78
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ BMC Evolutionary Biology © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Répteis 1.1

Embed Size (px)

Citation preview

Page 1: Répteis 1.1

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formattedPDF and full text (HTML) versions will be made available soon.

A phylogeny and revised classification of Squamata, including 4161 species oflizards and snakes

BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93

Robert Alexander Pyron ([email protected])Frank T Burbrink ([email protected])

John J Wiens ([email protected])

ISSN 1471-2148

Article type Research article

Submission date 30 January 2013

Acceptance date 19 March 2013

Publication date 29 April 2013

Article URL http://www.biomedcentral.com/1471-2148/13/93

Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed anddistributed freely for any purposes (see copyright notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Evolutionary Biology

© 2013 Pyron et al.This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Page 2: Répteis 1.1

A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

Robert Alexander Pyron1* * Corresponding author Email: [email protected]

Frank T Burbrink2,3 Email: [email protected]

John J Wiens4 Email: [email protected]

1 Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA

2 Department of Biology, The Graduate School and University Center, The City University of New York, 365 5th Ave., New York, NY 10016, USA

3 Department of Biology, The College of Staten Island, The City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA

4 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA

Abstract

Background

The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata.

Results

The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy.

Page 3: Répteis 1.1

Conclusions

We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards and boid, colubrid, and lamprophiid snakes.

Keywords

Amphisbaenia, Lacertilia, Likelihood support measures, Missing data, Serpentes, Squamata, Phylogenetics, Reptiles, Supermatrices, Systematics

Background

Squamate reptiles (lizards, snakes, and amphisbaenians ["worm lizards"]) are among the most diverse radiations of terrestrial vertebrates. Squamata includes more than 9400 species as of December 2012 [1]. The rate of new species descriptions shows no signs of slowing, with a record 168 new species described in 2012 [1], greater than the highest yearly rates of the 18th and 19th centuries (e.g. 1758, 118 species; 1854, 144 species [1]). Squamates are presently found on every continent except Antarctica, and in the Indian and Pacific Oceans, and span many diverse ecologies and body forms, from limbless burrowers to arboreal gliders (summarized in [2-4]).

Squamates are key study organisms in numerous fields, from evolution, ecology, and behavior [3] to medicine [5,6] and applied physics [7]. They have also been the focus of many pioneering studies using phylogenies to address questions about trait evolution (e.g. [8,9]). Phylogenies are now recognized as being integral to all comparative studies of squamate biology (e.g. [10,11]). However, hypotheses about squamate phylogeny have changed radically in recent years [12], especially when comparing trees generated from morphological [13-15] and molecular data [16-20]. Furthermore, despite extensive work on squamate phylogeny at all taxonomic levels, a large-scale phylogeny (i.e. including thousands of species and multiple genes) has never been attempted using morphological or molecular data.

Squamate phylogenetics has changed radically in the last 10 years, revealing major conflicts between the results of morphological and molecular analyses [12]. Early estimates of squamate phylogeny [21] and recent studies based on morphological data [13-15,22] consistently supported a basal division between Iguania (including chameleons, agamids, and iguanids, sensu lato), and Scleroglossa, which comprises all other squamates (including skinks, geckos, snakes, and amphisbaenians). Within Scleroglossa, many phylogenetic analyses of morphological data have also supported a clade containing limb-reduced taxa, including various combinations of snakes, dibamids, amphisbaenians, and (in some analyses) limb-reduced skinks and anguids [13-15,19,22], though some of these authors also acknowledged that this clade was likely erroneous.

Page 4: Répteis 1.1

In contrast, recent molecular analyses have estimated very different relationships. Novel arrangements include placement of dibamids and gekkotans near the root of the squamate tree, a sister-group relationship between amphisbaenians and lacertids, and a clade (Toxicofera) uniting Iguania with snakes and anguimorphs within Scleroglossa [16-20,23,24]. These molecular results (and the results of combined morphological and molecular analyses) suggest that some estimates of squamate phylogeny based on morphology may have been misled, especially by convergence associated with adaptations to burrowing [19]. However, there have also been disagreements among molecular studies, such as placement of dibamids relative to gekkotans and other squamates and relationships among snakes, iguanians, and anguimorphs (e.g. [17,20]).

Analyses of higher-level squamate relationships based on molecular data have so far included relatively few (less than 200) species, and none have included representatives from all described families and subfamilies [17-20,23,24]. This limited taxon sampling makes existing molecular phylogenies difficult to use for broad-scale comparative studies, with some exceptions based on supertrees [10,11]. In addition, limited taxon sampling is potentially a serious issue for phylogenetic accuracy [25-28]. Thus, an analysis with extensive taxon sampling is critically important to test hypotheses based on molecular datasets with more limited sampling and to provide a framework for comparative analyses.

Despite the lack of a large-scale phylogeny across squamates, recent molecular studies have produced phylogenetic estimates for many of the major groups of squamates, including iguanian lizards [29-34], higher-level snake groups [35-37], typhlopoid snakes [38,39], colubroid snakes [40-46], booid snakes [47,48], scincid lizards [49-52], gekkotan lizards [53-60], teiioid lizards [61-64], lacertid lizards [65-69], and amphisbaenians [70,71]. These studies have done an outstanding job of clarifying the phylogeny and taxonomy of these groups, but many were limited in some ways by the number of characters and taxa that they sampled (and which were available at the time for sequencing).

Here, we present a phylogenetic estimate for Squamata based on combining much of the existing sequence data for squamate reptiles, using the increasingly well-established supermatrix approach [41,72-77]. We present a new phylogenetic estimate including 4161 squamate species. The dataset includes up to 12896 bp per species from 12 loci (7 nuclear, 5 mitochondrial). We include species from all currently described families and subfamilies. In terms of species sampled, this is 5 times larger than any previous phylogeny for any one squamate group [30,41], 3 times larger than the largest supertree estimate [11], and 25 times larger than the largest molecular study of higher-level squamate relationships [20]. While we did not sequence any new taxa specifically for this project, much of the data in the combined matrix were generated in our labs or from our previous collaborative projects [16,19,20,34,36,37,41,44,78-82], including thousands of gene sequences from hundreds of species (>550 species; ~13% of the total).

The supermatrix approach can provide a relatively comprehensive phylogeny, and uncover novel relationships not seen in any of the separate analyses in which the data were generated. Such novel relationships can be revealed via three primary mechanisms. First, different studies may have each sampled different species from a given group for the same genes, and combining these data may reveal novel relationships not apparent in the separate analyses. Second, different studies may have used different genetic markers for the same taxa, and combining these markers can dramatically increase character sampling, potentially revealing new relationships and providing stronger support for previous hypotheses. Third, even for

Page 5: Répteis 1.1

clades that were previously studied using complete taxon sampling and multiple loci, novel relationships may be revealed by including these lineages with other related groups in a large-scale phylogeny.

The estimated tree and branch-lengths should be useful for comparative studies of squamate biology. However, this phylogeny is based on a supermatrix with extensive missing data (mean = 81% per species). Some authors have suggested that matrices with missing cells may yield misleading estimates of topology, support, and branch lengths [83]. Nevertheless, most empirical and simulation studies have not found this to be the case, at least for topology and support [41,73,84,85]. Though fewer studies have examined the effects of missing data on branch lengths [44,86,87], these also suggest that missing data do not strongly impact estimates. Here, we test whether branch lengths for terminal taxa are related to their completeness.

In general, our results corroborate those of many recent molecular studies with regard to higher-level relationships, species-level relationships, and the monophyly, composition, and relationships of most families, subfamilies, and genera. However, our results differ from previous estimates for some groups, and reveal (or corroborate) numerous problems in the existing classification of squamates. We therefore provide a conservative, updated classification of extant squamates at the family and subfamily level based on the new phylogeny, while highlighting problematic taxonomy at the genus level, without making changes. The generic composition of all families and subfamilies under our revised taxonomy are provided in Appendix I.

We note dozens of problems in the genus-level taxonomy suggested by our tree, but we acknowledge in advance that we do not provide a comprehensive review of the previous literature dealing with all these taxonomic issues (this would require a monographic treatment). Similarly, we do not attempt to fix these genus-level problems here, as most will require more extensive taxon (and potentially character) sampling to adequately resolve.

Throughout the paper, we address only extant squamates. Squamata also includes numerous extinct species classified in both extant and extinct families, subfamilies, and genera. Relationships and classification of extinct squamates based on morphological data from fossils have been addressed by numerous authors (e.g. [14,15,19,22,88-93]). A classification based only on living taxa may create some problems for classifying fossil taxa, but these can be addressed in future studies that integrate molecular and fossil data [19,86].

Results

Supermatrix phylogeny

We generated the final tree (lnL = −2609551.07) using Maximum Likelihood (ML) in RAxMLv7.2.8. Support was assessed using the non-parametric Shimodaira-Hasegawa-Like (SHL) implementation of the approximate likelihood-ratio test (aLRT; see [94]). The tree and data matrix are available in NEXUS format in DataDryad repository 10.5061/dryad.82h0m and as Additional file 1: Data File S1. A skeletal representation of the tree (excluding several species which are incertae sedis) is shown in Figure 1. The full species-level phylogeny (minus the outgroup Sphenodon) is shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. The analysis yields a generally well-

Page 6: Répteis 1.1

supported phylogenetic estimate for squamates (i.e. 70% of nodes have SHL values >85, indicating they are strongly supported). There is no relationship between proportional completeness (bp of non-missing data in species / 12896 bp of complete data) and branch length (r = −0.29, P = 0.14) for terminal taxa, strongly suggesting that the estimated branch lengths are not consistently biased by missing data.

Figure 1 Higher-level squamate phylogeny. Skeletal representation of the 4161-species tree from maximum-likelihood analysis of 12 genes, with tips representing families and subfamilies (following our taxonomic revision; species considered incertae sedis are not shown). Numbers at nodes are SHL values greater than 50%. The full tree is presented in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, with panels indicated by bold italic letters.

Figure 2 Species-level squamate phylogeny. Large-scale maximum likelihood estimate of squamate phylogeny, containing 4161 species. Numbers at nodes are SHL values greater than 50%. A skeletal version of this tree is presented in Figure 1. Bold italic letters indicate figure panels (A). Within panels, branch lengths are proportional to expected substitutions per site, but the relative scale differs between panels.

