6
Research Article Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow Xiao-Feng Niu, 1 Cai-Li Zhang, 1 Zheng-Biao Li, 2 and Yang Zhao 3 1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2 College of Mathematics and Information Science, Qujing Normal University, Qujing, Yunnan 655011, China 3 Department of Electronic and Information Technology, Jiangmen Polytechnic, Jiangmen 529090, China Correspondence should be addressed to Yang Zhao; [email protected] Received 19 June 2014; Accepted 26 June 2014; Published 13 July 2014 Academic Editor: Xiao-Jun Yang Copyright © 2014 Xiao-Feng Niu et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e local fractional decomposition method is applied to obtain the nondifferentiable numerical solutions for the local fractional Tricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions. 1. Introduction e Tricomi equation [1] is the second-order linear partial differential equations of mixed type, which had been applied to describe the theory of plane transonic flow [27]. e Tricomi equation was used to describe the differentiable problems for the theory of plane transonic flow. However, for the fractal theory of plane transonic flow with nondif- ferentiable terms, the Tricomi equation is not applied to describe them. Recently, the local fractional calculus [8] was applied to describe the nondifferentiable problems, such as the fractal heat conduction [8, 9], the damped and dissipative wave equations in fractal strings [10], the local fractional Schr¨ odinger equation [11], the wave equation on Cantor sets [12], the Navier-Stokes equations on Cantor sets [13], and others [1419]. Recently, the local fractional Tricomi equation arising in fractal transonic flow was suggested in the form [19] Γ (1 + ) 2 (, ) 2 + 2 (, ) 2 = 0, (1) where the quantity (, ) is the nondifferentiable function, and the local fractional operator denotes [8] (, ) = Δ ( (, ) − (, 0 )) ( − 0 ) , (2) where Δ ( (, ) − (, 0 )) ≅ Γ (1 + ) [ (, ) − (, 0 )] . (3) e local fractional decomposition method [12] was used to solve the diffusion equation on Cantor time-space. e aim of this paper is to use the local fractional decomposition method to solve the local fractional Tricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions. e structure of this paper is as follows. In Section 2, the local fractional integrals and derivatives are introduced. In Section 3, the local fractional decomposition method is suggested. In Section 4, the non- differentiable numerical solutions for local fractional Tricomi equation with the local fractional derivative boundary value conditions are given. Finally, the conclusions are shown in Section 5. 2. Local Fractional Integrals and Derivatives In this section, we introduce the basic theory of the local fractional integrals and derivatives [819], which are applied in the paper. Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 872318, 5 pages http://dx.doi.org/10.1155/2014/872318

Research Article Local Fractional Derivative Boundary ...downloads.hindawi.com/journals/aaa/2014/872318.pdf · Abstract and Applied Analysis 0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.5 1 1.5

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article Local Fractional Derivative Boundary ...downloads.hindawi.com/journals/aaa/2014/872318.pdf · Abstract and Applied Analysis 0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.5 1 1.5

Research ArticleLocal Fractional Derivative Boundary Value Problems forTricomi Equation Arising in Fractal Transonic Flow

Xiao-Feng Niu1 Cai-Li Zhang1 Zheng-Biao Li2 and Yang Zhao3

1 College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 China2 College of Mathematics and Information Science Qujing Normal University Qujing Yunnan 655011 China3Department of Electronic and Information Technology Jiangmen Polytechnic Jiangmen 529090 China

Correspondence should be addressed to Yang Zhao zhaoyang19781023gmailcom

Received 19 June 2014 Accepted 26 June 2014 Published 13 July 2014

Academic Editor Xiao-Jun Yang

Copyright copy 2014 Xiao-Feng Niu et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The local fractional decomposition method is applied to obtain the nondifferentiable numerical solutions for the local fractionalTricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions

1 Introduction

The Tricomi equation [1] is the second-order linear partialdifferential equations of mixed type which had been appliedto describe the theory of plane transonic flow [2ndash7] TheTricomi equation was used to describe the differentiableproblems for the theory of plane transonic flow Howeverfor the fractal theory of plane transonic flow with nondif-ferentiable terms the Tricomi equation is not applied todescribe them Recently the local fractional calculus [8] wasapplied to describe the nondifferentiable problems such asthe fractal heat conduction [8 9] the damped and dissipativewave equations in fractal strings [10] the local fractionalSchrodinger equation [11] the wave equation on Cantor sets[12] the Navier-Stokes equations on Cantor sets [13] andothers [14ndash19] Recently the local fractional Tricomi equationarising in fractal transonic flowwas suggested in the form [19]

119910120572

Γ (1 + 120572)

1205972120572

119906 (119909 119910)

1205971199092120572+

1205972120572

119906 (119909 119910)

1205971199102120572= 0 (1)

where the quantity 119906(119909 119910) is the nondifferentiable functionand the local fractional operator denotes [8]

120597120572

119906 (119909 119905)

120597119905120572=

Δ120572

(119906 (119909 119905) minus 119906 (119909 1199050))

(119905 minus 1199050)120572

(2)

where

Δ120572

(119906 (119909 119905) minus 119906 (119909 1199050)) cong Γ (1 + 120572) [119906 (119909 119905) minus 119906 (119909 119905

0)]

(3)

The local fractional decomposition method [12] was used tosolve the diffusion equation on Cantor time-space The aimof this paper is to use the local fractional decompositionmethod to solve the local fractional Tricomi equation arisingin fractal transonic flow with the local fractional derivativeboundary value conditions The structure of this paper isas follows In Section 2 the local fractional integrals andderivatives are introduced In Section 3 the local fractionaldecomposition method is suggested In Section 4 the non-differentiable numerical solutions for local fractional Tricomiequation with the local fractional derivative boundary valueconditions are given Finally the conclusions are shown inSection 5

2 Local Fractional Integrals and Derivatives

In this section we introduce the basic theory of the localfractional integrals and derivatives [8ndash19] which are appliedin the paper

