872120572120579119886⋆119887(119905) is the mgf of the BGHN(120572 120579 119886⋆ 119887) distri-

bution obtained from (30)

54 Mean Deviations The mean deviations of the orderstatistics in relation to the mean and the median are definedby

1205751(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 120583

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

1205752(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 119872

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

(61)

respectively where 120583119894= 119864(119883

119894119899) and 119872

119894= Median(119883

119894119899)

denotes the median Here 119872119894is obtained as the solution of

the nonlinear equation119899

sum

119903=119894

(

119899

119903) 119868

2Φ[(119872119894120579)120572]minus1

(119886 119887)

119903

times 1 minus 1198682Φ[(119872

119894120579)120572]minus1

(119886 119887)

119899minus119903

=

1

2

(62)

The measures 1205751(119883

119894119899) and 120575

2(119883

119894119899) follow from

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(63)

where 119869119894(119902) = int

infin

119902

119909119891119894119899(119909)119889119909 Using (55) we have

119869119894(119902) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119894119872119896

119879 (119902) (64)

where 119879(119902) is obtained from (35) using 119886⋆ given by (59) and

119887⋆

119903= 119887

119903(119886

119887) =

1

119861 (119886⋆ 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886

+ 119895 minus 1)

(65)

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

4 Journal of Probability and Statistics

and then using (20) we obtain

1205831015840

119904(120572 120579 119886 119887) = 119886

infin

sum

119894=0

V119904119894

(119894 + 119886)

(26)

where the quantities V119904119894(for 119894 = 1 2 ) are easily determined

from the recurrence equation

V119904119894= (119894V

0)minus1

119894

sum

119898=1

[119898 (119904 + 1) minus 119894] V119898V119904119894minus119898

(27)

with V1199040

= V1199040

We now provide a new alternative representation for themgf of 119883 say 119872

120572120579119886119887(119905) = 119864(119890

119905119883

) based on the quantilepower series (24) We can write

119872120572120579119886119887

(119905) = int

infin

0

119890119905119909

119891 (119909) 119889119909

= int

1

0

exp[119905(infin

sum

119894=0

V119894119906119894119886

)]119889119906

(28)

We expand the exponential function and use the same algebrathat leads to (26)

119872120572120579119886119887

(119905) =

infin

sum

119903=0

119905119903

119903

int

1

0

(

infin

sum

119894=0

V119894119906119894119886

)

119903

119889119906

=

infin

sum

119903119894=0

119905119903V119903119894

119903

int

1

0

119906119894119886

119889119906

(29)

and then

119872120572120579119886119887

(119905) = 119886

infin

sum

119903119894=0

119905119903V119903119894

(119886 + 119894) 119903

(30)

Equations (26) and (30) are the main results of this section

32 Mean andMedian Deviations The amount of scatter in apopulation is evidently measured to some extent by the meandeviations in relation to the mean and the median defined by

1205751(119883) = int

infin

0

10038161003816100381610038161003816119909 minus 120583

1015840

1

10038161003816100381610038161003816119891 (119909) 119889119909

1205752(119883) = int

infin

0

|119909 minus119872|119891 (119909) 119889119909

(31)

respectively where 1205831015840

1= 119864(119883) and 119872 = Median(119883)

denotes the median Here119872 is calculated as the solution ofthe nonlinear equation 119868

2Φ[(119872120579)120572]minus1(119886 119887) = 12 We define

119879(119902) = int

infin

119902

119909119891(119909)119889119909 which is determined below The mea-sures 120575

1(119883) and 120575

2(119883) can be written in terms of 1205831015840

1and 119879(119902)

as

1205751(119883) = 2120583

1015840

1119865 (120583

1015840

1) minus 2120583

1015840

1+ 2119879 (120583

1015840

1)

1205752(119883) = 2119879 (119872) minus 120583

1015840

1

(32)

For more details see Paranaıba et al [6] Clearly 119865(119872) and119865(120583

1015840

1) are determined from (3) From (10) we have

119879 (119902)

= 120572radic2

120587

infin

sum

119903=0

119887119903int

infin

119902

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

erf [(119909120579)120572

radic2

]

119903

119889119909

(33)

Setting 119906 = (119909120579)120572 in the last equation gives

119879 (119902)

= 120579radic2

120587

infin

sum

119903=0

119887119903int

infin

(119902120579)1205721199061120572

119890minus11990622

[erf ( 119906

radic2

)]

119903

119889119906

(34)

Using the power series for the error function erf(119909) =

(2radic120587)suminfin

119898=0((minus1)

119898

1199092119898+1

(2119898 + 1)119898) (see eg [7]) weobtain after some algebra

119879 (119902) = 120579radic2

120587

infin

sum

119903=0

119887119903(

2

radic120587

)

119903

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119903=0

(minus1)1198981+sdotsdotsdot+119898

119903

(21198981+ 1) sdot sdot sdot (2119898

119903+ 1)119898

1 sdot sdot sdot 119898

119903

times Γ [(1198981+ sdot sdot sdot + 119898

119903+

119903

2

+

1

2120572

+

1

2

)

1

2

(

119902

120579

)

120572

]

(35)

where Γ(119901 119909) = int

infin

119909

V119901minus1119890minusV119889V denotes the complementaryincomplete gamma function for 119901 gt 0 The measures 120575

1(119883)

and 1205752(119883) are immediately calculated from (35)

Bonferroni and Lorenz curves have applications not onlyin economics to study income and poverty but also inother fields such as reliability demography insurance andmedicine They are defined by

119861 (120588) =

1

1205881205831015840

1

int

119902

0

119909119891 (119909) 119889119909

119871 (120588) =

1

1205831015840

1

int

119902

0

119909119891 (119909) 119889119909

(36)

respectively where 119902 = 119876BGHN(120588) = 119876119861(]) and ] =

2Φ[(120588120579)120572

] minus 1 (Section 2) for a given probability 120588 Fromint

119902

0

119909119891(119909)119889119909 = 1205831015840

1minus 119879(120588) we obtain 119861(120588) = 120588

minus1

[1 minus 119879(120588)1205831015840

1]

and 119871(120588) = 1 minus 119879(120588)1205831015840

1

33 Renyi Entropy The Renyi information of order 120585 for acontinuous random variable with density function 119891(119909) isdefined as

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (37)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 Applicationsof the Renyi entropy can be found in several areas suchas physics information theory and engineering to describe

Journal of Probability and Statistics 5

many nonlinear dynamical or chaotic systems [8] and instatistics as certain appropriately scaled test statistics (relativeRenyi information) for testing hypotheses in parametricmodels [9] Renyi [10] generalized the concept of informationtheory which allows for different averaging of probabilitiesvia 120585

For the BGHN distribution (4) the Renyi entropy isdefined by

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (38)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 From (4) we have

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

120585(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120585(119887minus1)

119889119909

(39)

For |119911| lt 1 and 119887 is a real noninteger the power series holds

(1 minus 119911)119887minus1

=

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119911

119895

(40)

where the binomial coefficient is defined for any real Using(40) in (39) twice 119868(120585) can be expressed as

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times

infin

sum

119895119896=0

(minus1)119895+119896

2119895

(

120585 (119886 minus 1) + 1

119895)

times (

120585 (119887 minus 1) + 119895 + 1

119896)

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

Φ[(

119909

120579

)

120572

]

119896

119889119909

(41)

Substituting Φ(119909) by the error function and setting 119906 =

(119909120579)120572 119868(120585) reduces to

119868 (120585) = 120572120585minus1

1205791minus120585

2120585(119887minus1)

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times int

infin

0

119906((120585(120572minus1)+1)120572)minus1

119890minus(1205852)119906

2

[erf ( 119906

radic2

)]

119897

119889119906

(42)

Following similar algebra that lead to (35) we obtain

119868 (120585) = 120572120585minus1

1205791minus120585

2[120585(119887minus1)+(120585(120572minus1)+1)2120572minus1]

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

(21198981+ 1) sdot sdot sdot (2119898

119897+ 1)119898

1 sdot sdot sdot 119898

119897

times 120585minus[1198981+sdotsdotsdot+119898

119897+1198972+(120585(120572minus1)+1)2120572]

times Γ(1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

)

(43)

Finally the Renyi entropy reduces to

120485119877(120585) = (1 minus 120585)

minus1

times

(120585 minus 1) log (120572) + (1 minus 120585) log (120579)

+ [120585 (119887 minus 1) +

120585 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120585 log(radic 2

120587

) + log[

[

infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)]

]

+ log[infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

times ((21198981+ 1) sdot sdot sdot (2119898

119897+ 1)

times 1198981 sdot sdot sdot 119898

119897)minus1

]

minus [1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

] log (120585)

+ log [Γ(1198981+sdot sdot sdot+119898

119897+

119897

2

+

120585 (120572minus1) + 1

2120572

)]

(44)

34 Reliability In the context of reliability the stress-strengthmodel describes the life of a component which has a randomstrength 119883

1that is subjected to a random stress 119883

2 The

component fails at the instant that the stress applied toit exceeds the strength and the component will functionsatisfactorily whenever 119883

1gt 119883

2 Hence 119877 = Pr(119883

2lt

1198831) is a measure of component reliability Here we derive

119877 when 1198831and 119883

2have independent BGHN(120572 120579 119886

1 1198871)

and BGHN(120572 120579 1198862 1198872) distributions with the same shape

parameters 120572 and 120579 The reliability 119877 becomes

119877 = int

infin

0

1198911(119909) 119865

2(119909) 119889119909 (45)

6 Journal of Probability and Statistics

where the cdf of 1198832and the density of 119883

1are obtained from

(6) and (10) as

1198652(119909) =

infin

sum

119895=0

119908119895(119886

2 1198872) 2Φ [(

119909

120579

)

120572

] minus 1

1198862+119895

1198911(119909) = radic

2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119903=0

119887119903(119886

1 1198871) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(46)

respectively where

119908119895(119886

2 1198872) =

(minus1)119895

119861 (1198862 1198872)

(

1198872minus 1

119895)

119887119903(119886

1 1198871) =

infin

sum

119895=0

(minus1)119895

119861 (1198861 1198871)

(

1198871minus 1

119895) 119904

119903(119886

1+ 119895 minus 1)

(47)

refer to1198832and119883

1 respectively Hence

119877 = 120572radic2

120587

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

times int

infin

0

119909minus1

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

1198862+119895+119903

119889119909

(48)