Figure 3 Species-level squamate phylogeny continued (B).

Figure 4 Figure 5 Species-level squamate phylogeny continued (D) Species-level squamate phylogeny continued (D).

Figure 6 Species-level squamate phylogeny continued (E).

Figure 7 Species-level squamate phylogeny continued (F).

Figure 8 Species-level squamate phylogeny continued (G).

Figure 9 Species-level squamate phylogeny continued (H).

Figure 10 Species-level squamate phylogeny continued (I).

Figure 11 Species-level squamate phylogeny continued (J).

Figure 12 Species-level squamate phylogeny continued (K) Species-level squamate phylogeny continued (K).

Figure 13 Species-level squamate phylogeny continued (L).

Figure 14 Species-level squamate phylogeny continued (M).

Figure 15 Species-level squamate phylogeny continued (N).

Figure 16 Species-level squamate phylogeny continued (O).

Figure 17 Species-level squamate phylogeny continued (P).

Figure 18 Species-level squamate phylogeny continued (Q).

Page 7: Répteis 1.1

Figure 19 Species-level squamate phylogeny continued (R).

Figure 20 Species-level squamate phylogeny continued (S).

Figure 21 Species-level squamate phylogeny continued (T).

Figure 22 Species-level squamate phylogeny continued (U).

Figure 23 Species-level squamate phylogeny continued (V).

Figure 24 Species-level squamate phylogeny continued (W).

Figure 25 Species-level squamate phylogeny continued (X).

Figure 26 Species-level squamate phylogeny continued (Y).

Figure 27 Species-level squamate phylogeny continued (Z).

Figure 28 Species-level squamate phylogeny continued (AA).

Higher-level relationships

Our tree (Figure 1) is broadly congruent with most previous molecular studies of higher-level squamate phylogeny using both nuclear data and combined nuclear and mitochondrial data (e.g. [16-20]), providing important confirmation of previous molecular studies based on more limited taxon sampling. Specifically we support (Figure 1): (i) the placement of dibamids and gekkotans near the base of the tree (Figure 1A); (ii) a sister-group relationship between Scincoidea (scincids, cordylids, gerrhosaurids, and xantusiids; Figure 1B) and a clade (Episquamata; Figure 1C) containing the rest of the squamates excluding dibamids and gekkotans; (iii) Lacertoidea (lacertids, amphisbaenians, teiids, and gymnophthalmids; Figure 1D), and (iv) a clade (Toxicofera; Figure 1E) containing anguimorphs (Figure 1F), iguanians (Figure 1G), and snakes (Figure 1H) as the sister taxon to Lacertoidea.

These relationships are strongly supported in general (Figure 1), but differ sharply from most trees based on morphological data [13-15,19,22,95]. Nevertheless, many clades found in previous morphological taxonomies and phylogenies are also present in this tree in some form, including Amphisbaenia, Anguimorpha, Gekkota, Iguania, Lacertoidea (but including amphisbaenians), Scincoidea, Serpentes, and many families and subfamilies. In contrast, the relationships among these groups differ strongly between molecular analyses [17-20] and morphological analyses [14,15]. Our results demonstrate that this incongruence is not explained by limited taxon sampling in the molecular data sets. In fact, our species-level sampling is far more extensive than in any morphological analyses (e.g. [14,15]), by an order of magnitude.

We find that the basal squamate relationships are strongly supported in our tree. The family Dibamidae is the sister group to all other squamates, and Gekkota is the sister group to all squamates excluding Dibamidae (Figure 1), as in some previous studies (e.g. [16,18]). Other recent molecular analyses have also placed Dibamidae near the squamate root, but differed in placing it as either the sister taxon to all squamates excluding Gekkota [17], or the sister-group of Gekkota [19,20]. Our results also corroborate that the New World genus

Page 8: Répteis 1.1

Anelytropsis is nested within the Old World genus Dibamus [96], but the associated branches are weakly supported (Figure 2).

Gekkota

Within Gekkota, we corroborate both earlier morphological [97] and recent molecular estimates [55,56,59,98] in supporting a clade containing the Australian radiation of "diplodactylid" geckos (Carphodactylidae and Diplodactylidae) and the snakelike pygopodids (Figures 1, 2). As in previous studies [55], Carphodactylidae is the weakly supported sister group to Pygopodidae, and this strongly supported clade is the sister group to Diplodactylidae (Figures 1, 2). We recover clades within the former Gekkonidae that correspond to the strongly supported families Eublepharidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae as in previous studies, and similar relationships among these groups [55-57,59,60,98-100].

Within Gekkota, we find evidence for non-monophyly of many genera. Many relationships among the New Caledonian diplodactylids are weakly supported (Figure 2), and there is apparent non-monophyly of the genera Rhacodactylus, Bavayia, and Eurydactylodes with respect to each other and Oedodera, Dierogekko, Paniegekko, Correlophus, and Mniarogekko [101]. In the Australian diplodactylids, Strophurus taenicauda is strongly supported as belonging to a clade that is only distantly related to the other sampled Strophurus species (Figure 2). The two species of the North African sphaerodactylid genus Saurodactylus are divided between the two major sphaerodactylid clades (Figure 3), but the associated branches are weakly supported. The South American phyllodactylid genus Homonota is strongly supported as being paraphyletic with respect to Phyllodactylus (Figure 3).

A number of gekkonid genera (Figure 4) also appear to be non-monophyletic, including the Asian genera Cnemaspis (sampled species divided into two non-sister clades), Lepidodactylus (with respect to Pseudogekko and some Luperosaurus), Gekko (with respect to Ptychozoon and Lu. iskandari), Luperosaurus (with respect to Lepidodactylus and Gekko), Mediodactylus (with respect to Pseudoceramodactylus, Tropiocolotes, Stenodactylus, Cyrtopodion, Bunopus, Crossobamon, and Agamura), and Bunopus (with respect to Crossobamon), and the African Afrogecko (with respect to Afroedura, Christinus, Cryptactites, and Matoatoa), Afroedura (with respect to Afrogecko, Blaesodactylus, Christinus, Geckolepis, Pachydactylus, Rhoptropus, and numerous other genera), Chondrodactylus (with respect to Pachydactylus laevigatus), and Pachydactylus (with respect to Chondrodactylus and Colopus). Many of these taxonomic problems in gekkotan families have been identified in previous studies (e.g. [59,99,102]), and extensive changes will likely be required to fix them.

Scincoidea

We strongly support (SHL = 100; Figures 1, 5, 6, 7, 8, 9, 10) the monophyly of Scincoidea (Scincidae, Xantusiidae, Gerrhosauridae, and Cordylidae), as in other recent studies [16-20]. All four families are strongly supported (Figures 5, 6, 7, 8, 9, 10). A similar clade is also recognized in morphological phylogenies [14], though without Xantusiidae in some [13].

Within the New World family Xantusiidae, we corroborate previous analyses [103,104] that found strong support for a sister-group relationship between Xantusia and Lepidophyma, excluding Cricosaura (Figure 5). These relationships support the subfamily Cricosaurinae for

Page 9: Répteis 1.1

Cricosaura [105]. We also recognize Xantusiinae for the North American genus Xantusia and Lepidophyminae for the Central American genus Lepidophyma [106,107].

Within the African and Madagascan family Gerrhosauridae (Figure 5), the genus Gerrhosaurus is weakly supported as being paraphyletic with respect to the clade comprising Tetradactylus + Cordylosaurus, with G. major placed as the sister group to all other gerrhosaurids. Within Cordylidae (Figure 5), we use the generic taxonomy from a recent phylogenetic analysis and re-classification based on multiple nuclear and mitochondrial genes [108]. This classification broke up the non-monophyletic Cordylus [109] into several smaller genera, and we corroborate the non-monophyly of the former Cordylus and support the monophyly of the newly recognized genera (Figure 5). We find support the distinctiveness of Platysaurus (Figure 5) and recognition of the subfamily Platysaurinae [108].

We find strong support (SHL = 100) for the monophyly of Scincidae (Figure 6) as in previous studies (e.g. [20,50,51]). We find strong support for the basal placement of the monophyletic subfamily Acontiinae (Figure 6), as found in some previous studies (e.g. [20,51]) but not others (e.g. [50]). Similar to earlier studies, we find that the subfamily Scincinae sensu [110] is non-monophyletic, as Feylininae is nested within Scincinae (also found in [20,50,51,111]). Based on these results, synonymizing Feylininae with Scincinae produces a monophyletic Scincinae (SHL = 97), which is then sister to a monophyletic Lygosominae (SHL = 100 excluding Ateuchosaurus; see below) with 94% SHL support (Figures 6, 7, 8, 9, 10). This yields a new classification in which all three subfamilies (Acontiinae, Lygosominae, Scincinae) are strongly supported. Importantly, these definitions approximate the traditional content of the three subfamilies [50,110], except for recognition of Feylininae.

We note that a recent revision of the New World genus Mabuya introduced a nontraditional family-level classification for Scincidae [112]. These authors divided Scincidae into seven families: Acontiidae, Egerniidae, Eugongylidae, Lygosomidae, Mabuyidae, Scincidae and Sphenomorphidae. However, there was no phylogenetic need for considering these clades as families (or another rank below family), since the family Scincidae is clearly monophyletic, based on our results and others (see above). Thus, their new taxonomy changes the long-standing definition of Scincidae unnecessarily (see [113]). Furthermore, these changes were done without defining the full content (beyond a type genus) of any of these families other than Scincidae (the former Scincinae + Feylininae), and Acontiidae (the former Acontiinae).

Most importantly, the new taxonomy proposed by these authors [112] is at odds with the phylogeny estimated here, with respect to the familial and subfamilial classification of >1000 skink species (Figures 6, 7, 8, 9, 10). For instance, Sphenomorphus stellatus is found in a strongly supported clade containing Lygosoma (presumably Lygosomidae; Figure 10), which is separate from the other clade (presumably Sphenomorphidae) containing the other sampled Sphenomorphus species (Figure 7; but note that these Sphenomorphus species are divided among several subclades within this latter clade). An additional problem is that Egernia, Lygosoma, and Sphenomorphus are the type genera of Egerniidae, Lygosomidae, and Sphenomorphidae, but are paraphyletic as currently defined (Figures 7, 8, 9, 10), leading to further uncertainty in the content and definition of these putative families.