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 872318 5 pageshttpdxdoiorg1011552014872318

2 Abstract and Applied Analysis

Definition 1 (see [8ndash19]) For |119909 minus 1199090| lt 120575 for 120576 120575 gt 0 and

120576 isin 119877 we give the function 119891(119909) isin 119862120572(119886 119887) when

1003816100381610038161003816119891 (119909) minus 119891 (1199090)1003816100381610038161003816 lt 120576120572

0 lt 120572 le 1 (4)

is valid

Definition 2 (see [8ndash19]) Let (119905119895 119905119895+1

) 119895 = 0 119873minus1 1199050= 119886

and 119905119873

= 119887withΔ119905119895= 119905119895+1

minus119905119895andΔ119905 = maxΔ119905

0 Δ1199051 be

a partition of the interval [119886 119887] The local fractional integralof 119891(119909) in the interval [119886 119887] is defined as

119886119868119887

(120572)

119891 (119909) =1

Γ (1 + 120572)int

119887

119886

119891 (119905) (119889119905)120572

=1

Γ (1 + 120572)limΔ119905rarr0

119895=119873minus1

sum

119895=0

119891 (119905119895) (Δ119905119895)120572

(5)

As the inverse operator of (6) local fractional derivative of119891(119909) of the order 120572 in the interval (119886 119887) is presented as [8ndash19]

119889120572

119891 (1199090)

119889119909120572= 119863119909

(120572)

119891 (1199090) =

Δ120572

(119891 (119909) minus 119891 (1199090))

(119909 minus 1199090)120572

(6)

where

Δ120572

(119891 (119909) minus 119891 (1199090)) cong Γ (1 + 120572) [119891 (119909) minus 119891 (119909

0)] (7)

The formulas of local fractional derivative and integral whichappear in the paper are valid [8]

119889120572

119889119909120572

119909119899120572

Γ (1 + 119899120572)=

119909(119899minus1)120572

Γ (1 + (119899 minus 1) 120572) 119899 isin 119873

119889120572

119889119909120572119864120572(119909120572

) = 119864120572(119909120572

)

119889120572

119889119909120572sin120572(119909120572

) = cos120572(119909120572

)

119889120572

119889119909120572cos120572(119909120572

) = minus sin120572(119909120572

)

0119868119909

(120572)119909(119899minus1)120572

Γ (1 + (119899 minus 1) 120572)=

119909119899120572

Γ (1 + 119899120572) 119899 isin 119873

0119868119909

(120572)cos120572(119909120572

) = sin120572(119909120572

)

(8)

3 Analysis of the Method

In this section we give the local fractional decompositionmethod [12] We consider the following local fractionaloperator equation in the form

119871(2)

120572119906 + 119877120572119906 = 0 (9)

where 119871(2)120572

is linear local fractional operators of the order 2120572with respect to119909 and119877

120572is the linear local fractional operators

of order less than 2120572 We write (9) as

119871(2120572)

119909119909119906 + 119877120572119906 = 0 (10)

where the 2120572-th local fractional differential operator denotes

119871(119899)

120572= 119871(2120572)

119909119909=

1205972120572

1205971199092120572 (11)

and the linear local fractional operators of order less than 2120572

denote

119877120572=

Γ (1 + 120572)

119910120572

1205972120572

119906 (119909 119910)

1205971199102120572 (12)

Define the 2120572-fold local fractional integral operator

119871(minus2120572)

120572119898(119904) =

0119868119909

(120572)

0119868119909

(120572)

119898(119904) (13)

so that we obtain the local fractional iterative formula asfollows

119871(minus2120572)

120572119871(2120572)

119909119909119906 + 119871(minus2120572)

120572119871(minus2120572)

120572119877120572119906 = 0 (14)

which leads to

119906 (119909) = 1199060(119909) + 119871

(minus2120572)

120572119871(minus2120572)

120572119877120572119906 (15)

Therefore for 119899 ge 0 we obtain the recurrence formula in theform

119906119899+1

(119909) = 119871(minus2)

120572119877120572119906119899(119909)

1199060(119909) = 119903 (119909)

(16)

Finally the solution of (9) reads

119906 (119909) = lim119899rarrinfin

120601119899(119909) = lim

119899rarrinfin

infin

sum

119899=0

119906119899(119909) (17)

4 The Nondifferentiable Numerical Solutions

In this section we discuss the nondifferentiable numericalsolutions for the local fractional Tricomi equation arisingin fractal transonic flow with the local fractional derivativeboundary value conditions

Example 1 We consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form [19]

119906 (0 119910) = 0 (18)

119906 (119897 119910) = 0 (19)

119906 (119909 0) =119909120572

Γ (1 + 120572) (20)

120597120572

119906 (119909 0)

120597119909120572=

119909120572

Γ (1 + 120572) (21)

Using (20)-(21) we structure the recurrence formula in theform

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) =

119909120572

Γ (1 + 120572)+

119909120572

Γ (1 + 120572)

119910120572

Γ (1 + 120572)

(22)

Abstract and Applied Analysis 3

Hence for 119899 = 0 the first term of (22) reads

1199061(119909 119910) = 0 (23)

For 119899 = 1 the second term of (22) is given as

1199062(119909 119910) = 0 (24)

Hence we obtain

1199060(119909 119910) = 119906

1(119909 119910) = sdot sdot sdot = 119906

119899(119909 119910) = 0 (25)

Finally the solution of (9) with the local fractional derivativeboundary value conditions (19)ndash(21) can be written as

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

=119909120572

Γ (1 + 120572)+

119909120572

Γ (1 + 120572)

119910120572

Γ (1 + 120572)

(26)

which is in accordance with the result from the local frac-tional variational iteration method [19]

Example 2 Let us consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form

119906 (0 119910) = 0

119906 (119897 119910) = 0

119906 (119909 0) = 0

120597120572

119906 (119909 0)

120597119909120572= cos120572(119909120572

)

(27)