Setting 119906 = 2Φ[(119909120579)120572

] minus 1 in the last integral the reli-ability of119883 reduces to

119877 =

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

1198862+ 119895 + 119903 + 1

(49)

4 Computational Issues

Here we show the practical use of (24) (26) (30) (35) and(49) If we truncate these infinite power series we have asimple way to compute the quantile function moments mgfmean deviations and reliability of the BGHN distributionThe question is how large the truncation limit should be

We now provide evidence that each infinite summationcan be truncated at twenty to yield sufficient accuracy Let119863

1

denote the absolute difference between the integrated version

1

119861 (119886 119887)

int

2Φ[(119909120579)120572]minus1

0

119905119886minus1

(1 minus 119905)119887minus1

119889119905 = 119880 (50)

where 119880 sim 119880(0 1) is a uniform variate on the unit intervaland the truncated version of (24) averaged over (all with step001) 119909 = 001 5 119886 = 001 10 119887 = 001 10

120572 = 001 10 and 120579 = 001 10 Let 1198632denote the

absolute difference between integrated version

1205831015840

119904=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

119909119904

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(51)

and the truncated version of (26) averaged over 119909 =

001 5 119886 = 001 10 119887 = 001 10120572 = 001 10

and 120579 = 001 10 Let 1198633denote the absolute difference

between the truncated version of (30) and the integratedversion

119872120572120579119886119887

(119905)

=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

(

120572

119909

)(

119909

120579

)

120572

exp [119905119909 minus 1

2

(

119909

120579

)

2120572

]

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(52)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198634denote

the absolute difference between the truncated version of (35)and the integrated version

119879 (119902) =

120572 2119887minus1

119861 (119886 119887)

radic2

120587

int

119902

0

(

119909

120579

)

120572

times exp [minus12

(

119909

120579

)

2120572

] 2Φ[(

119909

120579

)

120572

]minus1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(53)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198635denote

the absolute difference between the truncated version of (49)and the integrated version (45) averaged over 119909 = 001 5119886 = 001 10 119887 = 001 10 120572 = 001 10 and 120579 =

001 10We obtain the following estimates after extensive compu-

tations1198631= 231times10

minus201198632= 847times10

minus181198633= 122times10

minus211198634= 151 times 10

minus22 and1198635= 941 times 10

minus19 These estimates aresmall enough to suggest that the truncated versions of (24)(26) (30) (35) and (49) are reasonable practical use

It would be important to verify that each (untruncated)infinite series (such as (24) (26) (30) (35) and (49)) is con-vergent and provide valid values for its arguments Howeverthis will be a difficult mathematical problem that could beinvestigated in future work

Journal of Probability and Statistics 7

5 Properties of the BGHN Order Statistics

Order statistics have been used in a wide range of prob-lems including robust statistical estimation and detectionof outliers characterization of probability distributions andgoodness-of-fit tests entropy estimation analysis of censoredsamples reliability analysis quality control and strength ofmaterials

51 Mixture Form Suppose 1198831 119883

119899is a random sample

of size 119899 from a continuous distribution and let1198831119899

lt 1198832119899

lt

sdot sdot sdot lt 119883119899119899

denote the corresponding order statistics Therehas been a large amount of work relating tomoments of orderstatistics119883

119894119899 See Arnold et al [11] David and Nagaraja [12]

and Ahsanullah and Nevzorov [13] for excellent accounts Itis well known that the density function of119883

119894119899is given by

119891119894119899(119909) =

119891 (119909)

119861 (119894 119899 minus 119894 + 1)

119865(119909)119894minus1

[1 minus 119865 (119909)]119899minus119894

(54)

For the BGHN distribution Pescim et al [3] obtained

119891119894119899(119909) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119891119896119872119896(119909) (55)

where 119872119896denotes a sequence (119898

1 119898

119894+119896minus1) of 119894 + 119896 minus 1

nonnegative integers 119891119896119872119896

(119909) denotes the BGHN(120572 120579 (119894 +119896)119886 + sum

119894+119896minus1

119895=1119898119895 119887) density function defined under 119872

119896and

the constants 120578119896119872119896

are given by

120578119896119872119896

=

(minus1)119896+sum119894+119896minus1

119895=1119898119895(119899minus119894

119896) 119861 (119886 (119894 + 119896)+sum

119894+119896minus1

119895=1119898119895 119887) Γ(119887)

119894+119896minus1

119861(119886 119887)119894+119896

119861 (119894 119899minus 119894+1)prod119894+119896minus1

119895=1Γ (119887minus119898

119895)119898

119895 (119886+119898

119895)

(56)

The quantities 120578119896119872119896

are easily obtained given 119896 and asequence 119872

119896of indices 119898

1 119898

119894+119896minus1 The sums in (55)

extend over all (119894 + 119896)-tuples (1198961198981 119898

119894+119896minus1) and can be

implementable on a computer If 119887 gt 0 is an integer (55)holds but the indices 119898

1 119898

119894+119896minus1vary from zero to 119887 minus 1

Equation (55) reveals that the density function of the BGHNorder statistics can be expressed as an infinite mixture ofBGHN densities

52 Moments of Order Statistics Themoments of the BGHNorder statistics can be written directly in terms of themoments of BGHNdistributions from themixture form (55)We have

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119864 (119883119904

119894119896) (57)

where119883119894119896sim BGHN(120572 120579 (119894 + 119896)119886 + sum119894+119896minus1

119895=1119898119895 119887) and 119864(119883119904

119894119896)

can be determined from (26) Inserting (26) in (57) andchanging indices we can write

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

infin

sum

119902=0

119886⋆V

119904119902

(119902 + 119886⋆)

(58)

where

119886⋆

= (119894 + 119896) 119886 +

119894+119896minus1

sum

119895=1

119898119895 (59)

The moments 119864(119883119904

119894119899) can be determined based on the

explicit sum (58) using the software Mathematica They arealso computed from (55) by numerical integration using thestatistical software R [14] The values from both techniquesare usually close wheninfin is replaced by a moderate numbersuch as 20 in (58) For some values 119886 = 2 119887 = 3 and 119899 = 5Table 1 lists the numerical values for the moments 119864(119883119904

119894119899)

(119904 = 1 4 119894 = 1 5) and for the variance skewness andkurtosis

53 Generating Function The mgf of the BGHN orderstatistics can be written directly in terms of the BGHNmgf rsquosfrom the mixture form (55) and (30) We obtain

119872119894119899(119905) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119872120572120579119886⋆119887(119905) (60)

where119872120572120579119886⋆119887(119905) is the mgf of the BGHN(120572 120579 119886⋆ 119887) distri-

bution obtained from (30)

54 Mean Deviations The mean deviations of the orderstatistics in relation to the mean and the median are definedby

1205751(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 120583

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

1205752(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 119872

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

(61)

respectively where 120583119894= 119864(119883

119894119899) and 119872

119894= Median(119883

119894119899)

denotes the median Here 119872119894is obtained as the solution of

the nonlinear equation119899

sum

119903=119894

(

119899

119903) 119868

2Φ[(119872119894120579)120572]minus1

(119886 119887)

119903

times 1 minus 1198682Φ[(119872

119894120579)120572]minus1

(119886 119887)

119899minus119903

=

1

2

(62)

The measures 1205751(119883

119894119899) and 120575

2(119883

119894119899) follow from

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(63)

where 119869119894(119902) = int

infin

119902

119909119891119894119899(119909)119889119909 Using (55) we have

119869119894(119902) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119894119872119896

119879 (119902) (64)

where 119879(119902) is obtained from (35) using 119886⋆ given by (59) and

119887⋆

119903= 119887

119903(119886

119887) =

1

119861 (119886⋆ 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886

+ 119895 minus 1)

(65)

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 5

many nonlinear dynamical or chaotic systems [8] and instatistics as certain appropriately scaled test statistics (relativeRenyi information) for testing hypotheses in parametricmodels [9] Renyi [10] generalized the concept of informationtheory which allows for different averaging of probabilitiesvia 120585

For the BGHN distribution (4) the Renyi entropy isdefined by

120485119877(120585) =

1

1 minus 120585

log [119868 (120585)] (38)

where 119868(120585) = int119891120585

(119909)119889119909 120585 gt 0 and 120585 = 1 From (4) we have

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

120585(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120585(119887minus1)

119889119909

(39)

For |119911| lt 1 and 119887 is a real noninteger the power series holds

(1 minus 119911)119887minus1

=

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119911

119895

(40)

where the binomial coefficient is defined for any real Using(40) in (39) twice 119868(120585) can be expressed as

119868 (120585) =

2120585(119887minus1)

(120572radic2120587)

120585

[119861(119886 119887)]120585

times

infin

sum

119895119896=0

(minus1)119895+119896

2119895

(

120585 (119886 minus 1) + 1

119895)

times (

120585 (119887 minus 1) + 119895 + 1

119896)

times int

infin

0

119909minus120585

(

119909

120579

)

120572120585

119890minus(1205852)(119909120579)

2120572

Φ[(

119909

120579

)

120572

]

119896

119889119909

(41)

Substituting Φ(119909) by the error function and setting 119906 =

(119909120579)120572 119868(120585) reduces to

119868 (120585) = 120572120585minus1

1205791minus120585

2120585(119887minus1)

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times int

infin

0

119906((120585(120572minus1)+1)120572)minus1

119890minus(1205852)119906

2

[erf ( 119906

radic2

)]

119897

119889119906

(42)

Following similar algebra that lead to (35) we obtain

119868 (120585) = 120572120585minus1

1205791minus120585

2[120585(119887minus1)+(120585(120572minus1)+1)2120572minus1]

times (radic2

120587

)

120585infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

(21198981+ 1) sdot sdot sdot (2119898

119897+ 1)119898

1 sdot sdot sdot 119898

119897

times 120585minus[1198981+sdotsdotsdot+119898

119897+1198972+(120585(120572minus1)+1)2120572]

times Γ(1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

)

(43)

Finally the Renyi entropy reduces to

120485119877(120585) = (1 minus 120585)

minus1

times

(120585 minus 1) log (120572) + (1 minus 120585) log (120579)

+ [120585 (119887 minus 1) +

120585 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120585 log(radic 2

120587

) + log[

[

infin

sum

119895119896=0

119896

sum

119897=0

119908119895119896119897

(119886 119887)]

]

+ log[infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119897=0

(minus1)1198981+sdotsdotsdot+119898

119897

times ((21198981+ 1) sdot sdot sdot (2119898

119897+ 1)

times 1198981 sdot sdot sdot 119898

119897)minus1

]

minus [1198981+ sdot sdot sdot + 119898

119897+

119897

2

+

120585 (120572 minus 1) + 1

2120572

] log (120585)