Furthermore, Mabuyidae apparently refers to the clade (Figure 9) containing Chioninia, Dasia, Mabuya, Trachylepis, with each of these genera placed in its own subfamily (Chioniniinae, Dasiinae, Mabuyinae, and Trachylepidinae). However, several other genera are strongly placed in this group, such as Eumecia, Eutropis, Lankaskincus, and Ristella

Page 10: Répteis 1.1

(Figure 9). These other genera cannot be readily fit into these subfamilial groups (i.e. they are not the sister group of any genera in those subfamilies), and Trachylepis is paraphyletic with respect to Eumecia, Chioninia, and Mabuya (Figure 9). Also, we find that Emoia is divided between clades containing Lygosoma (Lygosomidae) and Eugongylus (Eugongylidae), and many of these relationships have strong support (Figure 10). Finally, Ateuchosaurus is apparently not accounted for in their classification, and here is weakly placed as the sister-group to a clade comprising their Sphenomorphidae, Egerniidae, Mabuyidae, and Lygosomidae (i.e. Lygosominae as recognized here; Figures 7, 8, 9, 10).

These authors [112] argued that a more heavily subdivided classification for skinks may be desirable for facilitating future taxonomic revisions and species descriptions. However, this classification seems likely to only exacerbate existing taxonomic problems (e.g. placing congeneric species in different families without revising the genus-level taxonomy). Here, we retain the previous definition of Mabuya (restricted to the New World clade; sensu [114]), and we support the traditional definitions of Scincidae, Acontiinae, Scincinae (but including Feylininae), and Lygosominae (Figures 6, 7, 8, 9, 10; note that we leave Ateuchosaurus as incertae sedis). The other taxonomic issues in Scincidae identified here and elsewhere should be resolved in future studies. Our phylogeny provides a framework in which these analyses can take place (i.e. identifying major subclades within skinks), which we think may be more useful than a classification lacking clear taxon definitions.

Of the 133 scincid genera [1], we can assign the 113 sampled in our tree to one of the three subfamilies in our classification (Acontiinae, Lygosominae, and Scincinae; Appendix I). We place 19 of the remaining genera into one of the three subfamilies based on previous classifications (e.g. [110]), with Ateuchosaurus as incertae sedis in Scincidae. Below, we review the non-monophyletic genera in our tree. Many of these problems have been reported by previous authors [51,111,115-118], and for brevity we do not distinguish between cases reported in previous studies, and potentially new instances found here.

Within Acontiinae, we find that the two genera are both strongly supported as monophyletic (Figure 6). Within Scincinae, many genera are now strongly monophyletic (thanks in part to the dismantling of Eumeces; [49,50,119]), but some problems remain (Figure 6). The genera Scincus and Scincopus are strongly supported as being nested inside of the remaining Eumeces. Among Malagasy scincines (see [49,120]), Pseudacontias is nested inside Madascincus, and the genera Androngo, Pygomeles, and Voeltzkowia are all nested in Amphiglossus (Figure 6).

We also find numerous taxonomic problems with lygosomines (Figures 7, 8, 9, 10). Species of Sphenomorphus are widely dispersed among other lygosomine genera. The genus Tropidophorus is paraphyletic with respect to a clade containing many other genera (Figure 7). The sampled species of Asymblepharus are only distantly related to each other, including one species (A. sikimmensis) nested inside of Scincella (Figure 7). The genus Lipinia is polyphyletic, with one species (L. vittigera) strongly placed as the sister taxon to Isopachys, and with two other species (L. pulchella and L. noctua) forming a well-supported clade that also includes Papuascincus (Figure 7).

Among Australian skinks, the genus Eulamprus is polyphyletic with respect to Nangura, Calyptotis, Gnypetoscincus, Coggeria, Coeranoscincus, Ophioscincus, Saiphos, Anomalopus, Eremiascincus, Hemiergis, Glaphyromorphus, Notoscincus, Ctenotus, and Lerista, and most of the relevant nodes are strongly supported (Figure 8). The genera Coeranoscincus and

Page 11: Répteis 1.1

Ophioscincus are polyphyletic with respect to each other and to Saiphos and Coggeria (Figure 8). The genus Glaphyromorphus is paraphyletic with respect to a clade of Eulamprus (Figure 8). The genus Egernia is paraphyletic with respect to Bellatorias (which is paraphyletic with respect to Egernia and Lissolepis) and Lissolepis, although many of the relevant nodes are not strongly supported (Figure 9). The genera Cyclodomorphus and Tiliqua are paraphyletic with respect to each other (Figure 9).

Among other lygosomines, Trachylepis is non-monophyletic [121], with two species (T. aurata and T. vittata) that fall outside the strongly supported clade containing the other species (Figure 9). The latter clade is weakly supported as the sister group to a clade containing Chioninia, Eumecia, and Mabuya. In Mabuya, a few species (M. altamazonica, M. bistriata, and M. nigropuncata) have unorthodox placements within a monophyletic Mabuya, potentially due to uncertain taxonomic assignment of specimens by previous authors [51,122]. The genus Lygosoma is paraphyletic with respect to Lepidothyris and Mochlus, and many of the relevant nodes are strongly supported (Figure 10). Among New Caledonian skinks, the genus Lioscincus is polyphyletic with respect to Marmorosphax, Celatiscincus, and Tropidoscincus, and both Lioscincus and Tropidoscincus are paraphyletic with respect to, Kanakysaurus, Lacertoides, Phoboscincus, Sigaloseps, Tropidoscincus, Graciliscincus, Simiscincus, and Caledoniscincus, with strong support for most relevant nodes (Figure 10). The genera Emoia and Bassiana are massively polyphyletic and divided across multiple lygosomine clades (Figure 10). The genus Lygisaurus appears to be nested inside of Carlia, although many of the relevant branches are only weakly supported (Figure 10).

Lacertoidea

Within Lacertoidea (Figure 1), we corroborate recent molecular analyses (e.g. [16,17,19,20]) and morphology-based phylogenies and classifications (e.g. [13,15]) in supporting the clade including the New World families Gymnophthalmidae and Teiidae (Figure 11). Within a weakly supported Teiidae (Figure 11), the subfamilies Tupinambinae and Teiinae are each strongly supported as monophyletic, as in previous studies [61]. In Tupinambinae, Callopistes is the sister group to a clade containing Tupinambis, Dracaena, and Crocodilurus. The clade Dracaena + Crocodilurus is nested within Tupinambis, and the associated clades have strong support (Figure 11). We find that the teiine genera Ameiva and Cnemidophorus are non-monophyletic (Figure 11), interdigitating with each other and the monophyletic genera Aspidoscelis, Dicrodon (monotypic), and Kentropyx, as in previous phylogenies [62].

A recent study [123] proposed a re-classification of the family Teiidae based on analysis of 137 morphological characters for 101 terminal species (with ~150 species in the family). Those authors erected several new genera and subfamilies in an attempt to deal with the apparent non-monophyly of currently recognized taxa in their tree. However, in our tree, some of these new taxa conflict strongly with the phylogeny or are rendered unnecessary. First, they recognize Callopistinae as a distinct subfamily for Callopistes, arguing that failure to do so would produce a taxonomy inconsistent with teiid phylogeny. However, we find strong support for Callopistes in its traditional placement as part of Tupinambinae (Figure 11), and this change is thus not needed based on our results. The genus Ameiva is paraphyletic under traditional definitions [62]. In our tree, their conception of Ameiva is also non-monophyletic, with species found in three distinct clades (Figure 11). We also find non-monophyly of many of their species groups within Ameiva, including the ameiva, bifrontata, dorsalis, and erythrocephala groups (Figure 11). Their genera Aurivela (Cnemidophorus

Page 12: Répteis 1.1

longicaudus) and Contomastyx (Cnemidophorus lacertoides) are strongly supported as sister taxa in our tree, and are nested within Ameiva in their erythrocephala species group, along with Dicrodon (Figure 11).

On the positive side, many of the genera they recognize are monophyletic and are not nested in other genera in our tree, including their Ameivula (Cnemidophorus ocellifer), Aspidoscelis (unchanged from previous definitions), Cnemidophorus (excluding C. ocellifer, C. lacertoides, and C. longicaudus), Holcosus (Ameiva undulata, A. festiva, and A. quadrilineatus), Kentropyx (unchanged from previous definitions), Salvator (Tupinambis rufescens, T. duseni, and T. merianae), and Teius (unchanged from previous definitions). We did not sample Ameiva edracantha (their Medopheos).

Given our results, major taxonomic rearrangements within Teiidae seem problematic at present, especially with the extensive paraphyly of many traditional and re-defined teiid genera, the lack of strong resolution of many of these relationships based on molecular and morphological data, and incomplete taxon sampling in all studies so far. Thus, we provisionally retain the traditional taxonomy of Teiidae, pending additional data and analyses. However, we note that Ameiva, Cnemidophorus, and Tupinambis are clearly non-monophyletic based on both our results and those of recent authors [123], and will require taxonomic changes in the future. We anticipate that many of these newly proposed genera [123] will be useful in such revisions.

We find strong support (SHL = 100) for monophyly of Gymnophthalmidae (Figure 11). Within Gymnophthalmidae, we find strong support for the monophyly of the previously recognized subfamilies [63,64,124], with the exception of Cercosaurinae (Figure 11). Previous researchers considered the genus Bachia a distinct tribe (Bachiini) within Cercosaurinae, based on a poorly supported sister-group relationship with the tribe Cercosaurini [63,64]. Here, we find a moderately well supported relationship (SHL = 84) between Bachia and Gymnophthalminae + Rhachisaurinae, and we find that this clade is only distantly related to other Cercosaurinae. Therefore, we restrict Cercosaurinae to the tribe Cercosaurini, and elevate the tribe Bachiini [64] to the subfamily level. The subfamily Bachiinae contains only the genus Bachia (Figure 11), identical in content to the previously recognized tribe [64]. Within Cercosaurinae, we find that the genus Petracola is nested within Proctoporus (Figure 11). In Ecpleopinae, Leposoma is divided into two clades, separated by Anotosaura, Colobosauroides, and Arthrosaura (Figure 11), and many of the relevant nodes are very strongly supported. These issues should be addressed in future studies.