In view of (27) we set up the recurrence formula in the form

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) = cos

120572(119909120572

)119910120572

Γ (1 + 120572)

(28)

Hence from (28) we get the following equations

1199061(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199060(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(cos120572(119909120572

)119910120572

Γ (1 + 120572))]

= 0

1199062(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199061(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199063(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199062(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199064(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199063(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

119906119899(119909 119910) = 0

(29)

Finally we obtain the solution of (9) with the local fractionalderivative boundary value conditions (27) namely

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

= cos120572(119909120572

)119910120572

Γ (1 + 120572)

(30)

whose graph is shown in Figure 1

Example 3 Let us consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form

119906 (0 119910) = 0

119906 (119897 119910) = 0

119906 (119909 0) =119909120572

Γ (1 + 120572)

120597120572

119906 (119909 0)

120597119909120572= sin120572(119909120572

)

(31)

4 Abstract and Applied Analysis

0 0204

0608

1

0

05

1

0

05

1

15

x

y

u(xy)

Figure 1 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (27) when 120572 = ln 2 ln 3

Making use of (31) the recurrence formula can be written as

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) =

119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(32)

Appling (32) gives the following equations

1199061(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199060(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572

times(119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)) ]

= 0

1199062(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199061(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199063(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199062(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

0

02

0406

08

1

0

05

1

0

05

1

15

2

xy

u(xy)

Figure 2 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (31) when 120572 = ln 2 ln 3

1199064(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199063(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

119906119899(119909 119910) = 0

(33)

Finally the solution of (9) with the local fractional derivativeboundary value conditions (31) reads

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

=119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(34)

and its graph is shown in Figure 2

5 Conclusions

In this work we discussed the nondifferentiable numericalsolutions for the local fractional Tricomi equation arisingin fractal transonic flow with the local fractional derivativeboundary value conditions by using the local fractionaldecompositionmethod and their plots were also shown in theMatLab software

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 5

Acknowledgment

This work was supported by NSF110361048 of China andYunnan province NSF Grant no 2011FB090

References

[1] F Tricomi On Second-Order Linear Partial Differential Equa-tions of Mixed Type Leningrad Moscow Russia 1947

[2] A R Manwell ldquoThe Tricomi equation with applications to thetheory of plane transonic flowrdquo ReconTechnical ReportA 276171979

[3] D Lupo and K R Payne ldquoA dual variational approach toa class of nonlocal semilinear Tricomi problemsrdquo NonlinearDifferential Equations and Applications vol 6 no 3 pp 247ndash266 1999

[4] J U Kim ldquoAn 119871119901 a priori estimate for the Tricomi equation in

the upper half spacerdquo Transactions of the American Mathemati-cal Society vol 351 no 11 pp 4611ndash4628 1999

[5] J M Rassias ldquoUniqueness of quasi-regular solutions for abi-parabolic elliptic bi-hyperbolic Tricomi problemrdquo ComplexVariables Theory and Application vol 47 no 8 pp 707ndash7182002

[6] K Yagdjian ldquoGlobal existence for the 119899-dimensional semilinearTricomi-type equationsrdquoCommunications in PartialDifferentialEquations vol 31 no 4ndash6 pp 907ndash944 2006

[7] K Yagdjian ldquoA note on the fundamental solution for theTricomi-type equation in the hyperbolic domainrdquo Journal ofDifferential Equations vol 206 no 1 pp 227ndash252 2004

[8] X-J Yang Advanced Local Fractional Calculus and Its Applica-tions World Science New York NY USA 2012

[9] A M Yang Y Z Zhang and Y Long ldquoThe Yang-Fouriertransforms to heat-conduction in a semi-infinite fractal barrdquoThermal Science vol 17 no 3 pp 707ndash713 2013

[10] W H Su D Baleanu X J Yang et al ldquoDamped wave equationand dissipative wave equation in fractal strings within the localfractional variational iteration methodrdquo Fixed PointTheory andApplications vol 2013 no 1 pp 1ndash11 2013

[11] X J Yang D Baleanu and J A T Machado ldquoMathematicalaspects of Heisenberg uncertainty principle within local frac-tional Fourier analysisrdquoBoundary Value Problems no 1 pp 131ndash146 2013

[12] D Baleanu J A Tenreiro Machado C Cattani M C Baleanuand X Yang ldquoLocal fractional variational iteration and decom-position methods for wave equation on Cantor sets within localfractional operatorsrdquo Abstract and Applied Analysis vol 2014Article ID 535048 6 pages 2014

[13] X-J Yang D Baleanu and J T Machado ldquoSystems of Navier-Stokes equations on Cantor setsrdquo Mathematical Problems inEngineering vol 2013 Article ID 769724 8 pages 2013

[14] G Yi ldquoLocal fractional Z transform in fractal spacerdquo Advancesin Digital Multimedia vol 1 no 2 pp 96ndash102 2012

[15] X Yang H M Srivastava J H He et al ldquoCantor-typecylindrical-coordinate method for differential equations withlocal fractional derivativesrdquo Physics Letters A vol 377 no 28ndash30 pp 1696ndash1700 2013

[16] J-H He ldquoAsymptotic methods for solitary solutions and com-pactonsrdquo Abstract and Applied Analysis vol 2012 Article ID916793 130 pages 2012

[17] C-G Zhao A-M Yang H Jafari and A Haghbin ldquoThe Yang-Laplace transform for solving the IVPs with local fractional

derivativerdquo Abstract and Applied Analysis vol 2014 Article ID386459 5 pages 2014

[18] Z Y Chen C Cattani and W P Zhong ldquoSignal processing fornondifferentiable data defined on Cantor sets a local fractionalFourier series approachrdquoAdvances inMathematical Physics vol2014 Article ID 561434 7 pages 2014

[19] A M Yang Y Z Zhang and X L Zhang ldquoThe non-differentiable solution for local fractional Tricomi equationarising in fractal transonic flow by loca l fractional variationaliteration methodrdquo Advances in Mathematical Physics vol 2014Article ID 983254 6 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Local Fractional Derivative Boundary ...downloads.hindawi.com/journals/aaa/2014/872318.pdf · Abstract and Applied Analysis 0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.5 1 1.5