+ log [Γ(1198981+sdot sdot sdot+119898

119897+

119897

2

+

120585 (120572minus1) + 1

2120572

)]

(44)

34 Reliability In the context of reliability the stress-strengthmodel describes the life of a component which has a randomstrength 119883

1that is subjected to a random stress 119883

2 The

component fails at the instant that the stress applied toit exceeds the strength and the component will functionsatisfactorily whenever 119883

1gt 119883

2 Hence 119877 = Pr(119883

2lt

1198831) is a measure of component reliability Here we derive

119877 when 1198831and 119883

2have independent BGHN(120572 120579 119886

1 1198871)

and BGHN(120572 120579 1198862 1198872) distributions with the same shape

parameters 120572 and 120579 The reliability 119877 becomes

119877 = int

infin

0

1198911(119909) 119865

2(119909) 119889119909 (45)

6 Journal of Probability and Statistics

where the cdf of 1198832and the density of 119883

1are obtained from

(6) and (10) as

1198652(119909) =

infin

sum

119895=0

119908119895(119886

2 1198872) 2Φ [(

119909

120579

)

120572

] minus 1

1198862+119895

1198911(119909) = radic

2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119903=0

119887119903(119886

1 1198871) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(46)

respectively where

119908119895(119886

2 1198872) =

(minus1)119895

119861 (1198862 1198872)

(

1198872minus 1

119895)

119887119903(119886

1 1198871) =

infin

sum

119895=0

(minus1)119895

119861 (1198861 1198871)

(

1198871minus 1

119895) 119904

119903(119886

1+ 119895 minus 1)

(47)

refer to1198832and119883

1 respectively Hence

119877 = 120572radic2

120587

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

times int

infin

0

119909minus1

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

1198862+119895+119903

119889119909

(48)

Setting 119906 = 2Φ[(119909120579)120572

] minus 1 in the last integral the reli-ability of119883 reduces to

119877 =

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

1198862+ 119895 + 119903 + 1

(49)

4 Computational Issues

Here we show the practical use of (24) (26) (30) (35) and(49) If we truncate these infinite power series we have asimple way to compute the quantile function moments mgfmean deviations and reliability of the BGHN distributionThe question is how large the truncation limit should be

We now provide evidence that each infinite summationcan be truncated at twenty to yield sufficient accuracy Let119863

1

denote the absolute difference between the integrated version

1

119861 (119886 119887)

int

2Φ[(119909120579)120572]minus1

0

119905119886minus1

(1 minus 119905)119887minus1

119889119905 = 119880 (50)

where 119880 sim 119880(0 1) is a uniform variate on the unit intervaland the truncated version of (24) averaged over (all with step001) 119909 = 001 5 119886 = 001 10 119887 = 001 10

120572 = 001 10 and 120579 = 001 10 Let 1198632denote the

absolute difference between integrated version

1205831015840

119904=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

119909119904

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(51)

and the truncated version of (26) averaged over 119909 =

001 5 119886 = 001 10 119887 = 001 10120572 = 001 10

and 120579 = 001 10 Let 1198633denote the absolute difference

between the truncated version of (30) and the integratedversion

119872120572120579119886119887

(119905)

=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

(

120572

119909

)(

119909

120579

)

120572

exp [119905119909 minus 1

2

(

119909

120579

)

2120572

]

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(52)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198634denote

the absolute difference between the truncated version of (35)and the integrated version

119879 (119902) =

120572 2119887minus1

119861 (119886 119887)

radic2

120587

int

119902

0

(

119909

120579

)

120572

times exp [minus12

(

119909

120579

)

2120572

] 2Φ[(

119909

120579

)

120572

]minus1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(53)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198635denote

the absolute difference between the truncated version of (49)and the integrated version (45) averaged over 119909 = 001 5119886 = 001 10 119887 = 001 10 120572 = 001 10 and 120579 =

001 10We obtain the following estimates after extensive compu-

tations1198631= 231times10

minus201198632= 847times10

minus181198633= 122times10

minus211198634= 151 times 10

minus22 and1198635= 941 times 10

minus19 These estimates aresmall enough to suggest that the truncated versions of (24)(26) (30) (35) and (49) are reasonable practical use

It would be important to verify that each (untruncated)infinite series (such as (24) (26) (30) (35) and (49)) is con-vergent and provide valid values for its arguments Howeverthis will be a difficult mathematical problem that could beinvestigated in future work

Journal of Probability and Statistics 7

5 Properties of the BGHN Order Statistics

Order statistics have been used in a wide range of prob-lems including robust statistical estimation and detectionof outliers characterization of probability distributions andgoodness-of-fit tests entropy estimation analysis of censoredsamples reliability analysis quality control and strength ofmaterials

51 Mixture Form Suppose 1198831 119883

119899is a random sample

of size 119899 from a continuous distribution and let1198831119899

lt 1198832119899

lt

sdot sdot sdot lt 119883119899119899

denote the corresponding order statistics Therehas been a large amount of work relating tomoments of orderstatistics119883

119894119899 See Arnold et al [11] David and Nagaraja [12]

and Ahsanullah and Nevzorov [13] for excellent accounts Itis well known that the density function of119883

119894119899is given by

119891119894119899(119909) =

119891 (119909)

119861 (119894 119899 minus 119894 + 1)

119865(119909)119894minus1

[1 minus 119865 (119909)]119899minus119894

(54)

For the BGHN distribution Pescim et al [3] obtained

119891119894119899(119909) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119891119896119872119896(119909) (55)

where 119872119896denotes a sequence (119898

1 119898

119894+119896minus1) of 119894 + 119896 minus 1

nonnegative integers 119891119896119872119896

(119909) denotes the BGHN(120572 120579 (119894 +119896)119886 + sum

119894+119896minus1

119895=1119898119895 119887) density function defined under 119872

119896and

the constants 120578119896119872119896

are given by

120578119896119872119896

=

(minus1)119896+sum119894+119896minus1

119895=1119898119895(119899minus119894

119896) 119861 (119886 (119894 + 119896)+sum

119894+119896minus1

119895=1119898119895 119887) Γ(119887)

119894+119896minus1

119861(119886 119887)119894+119896

119861 (119894 119899minus 119894+1)prod119894+119896minus1

119895=1Γ (119887minus119898

119895)119898

119895 (119886+119898

119895)

(56)

The quantities 120578119896119872119896

are easily obtained given 119896 and asequence 119872

119896of indices 119898

1 119898

119894+119896minus1 The sums in (55)

extend over all (119894 + 119896)-tuples (1198961198981 119898

119894+119896minus1) and can be

implementable on a computer If 119887 gt 0 is an integer (55)holds but the indices 119898

1 119898

119894+119896minus1vary from zero to 119887 minus 1

Equation (55) reveals that the density function of the BGHNorder statistics can be expressed as an infinite mixture ofBGHN densities

52 Moments of Order Statistics Themoments of the BGHNorder statistics can be written directly in terms of themoments of BGHNdistributions from themixture form (55)We have

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119864 (119883119904

119894119896) (57)

where119883119894119896sim BGHN(120572 120579 (119894 + 119896)119886 + sum119894+119896minus1

119895=1119898119895 119887) and 119864(119883119904

119894119896)

can be determined from (26) Inserting (26) in (57) andchanging indices we can write

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

infin

sum

119902=0

119886⋆V

119904119902

(119902 + 119886⋆)

(58)

where

119886⋆

= (119894 + 119896) 119886 +

119894+119896minus1

sum

119895=1

119898119895 (59)

The moments 119864(119883119904

119894119899) can be determined based on the

explicit sum (58) using the software Mathematica They arealso computed from (55) by numerical integration using thestatistical software R [14] The values from both techniquesare usually close wheninfin is replaced by a moderate numbersuch as 20 in (58) For some values 119886 = 2 119887 = 3 and 119899 = 5Table 1 lists the numerical values for the moments 119864(119883119904

119894119899)

(119904 = 1 4 119894 = 1 5) and for the variance skewness andkurtosis

53 Generating Function The mgf of the BGHN orderstatistics can be written directly in terms of the BGHNmgf rsquosfrom the mixture form (55) and (30) We obtain

119872119894119899(119905) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119872120572120579119886⋆119887(119905) (60)

where119872120572120579119886⋆119887(119905) is the mgf of the BGHN(120572 120579 119886⋆ 119887) distri-

bution obtained from (30)

54 Mean Deviations The mean deviations of the orderstatistics in relation to the mean and the median are definedby

1205751(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 120583

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

1205752(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 119872

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

(61)

respectively where 120583119894= 119864(119883

119894119899) and 119872

119894= Median(119883

119894119899)

denotes the median Here 119872119894is obtained as the solution of

the nonlinear equation119899

sum

119903=119894

(

119899

119903) 119868

2Φ[(119872119894120579)120572]minus1

(119886 119887)

119903

times 1 minus 1198682Φ[(119872

119894120579)120572]minus1

(119886 119887)

119899minus119903

=

1

2

(62)

The measures 1205751(119883

119894119899) and 120575

2(119883

119894119899) follow from

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(63)

where 119869119894(119902) = int

infin

119902

119909119891119894119899(119909)119889119909 Using (55) we have

119869119894(119902) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119894119872119896

119879 (119902) (64)

where 119879(119902) is obtained from (35) using 119886⋆ given by (59) and

119887⋆

119903= 119887

119903(119886

119887) =

1

119861 (119886⋆ 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886

+ 119895 minus 1)

(65)

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

6 Journal of Probability and Statistics

where the cdf of 1198832and the density of 119883

1are obtained from

(6) and (10) as

1198652(119909) =

infin

sum

119895=0

119908119895(119886

2 1198872) 2Φ [(

119909

120579

)

120572

] minus 1

1198862+119895

1198911(119909) = radic

2

120587

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times

infin

sum

119903=0

119887119903(119886

1 1198871) 2Φ [(

119909

120579

)

120572

] minus 1

119903

(46)

respectively where

119908119895(119886

2 1198872) =

(minus1)119895

119861 (1198862 1198872)

(

1198872minus 1

119895)

119887119903(119886

1 1198871) =

infin

sum

119895=0

(minus1)119895

119861 (1198861 1198871)

(

1198871minus 1

119895) 119904

119903(119886

1+ 119895 minus 1)