Our results show strong support for a clade uniting Lacertidae and Amphisbaenia (Lacertoidea; Figure 1), as in many previous studies [16-20,23]. We also find strong support for monophyly of amphisbaenians (SHL = 99), in contrast to some molecular analyses [19,20]. Relationships among amphisbaenian families (Figure 12) are generally strongly supported and similar to those in earlier molecular studies (Figure 12), including the placement of the New World family Rhineuridae as sister group to all other amphisbaenians [70,71,125]. The family Cadeidae is placed as the sister-group to Amphisbaenidae + Trogonophiidae (Figures 1 and Figure 12) with weak support, but has been placed with Blanidae in previous studies, with strong support but less extensive taxon sampling [125,126].

Page 13: Répteis 1.1

We find strong support for monophyly of the Old World family Lacertidae (Figure 13). Within Lacertidae, branch support for the monophyly of most genera and for the subfamilies Gallotiinae and Lacertinae is very high (Figure 13). However, we find that relationships among many genera are poorly supported, as in previous studies [65,67,68]. Our results (Figure 13) also indicate that several lacertid genera are non-monophyletic with strong support for the associated nodes, including Algyroides (paraphyletic with respect to Dinarolacerta), Ichnotropis (paraphyletic with respect to Meroles), Meroles (paraphyletic with respect to Ichnotropis), Nucras (polyphyletic with respect to several genera, including Pedioplanis, Poromera, Latastia, Philocortus, Pseuderemias, and Heliobolus), and Pedioplanis (paraphyletic with respect to Nucras).

Higher-level phylogeny of Toxicofera

We find strong support (SHL = 96) for monophyly of Toxicofera (Anguimorpha, Iguania, and Serpentes; Figure 1), and moderate support for a sister-group relationship between Iguania and Anguimorpha (SHL = 79). Relationships among Anguimorpha, Iguania, and Serpentes were weakly supported in some Bayesian and likelihood analyses [16-19], but strongly supported in others [20]. We further corroborate previous studies in also placing Anguimorpha with Iguania [16-20]. In contrast, some other studies have placed anguimorphs with snakes as the sister group to iguanians [127,128].

Anguimorpha

Our hypothesis for family-level anguimorphan relationships (Figures 1, 14) is generally similar to that of other recent studies [17,19,20,129], and is strongly supported. Our results differ from some analyses based only on morphology, which place Anguidae near the base of Anguimorpha [130]. Here, Shinisauridae is strongly supported as the sister taxon to a well-supported clade of Varanidae + Lanthanotidae (Figures 1, 14). Varanid relationships are similar to previous estimates (e.g. [131]). Xenosauridae is here strongly supported as the sister-group to a strongly supported clade containing Helodermatidae and the strongly supported Anniellidae + Anguidae clade (Figures 1, 14). However, previous molecular analyses have placed Helodermatidae as the sister to Xenosauridae (Anniellidae + Anguidae), typically with strong support [16,17,19,20].

Within Anguidae (Figure 14), our phylogeny indicates non-monophyly of genera within every subfamily, including Diploglossinae (Diploglossus and Celestus are strongly supported as paraphyletic with respect to each other and to Ophiodes), Anguinae (Ophisaurus is strongly supported as paraphyletic with respect to Anguis, Dopasia, and Pseudopus), and Gerrhonotinae (Abronia and Mesaspis are non-monophyletic, and Coloptychon is nested inside Gerrhonotus). Some of these problems were not reported previously (e.g. Coloptychon, Abronia, and Mesaspis), due to incomplete taxon sampling in previous studies [129,132,133], but relationships within Gerrhonotinae are under detailed investigation by other researchers, so these issues are likely to be resolved in the near future.

Iguania

We find strong support (SHL = 100) for the monophyly of Iguania (Figure 1). This clade is strongly supported by nuclear data [16,17,19,20], but an apparent episode of convergent molecular evolution in several mitochondrial genes has seemingly misled some analyses of mtDNA, leading to weak support for Iguania [134], or even separation of the acrodonts and

Page 14: Répteis 1.1

pleurodonts [17,135] in previous studies. Within Iguania (Figure 1), we find strong support (SHL = 100) for a sister-group relationship between Chamaeleonidae and Agamidae (Acrodonta), and for a clade of mostly New World families (Pleurodonta; SHL = 100).

We find strong support for the monophyly of Chamaeleonidae and the subfamily Chamaeleoninae, and weak support for the paraphyly of Brookesiinae (Figures 1, 15). The sampled species of the Brookesia nasus group appear as the sister group to all other chamaeleonids (the latter clade weakly supported) as found by some previous authors [136], though other studies have recovered a monophyletic Brookesia [137,138]. Within Chamaeleoninae (Figure 15), we find strong support for the monophyly of most genera and species-level relationships. However, we find strong support for the non-monophyly of Calumma, with some species strongly placed with Chamaeleo, others strongly placed with Rieppeleon, and a third set weakly placed with Nadzikambia + Rhampoleon. While non-monophly of Calumma has also been found in previous studies [138], a recent study strongly supports monophyly of Brookesia and weakly supports monophyly of Calumma [139].

Monophyly of Agamidae is strongly supported (Figure 16; SHL = 100), contrary to some previous estimates [15,31]. Most relationships among agamid subfamilies and genera are strongly supported (Figure 16), and largely congruent with earlier studies [17,29,34,140]. There are some differences with earlier studies. For example, previous studies based on 29–44 loci [20,29,34] placed Hydrosaurinae as sister to Amphibolurinae + (Agaminae + Draconinae) with strong support, whereas we place Hydrosaurinae as the sister-group to Amphibolurinae with weak support. Other authors [140] placed Leiolepiedinae with Uromastycinae, but we (and most other studies) place Uromastycinae as the sister group to all other agamids.

Our phylogeny indicates several taxonomic problems within amphibolurine agamids (Figure 16). The genera Moloch and Chelosania render Hypsilurus paraphyletic, although the support for the relevant clades is weak. The species Lophognathus gilberti is placed in a strongly supported clade with Chlamydosaurus and some Amphibolurus (including the type species, A. muricatus), a clade that is not closely related to the other Lophognathus. Many of these taxonomic problems were also noted by previous authors [141].

Within agamine agamids (Figure 16), most relationships are well supported and monophyly of all sampled genera is strongly supported. In contrast, within draconine agamids (Figure 16), many intergeneric relationships are weakly supported, and some genera are non-monophyletic (Figure 16; see also [142]), including Gonocephalus (G. robinsonii is only distantly related to other Gonocephalus) and Japalura (with species distributed among three distantly related clades, including one allied with Ptyctolaemus, another with G. robinsonii, and a third with Pseudocalotes).

Recent authors suggested dividing Laudakia into three genera (Stellagama, Paralaudakia, and Laudakia) based on a non-phylogenetic analysis of morphology [143]. Here, Laudakia (as previously defined) is strongly supported as monophyletic (Figure 16), and this change is not necessitated by the phylogeny. Similarly, based on genetic and morphological data, recent authors [144] suggested resurrecting the genus Saara for the basal clade of Uromastyx (U. asmussi, U. hardwickii, and U. loricata). However, Uromastyx (as previously defined) is strongly supported as monophyletic in our results (Figure 16) and in those of the recent revision [144], and this change is not needed. We therefore retain Laudakia and Uromastyx as previously defined, to preserve taxonomic stability in these groups [113]. We note that recent

Page 15: Répteis 1.1

studies have also begun to revise species limits in other groups such as Trapelus [145], and taxa such as T. pallidus (Figure 16) may represent populations within other species.

Within Pleurodonta we generally confirm the monophyly and composition of the clades that were ranked as families (or subfamilies) within the group (e.g. Phrynosomatidae, Opluridae, Leiosauridae, Leiocephalidae, and Corytophanidae; Figures 1, 17, 18, 19) based on previous molecular studies [31,33,34] and earlier morphological studies [146,147].

One important exception is the previously recognized Polychrotidae. Our results confirm that Anolis and Polychrus are not sister taxa (Figures 1, 18, 19), as also found in some previous molecular studies [31,33,34], but not others [20,29]. Our results provide strong support for non-monophyly of Polychrotidae, placing Polychrus with Hoplocercidae (SHL = 99) and Anolis with Corytophanidae (SHL = 99; the latter also found by [34]). Recent analyses placing Anolis with Polychrus showed only weak support for this relationship [20,29], despite many loci (30–44). We support continued recognition of Dactyloidae for Anolis and Polychrotidae for Polychrus [34], based on a limited number of loci but extensive taxon sampling. We note that these families are still monophlyetic, even if they prove to be sister taxa.

Interestingly, our results for relationships among pleurodont families differ from most previous studies, and are surprisingly well-supported in some cases by SHL values (but see below). In previous studies, many relationships among pleurodont families were poorly supported by Bayesian posterior probabilities and by parsimony and likelihood bootstrap values, though typically sampling fewer taxa or characters [17,31,33,148-151]. Studies including 29 nuclear loci found strong concatenated Bayesian support for many relationships but weak support from ML bootstrap analyses for many of the same relationships [34]. The latter pattern (typically weak ML support) was also found in an analysis including those same 29 loci and mitochondrial data for >150 species [29]. We also find a mixture of strongly and weakly supported clades, but with many relationships that are incongruent with these previous studies. First, we find that Tropiduridae is weakly supported as the sister group to all other pleurodonts (also found by [29]), followed successively (Figures 1, 17, 18, 19) by Iguanidae, Leiocephalidae, Crotaphytidae + Phrynosomatidae, Polychrotidae + Hoplocercidae, and Corytophanidae + Dactyloidae.