2 Abstract and Applied Analysis

Definition 1 (see [8ndash19]) For |119909 minus 1199090| lt 120575 for 120576 120575 gt 0 and

120576 isin 119877 we give the function 119891(119909) isin 119862120572(119886 119887) when

1003816100381610038161003816119891 (119909) minus 119891 (1199090)1003816100381610038161003816 lt 120576120572

0 lt 120572 le 1 (4)

is valid

Definition 2 (see [8ndash19]) Let (119905119895 119905119895+1

) 119895 = 0 119873minus1 1199050= 119886

and 119905119873

= 119887withΔ119905119895= 119905119895+1

minus119905119895andΔ119905 = maxΔ119905

0 Δ1199051 be

a partition of the interval [119886 119887] The local fractional integralof 119891(119909) in the interval [119886 119887] is defined as

119886119868119887

(120572)

119891 (119909) =1

Γ (1 + 120572)int

119887

119886

119891 (119905) (119889119905)120572

=1

Γ (1 + 120572)limΔ119905rarr0

119895=119873minus1

sum

119895=0

119891 (119905119895) (Δ119905119895)120572

(5)

As the inverse operator of (6) local fractional derivative of119891(119909) of the order 120572 in the interval (119886 119887) is presented as [8ndash19]

119889120572

119891 (1199090)

119889119909120572= 119863119909

(120572)

119891 (1199090) =

Δ120572

(119891 (119909) minus 119891 (1199090))

(119909 minus 1199090)120572

(6)

where

Δ120572

(119891 (119909) minus 119891 (1199090)) cong Γ (1 + 120572) [119891 (119909) minus 119891 (119909

0)] (7)

The formulas of local fractional derivative and integral whichappear in the paper are valid [8]

119889120572

119889119909120572

119909119899120572

Γ (1 + 119899120572)=

119909(119899minus1)120572

Γ (1 + (119899 minus 1) 120572) 119899 isin 119873

119889120572

119889119909120572119864120572(119909120572

) = 119864120572(119909120572

)

119889120572

119889119909120572sin120572(119909120572

) = cos120572(119909120572

)

119889120572

119889119909120572cos120572(119909120572

) = minus sin120572(119909120572

)

0119868119909

(120572)119909(119899minus1)120572

Γ (1 + (119899 minus 1) 120572)=

119909119899120572

Γ (1 + 119899120572) 119899 isin 119873

0119868119909

(120572)cos120572(119909120572

) = sin120572(119909120572

)

(8)

3 Analysis of the Method

In this section we give the local fractional decompositionmethod [12] We consider the following local fractionaloperator equation in the form

119871(2)

120572119906 + 119877120572119906 = 0 (9)

where 119871(2)120572

is linear local fractional operators of the order 2120572with respect to119909 and119877

120572is the linear local fractional operators

of order less than 2120572 We write (9) as

119871(2120572)

119909119909119906 + 119877120572119906 = 0 (10)

where the 2120572-th local fractional differential operator denotes

119871(119899)

120572= 119871(2120572)

119909119909=

1205972120572

1205971199092120572 (11)

and the linear local fractional operators of order less than 2120572

denote

119877120572=

Γ (1 + 120572)

119910120572

1205972120572

119906 (119909 119910)

1205971199102120572 (12)

Define the 2120572-fold local fractional integral operator

119871(minus2120572)

120572119898(119904) =

0119868119909

(120572)

0119868119909

(120572)

119898(119904) (13)

so that we obtain the local fractional iterative formula asfollows

119871(minus2120572)

120572119871(2120572)

119909119909119906 + 119871(minus2120572)

120572119871(minus2120572)

120572119877120572119906 = 0 (14)

which leads to

119906 (119909) = 1199060(119909) + 119871

(minus2120572)

120572119871(minus2120572)

120572119877120572119906 (15)

Therefore for 119899 ge 0 we obtain the recurrence formula in theform

119906119899+1

(119909) = 119871(minus2)

120572119877120572119906119899(119909)

1199060(119909) = 119903 (119909)

(16)

Finally the solution of (9) reads

119906 (119909) = lim119899rarrinfin

120601119899(119909) = lim

119899rarrinfin

infin

sum

119899=0

119906119899(119909) (17)

4 The Nondifferentiable Numerical Solutions

In this section we discuss the nondifferentiable numericalsolutions for the local fractional Tricomi equation arisingin fractal transonic flow with the local fractional derivativeboundary value conditions

Example 1 We consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form [19]

119906 (0 119910) = 0 (18)

119906 (119897 119910) = 0 (19)

119906 (119909 0) =119909120572

Γ (1 + 120572) (20)

120597120572

119906 (119909 0)

120597119909120572=

119909120572

Γ (1 + 120572) (21)

Using (20)-(21) we structure the recurrence formula in theform

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) =

119909120572

Γ (1 + 120572)+

119909120572

Γ (1 + 120572)

119910120572

Γ (1 + 120572)

(22)

Abstract and Applied Analysis 3

Hence for 119899 = 0 the first term of (22) reads

1199061(119909 119910) = 0 (23)

For 119899 = 1 the second term of (22) is given as

1199062(119909 119910) = 0 (24)

Hence we obtain

1199060(119909 119910) = 119906

1(119909 119910) = sdot sdot sdot = 119906

119899(119909 119910) = 0 (25)

Finally the solution of (9) with the local fractional derivativeboundary value conditions (19)ndash(21) can be written as

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

=119909120572

Γ (1 + 120572)+

119909120572

Γ (1 + 120572)

119910120572

Γ (1 + 120572)

(26)

which is in accordance with the result from the local frac-tional variational iteration method [19]

Example 2 Let us consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form

119906 (0 119910) = 0

119906 (119897 119910) = 0

119906 (119909 0) = 0

120597120572

119906 (119909 0)