(47)

refer to1198832and119883

1 respectively Hence

119877 = 120572radic2

120587

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

times int

infin

0

119909minus1

(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

2Φ[(

119909

120579

)

120572

] minus 1

1198862+119895+119903

119889119909

(48)

Setting 119906 = 2Φ[(119909120579)120572

] minus 1 in the last integral the reli-ability of119883 reduces to

119877 =

infin

sum

119895119903=0

119908119895(119886

2 1198872) 119887

119903(119886

1 1198871)

1198862+ 119895 + 119903 + 1

(49)

4 Computational Issues

Here we show the practical use of (24) (26) (30) (35) and(49) If we truncate these infinite power series we have asimple way to compute the quantile function moments mgfmean deviations and reliability of the BGHN distributionThe question is how large the truncation limit should be

We now provide evidence that each infinite summationcan be truncated at twenty to yield sufficient accuracy Let119863

1

denote the absolute difference between the integrated version

1

119861 (119886 119887)

int

2Φ[(119909120579)120572]minus1

0

119905119886minus1

(1 minus 119905)119887minus1

119889119905 = 119880 (50)

where 119880 sim 119880(0 1) is a uniform variate on the unit intervaland the truncated version of (24) averaged over (all with step001) 119909 = 001 5 119886 = 001 10 119887 = 001 10

120572 = 001 10 and 120579 = 001 10 Let 1198632denote the

absolute difference between integrated version

1205831015840

119904=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

119909119904

(

120572

119909

)(

119909

120579

)

120572

119890minus(12)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(51)

and the truncated version of (26) averaged over 119909 =

001 5 119886 = 001 10 119887 = 001 10120572 = 001 10

and 120579 = 001 10 Let 1198633denote the absolute difference

between the truncated version of (30) and the integratedversion

119872120572120579119886119887

(119905)

=

2119887minus1

119861 (119886 119887)

radic2

120587

int

infin

0

(

120572

119909

)(

119909

120579

)

120572

exp [119905119909 minus 1

2

(

119909

120579

)

2120572

]

times 2Φ[(

119909

120579

)

120572

] minus 1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(52)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198634denote

the absolute difference between the truncated version of (35)and the integrated version

119879 (119902) =

120572 2119887minus1

119861 (119886 119887)

radic2

120587

int

119902

0

(

119909

120579

)

120572

times exp [minus12

(

119909

120579

)

2120572

] 2Φ[(

119909

120579

)

120572

]minus1

119886minus1

times 1 minus Φ[(

119909

120579

)

120572

]

119887minus1

119889119909

(53)

averaged over 119909 = 001 5 119886 = 001 10 119887 = 001

10 120572 = 001 10 and 120579 = 001 10 Let 1198635denote

the absolute difference between the truncated version of (49)and the integrated version (45) averaged over 119909 = 001 5119886 = 001 10 119887 = 001 10 120572 = 001 10 and 120579 =

001 10We obtain the following estimates after extensive compu-

tations1198631= 231times10

minus201198632= 847times10

minus181198633= 122times10

minus211198634= 151 times 10

minus22 and1198635= 941 times 10

minus19 These estimates aresmall enough to suggest that the truncated versions of (24)(26) (30) (35) and (49) are reasonable practical use

It would be important to verify that each (untruncated)infinite series (such as (24) (26) (30) (35) and (49)) is con-vergent and provide valid values for its arguments Howeverthis will be a difficult mathematical problem that could beinvestigated in future work

Journal of Probability and Statistics 7

5 Properties of the BGHN Order Statistics

Order statistics have been used in a wide range of prob-lems including robust statistical estimation and detectionof outliers characterization of probability distributions andgoodness-of-fit tests entropy estimation analysis of censoredsamples reliability analysis quality control and strength ofmaterials

51 Mixture Form Suppose 1198831 119883

119899is a random sample

of size 119899 from a continuous distribution and let1198831119899

lt 1198832119899

lt

sdot sdot sdot lt 119883119899119899

denote the corresponding order statistics Therehas been a large amount of work relating tomoments of orderstatistics119883

119894119899 See Arnold et al [11] David and Nagaraja [12]

and Ahsanullah and Nevzorov [13] for excellent accounts Itis well known that the density function of119883

119894119899is given by

119891119894119899(119909) =

119891 (119909)

119861 (119894 119899 minus 119894 + 1)

119865(119909)119894minus1

[1 minus 119865 (119909)]119899minus119894

(54)

For the BGHN distribution Pescim et al [3] obtained

119891119894119899(119909) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119891119896119872119896(119909) (55)

where 119872119896denotes a sequence (119898

1 119898

119894+119896minus1) of 119894 + 119896 minus 1

nonnegative integers 119891119896119872119896

(119909) denotes the BGHN(120572 120579 (119894 +119896)119886 + sum

119894+119896minus1

119895=1119898119895 119887) density function defined under 119872

119896and

the constants 120578119896119872119896

are given by

120578119896119872119896

=

(minus1)119896+sum119894+119896minus1

119895=1119898119895(119899minus119894

119896) 119861 (119886 (119894 + 119896)+sum

119894+119896minus1

119895=1119898119895 119887) Γ(119887)

119894+119896minus1

119861(119886 119887)119894+119896

119861 (119894 119899minus 119894+1)prod119894+119896minus1

119895=1Γ (119887minus119898

119895)119898

119895 (119886+119898

119895)

(56)

The quantities 120578119896119872119896

are easily obtained given 119896 and asequence 119872

119896of indices 119898

1 119898

119894+119896minus1 The sums in (55)

extend over all (119894 + 119896)-tuples (1198961198981 119898

119894+119896minus1) and can be

implementable on a computer If 119887 gt 0 is an integer (55)holds but the indices 119898

1 119898

119894+119896minus1vary from zero to 119887 minus 1

Equation (55) reveals that the density function of the BGHNorder statistics can be expressed as an infinite mixture ofBGHN densities

52 Moments of Order Statistics Themoments of the BGHNorder statistics can be written directly in terms of themoments of BGHNdistributions from themixture form (55)We have

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119864 (119883119904

119894119896) (57)

where119883119894119896sim BGHN(120572 120579 (119894 + 119896)119886 + sum119894+119896minus1

119895=1119898119895 119887) and 119864(119883119904

119894119896)

can be determined from (26) Inserting (26) in (57) andchanging indices we can write

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

infin

sum

119902=0

119886⋆V

119904119902

(119902 + 119886⋆)

(58)

where

119886⋆

= (119894 + 119896) 119886 +

119894+119896minus1

sum

119895=1

119898119895 (59)

The moments 119864(119883119904

119894119899) can be determined based on the

explicit sum (58) using the software Mathematica They arealso computed from (55) by numerical integration using thestatistical software R [14] The values from both techniquesare usually close wheninfin is replaced by a moderate numbersuch as 20 in (58) For some values 119886 = 2 119887 = 3 and 119899 = 5Table 1 lists the numerical values for the moments 119864(119883119904

119894119899)

(119904 = 1 4 119894 = 1 5) and for the variance skewness andkurtosis

53 Generating Function The mgf of the BGHN orderstatistics can be written directly in terms of the BGHNmgf rsquosfrom the mixture form (55) and (30) We obtain

119872119894119899(119905) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119872120572120579119886⋆119887(119905) (60)

where119872120572120579119886⋆119887(119905) is the mgf of the BGHN(120572 120579 119886⋆ 119887) distri-

bution obtained from (30)

54 Mean Deviations The mean deviations of the orderstatistics in relation to the mean and the median are definedby

1205751(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 120583

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

1205752(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 119872

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

(61)

respectively where 120583119894= 119864(119883

119894119899) and 119872

119894= Median(119883

119894119899)

denotes the median Here 119872119894is obtained as the solution of

the nonlinear equation119899

sum

119903=119894

(

119899

119903) 119868

2Φ[(119872119894120579)120572]minus1

(119886 119887)

119903

times 1 minus 1198682Φ[(119872

119894120579)120572]minus1

(119886 119887)

119899minus119903

=

1

2

(62)

The measures 1205751(119883

119894119899) and 120575

2(119883

119894119899) follow from

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(63)

where 119869119894(119902) = int

infin

119902

119909119891119894119899(119909)119889119909 Using (55) we have

119869119894(119902) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119894119872119896

119879 (119902) (64)

where 119879(119902) is obtained from (35) using 119886⋆ given by (59) and

119887⋆

119903= 119887

119903(119886

119887) =

1

119861 (119886⋆ 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886

+ 119895 minus 1)

(65)

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 7

5 Properties of the BGHN Order Statistics

Order statistics have been used in a wide range of prob-lems including robust statistical estimation and detectionof outliers characterization of probability distributions andgoodness-of-fit tests entropy estimation analysis of censoredsamples reliability analysis quality control and strength ofmaterials

51 Mixture Form Suppose 1198831 119883

119899is a random sample

of size 119899 from a continuous distribution and let1198831119899

lt 1198832119899

lt

sdot sdot sdot lt 119883119899119899

denote the corresponding order statistics Therehas been a large amount of work relating tomoments of orderstatistics119883

119894119899 See Arnold et al [11] David and Nagaraja [12]

and Ahsanullah and Nevzorov [13] for excellent accounts Itis well known that the density function of119883

119894119899is given by

119891119894119899(119909) =

119891 (119909)

119861 (119894 119899 minus 119894 + 1)

119865(119909)119894minus1

[1 minus 119865 (119909)]119899minus119894

(54)

For the BGHN distribution Pescim et al [3] obtained

119891119894119899(119909) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119891119896119872119896(119909) (55)

where 119872119896denotes a sequence (119898

1 119898

119894+119896minus1) of 119894 + 119896 minus 1

nonnegative integers 119891119896119872119896

(119909) denotes the BGHN(120572 120579 (119894 +119896)119886 + sum

119894+119896minus1

119895=1119898119895 119887) density function defined under 119872

119896and

the constants 120578119896119872119896

are given by

120578119896119872119896

=

(minus1)119896+sum119894+119896minus1

119895=1119898119895(119899minus119894

119896) 119861 (119886 (119894 + 119896)+sum

119894+119896minus1

119895=1119898119895 119887) Γ(119887)

119894+119896minus1

119861(119886 119887)119894+119896

119861 (119894 119899minus 119894+1)prod119894+119896minus1

119895=1Γ (119887minus119898

119895)119898

119895 (119886+119898

119895)

(56)