The relatively strong support for the clades Crotaphytidae + Phrynosomatidae (SHL = 87), Polychrotidae + Hoplocercidae (SHL = 99), and Corytophanidae + Dactyloidae (SHL = 99) is largely unprecedented in previous studies (although Corytophanidae + Dactyloidae is strongly supported in some Bayesian analyses [34]). As in many previous analyses, deeper relationships among the families remain weakly supported. We also find a strongly supported clade containing Liolaemidae, Opluridae, and Leiosauridae (SHL = 95), with Opluridae + Leiosauridae also strongly supported (SHL = 99). Both clades have also been found in previous studies [149,151], including studies based on 29 or more nuclear loci [20,29,34].

We note that previous studies have shown strong support for some pleurodont relationships (e.g. basal placement of phrynosomatids; see [34]), only to be strongly overturned with additional data [20,29]. Therefore, the relationships found here should be taken with some caution (even if strongly supported), with the possible exception of the recurring clade of Liolaemidae + (Opluridae + Leiosauridae).

Page 16: Répteis 1.1

All pleurodont families are strongly supported as monophyletic (SHL > 85). Within the pleurodont families, our results generally support the current generic-level taxonomy (Figures 17, 18, 19). However, there are some exceptions. Within Tropiduridae (Figure 17), Tropidurus is paraphyletic with respect to Eurolophosaurus, Strobilurus, Uracentron, and Plica. Within Opluridae (Figure 18), the monotypic genus Chalarodon renders Oplurus paraphyletic. Two leiosaurid genera are also problematic (Figure 18). In Enyaliinae, Anisolepis is paraphyletic with respect to Urostrophus, and this clade is nested within Enyalius. In Leiosaurinae, Pristidactylus is rendered paraphyletic by Leiosaurus and Diplolaemus (Figure 18).

Within Dactyloidae, a recent study re-introduced a more subdivided classification of anoles [152], an issue that has been debated extensively in the past [153-156]. Our results support the monophyly of all the genera recognized by recent authors [152], including Anolis, Audantia, Chamaelinorops, Dactyloa, Deiroptyx, Norops, and Xiphosurus (see Figure 19). However, since Anolis is monophyletic as previously defined, we retain that definition here (including the seven listed genera) for continuity with the recent literature [113,157].

Serpentes

Relationships among the major serpent groups (Figure 1) are generally similar to other recent studies [20,35,36,38,41,44,47,158-160]. We find that the blindsnakes, Scolecophidia (Figures 1, 20) are not monophyletic, as in previous studies [19,20,36,44,159,160]. Similar to some previous studies [44,159], our data weakly place Anomalepididae as the sister taxon to all snakes, and the scolecophidian families Gerrhopilidae, Leptotyphlopidae, Typhlopidae, and Xenotyphlopidae as the sister-group to all other snakes excluding Anomalepididae (Figures 1, 20). Previous studies have also placed Anomalepididae as the sister-group to all non-scolecophidian snakes [19,20,35,36,158,160], in some cases with strong support [20]. Although it might appear that recent analyses of scolecophidian relationships [38] support monophyly of Scolecophidia (e.g. Figure 1 of [38]), the tree including non-snake outgroups from that study shows weak support for placing anomalepidids with alethinophidians, as in other studies [19,20,36,160].

We follow recent authors [38] in recognizing Xenotyphlopidae (strongly placed as the sister taxon of Typhlopidae) and Gerrhopilidae (strongly placed as the sister group of Xenotyphlopidae + Typhlopidae) as distinct families (Figure 20). Leptotyphlopidae is strongly supported as the sister group of a clade comprising Gerrhopilidae, Xenotyphlopidae, and Typhlopidae (Figure 20). As in previous studies [38,44], we find strong support for non-monophyly of several typhlopid genera (Afrotyphlops, Austrotyphlops, Ramphotyphlops, Letheobia, and Typhlops; Figure 20). There are also undescribed taxa (e.g. Typhlopidae sp. from Sri Lanka; [44]) of uncertain placement within this group (Figure 20). The systematics of typhlopoid snakes will thus require extensive revision in the future, with additional taxon and character sampling.

Within Alethinophidia (SHL = 100), Aniliidae is strongly supported (SHL = 98) as the sister taxon of Tropidophiidae (together comprising Anilioidea), and all other alethinophidians form a strongly supported sister group to this clade (SHL = 97; Figures 1, 21). The enigmatic family Xenophidiidae is weakly placed as the sister-group to all alethinophidians exclusive of Anilioidea (Figures 1, 21). The family Bolyeriidae is weakly placed as the sister-group to pythons, boas, and relatives (Booidea), which are strongly supported (SHL = 88).

Page 17: Répteis 1.1

Relationships in this group are generally consistent with other recent molecular studies [20,35-37,47,159].

Relationships among other alethinophidians are a mixture of strongly and weakly supported nodes (Figures 1, 21). We find strong support (SHL = 100) for a clade containing Anomochilidae + Cylindrophiidae + Uropeltidae. This clade of three families is strongly supported (SHL = 89) as the sister taxon to Xenopeltidae + (Loxocemidae + Pythonidae). Together, these six families form a strongly supported clade (SHL = 89; Figures 1, 21) that is weakly supported as the sister group to the strongly supported clade of Boidae + Calabariidae. Within the clade of Anomochilidae, Cylindrophiidae, and Uropeltidae (Figure 21), we weakly place Anomochilus as the sister group to Cylindrophiidae [44], in contrast to previous studies which placed Anomochilus within Cylindrophis [161]. However, support for monophyly of Cylindrophis excluding Anomochilus is weak (Figure 21). As in previous studies [44,162], we find several taxonomic problems within Uropeltidae (Figure 21). Specifically, Rhinophis and Uropeltis are paraphyletic with respect to each other and to Pseudotyphlops. The problematic taxa are primarily Sri Lankan [44], and forthcoming analyses will address these issues.

Within Pythonidae (Figure 21), the genus Python is the sister group to all other genera. Some species that were traditionally referred to as Python (P. reticulatus and P. timoriensis) are instead sister to an Australasian clade consisting of Antaresia, Apodora, Aspidites, Bothrochilus, Leiopython, Liasis, and Morelia (Figure 21). These taxa (P. reticulatus and P. timoriensis) have been referred to as Broghammerus, a name originating from an act of "taxonomic vandalism" (i.e. an apparently intentional attempt to disrupt stable taxonomy) in a non-peer reviewed organ without data or analyses [163,164]. However, this name was, perhaps inadvertently, subsequently used by researchers in peer-reviewed work [165] and has entered into somewhat widespread usage [1]. This name should be ignored and replaced with a suitable substitute. Within the Australasian clade (Figure 21), Morelia is paraphyletic with respect to all other genera, and Liasis is non-monophyletic with respect to Apodora, although many of the relevant relationships are weakly supported.

Within Boidae (Figure 21), our results and those of other recent studies [20,36,47,48,150,166] have converged on estimated relationships that are generally similar to each other but which differ from traditional taxonomy [167]. However, the classification has yet to be modified to reflect this, and we rectify this situation here. We find that Calabariidae is nested within Boidae [150], but this is poorly supported, and contrary to most previous studies [47,48]. While Calabaria has been classified as an erycine boid in the past, this placement is strongly rejected here and in other studies [47,48]. If the current placement of Calabaria is supported in the future, it would require recognition as the subfamily Calabariinae.

The Malagasy boine genera Acrantophis and Sanzinia are placed as the sister taxa to a weakly-supported clade containing Calabariidae and a strongly supported clade (SHL = 99) comprising the currently recognized subfamilies Erycinae, Ungaliophiinae, and other boines (Figure 21). Regardless of the position of Calabariidae, this placement of Malagasy boines renders Boinae paraphyletic. We therefore resurrect the subfamily Sanziniinae [168] for Acrantophis and Sanzinia. This subfamily could be recognized as a distinct family if future studies also support placement of this clade as distinct from other Boidae + Calabariidae.

Page 18: Répteis 1.1

The genera Lichanura and Charina are currently classified as erycines [1], but are strongly supported as the sister group to Ungaliophiinae, as in previous studies [20,36,47,166]. We expand Ungaliophiinae to include these two genera (Figure 21), rather than erect a new subfamily for these taxa. The subfamily Ungaliophiinae is placed as the sister group to a well-supported clade (SHL = 87) containing the rest of the traditionally recognized Erycinae and Boinae. We restrict Erycinae to the Old World genus Eryx.

The genus Candoia (Boinae) from Oceania and New Guinea [1], is placed as the sister taxon to a moderately supported clade (SHL = 83) consisting of Erycinae (Eryx) and the remaining genera of Boinae (Boa, Corallus, Epicrates, and Eunectes). To solve the non-monophyly of Boinae with respect to Erycinae (due to Candoia), we place Candoia in a new subfamily (Candoiinae, subfam. nov.; see Appendix I). Boinae then comprises the four Neotropical genera that have traditionally been classified in this group (Boa, Corallus, Epicrates, and Eunectes). We acknowledge that non-monophyly of Boinae could be resolved in other ways (e.g. expanding it to include Erycinae). However, our taxonomy maintains the traditionally used subfamilies Boinae, Erycinae, and Ungaliophiinae, modifies them to reflect the phylogeny, and recognizes the phylogenetically distinct boine clades as separate subfamilies (Candoiinae, Sanziniinae). Within Boinae, Eunectes renders Epicrates paraphyletic, but this is not strongly supported see also ([48]).

Our results for advanced snakes (Caenophidia) are generally similar to those of other recent studies [41,42,169], and will only be briefly described. However, in contrast to most recent studies [20,36,41,42,81,159,160], Acrochordidae is here strongly placed (SHL = 95) as the sister group to Xenodermatidae. This clade is then the sister group to the remaining Colubroidea, which form a strongly supported clade (SHL = 100; Figures 1, 22). This relationship has been found in some previous studies [169,170], and was hypothesized by early authors [171]. Further evidence will be required to resolve this conclusively. Analyses based on concatenation of 20–44 loci do not support this grouping [20,36], though preliminary species-tree analyses of >400 loci do (Pyron et al., in prep.). Relationships in Pareatidae are similar to recent studies [172], and the group is strongly placed as the sister taxon to colubroids excluding xenodermatids (SHL = 100; Figures 1 , 22), as in most recent analyses (e.g. [41,43,44]).