120597119909120572= cos120572(119909120572

)

(27)

In view of (27) we set up the recurrence formula in the form

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) = cos

120572(119909120572

)119910120572

Γ (1 + 120572)

(28)

Hence from (28) we get the following equations

1199061(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199060(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(cos120572(119909120572

)119910120572

Γ (1 + 120572))]

= 0

1199062(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199061(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199063(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199062(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199064(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199063(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

119906119899(119909 119910) = 0

(29)

Finally we obtain the solution of (9) with the local fractionalderivative boundary value conditions (27) namely

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

= cos120572(119909120572

)119910120572

Γ (1 + 120572)

(30)

whose graph is shown in Figure 1

Example 3 Let us consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form

119906 (0 119910) = 0

119906 (119897 119910) = 0

119906 (119909 0) =119909120572

Γ (1 + 120572)

120597120572

119906 (119909 0)

120597119909120572= sin120572(119909120572

)

(31)

4 Abstract and Applied Analysis

0 0204

0608

1

0

05

1

0

05

1

15

x

y

u(xy)

Figure 1 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (27) when 120572 = ln 2 ln 3

Making use of (31) the recurrence formula can be written as

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) =

119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(32)

Appling (32) gives the following equations

1199061(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199060(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572

times(119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)) ]

= 0

1199062(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199061(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199063(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199062(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

0

02

0406

08

1

0

05

1

0

05

1

15

2

xy

u(xy)

Figure 2 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (31) when 120572 = ln 2 ln 3

1199064(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199063(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

119906119899(119909 119910) = 0

(33)

Finally the solution of (9) with the local fractional derivativeboundary value conditions (31) reads

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

=119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(34)

and its graph is shown in Figure 2

5 Conclusions

In this work we discussed the nondifferentiable numericalsolutions for the local fractional Tricomi equation arisingin fractal transonic flow with the local fractional derivativeboundary value conditions by using the local fractionaldecompositionmethod and their plots were also shown in theMatLab software

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 5

Acknowledgment

This work was supported by NSF110361048 of China andYunnan province NSF Grant no 2011FB090

References

[1] F Tricomi On Second-Order Linear Partial Differential Equa-tions of Mixed Type Leningrad Moscow Russia 1947

[2] A R Manwell ldquoThe Tricomi equation with applications to thetheory of plane transonic flowrdquo ReconTechnical ReportA 276171979

[3] D Lupo and K R Payne ldquoA dual variational approach toa class of nonlocal semilinear Tricomi problemsrdquo NonlinearDifferential Equations and Applications vol 6 no 3 pp 247ndash266 1999

[4] J U Kim ldquoAn 119871119901 a priori estimate for the Tricomi equation in

the upper half spacerdquo Transactions of the American Mathemati-cal Society vol 351 no 11 pp 4611ndash4628 1999

[5] J M Rassias ldquoUniqueness of quasi-regular solutions for abi-parabolic elliptic bi-hyperbolic Tricomi problemrdquo ComplexVariables Theory and Application vol 47 no 8 pp 707ndash7182002

[6] K Yagdjian ldquoGlobal existence for the 119899-dimensional semilinearTricomi-type equationsrdquoCommunications in PartialDifferentialEquations vol 31 no 4ndash6 pp 907ndash944 2006

[7] K Yagdjian ldquoA note on the fundamental solution for theTricomi-type equation in the hyperbolic domainrdquo Journal ofDifferential Equations vol 206 no 1 pp 227ndash252 2004

[8] X-J Yang Advanced Local Fractional Calculus and Its Applica-tions World Science New York NY USA 2012

[9] A M Yang Y Z Zhang and Y Long ldquoThe Yang-Fouriertransforms to heat-conduction in a semi-infinite fractal barrdquoThermal Science vol 17 no 3 pp 707ndash713 2013

[10] W H Su D Baleanu X J Yang et al ldquoDamped wave equationand dissipative wave equation in fractal strings within the localfractional variational iteration methodrdquo Fixed PointTheory andApplications vol 2013 no 1 pp 1ndash11 2013

[11] X J Yang D Baleanu and J A T Machado ldquoMathematicalaspects of Heisenberg uncertainty principle within local frac-tional Fourier analysisrdquoBoundary Value Problems no 1 pp 131ndash146 2013

[12] D Baleanu J A Tenreiro Machado C Cattani M C Baleanuand X Yang ldquoLocal fractional variational iteration and decom-position methods for wave equation on Cantor sets within localfractional operatorsrdquo Abstract and Applied Analysis vol 2014Article ID 535048 6 pages 2014

[13] X-J Yang D Baleanu and J T Machado ldquoSystems of Navier-Stokes equations on Cantor setsrdquo Mathematical Problems inEngineering vol 2013 Article ID 769724 8 pages 2013

[14] G Yi ldquoLocal fractional Z transform in fractal spacerdquo Advancesin Digital Multimedia vol 1 no 2 pp 96ndash102 2012

[15] X Yang H M Srivastava J H He et al ldquoCantor-typecylindrical-coordinate method for differential equations withlocal fractional derivativesrdquo Physics Letters A vol 377 no 28ndash30 pp 1696ndash1700 2013

[16] J-H He ldquoAsymptotic methods for solitary solutions and com-pactonsrdquo Abstract and Applied Analysis vol 2012 Article ID916793 130 pages 2012

[17] C-G Zhao A-M Yang H Jafari and A Haghbin ldquoThe Yang-Laplace transform for solving the IVPs with local fractional

derivativerdquo Abstract and Applied Analysis vol 2014 Article ID386459 5 pages 2014

[18] Z Y Chen C Cattani and W P Zhong ldquoSignal processing fornondifferentiable data defined on Cantor sets a local fractionalFourier series approachrdquoAdvances inMathematical Physics vol2014 Article ID 561434 7 pages 2014