The quantities 120578119896119872119896

are easily obtained given 119896 and asequence 119872

119896of indices 119898

1 119898

119894+119896minus1 The sums in (55)

extend over all (119894 + 119896)-tuples (1198961198981 119898

119894+119896minus1) and can be

implementable on a computer If 119887 gt 0 is an integer (55)holds but the indices 119898

1 119898

119894+119896minus1vary from zero to 119887 minus 1

Equation (55) reveals that the density function of the BGHNorder statistics can be expressed as an infinite mixture ofBGHN densities

52 Moments of Order Statistics Themoments of the BGHNorder statistics can be written directly in terms of themoments of BGHNdistributions from themixture form (55)We have

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119864 (119883119904

119894119896) (57)

where119883119894119896sim BGHN(120572 120579 (119894 + 119896)119886 + sum119894+119896minus1

119895=1119898119895 119887) and 119864(119883119904

119894119896)

can be determined from (26) Inserting (26) in (57) andchanging indices we can write

119864 (119883119904

119894119899) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

infin

sum

119902=0

119886⋆V

119904119902

(119902 + 119886⋆)

(58)

where

119886⋆

= (119894 + 119896) 119886 +

119894+119896minus1

sum

119895=1

119898119895 (59)

The moments 119864(119883119904

119894119899) can be determined based on the

explicit sum (58) using the software Mathematica They arealso computed from (55) by numerical integration using thestatistical software R [14] The values from both techniquesare usually close wheninfin is replaced by a moderate numbersuch as 20 in (58) For some values 119886 = 2 119887 = 3 and 119899 = 5Table 1 lists the numerical values for the moments 119864(119883119904

119894119899)

(119904 = 1 4 119894 = 1 5) and for the variance skewness andkurtosis

53 Generating Function The mgf of the BGHN orderstatistics can be written directly in terms of the BGHNmgf rsquosfrom the mixture form (55) and (30) We obtain

119872119894119899(119905) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119896119872119896

119872120572120579119886⋆119887(119905) (60)

where119872120572120579119886⋆119887(119905) is the mgf of the BGHN(120572 120579 119886⋆ 119887) distri-

bution obtained from (30)

54 Mean Deviations The mean deviations of the orderstatistics in relation to the mean and the median are definedby

1205751(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 120583

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

1205752(119883

119894119899) = int

infin

0

1003816100381610038161003816119909 minus 119872

119894

1003816100381610038161003816119891119894119899(119909) 119889119909

(61)

respectively where 120583119894= 119864(119883

119894119899) and 119872

119894= Median(119883

119894119899)

denotes the median Here 119872119894is obtained as the solution of

the nonlinear equation119899

sum

119903=119894

(

119899

119903) 119868

2Φ[(119872119894120579)120572]minus1

(119886 119887)

119903

times 1 minus 1198682Φ[(119872

119894120579)120572]minus1

(119886 119887)

119899minus119903

=

1

2

(62)

The measures 1205751(119883

119894119899) and 120575

2(119883

119894119899) follow from

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(63)

where 119869119894(119902) = int

infin

119902

119909119891119894119899(119909)119889119909 Using (55) we have

119869119894(119902) =

119899minus119894

sum

119896=0

infin

sum

1198981=0

sdot sdot sdot

infin

sum

119898119894+119896minus1

=0

120578119894119872119896

119879 (119902) (64)

where 119879(119902) is obtained from (35) using 119886⋆ given by (59) and

119887⋆

119903= 119887

119903(119886

119887) =

1

119861 (119886⋆ 119887)

infin

sum

119895=0

(minus1)119895

(

119887 minus 1

119895) 119904

119903(119886

+ 119895 minus 1)

(65)

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

8 Journal of Probability and Statistics

Table 1 Moments of the BGHN order statistics for 120579 = 85 120572 = 3 119886 = 2 and 119887 = 3

Order statistics rarr 1198831 5

1198832 5

1198833 5

1198834 5

1198835 5

119904 = 1 267942 581946 473975 171571 023289119904 = 2 1810007 3931172 3201807 1159006 157328119904 = 3 1278683 2777184 2261923 8187821 1111451119904 = 4 938314 2037933 1659828 6008327 8155966Variance 1092078 544561 955281 864636 151904Skewness 057767 minus113596 minus054601 127135 536291Kurtosis 161751 406406 189737 291095 3107642

where

119904119903(119886

+ 119895 minus 1) =

infin

sum

119896=119903

(minus1)119903+119896

119886⋆+ 119895

(

119886⋆

+ 119895 minus 1

119896)(

119896

119903) (66)

Bonferroni and Lorenz curves of the order statistics aregiven by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(67)

respectively where 119902 = 119865minus1

119894119899(120588) for a given probability 120588 From

int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus 119869

119894(120588) we obtain

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(68)

55 Renyi Entropy The Renyi entropy of the order statisticsis defined by

120485119877(120582) =

1

1 minus 120582

log [119867 (120582)] (69)

where 119867(120582) = int119891120582

119894119899(119909)119889119909 120582 gt 0 and 120582 = 1 From (54) it

follows that

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

int

infin

0

119891120582

(119909)

times [119865 (119909)]120582(119894minus1)

[1minus119865 (119909)]120582(119899minus119894)

119889119909

(70)

Using (40) in (70) we obtain

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

infin

sum

1198961=0

(minus1)1198961(

120582 (119894 minus 1)

1198961

)

times int

infin

0

119891120582

(119909) [119865 (119909)]120582(119894minus1)+119896

1119889119909

(71)

For 120582 gt 0 and 120582 = 1 we can expand [119865(119909)]120582(119894minus1)+1198961 as

119865(119909)120582(119894minus1)+119896

1= 1 minus [1 minus 119865 (119909)]

120582(119894minus1)+1198961

=

infin

sum

1199011=0

(minus1)1199011(

120582 (119894 minus 1) + 1198961+ 1

1199011

) [1 minus 119865 (119909)]1199011

(72)

and then

119865(119909)120582(119894minus1)+119896

1=

infin

sum

1199011=0

1199011

sum

1198971=0

(minus1)1199011+1198971

times (

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)119865(119909)1198971

(73)

Hence from (70) we can write

119867(120582) =

1

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

(minus1)1198961+1199011+1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

times int

infin

0

119891120582

(119909) 119865(119909)1198971119889119909

(74)

By replacing 119891(119909) and 119865(119909) by (10) and (16) given by Pescimet al [3] we obtain

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

[Γ (119887)]1198971(minus1)

1198961+1199011+1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 9

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

120582(119886minus1)

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

times[

[

infin

sum

119895=0

(minus1)119895

2Φ [(119909120579)120572

] minus 1119895

Γ (119887 minus 119895) 119895 (119886 + 119895)

]

]

1198971

119889119909

(75)

Using the identity (suminfin

119894=0119886119894)119896

= suminfin

1198981119898119896=0

1198861198981

sdot sdot sdot 119886119898119896

(for119896 positive integer) in (4) we have

119867(120582) =

2120582(119887minus1)

[120572 (radic2120587)]

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times int

infin

0

119909minus120582

(

119909

120579

)

120572120582

119890minus(1205822)(119909120579)

2120572

times 2Φ[(

119909

120579

)

120572

] minus 1

119886(120582+1198971)minus120582+sum

1198971

119895=1119898119895

times 1 minus Φ[(

119909

120579

)

120572

]

120582(119887minus1)

119889119909

(76)

where

119888119896111990111198971(119886 119887) =

(minus1)1198961+1199011+1198971[Γ (119887)]

1198971

[119861 (119886 119887)]1198971

times (

120582 (119894 minus 1)

1198961

)(

120582 (119894 minus 1) + 1198961+ 1

1199011

)(

1199011

1198971

)

(77)Using the power series (40) in (76) twice and replacing Φ(119909)by the error function erf(119909) (defined in Section 32) we obtainafter some algebra

119867(120582) =

120572120582minus1

1205791minus120582

2[120582(119887minus1)+(120582(120572minus1)+1)2120572minus1]

(radic2120587)

120582

[119861 (119894 119899 minus 119894 + 1)]120582

times

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ (119887 minus 119898

119895)119898

119895 (119886 + 119898

119895)

times

infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

times

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

(minus1)1198981+sdotsdotsdot+119898

1199041

(21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)1198981 sdot sdot sdot 119898

1199041

times 120582minus[1198981+sdotsdotsdot+119898

1199041+11990412+(120582(120572minus1)+1)2120572]

timesΓ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572minus1) +1

2120572

)

(78)where the quantity 119889

119903119904119905is well defined by Pescim et al [3]

(More details see equation (30) in [3])Finally the entropy of the order statistics can be expressed

as120485119877(120582) = (1 minus 120582)

minus1

times

(120582 minus 1) log (120572) + (1 minus 120582) log (120579)

+ [120582 (119887 minus 1) +

120582 (120572 minus 1) + 1

2120572

minus 1] log (2)

+ 120582 log(radic 2

120587

) minus 120582 log [119861 (119894 119899 minus 119894 + 1)]

+ log[

[

infin

sum

11989611199011=0

1199011

sum

1198971=0

119888119896111990111198971(119886 119887)

]

]

+log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981198971=0

(minus1)1198981+sdotsdotsdot+119898

1198971

prod1198971

119895=1Γ(119887minus119898

119895)119898

119895 (119886+119898

119895)

]

]

+ log(infin

sum

11990311199041=0

1199041

sum

V1=0

11988911990311199041V1

)

+ log[

[

infin

sum

1198981=0

sdot sdot sdot

infin

sum

1198981199041=0

((minus1)1198981+sdotsdotsdot+119898

1199041 )

times ( (21198981+ 1) sdot sdot sdot (2119898

1199041

+ 1)

times 1198981 sdot sdot sdot 119898

1199041

)

minus1

]

]

minus [1198981+ sdot sdot sdot + 119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

] log (120582)

+ log [Γ(1198981+sdot sdot sdot+119898

1199041

+

1199041

2

+

120582 (120572 minus 1) + 1

2120572

)]

(79)Equation (79) is the main result of this section

An alternative expansion for the density function of theorder statistics derived from the identity (20) was proposedby Pescim et al [3] A second density function representationand alternative expressions for some measures of the orderstatistics are given in Appendix A

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

10 Journal of Probability and Statistics

6 Lifetime Analysis

Let 119883119894be a random variable having density function (4)

where 120596 = (120572 120579 119886 119887)119879 is the vector of parameters The data

encountered in survival analysis and reliability studies areoften censored A very simple random censoring mechanismthat is often realistic is one in which each individual 119894 isassumed to have a lifetime 119883