The family Viperidae is the sister group to all colubroids excluding xenodermatids and pareatids (Figure 1), as in other recent studies. The family Viperidae is strongly supported (Figure 22), as is the subfamily Viperinae, and the sister-group relationship between Azemiopinae and Crotalinae (SHL = 100). Our results generally support the existing generic-level taxonomy within Viperinae (Figure 22). However, we recover a strongly supported clade within Viperinae consisting of Daboia russelii, D. palaestinae, Macrovipera mauritanica, and M. deserti (Figure 22), as in previous studies [173]. We corroborate previous suggestions that these taxa be included in Daboia [174], though this has not been widely adopted [1]. The other Macrovipera species (including the type species) remain in that genus (Figure 22).

Within Crotalinae (Figure 22), a number of genera appear to be non-monophyletic. The species Trimeresurus gracilis is strongly supported as the sister taxon to Ovophis okinavensis and distantly related to other Trimeresurus, whereas the other Ovophis are strongly placed as the sister group to Protobothrops. A well-supported clade (SHL = 90) containing Atropoides picadoi, Cerrophidion, and Porthidium renders Atropoides paraphyletic (see also [175]). The species Bothrops pictus, considered incertae sedis in previous studies [176], is here strongly

Page 19: Répteis 1.1

supported as the sister taxon to a clade containing Rhinocerophis, Bothropoides, Bothriopsis, and Bothrops (Figure 22). Most of these relationships are strongly supported.

Viperidae is strongly placed (SHL = 95) as the sister taxon to a well-supported clade (SHL = 100) containing Colubridae, Elapidae, Homalopsidae, and Lamprophiidae (Figure 1). Monophyly of Homalopsidae is also strongly supported (Figure 23). Within Homalopsidae, the non-monophyly of the genus Enhydris is strongly supported (Figure 23), and should likely be split into multiple genera. Homalopsidae is weakly supported (SHL = 58) as the sister group of Elapidae + Lamprophiidae (Figure 1). This same relationship was also weakly supported by previous analyses [41,44], but other studies have found strong support for placing Homalopsidae as the sister group of a strongly supported clade including Elapidae, Lamprophiidae, and Colubridae [20,36], including data from >400 loci (Pyron et al., in prep.).

Support for the monophyly of Lamprophiidae is strong (but excluding Micrelaps; see below), and most of its subfamilies are well-supported [40,41,177,178] including Atractaspidinae, Aparallactinae, Lamprophiinae, Prosymninae (weakly placed as the sister-group to Oxyrhabdium), Pseudaspidinae, Psammophiinae, and Pseudoxyrhophiinae (Figure 23). In Lamprophiidae, most genera are monophyletic based on our sampling (Figure 23). However, within Aparallactinae, Xenocalamus is strongly placed within Amblyodipsas, and in Atractaspidinae, Homoroselaps is weakly placed in Atractaspis. In Lamprophiinae, Lamprophis is paraphyletic with respect to Lycodonomorphus but support for the relevant clades is weak.

The enigmatic genera Buhoma from Africa and Psammodynastes from Asia were both previously considered incertae sedis within Lamprophiidae [41]. Here they are weakly placed as sister taxa, and more importantly, they form a strongly supported clade with the African genus Pseudaspis (Pseudaspidinae; SHL = 95; Figure 23). Therefore, we expand Pseudaspidinae to include these two genera.

The genus Micrelaps (putatively an aparallactine; [1]) is weakly placed as the sister taxon to Lamprophiidae + Elapidae. Along with Oxyrhabdium (see above) and Montaspis [40], this genus is treated as incertae sedis in our classification (Appendix I). If future studies strongly support these relationships, they may require a new family for Micrelaps and possibly a new subfamily for Oxyrhabdium, though placement of these taxa has been highly variable in previous studies [40,41,44,81].

Monophyly of Elapidae is strongly supported (Figure 24), and Calliophis melanurus is strongly supported as the sister group to all other elapids (see also [44]). Within Elapidae (Figure 24), relationships are generally concordant with previous taxonomy, with some exceptions. The genera Toxicocalamus, Simoselaps, and Echiopsis are all divided across multiple clades, with strong support for many of the relevant branches. A recent study has provided a generic re-classification of the sea snakes (Hydrophis group) to resolve the extensive paraphyly of genera found in previous studies (e.g. [46,179,180]). Our results support this classification.

Monophyly of Colubridae and most of its subfamilies (sensu [41,44]) are strongly supported (Figures 1, 25, 26, 27, 28). However, relationships among many of these subfamilies are weakly supported (Figure 1), as in most previous studies [41,43,45,181]. The subfamilies Calamariinae and Pseudoxenodontinae are strongly supported as sister taxa, and weakly

Page 20: Répteis 1.1

placed as the sister-group to the rest of Colubridae (Figure 25). There is a weakly supported clade (Figure 1) comprising Natricinae + (Dipsadinae + Thermophis), but the clade uniting the New World Dipsadinae with the Asian genus Thermophis is strongly supported (SHL = 100; Figure 28). Here, we place Thermophis (recently in Pseudoxenodontinae [41]) in Dipsadinae (following [182]), making it the first and only Asian member of this otherwise exclusively New World subfamily. However, despite the strong support for its placement here, placement of this taxon has been variable in previous analyses [41,182,183], and we acknowledge that future analyses may support recognition of a distinct subfamily (Thermophiinae).

The clade of Natricinae and Dipsadinae is weakly supported as the sister group (Figures 1, 25, 26, 27, 28) to a clade containing Sibynophiinae [181] + (Colubrinae + Grayiinae). The subfamily Colubrinae is weakly supported; we find that the colubrine genera Ahaetulla, Chrysopelea, and Dendrelaphis form a strongly supported clade that is weakly placed as the sister group to the rest of Colubrinae, which form a strongly supported clade (Figure 25). This clade was also placed with Grayiinae or Sibynophiinae in many preliminary analyses, rendering Colubrinae paraphyletic. This group of three genera has been strongly supported in the past, and only weakly placed with Colubrinae [41,44]. It is possible that future analyses will reveal that the clade of Ahaetulla, Chrysopelea, and Dendrelaphis is placed elsewhere in Colubridae with strong support, and thus merits recognition as a distinct subfamily (Ahaetuliinae). A notable feature of this clade is the presence of gliding flight in most species of Chrysopelea, less-developed non-flight jumping with similar locomotor origins in Dendrelaphis, and homologous glide-related traits in Ahaetulla [184].

Numerous colubroid genera are not included in our tree and are not clearly placed in subfamilies based on previous morphological evidence. In our classification, these genera are also considered incertae sedis within Colubridae, including Blythia, Cyclocorus, Elapoidis, Gongylosoma, Helophis, Myersophis, Oreocalamus, Poecilopholis, Rhabdops, and Tetralepis, as in previous classifications [1].

Our phylogeny reveals numerous taxonomic problems within Colubrinae (Figures 25, 26). The genus Boiga is paraphyletic with respect to Crotaphopeltis, Dipsadoboa, Telescopus, Toxicodryas, and Dasypeltis, with strong support (Figure 25). The genus Philothamnus is paraphyletic with respect to Hapsidophrys (Figure 25). The genus Coluber is split between Old World and New World clades (Figures 25, 26). The species Hierophis spinalis is sister to Eirenis to the exclusion of the other Hierophis species (Figure 25). The genus Dryocalamus is nested within Lycodon (Figure 26). The species Chironius carinatus and C. quadricarinatus are weakly placed in a clade of Neotropical colubrines only distantly related to the other Chironius species (Figure 26). The genus Drymobius renders Dendrophidion paraphyletic (Figure 26). The monotypic genus Rhynchophis renders the two species of Rhadinophis paraphyletic (Figure 26). The genus Coronella is rendered paraphyletic (Figure 26) by Oocatochus with weak support see also [185]. Finally, the genus Rhinechis is nested within Zamenis (Figure 26).

We find numerous non-monophyletic genera within Natricinae (Figure 27), as in previous studies [41,44,78,186]. These non-monophyletic genera include the Asian genera Amphiesma, Atretium, and Xenocrophis. Among New World genera, we find Regina to be non-monophyletic with respect to most other genera, as in previous phylogenetic studies (e.g. [41,186]). Also, as in previous studies (e.g. [41,187]), we find that Adelophis [188] is nested deep within Thamnophis [189].

Page 21: Répteis 1.1

Finally, within a weakly supported Dipsadinae (Figure 28), we find non-monophyly of numerous genera, as in many earlier studies (e.g. [41-43,190]). These problems of non-monophyly include Leptodeira (with respect to Imantodes), Geophis (with respect to Atractus), Atractus (with respect to Geophis), Sibynomorphus (with respect to Dipsas), Dipsas (with respect to Sibynomorphus), Taeniophallus (with respect to Echinanthera), and Echinanthera (with respect to Taeniophallus). Recent revisions have begun to tackle these problems [42,43,190], but additional taxon and character sampling will be crucial to resolve relationships and taxonomy.

Discussion

In this study, we provide a phylogenetic estimate for 4161 species of squamates based on molecular data from up to 12 genes per species, combining much of the relevant data used in previous molecular phylogenetic analyses. This tree provides a framework for future evolutionary studies, spanning from the species level to relationships among families, utilizing a common set of branch lengths. These estimated branch lengths are critically important for most phylogenetic comparative methods. To further facilitate use of this phylogeny in comparative studies, we provide the Newick version of this tree (with estimated branch lengths) in DataDryad repository 10.5061/dryad.82h0m and Additional file 1 Data File S1. Our results also suggest that the branch lengths in this tree should not generally be compromised by missing data for some genes in some taxa.

Our results also reveal many problems in squamate classification at nearly all phylogenetic levels. We make several changes to higher-level taxonomy based on this phylogeny, including changes to the traditionally recognized subfamilies of boid snakes (i.e. resurrecting Sanziniinae for the boine genera Acrantophis and Sanzinia, erecting Candoiinae for the boine genus Candoia, and moving Lichanura and Charina from Erycinae to Ungaliophiinae), lamprophiid snakes (expansion of Pseudaspidinae to include the formerly incertae sedis genera Buhoma and Psammodynastes), colubrid snakes (expansion of Dipsadinae to include the Asian pseudoxenodontine genus Thermophis), and gymnophthalmid lizards (recognition of Bachiinae for the tribe cercosaurine Bachiini, containing Bachia) and scincid lizards (synonymizing Feylininae with Scincinae to yield a total of three scincid subfamilies: Acontiinae, Lygosominae, and Scincinae). In Appendix I, we list the generic content of all families and subfamilies. We also find dozens of problems at the genus level, many of which have been identified previously, and which we defer the resolution of to future studies. Our results also highlight potential problems in recent proposals to modify the classification of scincid [112] and teiid lizards [123].