[19] A M Yang Y Z Zhang and X L Zhang ldquoThe non-differentiable solution for local fractional Tricomi equationarising in fractal transonic flow by loca l fractional variationaliteration methodrdquo Advances in Mathematical Physics vol 2014Article ID 983254 6 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Local Fractional Derivative Boundary ...downloads.hindawi.com/journals/aaa/2014/872318.pdf · Abstract and Applied Analysis 0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.5 1 1.5

Abstract and Applied Analysis 3

Hence for 119899 = 0 the first term of (22) reads

1199061(119909 119910) = 0 (23)

For 119899 = 1 the second term of (22) is given as

1199062(119909 119910) = 0 (24)

Hence we obtain

1199060(119909 119910) = 119906

1(119909 119910) = sdot sdot sdot = 119906

119899(119909 119910) = 0 (25)

Finally the solution of (9) with the local fractional derivativeboundary value conditions (19)ndash(21) can be written as

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

=119909120572

Γ (1 + 120572)+

119909120572

Γ (1 + 120572)

119910120572

Γ (1 + 120572)

(26)

which is in accordance with the result from the local frac-tional variational iteration method [19]

Example 2 Let us consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form

119906 (0 119910) = 0

119906 (119897 119910) = 0

119906 (119909 0) = 0

120597120572

119906 (119909 0)

120597119909120572= cos120572(119909120572

)

(27)

In view of (27) we set up the recurrence formula in the form

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) = cos

120572(119909120572

)119910120572

Γ (1 + 120572)

(28)

Hence from (28) we get the following equations

1199061(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199060(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(cos120572(119909120572

)119910120572

Γ (1 + 120572))]

= 0

1199062(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199061(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199063(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199062(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199064(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199063(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

119906119899(119909 119910) = 0

(29)

Finally we obtain the solution of (9) with the local fractionalderivative boundary value conditions (27) namely

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

= cos120572(119909120572

)119910120572

Γ (1 + 120572)

(30)

whose graph is shown in Figure 1

Example 3 Let us consider the initial-boundary value condi-tions for the local fractional Tricomi equation in the form

119906 (0 119910) = 0

119906 (119897 119910) = 0

119906 (119909 0) =119909120572

Γ (1 + 120572)

120597120572

119906 (119909 0)

120597119909120572= sin120572(119909120572

)

(31)

4 Abstract and Applied Analysis

0 0204

0608

1

0

05

1

0

05

1

15

x

y

u(xy)

Figure 1 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (27) when 120572 = ln 2 ln 3

Making use of (31) the recurrence formula can be written as

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) =

119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(32)

Appling (32) gives the following equations

1199061(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199060(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572

times(119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)) ]

= 0

1199062(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199061(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199063(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199062(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

0

02

0406

08

1

0

05

1

0

05

1

15

2

xy

u(xy)

Figure 2 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (31) when 120572 = ln 2 ln 3

1199064(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199063(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

119906119899(119909 119910) = 0

(33)

Finally the solution of (9) with the local fractional derivativeboundary value conditions (31) reads

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

=119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(34)

and its graph is shown in Figure 2

5 Conclusions

In this work we discussed the nondifferentiable numericalsolutions for the local fractional Tricomi equation arisingin fractal transonic flow with the local fractional derivativeboundary value conditions by using the local fractionaldecompositionmethod and their plots were also shown in theMatLab software

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 5

Acknowledgment

This work was supported by NSF110361048 of China andYunnan province NSF Grant no 2011FB090

References

[1] F Tricomi On Second-Order Linear Partial Differential Equa-tions of Mixed Type Leningrad Moscow Russia 1947

[2] A R Manwell ldquoThe Tricomi equation with applications to thetheory of plane transonic flowrdquo ReconTechnical ReportA 276171979

[3] D Lupo and K R Payne ldquoA dual variational approach toa class of nonlocal semilinear Tricomi problemsrdquo NonlinearDifferential Equations and Applications vol 6 no 3 pp 247ndash266 1999

[4] J U Kim ldquoAn 119871119901 a priori estimate for the Tricomi equation in

the upper half spacerdquo Transactions of the American Mathemati-cal Society vol 351 no 11 pp 4611ndash4628 1999

[5] J M Rassias ldquoUniqueness of quasi-regular solutions for abi-parabolic elliptic bi-hyperbolic Tricomi problemrdquo ComplexVariables Theory and Application vol 47 no 8 pp 707ndash7182002

[6] K Yagdjian ldquoGlobal existence for the 119899-dimensional semilinearTricomi-type equationsrdquoCommunications in PartialDifferentialEquations vol 31 no 4ndash6 pp 907ndash944 2006

[7] K Yagdjian ldquoA note on the fundamental solution for theTricomi-type equation in the hyperbolic domainrdquo Journal ofDifferential Equations vol 206 no 1 pp 227ndash252 2004

[8] X-J Yang Advanced Local Fractional Calculus and Its Applica-tions World Science New York NY USA 2012

[9] A M Yang Y Z Zhang and Y Long ldquoThe Yang-Fouriertransforms to heat-conduction in a semi-infinite fractal barrdquoThermal Science vol 17 no 3 pp 707ndash713 2013

[10] W H Su D Baleanu X J Yang et al ldquoDamped wave equationand dissipative wave equation in fractal strings within the localfractional variational iteration methodrdquo Fixed PointTheory andApplications vol 2013 no 1 pp 1ndash11 2013

[11] X J Yang D Baleanu and J A T Machado ldquoMathematicalaspects of Heisenberg uncertainty principle within local frac-tional Fourier analysisrdquoBoundary Value Problems no 1 pp 131ndash146 2013

[12] D Baleanu J A Tenreiro Machado C Cattani M C Baleanuand X Yang ldquoLocal fractional variational iteration and decom-position methods for wave equation on Cantor sets within localfractional operatorsrdquo Abstract and Applied Analysis vol 2014Article ID 535048 6 pages 2014

[13] X-J Yang D Baleanu and J T Machado ldquoSystems of Navier-Stokes equations on Cantor setsrdquo Mathematical Problems inEngineering vol 2013 Article ID 769724 8 pages 2013