119894and a censoring time 119862

119894

where119883119894and 119862

119894are independent random variables Suppose

that the data consist of 119899 independent observations 119909119894=

min(119883119894 119862

119894) for 119894 = 1 119899 The distribution of 119862

119894does not

depend on any of the unknown parameters of the distributionof 119883

119894 Parametric inference for such data are usually based

on likelihood methods and their asymptotic theory Thecensored log-likelihood 119897(120596) for the model parameters is

119897 (120596) = 119903 log(radic 2

120587

) +sum

119894isin119865

log( 120572

119909119894

) + 120572sum

119894isin119865

log(119909119894

120579

)

minus

1

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+ 119903 (119887 minus 1) log (2) minus 119903 log [119861 (119886 119887)]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)

(80)

where 119903 is the number of failures and 119865 and 119862 denote theuncensored and censored sets of observations respectively

The score functions for the parameters 120572 120579 119886 and 119887 aregiven by

119880120572(120596) =

119903

2

+ sum

119894isin119865

log(119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894log (119909

119894120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880120579(120596) = minus119903 (

120572

120579

) + (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

timessum

119894isin119865

V119894(120572120579)

119875 (119909119894)

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus 2119887minus1

sum

119894isin119862

V119894(120572120579) [119875 (119909

119894)]119886minus1

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

119880119886(120596) = 119903 [120595 (119886 + 119887) minus 120595 (119886)] + sum

119894isin119865

log [119875 (119909119894)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119886

[1 minus 119876 (119909119894)]

119880119887(120596) = 119903 log (2) + 119903 [120595 (119886 + 119887) minus 120595 (119887)]

+ sum

119894isin119865

log 119863 (119909119894) minus sum

119894isin119862

119868119875(119909119894)(119886 119887)|

119887

[1 minus 119876 (119909119894)]

(81)

where

V119894=exp [minus1

2

(

119909119894

120579

)

2120572

] (

119909119894

120579

)

120572

119875 (119909119894)=2Φ [(

119909119894

120579

)

120572

]minus1

119863 (119909119894) = 1 minus Φ[(

119909119894

120579

)

120572

] 119876 (119909119894) = 119868

2Φ[(119909119894120579)120572]minus1

(119886 119887)

119868119875(119909119894)(119886 119887)|

119886=

120597

120597119886

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

119868119875(119909119894)(119886 119887)|

119887=

120597

120597119887

[

1

119861 (119886 119887)

int

119875(119909119894)

0

119908119886minus1

(1 minus 119908)119887minus1

119889119908]

(82)

and 120595(sdot) is the digamma functionThe maximum likelihood estimate (MLE) of 120596 is

obtained by solving numerically the nonlinear equations119880120572(120596) = 0 119880

120579(120596) = 0 119880

119886(120596) = 0 and 119880

119887(120596) = 0 We can

use iterative techniques such as the Newton-Raphson typealgorithm to obtain the estimate We employ the subroutineNLMixed in SAS [15]

For interval estimation of (120572 120579 119886 119887) and tests of hypothe-ses on these parameters we obtain the observed informationmatrix since the expected information matrix is very com-plicated and will require numerical integration The 4 times 4

observed information matrix J(120596) is

J (120596) = minus(

L120572120572

L120572120579

L120572119886

L120572119887

sdot L120579120579

L120579119886

L120579119887

sdot sdot L119886119886

L119886119887

sdot sdot sdot L119887119887

) (83)

whose elements are given in Appendix BUnder conditions that are fulfilled for parameters in the

interior of the parameter space but not on the boundarythe asymptotic distribution of radic119899( minus 120596) is 119873

4(0K(120596)minus1)

where K(120596) is the expected information matrix The normalapproximation is valid if K(120596) is replaced by J() that is theobserved informationmatrix evaluated at Themultivariatenormal 119873

4(0 J()minus1) distribution can be used to construct

approximate confidence intervals for the model parametersThe likelihood ratio (LR) statistic can be used for testing thegoodness of fit of the BGHN distribution and for comparingthis distribution with some of its special submodels

We can compute the maximum values of the unrestrictedand restricted log-likelihoods to construct LR statistics fortesting some submodels of the BGHN distribution For

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 11

example we may use the LR statistic to check if the fit usingthe BGHN distribution is statistically ldquosuperiorrdquo to a fit usingthe modified Weibull or exponentiated Weibull distributionfor a given data set In any case hypothesis testing of the type1198670 120596 = 120596

0versus 119867 120596 =120596

0can be performed using LR

statistics For example the test of1198670 119887 = 1 versus119867 119887 = 1 is

equivalent to compare the EGHN and BGHN distributionsIn this case the LR statistic becomes 119908 = 2119897(

120579 119886

119887) minus

119897(120579 119886 1) where 120579 119886 and119887 are theMLEs under119867 and

120579 and 119886 are the estimates under119867

0 We emphasize that first-

order asymptotic results for LR statistics can be misleadingfor small sample sizes Future research can be conducted toderive analytical or bootstrap Bartlett corrections

7 A BGHN Model for Survival Data withLong-Term Survivors

In population based cancer studies cure is said to occur whenthe mortality in the group of cancer patients returns to thesame level as that expected in the general population Thecure fraction is of interest to patients and also a useful mea-surewhen analyzing trends in cancer patient survivalModelsfor survival analysis typically assume that every subject inthe study population is susceptible to the event under studyand will eventually experience such event if the follow-up issufficiently long However there are situations when a frac-tion of individuals are not expected to experience the event ofinterest that is those individuals are cured or not susceptibleFor example researchers may be interested in analyzing therecurrence of a disease Many individuals may never expe-rience a recurrence therefore a cured fraction of the pop-ulation exists Cure rate models have been used to estimatethe cured fraction These models are survival models whichallow for a cured fraction of individualsThesemodels extendthe understanding of time-to-event data by allowing for theformulation of more accurate and informative conclusionsThese conclusions are otherwise unobtainable from an analy-sis which fails to account for a cured or insusceptible fractionof the population If a cured component is not present theanalysis reduces to standard approaches of survival analysisCure rate models have been used for modeling time-to-eventdata for various types of cancers including breast cancernon-Hodgkins lymphoma leukemia prostate cancer andmelanoma Perhaps themost popular type of cure ratemodelsis the mixture model introduced by Berkson and Gage [16]and Maller and Zhou [17] In this model the population isdivided into two sub-populations so that an individual eitheris cured with probability 119901 or has a proper survival function119878(119909)with probability 1minus119901This gives an improper populationsurvivor function 119878lowast(119909) in the form of the mixture namely

119878lowast

(119909) = 119901 + (1 minus 119901) 119878 (119909) 119878 (infin) = 0 119878lowast

(infin) = 119901

(84)

Common choices for 119878(119909) in (84) are the exponential andWeibull distributions Here we adopt the BGHN distribu-tion Mixture models involving these distributions have beenstudied by several authors including Farewell [18] Sy andTaylor [19] and Ortega et al [20] The book by Maller and

Zhou [17] provides a wide range of applications of the long-term survivor mixture model The use of survival modelswith a cure fraction has become more and more frequentbecause traditional survival analysis do not allow for model-ing data in which nonhomogeneous parts of the populationdo not represent the event of interest even after a long follow-up Now we propose an application of the BGHN distribu-tion to compose a mixture model for cure rate estimationConsider a sample 119909

1 119909

119899 where 119909

119894is either the observed

lifetime or censoring time for the 119894th individual Let a binaryrandom variable 119911

119894 for 119894 = 1 119899 indicating that the 119894th

individual in a population is at risk or not with respect toa certain type of failure that is 119911

119894= 1 indicates that the

119894th individual will eventually experience a failure event(uncured) and 119911

119894= 0 indicates that the individual will never

experience such event (cured)For an individual the proportion of uncured 1minus119901 can be

specified such that the conditional distribution of 119911 is given byPr(119911

119894= 1) = 1minus119901 Suppose that the119883

119894rsquos are independent and

identically distributed random variables having the BGHNdistribution with density function (4)

The maximum likelihood method is used to estimate theparametersThus the contribution of an individual that failedat 119909

119894to the likelihood function is given by

(1 minus 119901) 2119887minus1

radic2120587 (120572119909119894) (119909

119894120579)

120572 exp [minus (12) (119909119894120579)

2120572

]

119861 (119886 119887)

times 2Φ [(

119909119894

120579

)

120572

] minus 1

119886minus1

1 minus Φ[(

119909119894

120579

)

120572

]

119887minus1

(85)

and the contribution of an individual that is at risk at time 119909119894

is

119901 + (1 minus 119901) 1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887) (86)

The new model defined by (85) and (86) is called the BGHNmixture model with long-term survivors For 119886 = 119887 = 1 weobtain the GHN mixture model (a new model) with long-term survivors

Thus the log-likelihood function for the parameter vector120579 = (119901 120572 120579 119886 119887)

119879 follows from (85) and (86) as

119897 (120579) = 119903 log[(1 minus 119901) 2

119887minus1radic2120587

119861 (119886 119887)

] + sum

119894isin119865

log( 120572

119909119894

)

+ 120572sum

119894isin119865

(

119909119894

120579

) minus

1

2

sum

119894isin119865

log [(119909119894

120579

)

2120572

]

+ (119886 minus 1)sum

119894isin119865

log 2Φ[(

119909119894

120579

)

120572

] minus 1

+ (119887 minus 1)sum

119894isin119865

log 1 minus Φ[(

119909119894

120579

)

120572

]

+ sum

119894isin119862

log 119901 + (1 minus 119901) [1 minus 1198682Φ[(119909

119894120579)120572]minus1

(119886 119887)]

(87)

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

12 Journal of Probability and Statistics

where119865 and119862denote the sets of individuals corresponding tolifetime observations and censoring times respectively and 119903is the number of uncensored observations (failures)

8 Applications

In this section we give four applications using well-knowndata sets (three with censoring and one uncensored data set)to demonstrate the flexibility and applicability of the pro-posed model The reason for choosing these data is that theyallow us to show how in different fields it is necessary to havepositively skewed distributions with nonnegative supportThese data sets present different degrees of skewness and kur-tosis