In addition to synthesizing existing molecular data for squamate phylogeny, our analyses also reveal several apparently novel findings (Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28). Given space constraints, we cannot detail every deviation from previous phylogenetic hypotheses (especially pre-molecular studies). Nevertheless, we focus on three sets of examples. First, we find some relatively novel, strongly-supported relationships at the family level. These include the placement of Helodermatidae (as sister to Xenosauridae, Anguidae, and Anniellidae) and the placement of Xenodermatidae as the sister taxon to Acrochordidae (rendering Colubroidea paraphyletic), in contrast to most recent analyses of anguimorphs and snakes (see above). We also find some novel, strongly supported relationships among pleurodont families, but we acknowledge that these may be overturned in future studies.

Page 22: Répteis 1.1

The second example is the higher-level relationships within Scincidae, the largest family of lizards [1]. No previous studies examining higher-level relationships within the group included more than ~50 species [50,51]. In this study, we sample 683 skink species (Figures 6, 7, 8, 9, 10), and our phylogeny provides a unique resolution of higher-level skink relationships. Previous researchers [51] placed acontiines as the sister group to all other skinks, but suggested that scincines and lygosomines were paraphyletic with respect to each other (with feyliniines placed with scincines). In contrast, others [50] suggested that acontiines, feyliniines, and lygosomines were all nested inside scincines (but with each of those three subfamilies as monophyletic), although many clades were only weakly supported. Here (Figures 1, 6, 7, 8, 9, 10), we find that acontiines are the sister group to a strongly supported clade consisting of a monophyletic Scincinae and a monophyletic Lygosominae (excepting the weakly supported placement of Ateuchosaurus and placement of Feyliniinae in Scincinae).

Third, our phylogeny reveals numerous genera that appear to be non-monophyletic, with many of these cases having strong support for the associated nodes. Our examples include genera in many families, including dibamids, diplodactylids, gekkonids, phyllodactylids, gerrhosaurids, scincids, teiids, gymnophthalmids, lacertids, anguids, chamaeleonids, agamids, tropidurids, oplurids, leiosaurids, typhlopids, pythonids, uropeltids, boids, viperids, lamprophiids, elapids, and colubrids (see Results). Although many problems noted here were found in previous studies, some seem to be new, such as placement of Crocodilurus and Draceana within Tupinambis (in Teiidae; Figure 11) and Coloptychon within Gerrhonotus (in Anguidae; Figure 14).

Our study also offers an important test of higher-level squamate relationships using a very different sampling strategy than that used in most previous analyses. Squamates have traditionally been divided into two clades based on morphology, Iguania and Scleroglossa (e.g. [13,21]). Despite considerable disagreement among morphology-based hypotheses, this basic division is supported by nearly all phylogenetic analyses based on morphological data [13-15,19,22,95,191]. In contrast, our results and those of most previous molecular analyses strongly support placement of iguanians with anguimorphs and snakes [16-20,23,24]. The causes of this conflict remain unclear, but may be related to morphological traits associated with different feeding strategies of iguanian and (traditional) scleroglossan squamates [3,17].

Additionally, analyses of morphology often place dibamids, amphisbaenians, snakes, and (in some cases) some scincids and anguids in a single clade [13-15]. Our analyses do not support such a clade (Figure 1), nor do other analyses of molecular data alone [17-20], or analyses of combined molecular and morphological data [19]. Instead, these morphological results seem to be explained by convergence associated with burrowing (e.g. [19]). Overall, molecular datasets have shown overwhelmingly strong support for placement of dibamids and gekkonids at the base of the tree, amphisbaenians with lacertoids, and iguanians with snakes and anguimorphs [17-20,23]. These results have now been corroborated with up to 22 genes (15794 bp) for 45 taxa [19], 25 genes (19020 bp) for 64 taxa [16], and 44 genes (33717 bp) for 161 taxa [20]. We now support this basic topology with 4161 species sampled for up to 12 genes each (up to 12896 bp).

Nevertheless, despite the overall strong support for most of the tree (i.e. 70% of all nodes have SHL > 85), certain clades remain poorly supported (e.g. relationships among many pleurodont iguanian families; Figures 1, 17, 18, 19). A potential criticism of the supermatrix approach used here is that this weak support may occur due to missing data. However,

Page 23: Répteis 1.1

previous studies of 8 datasets have shown explicitly that there is typically little relationship between branch support for terminal taxa and the amount of missing data [85]. Instead, these patterns of weak support are more likely to reflect short underlying branch lengths [20,36,41], and may be difficult to resolve even with more complete taxonomic and genomic sampling. Indeed, as noted above, many of the weakly supported nodes in our phylogeny are also weakly supported in analyses with little missing data (<20%) and large numbers of genes (e.g. 44 genes as in [20]), such as the relationships of many pleurodont lizard families and colubroid snake families and subfamilies.

We acknowledge that the differences between our results and previous studies (noted above) do not necessarily mean that our results are right and those of previous studies are wrong. In some cases, we provide strong support for novel relationships when previous, conflicting studies showed only weak support (as in scincids, see above). In other cases, our results disagree with other studies for clades that were strongly supported (e.g. placement of xenodermatids). In the best-case scenario, these conflicts may be resolved because our results are correct, possibly reflecting the beneficial effects of adding taxa and the associated subdivision of long branches [25,26,28,87,192-194]. Furthermore, in many cases, we are including more genes than used in previous studies of particular clades, increasing sampling of characters and loci. This should generally reduce spurious results caused by sampling few characters and by incongruence between gene and species trees.

However, other explanations for incongruence between our results and previous studies are also possible. Adding taxa can potentially lead to incorrect results in some cases (e.g. [195]), such as when a long terminal branch is added that further subdivides a short internal branch. In other cases, conflicts with our results might reflect the impact of our sampling fewer nuclear genes and a correspondingly increased influence of mitochondrial data. Mitochondrial genes have relatively fast evolutionary rates (potentially exacerbating the impacts of long branches), and their phylogenetic resolution for a particular node may also reflect introgression or incomplete lineage sorting rather than the species phylogeny (review in [196]). Many taxa in the matrix are represented only by mitochondrial data, and highly variable mitochondrial genes might also overcome the influence of less variable nuclear genes in combined analyses (although this scenario does not seem to be common [196]). Such cases might explain some strongly supported conflicts between our results and those based on multiple nuclear loci. Another possibility is that some cases may represent failure to find the optimal tree (although we assume that these cases will likely show only weak support). We acknowledge that there are many reasons why our results may differ from previous studies, and the ultimate test of these novel findings will be corroboration in future studies that include more taxa and characters.

This analysis also corroborates several recent studies suggesting that the supermatrix approach is a powerful strategy for large-scale phylogenetic inference [41,72,73,75,76,197]. For example, even though each species had 81% missing data on average, we found that most species were placed in the families and genera expected based on previous taxonomy, often with very strong support. Furthermore, we found that incompleteness of terminal taxa is not related to branch lengths (at least not terminal branch lengths), suggesting that missing data are not significantly biasing branch-length estimates (see also [84,86,87]). Also, the CAT-based models we used have been shown to be robust to missing data in large, sparse supermatrices [84].

Page 24: Répteis 1.1

Even though we did find some subfamilies and genera to be non-monophyletic, similar relationships were often found in previous studies based on data matrices with only limited missing data (e.g. non-monophyly of boid snake subfamilies [47], lacertid and scincid lizard genera [67,111], and scolecophidian, dipsadine, and natricine snake genera [38,43,186]). We suggest that further resolution of the squamate tree will be greatly facilitated if researchers deliberately sample mitochondrial genes and nuclear genes that include the set of genes used here and in recent phylogenomic studies (e.g. [20]), to increase overlap between genes and taxa, and decrease missing data.

With over 5000 species remaining to be included and only 12 genes sampled, our study is far from the last word on squamate phylogeny. We note that new data can easily be added to this matrix, in terms of both new taxa and new genes. Increased sampling of other nuclear genes is likely to be advantageous as well. Next-generation sequencing strategies and phylogenomic methods should help resolve difficult nodes [16,20,36,198-200], as should application of species-tree methods [201,202]. Species-tree analyses of 44 nuclear loci support many of these same clades across squamates [20], and data from >400 nuclear loci reinforces many of the relationships found here among the colubroid snake subfamilies (Pyron et al., in prep.). In addition, it would be useful to incorporate fossil taxa in future studies [15,19,22,86], utilizing the large morphological datasets that are now available [14,15]. Despite these areas for future studies, the present tree provides a framework for researchers analyzing patterns of squamate evolution at both lower and higher taxonomic levels (e.g. [10,11,203,204]), and for building a more complete picture of squamate phylogeny.

Conclusions

In this study, we provide a phylogenetic estimate for 4161 squamate species, based on a supermatrix approach. Our results provide important confirmation for previous studies based on more limited taxon sampling, and reveal new relationships at the level of families, genera, and species. We also provide a phylogenetic framework for future comparative studies, with a large-scale tree including a common set of estimated branch lengths. Finally, we provide a revised classification for squamates based on this tree, including changes in the higher-level taxonomy of gymnophthalmid and scincid lizards and boid, colubrid, and lamprophiid snakes.

Methods

Initial classification

Our initial squamate classification is based on the June 2009 version of the Reptile Database (http://www.reptile-database.org/), accessed in September of 2009 when this research was begun. Minor modifications to this scheme were made, primarily to update changes in colubroid snake taxonomy [41-44,205]. This initial taxonomic database consists of 8650 species (169 amphisbaenians, 5270 lizards, 3209 snakes, and 2 tuataras), against which the classification of species in the molecular sequence database was fixed. While modifications and updates (i.e. new species, revisions) have been made to squamate taxonomy subsequently, these are minor and should have no impact on our phylogenetic results. This database represents ~92% of the current estimated diversity of squamates (~9400 species as of December 2012).