[14] G Yi ldquoLocal fractional Z transform in fractal spacerdquo Advancesin Digital Multimedia vol 1 no 2 pp 96ndash102 2012

[15] X Yang H M Srivastava J H He et al ldquoCantor-typecylindrical-coordinate method for differential equations withlocal fractional derivativesrdquo Physics Letters A vol 377 no 28ndash30 pp 1696ndash1700 2013

[16] J-H He ldquoAsymptotic methods for solitary solutions and com-pactonsrdquo Abstract and Applied Analysis vol 2012 Article ID916793 130 pages 2012

[17] C-G Zhao A-M Yang H Jafari and A Haghbin ldquoThe Yang-Laplace transform for solving the IVPs with local fractional

derivativerdquo Abstract and Applied Analysis vol 2014 Article ID386459 5 pages 2014

[18] Z Y Chen C Cattani and W P Zhong ldquoSignal processing fornondifferentiable data defined on Cantor sets a local fractionalFourier series approachrdquoAdvances inMathematical Physics vol2014 Article ID 561434 7 pages 2014

[19] A M Yang Y Z Zhang and X L Zhang ldquoThe non-differentiable solution for local fractional Tricomi equationarising in fractal transonic flow by loca l fractional variationaliteration methodrdquo Advances in Mathematical Physics vol 2014Article ID 983254 6 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Local Fractional Derivative Boundary ...downloads.hindawi.com/journals/aaa/2014/872318.pdf · Abstract and Applied Analysis 0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.5 1 1.5

4 Abstract and Applied Analysis

0 0204

0608

1

0

05

1

0

05

1

15

x

y

u(xy)

Figure 1 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (27) when 120572 = ln 2 ln 3

Making use of (31) the recurrence formula can be written as

119906119899+1

(119909 119910) = 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

119906119899(119909 119910)

1205971199102120572]

1199060(119909 119910) =

119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(32)

Appling (32) gives the following equations

1199061(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199060(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572

times(119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)) ]

= 0

1199062(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199061(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

1199063(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199062(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

0

02

0406

08

1

0

05

1

0

05

1

15

2

xy

u(xy)

Figure 2 The plot of the solution of (9) with the local fractionalderivative boundary value conditions (31) when 120572 = ln 2 ln 3

1199064(119909 119910) = 119871

(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1199063(119909 119910)

1205971199102120572]

= 119871(minus2)

120572[Γ (1 + 120572)

119910120572

1205972120572

1205971199102120572(0)]

= 0

119906119899(119909 119910) = 0

(33)

Finally the solution of (9) with the local fractional derivativeboundary value conditions (31) reads

119906 (119909 119910) = lim119899rarrinfin

120601119899(119909 119910)

= lim119899rarrinfin

infin

sum

119899=0

119906119899(119909 119910)

=119909120572

Γ (1 + 120572)+ sin120572(119909120572

)119910120572

Γ (1 + 120572)

(34)

and its graph is shown in Figure 2

5 Conclusions

In this work we discussed the nondifferentiable numericalsolutions for the local fractional Tricomi equation arisingin fractal transonic flow with the local fractional derivativeboundary value conditions by using the local fractionaldecompositionmethod and their plots were also shown in theMatLab software

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 5

Acknowledgment

This work was supported by NSF110361048 of China andYunnan province NSF Grant no 2011FB090

References

[1] F Tricomi On Second-Order Linear Partial Differential Equa-tions of Mixed Type Leningrad Moscow Russia 1947

[2] A R Manwell ldquoThe Tricomi equation with applications to thetheory of plane transonic flowrdquo ReconTechnical ReportA 276171979

[3] D Lupo and K R Payne ldquoA dual variational approach toa class of nonlocal semilinear Tricomi problemsrdquo NonlinearDifferential Equations and Applications vol 6 no 3 pp 247ndash266 1999

[4] J U Kim ldquoAn 119871119901 a priori estimate for the Tricomi equation in

the upper half spacerdquo Transactions of the American Mathemati-cal Society vol 351 no 11 pp 4611ndash4628 1999

[5] J M Rassias ldquoUniqueness of quasi-regular solutions for abi-parabolic elliptic bi-hyperbolic Tricomi problemrdquo ComplexVariables Theory and Application vol 47 no 8 pp 707ndash7182002

[6] K Yagdjian ldquoGlobal existence for the 119899-dimensional semilinearTricomi-type equationsrdquoCommunications in PartialDifferentialEquations vol 31 no 4ndash6 pp 907ndash944 2006

[7] K Yagdjian ldquoA note on the fundamental solution for theTricomi-type equation in the hyperbolic domainrdquo Journal ofDifferential Equations vol 206 no 1 pp 227ndash252 2004

[8] X-J Yang Advanced Local Fractional Calculus and Its Applica-tions World Science New York NY USA 2012

[9] A M Yang Y Z Zhang and Y Long ldquoThe Yang-Fouriertransforms to heat-conduction in a semi-infinite fractal barrdquoThermal Science vol 17 no 3 pp 707ndash713 2013

[10] W H Su D Baleanu X J Yang et al ldquoDamped wave equationand dissipative wave equation in fractal strings within the localfractional variational iteration methodrdquo Fixed PointTheory andApplications vol 2013 no 1 pp 1ndash11 2013

[11] X J Yang D Baleanu and J A T Machado ldquoMathematicalaspects of Heisenberg uncertainty principle within local frac-tional Fourier analysisrdquoBoundary Value Problems no 1 pp 131ndash146 2013

[12] D Baleanu J A Tenreiro Machado C Cattani M C Baleanuand X Yang ldquoLocal fractional variational iteration and decom-position methods for wave equation on Cantor sets within localfractional operatorsrdquo Abstract and Applied Analysis vol 2014Article ID 535048 6 pages 2014