81 Censored Data Transistors The first data set consists ofthe lifetimes of 119899 = 34 transistors in an accelerated life testThree of the lifetimes are censored so the censoring fractionis 334 (or 88) Wilk et al [21] stated that ldquothere is reasonfrom past experience to expect that the gamma distributionmight reasonably approximate the failure time distributionrdquoWilk et al [21] and also Lawless [22] fitted a gammadistribution Alternatively we fit the BGHN model to thesedata We estimate the parameters 120572 120579 119886 and 119887 by maximumlikelihood The MLEs of 120572 and 120579 for the GHN distributionare taken as starting values for the iterative procedure Thecomputations were performed using the NLMixed procedurein SAS [15] Table 2 lists the MLEs (and the correspondingstandard errors in parentheses) of the model parameters andthe values of the following statistics for some models AkaikeInformationCriterion (AIC) Bayesian InformationCriterion(BIC) and Consistent Akaike Information Criterion (CAIC)The results indicate that the BGHNmodel has the lowest AICBIC and CAIC values and therefore it could be chosen asthe best model Further we calculate the maximum unre-stricted and restricted log-likelihoods and the LR statisticsfor testing some submodels For example the LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHNmodels is 119908 =

2minus1201 minus (minus1260) = 118 (119875 value =00027) which givesfavorable indication towards the BGHNmodel In special theWeibull density function is given by

119891 (119909) =

120574

120582120574119909120574minus1 exp [minus(119909

120582

)

120574

] 119909 120582 120574 gt 0 (88)

Figure 1(a) displays plots of the empirical survival functionand the estimated survival functions of the BGHN GHNandWeibull distributions We obtain a good fit of the BGHNmodel to these data

82 Censored Data Radiotherapy The data refer to thesurvival time (days) for cancer patients (119899 = 51) undergoingradiotherapy [23] The percentage of censored observationswas 1765 Fitting the BGHN distribution to these data weobtain the MLEs of the model parameters listed in Table 3The values of the AIC CAIC and BIC statistics are smallerfor the BGHN distribution as compared to those values ofthe GHN and Weibull distributions The LR statistic fortesting the hypotheses 119867

0 119886 = 119887 = 1 versus 119867

1 119867

0is not

true that is to compare the BGHN and GHN models is119908 = 2minus2933 minus (minus2994) = 122 (119875 value =00022) whichyields favorable indication towards the BGHN distributionThus this distribution seems to be a very competitive modelfor lifetime data analysis Figure 1(b) displays the plots ofthe empirical survival function and the estimated survivalfunctions for the BGHN GHN and Weibull distributionsWe note a good fit of the BGHN distribution

83 Uncensored Data USS Halfbeak Diesel Engine Herewe compare the fits of the BGHN GHN and Weibulldistributions to the data set presented byAscher and Feingold[24] from a USS Halfbeak (submarine) diesel engine Thedata denote 73 failure times (in hours) of unscheduledmaintenance actions for the USS Halfbeak number 4 mainpropulsion diesel engine over 25518 operating hours Table4 gives the MLEs of the model parameters The values ofthe AIC CAIC and BIC statistics are smaller for the BGHNdistribution when compared to those values of the GHNand Weibull distributions The LR statistic for testing thehypotheses119867

0 119886 = 119887 = 1 versus119867

1119867

0is not true that is to

compare the BGHN and GHN models is 119908 = 2minus1961 minus

(minus2172) = 421 (119875 value lt00001) which indicates thatthe first distribution is superior to the second in termsof model fitting Figure 1(c) displays plots of the empiricalsurvival function and the estimated survival function of theBGHN GHN and Weibull distributions In fact the BGHNdistribution provides a better fit to these data

84 Melanoma Data with Long-Term Survivors In this sec-tion we provide an application of the BGHN model tocancer recurrence The data are part of a study on cutaneousmelanoma (a type of malignant cancer) for the evaluationof postoperative treatment performance with a high doseof a certain drug (interferon alfa-2b) in order to preventrecurrence Patients were included in the study from 1991to 1995 and follow-up was conducted until 1998 The datawere collected by Ibrahim et al [25] The survival time 119879is defined as the time until the patientrsquos death The originalsample size was 119899 = 427 patients 10 of whom did not presenta value for explanatory variable tumor thickness When suchcases were removed a sample of size 119899 = 417 patients wasretained The percentage of censored observations was 56Table 5 lists the MLEs of the model parametersThe values ofthe AIC CAIC and BIC statistics are smaller for the BGHNmixture model when compared to those values of the GHNmixturemodelThe LR statistic for testing the hypotheses119867

0

119886 = 119887 = 1 versus 1198671 119867

0is not true that is to compare the

BGHN and GHNmixture models becomes119908 = 2minus52475minus

(minus53405) = 186 (119875 value lt00001) which indicates thatthe BGHN mixture model is superior to the GHN mixturemodel in terms of model fitting Figure 2 provides plots ofthe empirical survival function and the estimated survivalfunctions of the BGHN and GHN mixture models Notethat the cured proportion estimated by the BGHN mixturemodel (119901BGHN = 04871) is more appropriate than that oneestimated by the GHN mixture model (119901GHN = 05150)Further the BGHN mixture model provides a better fit tothese data

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 13

0 10 50403020

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

x

S(x)

(a)

0 140012001000800600400200

Kaplan-MeierGHN

BGHNWeibull

10

08

06

04

02

00

S(x)

x

(b)

0 252015105

10

08

06

04

02

00

S(x)

x

Kaplan-MeierGHN

BGHNWeibull

(c)

Figure 1 Estimated survival function for the BGHN GHN andWeibull distributions and the empirical survival (a) for transistors data (b)for radiotherapy data and (c) USS Halfbeak diesel engine data

Table 2 MLEs of the model parameters for the transistors data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00479 (00062) 193753 (28892) 40087 (04000) 19213 (02480) 2482 2496 2543GHN 09223 (01361) 257408 (38627) 1 (mdash) 1 (mdash) 2560 2564 2591

120582 120574

Weibull 207819 (28215) 13414 (01721) 2634 2678 2704

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 14: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

14 Journal of Probability and Statistics

Table 3 MLEs of the model parameters for the radiotherapy data the corresponding SEs (given in parentheses) and the AIC CAIC andBIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 00456 (00051) 54040 (10819) 22366 (04313) 11238 (01560) 5946 5955 6023GHN 07074 (00879) 53345 (886917) 1 (mdash) 1 (mdash) 6028 6031 6067

120582 120574

Weibull 36176 (524678) 10239 (01062) 7057 7060 7096

Table 4 MLEs of the model parameters for the USS Halfbeak diesel engine data the corresponding SEs (given in parentheses) and the AICCAIC and BIC statistics

Model 120572 120579 119886 119887 AIC CAIC BICBGHN 70649 (00027) 189581 (00027) 02368 (00416) 01015 (00134) 4002 4016 4093GHN 38208 (04150) 218838 (04969) 1 (mdash) 1 (mdash) 4384 4390 4429

120582 120574

Weibull 211972 (06034) 42716 (04627) 4555 4561 4601

Table 5 MLEs of the model parameters for the melanoma data the corresponding SEs (given in parentheses) and the AIC CAIC and BICstatistics

Model 119901 120572 120579 119886 119887 AIC CAIC BICBGHNMixture 04871 (00349) 02579 (00197) 548258 (172126) 194970 (10753) 409300 (22931) 10595 10596 10796GHNMixture 05150 (00279) 12553 (00799) 25090 (01475) 1 (mdash) 1 (mdash) 10741 10742 10862

9 Concluding Remarks

In this paper we discuss somemathematical properties of thebeta generalized half normal (BGHN) distribution introducedrecently by Pescim et al [3] The incorporation of additionalparameters provides a very flexible model We derive apower series expansion for the BGHN quantile function Weprovide some new structural properties such as momentsgenerating function mean deviations Renyi entropy andreliability We investigate properties of the order statisticsThe method of maximum likelihood is used for estimatingthe model parameters for uncensored and censored data Wealso propose a BGHNmodel for survival data with long-termsurvivors Applications to four real data sets indicate that theBGHN model provides a flexible alternative to (and a betterfit than) some classical lifetimes models

Appendices

A Appendix A

Here we derive some properties of the BGHNorder statisticsUsing the identity in Gradshteyn and Ryzhik [5] and aftersome algebraic manipulations we obtain an alternative formfor the density function of the 119894th order statistic namely

119891119894119899(119909)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 [119886 (119894 + 119896) + 119895 119887] 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 1 + 119894)

times 119891119894119895119896

(119909)

(A1)

Kaplan-MeierGHN mixtureBGHN mixture

10

09

08

07

06

05

04

0 2 4 6 8

P = 04871

S(x)

x

Figure 2 Estimated survival functions for the BGHN and GHNmixture models and the empirical survival for the melanoma data

where 119891119894119895119896

(119909) denotes the density of the BGHN (120572 120579 119886(119894 +

119896) + 119895 119887) distribution and the quantity 119889119894119895119896

is defined byPescim et al [3]

From (A1) we obtain alternative expressions for themoments and mgf of the BGHN order statistics given by

119864 (119883119904

119894119899)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119864 (119883119904

119894119895119896)

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 15: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 15

119872119894119899(119905)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times119872120572120579119886119887

(119905)

(A2)

The mean deviations of the order statistics in relation tothe mean and to the median can be expressed as

1205751(119883

119894119899) = 2120583

119894119865119894119899(120583

119894) minus 2120583

119894+ 2119869

119894(120583

119894)

1205752(119883

119894119899) = 2119869

119894(119872

119894) minus 120583

119894

(A3)

respectively where 120583119894= 119864(119883

119894119899) 120583

119894= Median(119883

119894119899) and 119869

119894(119902)

are defined in Section 54 We use (A1) to obtain 119869119894(119902)

119869119894(119902)

=

119899minus119894

sum

119896=0

infin

sum

119895=0

(minus1)119896

(119899minus119894

119896) Γ(119887)

119894+119896minus1

119861 (119886 (119894 + 119896) + 119895 119887) 119889119894119895119896

119861(119886 119887)119894+119896

119861 (119894 119899 minus 119894 + 1)

times 119879 (119902)

(A4)

where 119879(119902) comes from (35)Bonferroni and Lorenz curves of the order statistic are

defined in Section 54 by

119861119894119899(120588) =

1

120588120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

119871119894119899(120588) =

1

120583119894

int

119902

0

119909119891119894119899(119909) 119889119909

(A5)

respectively where 119902 = 119865minus1

119894119899(120588) From int

119902

0

119909119891119894119899(119909)119889119909 = 120583

119894minus

119869119894(120588) these curves also can be expressed as

119861119894119899(120588) =

1

120588

minus

119869119894(120588)