[13] X-J Yang D Baleanu and J T Machado ldquoSystems of Navier-Stokes equations on Cantor setsrdquo Mathematical Problems inEngineering vol 2013 Article ID 769724 8 pages 2013

[14] G Yi ldquoLocal fractional Z transform in fractal spacerdquo Advancesin Digital Multimedia vol 1 no 2 pp 96ndash102 2012

[15] X Yang H M Srivastava J H He et al ldquoCantor-typecylindrical-coordinate method for differential equations withlocal fractional derivativesrdquo Physics Letters A vol 377 no 28ndash30 pp 1696ndash1700 2013

[16] J-H He ldquoAsymptotic methods for solitary solutions and com-pactonsrdquo Abstract and Applied Analysis vol 2012 Article ID916793 130 pages 2012

[17] C-G Zhao A-M Yang H Jafari and A Haghbin ldquoThe Yang-Laplace transform for solving the IVPs with local fractional

derivativerdquo Abstract and Applied Analysis vol 2014 Article ID386459 5 pages 2014

[18] Z Y Chen C Cattani and W P Zhong ldquoSignal processing fornondifferentiable data defined on Cantor sets a local fractionalFourier series approachrdquoAdvances inMathematical Physics vol2014 Article ID 561434 7 pages 2014

[19] A M Yang Y Z Zhang and X L Zhang ldquoThe non-differentiable solution for local fractional Tricomi equationarising in fractal transonic flow by loca l fractional variationaliteration methodrdquo Advances in Mathematical Physics vol 2014Article ID 983254 6 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Local Fractional Derivative Boundary ...downloads.hindawi.com/journals/aaa/2014/872318.pdf · Abstract and Applied Analysis 0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.5 1 1.5

Abstract and Applied Analysis 5

Acknowledgment

This work was supported by NSF110361048 of China andYunnan province NSF Grant no 2011FB090

References

[1] F Tricomi On Second-Order Linear Partial Differential Equa-tions of Mixed Type Leningrad Moscow Russia 1947

[2] A R Manwell ldquoThe Tricomi equation with applications to thetheory of plane transonic flowrdquo ReconTechnical ReportA 276171979

[3] D Lupo and K R Payne ldquoA dual variational approach toa class of nonlocal semilinear Tricomi problemsrdquo NonlinearDifferential Equations and Applications vol 6 no 3 pp 247ndash266 1999

[4] J U Kim ldquoAn 119871119901 a priori estimate for the Tricomi equation in

the upper half spacerdquo Transactions of the American Mathemati-cal Society vol 351 no 11 pp 4611ndash4628 1999

[5] J M Rassias ldquoUniqueness of quasi-regular solutions for abi-parabolic elliptic bi-hyperbolic Tricomi problemrdquo ComplexVariables Theory and Application vol 47 no 8 pp 707ndash7182002

[6] K Yagdjian ldquoGlobal existence for the 119899-dimensional semilinearTricomi-type equationsrdquoCommunications in PartialDifferentialEquations vol 31 no 4ndash6 pp 907ndash944 2006

[7] K Yagdjian ldquoA note on the fundamental solution for theTricomi-type equation in the hyperbolic domainrdquo Journal ofDifferential Equations vol 206 no 1 pp 227ndash252 2004

[8] X-J Yang Advanced Local Fractional Calculus and Its Applica-tions World Science New York NY USA 2012

[9] A M Yang Y Z Zhang and Y Long ldquoThe Yang-Fouriertransforms to heat-conduction in a semi-infinite fractal barrdquoThermal Science vol 17 no 3 pp 707ndash713 2013

[10] W H Su D Baleanu X J Yang et al ldquoDamped wave equationand dissipative wave equation in fractal strings within the localfractional variational iteration methodrdquo Fixed PointTheory andApplications vol 2013 no 1 pp 1ndash11 2013

[11] X J Yang D Baleanu and J A T Machado ldquoMathematicalaspects of Heisenberg uncertainty principle within local frac-tional Fourier analysisrdquoBoundary Value Problems no 1 pp 131ndash146 2013

[12] D Baleanu J A Tenreiro Machado C Cattani M C Baleanuand X Yang ldquoLocal fractional variational iteration and decom-position methods for wave equation on Cantor sets within localfractional operatorsrdquo Abstract and Applied Analysis vol 2014Article ID 535048 6 pages 2014

[13] X-J Yang D Baleanu and J T Machado ldquoSystems of Navier-Stokes equations on Cantor setsrdquo Mathematical Problems inEngineering vol 2013 Article ID 769724 8 pages 2013

[14] G Yi ldquoLocal fractional Z transform in fractal spacerdquo Advancesin Digital Multimedia vol 1 no 2 pp 96ndash102 2012

[15] X Yang H M Srivastava J H He et al ldquoCantor-typecylindrical-coordinate method for differential equations withlocal fractional derivativesrdquo Physics Letters A vol 377 no 28ndash30 pp 1696ndash1700 2013

[16] J-H He ldquoAsymptotic methods for solitary solutions and com-pactonsrdquo Abstract and Applied Analysis vol 2012 Article ID916793 130 pages 2012

[17] C-G Zhao A-M Yang H Jafari and A Haghbin ldquoThe Yang-Laplace transform for solving the IVPs with local fractional

derivativerdquo Abstract and Applied Analysis vol 2014 Article ID386459 5 pages 2014

[18] Z Y Chen C Cattani and W P Zhong ldquoSignal processing fornondifferentiable data defined on Cantor sets a local fractionalFourier series approachrdquoAdvances inMathematical Physics vol2014 Article ID 561434 7 pages 2014

[19] A M Yang Y Z Zhang and X L Zhang ldquoThe non-differentiable solution for local fractional Tricomi equationarising in fractal transonic flow by loca l fractional variationaliteration methodrdquo Advances in Mathematical Physics vol 2014Article ID 983254 6 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Local Fractional Derivative Boundary ...downloads.hindawi.com/journals/aaa/2014/872318.pdf · Abstract and Applied Analysis 0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.5 1 1.5

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of