120588120583119894

119871119894119899(120588) = 1 minus

119869119894(120588)

120583119894

(A6)

Using (A4) we obtain the Bonferroni and Lorenz curves forthe BGHN order statistics

B Appendix B

Here we give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function Aftersome algebraic manipulations we obtain

L120572120572

= 2sum

119894isin119865

(

119909119894

120579

)

2120572

log2 (119909119894

120579

) +

2 (119886 minus 1)

radic2120587

times

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894log (119909

119894120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus1

)times([1minus119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

)

times ([1 minus 119876 (119909119894)])

minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

]

times [119875(119909119894)]119886minus1

[119863 (119909119894)]

119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

[ (V119894log(

119909119894

120579

) [119875 (119909119894)](119886minus1)

times [119863 (119909119894)](119887minus1)

) times (1 minus 119876 (119909119894))

minus1

]

2

L120572120579= minus

119903

120579

+ 2 (

120572

120579

)sum

119894isin119865

(

119909119894

120579

)

2120572

log(119909119894

120579

) +

1

120579

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log2 (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 16: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

16 Journal of Probability and Statistics

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579) [1 minus (119909

119894120579)

2120572

] + V119894120579

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894log2 (

119909119894

120579

) [1 minus (

119909119894

120579

)

2120572

] +

V119894

120579

times [119875 (119909119894)]119886minus1

[119863 (119909119894)]

119887minus1

)times(1minus119876 (119909119894))minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus2

times [119863 (119909119894)]119887minus1

)

times (1 minus 119876 (119909119894))minus1

+

(1 minus 119887)

radic120587

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus2

)

times ([1 minus 119876 (119909119894)])

minus1

+ 2119887minus1

sum

119894isin119862

(V2119894(

120572

120579

) log(119909119894

120579

) [119875 (119909119894)]2(119886minus1)

times [119863 (119909119894)]2(119887minus1)

)

times([1 minus 119876 (119909119894)]2

)

minus1

L120572119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894log (119909

119894120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119886V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120572119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894log (119909

119894120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120572

[1 minus 119876 (119909119894)]

minus 2119887minus1

sum

119894isin119862

( 119868119875(119909119894)(119886 119887) |

119887V119894log(

119909119894

120579

) [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)]2

)

minus1

L120579120579= 119903 (

120572

1205792) minus

120572

1205792sum

119894isin119865

(

119909119894

120579

)

2120572

minus 2(

120572

120579

)

2

sum

119894isin119865

(

119909119894

120579

)

2120572

+

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119875 (119909119894)

minus

2

radic2120587

sum

119894isin119865

[

V119894(120572120579)

119875 (119909119894)

]

2

+

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579) [(119909

119894120579)

2120572

minus 1120579 minus 1]

119863 (119909119894)

+

1

radic120587

sum

119894isin119865

[

V119894(120572120579)

119863 (119909119894)

]

2

minus 2119887minus1

sum

119894isin119862

(V119894(

120572

120579

) [(

119909119894

120579

)

2120572

minus

1

120579

minus 1] [119875 (119909119894)]119886minus1

times [119863 (119909119894)]119887minus1

) times ([1 minus 119876 (119909119894)])

minus1

+

2 (119886 minus 1)

radic2120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus2

[119863 (119909119894)]119887minus1

[1 minus 119876 (119909119894)]

+

(1 minus 119887)

radic120587

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]119886minus1

[119863 (119909119894)]119887minus2

[1 minus 119876 (119909119894)]

+2119887minus1

sum

119894isin119862

V2119894(120572120579)

2

[119875 (119909119894)]2(119886minus1)

[119863 (119909119894)]2(119887minus1)

[1 minus 119876 (119909119894)]2

L120579119886=

2 (119886 minus 1)

radic2120587

sum

119894isin119865

V119894(120572120579)

119875 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886120579

[1 minus 119876 (119909119894)]

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

L120579119887=

(1 minus 119887)

radic120587

sum

119894isin119865

V119894(120572120579)

119863 (119909119894)

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887120579

1 minus 119876 (119909119894)

2119887minus1

times sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887V119894(120572120579) [119875 (119909

119894)](119886minus1)

[119863 (119909119894)](119887minus1)

[1 minus 119876 (119909119894)]2

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 17: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Journal of Probability and Statistics 17

L119886119886= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119886)] minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119886

1 minus 119876 (119909119894)

]

2

L119886119887= 119903120595

1015840

(119886 + 119887) minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119886119887

1 minus 119876 (119909119894)

minus sum

119894isin119862

[ 119868119875(119909119894)(119886 119887) |

119886] [ 119868

119875(119909119894)(119886 119887) |

119887]

[1 minus 119876 (119909119894)]2

L119887119887= 119903 [120595

1015840

(119886 + 119887) minus 1205951015840

(119887)]

minus sum

119894isin119862

119868119875(119909119894)(119886 119887) |

119887

[1 minus 119876 (119909119894)]

minus sum

119894isin119862

[

119868119875(119909119894)(119886 119887) |

119887

1 minus 119876 (119909119894)

]

2

(B1)

where

119868119875(119909119894)(119886 119887) |

119886120572=

1205972

120597119886120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120572=

1205972

120597119887120597120572

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886120579=

1205972

120597119886120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119887120579=

1205972

120597119887120597120579

[119876 (119909119894)]

119868119875(119909119894)(119886 119887) |

119886=

1205972

1205971198862[119876 (119909

119894)]

119868119875(119909119894)(119886 119887) |

119887=

1205972

1205971198872[119876 (119909

119894)]

(B2)

Acknowledgments

The authors would like to thank the editor the associateeditor and the referees for carefully reading the paper andfor their comments which greatly improved the paper

References

[1] K Cooray and M M A Ananda ldquoA generalization of the half-normal distribution with applications to lifetime datardquo Com-munications in Statistics Theory and Methods vol 37 no 8-10pp 1323ndash1337 2008

[2] N Eugene C Lee and F Famoye ldquoBeta-normal distributionand its applicationsrdquo Communications in Statistics Theory andMethods vol 31 no 4 pp 497ndash512 2002

[3] R R Pescim C G B Demetrio G M Cordeiro E M MOrtega and M R Urbano ldquoThe beta generalized half-normal

distributionrdquo Computational Statistics amp Data Analysis vol 54no 4 pp 945ndash957 2010

[4] G Steinbrecher ldquoTaylor expansion for inverse error functionaround originrdquo University of Craiova working paper 2002

[5] I S Gradshteyn and I M Ryzhik Table of Integrals Series andProducts ElsevierAcademic Press Amsterdam The Nether-lands 7th edition 2007

[6] P F Paranaıba E M M Ortega G M Cordeiro and R RPescim ldquoThe beta Burr XII distribution with application tolifetime datardquo Computational Statistics amp Data Analysis vol 55no 2 pp 1118ndash1136 2011

[7] S Nadarajah ldquoExplicit expressions for moments of order sta-tisticsrdquo Statistics amp Probability Letters vol 78 no 2 pp 196ndash205 2008

[8] J Kurths A Voss P Saparin A Witt H J Kleiner and NWessel ldquoQuantitative analysis of heart rate variabilityrdquo Chaosvol 5 no 1 pp 88ndash94 1995

[9] D Morales L Pardo and I Vajda ldquoSome new statistics for test-ing hypotheses in parametric modelsrdquo Journal of MultivariateAnalysis vol 62 no 1 pp 137ndash168 1997

[10] A Renyi ldquoOn measures of entropy and informationrdquo inProceedings of the 4th Berkeley Symposium on Math Statistand Prob Vol I pp 547ndash561 University of California PressBerkeley Calif USA 1961

[11] B C Arnold N Balakrishnan and H N Nagaraja A FirstCourse in Order Statistics Wiley Series in Probability andMathematical Statistics Probability and Mathematical Statis-tics John Wiley amp Sons New York NY USA 1992

[12] H A David and H N Nagaraja Order Statistics Wiley Seriesin Probability and Statistics John Wiley amp Sons Hoboken NJUSA 3rd edition 2003

[13] M Ahsanullah and V B Nevzorov Order Statistics Examplesand Exercises Nova Science Hauppauge NY USA 2005

[14] R Development Core Team R A Language and EnvironmentFor Statistical Computing R Foundation For Statistical Comput-ing Vienna Austria 2013

[15] SAS Institute SASSTAT Userrsquos Guide Version 9 SAS InstituteCary NC USA 2004

[16] J Berkson and R P Gage ldquoSurvival curve for cancer patientsfollowing treatmentrdquo Journal of the American Statistical Associ-ation vol 88 pp 1412ndash1418 1952

[17] R A Maller and X Zhou Survival Analysis with Long-TermSurvivors Wiley Series in Probability and Statistics AppliedProbability and Statistics John Wiley amp Sons Chichester UK1996

[18] V T Farewell ldquoThe use of mixture models for the analysis ofsurvival data with long-term survivorsrdquo Biometrics vol 38 no4 pp 1041ndash1046 1982

[19] J P Sy and J M G Taylor ldquoEstimation in a Cox proportionalhazards cure modelrdquo Biometrics vol 56 no 1 pp 227ndash2362000

[20] E M M Ortega F B Rizzato and C G B DemetrioldquoThe generalized log-gamma mixture model with covariateslocal influence and residual analysisrdquo Statistical Methods ampApplications vol 18 no 3 pp 305ndash331 2009

[21] M B Wilk R Gnanadesikan and M J Huyett ldquoEstimationof parameters of the gamma distribution using order statisticsrdquoBiometrika vol 49 pp 525ndash545 1962

[22] J F Lawless Statistical Models and Methods for Lifetime DataWiley Series in Probability and Statistics John Wiley amp SonsHoboken NJ USA 2nd edition 2003

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 18: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

18 Journal of Probability and Statistics

[23] F Louzada-Neto JMazucheli and J AAchcarUma Introducaoa Analise de Sobrevivencia e Confiabilidade vol 28 JornadasNacionales de Estadıstica Valparaıso Chile 2001

[24] H Ascher and H Feingold Repairable Systems Reliability vol7 of Lecture Notes in Statistics Marcel Dekker New York NYUSA 1984

[25] J G IbrahimM-HChen andD SinhaBayesian Survival Ana-lysis Springer Series in Statistics Springer New York NY USA2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 19: Research Article The Beta Generalized Half-Normal Distribution: New …downloads.hindawi.com/journals/jps/2013/491628.pdf · 2019-07-31 · ing function, mean deviations, R ´enyi

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of