Page 25: Répteis 1.1

Throughout the paper, we refer to the updated version of squamate taxonomy from the December 2012 update of the Reptile Database, incorporating major, well-accepted changes from recent studies (summarized in [1]). However, for large, taxonomic groups that have recently been broken up for reasons other than resolving paraphyly or matters of priority (e.g. in dactyloid and scincid lizards; see Results), we generally retain the older, more inclusive name in the interest of clarity, while providing references to the recent revision. We attempt to alter existing classifications as little as possible (see also [113]). Therefore, we generally only make changes when there is strong support for non-monophyly of currently recognized taxa and our proposed changes yield strongly supported monophyletic groups. Similarly, we only erect new taxa if they are strongly supported. Finally, although numerous genera are identified as being non-monophyletic in our tree, we refrain from changing genus-level taxonomy, given that our taxon sampling within many genera is limited.

Molecular data

Preliminary literature searches were conducted to identify candidate genes for which a substantial number of squamate species were sequenced and available on GenBank (with the sampled species spread across multiple families), and which were demonstrably useful in previous phylogenetic studies of squamates (see Introduction for references). Twelve genes were identified as meeting these criteria: seven nuclear genes (brain-derived neurotrophic factor [BDNF], oocyte maturation factor [c-mos], neurotrophin-3 [NT3], phosducin [PDC], G protein-coupled receptor 35 [R35], and recombination-activating genes 1 [RAG-1] and 2 [RAG-2]), and five mitochondrial genes (12S/16S long and short subunit RNAs, cytochrome b [cyt-b], and nicotinamide adenine dehydrogenase subunits 2 [ND2] and 4 [ND4]). This sampling of genes does not include all available markers. For example, we omitted several nuclear and mitochondrial genes because they were available only for a limited subset of taxa. We also excluded tRNAs associated with the protein-coding sequences, given their short lengths and difficulty in alignment across the large time scales considered here.

To ensure maximal taxonomic coverage from the available data, searches were conducted on GenBank by family (stopping in October 2012), and the longest sequence for every species was gathered. Sequences totaling less than 250 bp for any species were not included. Only species in the taxonomic database were included in the sequence matrix, which resulted in the exclusion of numerous named taxa of ambiguous status, a few taxa described very recently, and many sequences labeled 'sp.' Some recently described phylogeographic lineages were also omitted. Species and GenBank accession numbers are available in Additional file 2 Table S1.

With respect to the December 2012 update of the Reptile Database, we sampled 52 of 183 amphisbaenian species (28%) from 11 of 19 (58%) genera; 2847 of 5799 lizard species (49%) from 448 of 499 genera (90%); and 1262 of 3434 snake species (39%) in 396 of 500 genera (80%). This yielded a total of 4161 species in 855 genera in the final matrix, 44% of the 9416 known, extant squamate species in 84% of 1018 genera [1]. The species-level classification of squamates is in constant flux, and the numbers of species and genera changed even as this paper was under review. The extant species of tuatara (Sphenodon punctatus) was included as a non-squamate outgroup taxon (see below). We acknowledge that our sampling of outgroup taxa is not extensive. However, placement of Sphenodon as the sister group to squamates is well-established by molecular analyses with extensive taxon sampling (e.g. [16,128,206]) and morphological data (e.g. [13]).

Page 26: Répteis 1.1

Alignment for protein-coding sequences was relatively straightforward. We converted them to amino acids, and then used the translation alignment algorithm in the program Geneious v4.8.4 (GeneMatters Corp.), with the default cost matrix (Blosum62) and gap penalties (open=12, extension=3). Alignments were relatively unambiguous after being trimmed for quality and maximum coverage (i.e. ambiguous end regions were removed, and most sequences began and ended at the same point).

For the ribosomal RNA sequences (12S and 16S sequences), alignment was more challenging. Preliminary global alignments using the algorithms MUSCLE [207] and CLUSTAL [208] under a variety of gap-cost parameters yielded low-quality results (i.e. alignments with large numbers of gaps and little overlap of potentially homologous characters). We subsequently employed a two-step strategy for these data. We first grouped sequences by higher taxa (i.e. Amphisbaenia, Anguimorpha, Gekkota, Iguania, Scincomorpha, and Serpentes, though these are not all monophyletic as previously defined), for which alignments were relatively straightforward under the default MUSCLE parameters.

These were then combined using the profile alignment feature of MUSCLE, and the global alignment was subsequently updated using the "refine alignment" option. Minor adjustments were then made by eye, and ambiguously aligned end-regions were trimmed for maximum coverage and quality. We did not include partitions for stems and loops for the ribosomal sequences, although this has been shown to improve model fit in previous squamate studies (e.g. [82]). Although it is possible to assign individual nucleotide positions to these partitions, this would have been challenging given the large number of sequences, and the potential for stems and loops to shift across the many species and large time scales involved.

Each species was represented by a single terminal taxon in the matrix. In many cases, sequences from multiple individuals of the same species were combined, to allow us to combine data from different genes for the same species. We acknowledge the possibility that in some cases this approach may cause us to combine genes from different species in the same terminal taxon (e.g. due to changing taxonomy or incorrect identifications). Additionally, many sequences are not from vouchered specimens, and it is possible that misidentified species are present on GenBank and in our matrix. However, most of our data came from lower-level phylogenetic studies, in which the identification of species by previous authors should be highly accurate. In addition, any such mistakes should be among closely related species, and lead to minimal phylogenetic distortion, as the grossest errors are easily identified.

Some species were removed after preliminary analyses, due either to obvious sequencing errors (e.g. high BLAST homology with unrelated families or non-squamates, excessive ambiguities) or a lack of overlap in genes sampled with other members of the same genus (leading to seemingly artificial paraphyly). We also excluded species with identical sequences between taxa across all genes, arbitrarily choosing the first taxon in alphabetical order to remain in the matrix. Additionally, we also removed a few apparent "rogue taxa" [75,77]. These were identified by their poor support and suspect placement (e.g. in a clearly incorrect family), and were typically represented in the matrix by short fragments of single genes (e.g. an ND4 fragment from the enigmatic colubroid snake Oreocalamus hanitchsi).

The final combined matrix contained sequence data for: 2335 species for 12S (including 56% of all 4162 taxa, 1395 bp), 2377 for 16S (57%, 1970 bp), 730 for BDNF (18%, 714 bp), 1671 for c-mos (40%, 903 bp), 1985 for cyt-b (48%, 1000 bp), 437 for NT3 (10%, 675 bp), 1860

Page 27: Répteis 1.1

for ND2 (45%, 960 bp), 1556 for ND4 (37%, 696 bp), 393 for PDC (9%, 395 bp), 401 for R35 (10%, 768 bp), 1379 for RAG-1 (33%, 2700 bp), and 471 for RAG2 (11%, 720 bp). The total alignment consists of 12896 bp for 4162 taxa (4161 squamates and 1 outgroup). The mean length is 2497 bp of sequence data present per species from 3.75 genes (19% of the total matrix length of 12896 bp, or 81% missing data), and ranges from 270–11153 bp (2–86% complete). The matrix and phylogeny (see below) are available in DataDryad repository 10.5061/dryad.82h0m.

Clearly, many taxa had large amounts of missing data (some >95%), and on average each species had 81% missing cells. However, several lines of evidence suggest that these missing data are not generally problematic. First, a large body of empirical and theoretical studies has shown that highly incomplete taxa can be accurately placed in model-based phylogenetic analyses (and with high levels of branch support), especially if a large number of characters have been sampled (recent reviews in [84,85]). Second, several recent empirical studies have shown that the supermatrix approach (with extensive missing data in some taxa) yields generally well-supported large-scale trees that are generally congruent with previous taxonomies and phylogenetic estimates (e.g. [41,48,72,73,75,76,197]). Third, recent studies have also shown that there is generally little relationship between the amount of missing data in individual taxa and the support for their placement on the tree [41,73,85]. Finally, we note that some highly incomplete taxa were unstable in their placement (“rogue taxa”;[ 75]), but these were removed prior to the analysis of the final matrix (see above).

Our sampling design should be especially robust to the impacts of missing data for several reasons. Most importantly, most terminal taxon (species) had substantial data present (mean of 2497 bp per species) regardless of the number of missing data cells. Simulations (see reviews in [84,85]) suggest that the amount of data present is a key parameter in determining the accuracy with which incomplete taxa are placed in phylogenies, not the amount of data absent. Additionally, several genes (e.g. 12S/16S, cyt-b, and c-mos) were shared by many (>40%) of taxa. Thus, there was typically extensive overlap among the genes present for each taxon (as also indicated by the mean bp per species being much greater than the length of most genes). Limited overlap in gene sampling among taxa could be highly problematic, irrespective of the amount of missing data per se, but this does not appear to be a problem in our dataset. Finally, several nuclear genes (e.g. BDNF, c-mos, R35, and RAG-1) were congruently sampled in previous studies to represent most (>80%) squamate families and subfamilies (e.g. [20]), providing a scaffold of well-sampled taxa spanning all major clades, as recommended by recent authors [84].

Phylogenetic analyses

We performed phylogenetic analyses of the 12-gene concatenated matrix using Maximum Likelihood (ML). We assessed node support using the non-parametric Shimodaira-Hasegawa-Like (SHL) implementation of the approximate likelihood-ratio test (aLRT; [94]). This involved a two-stage strategy. We first performed initial ML tree inference using the program RAxML-Light v1.0.7 [209], a modification of the original RAxML algorithm [210]. This program uses the GTRCAT strategy for all genes and partitions, a high-speed approximation of the GTR+Γ model (general time-reversible with gamma-distribution of rate heterogeneity among sites). The GTR model is the only substitution model implemented in RAxML [210], and all other substitution models are simply special cases of the GTR model [211]. Previous analyses suggest that GTR is generally the best-fitting model for these genes and that they should be partitioned by gene and codon position [16,17,19,20,36,81].

Page 28: Répteis 1.1

To generate an initial ML estimate for final optimization and support estimation, we performed 11 ML searches from 11 parsimony starting trees generated under the default parsimony model in RAxMLv7.2.8. This number is likely to be sufficient when datasets contain many characters that have strong phylogenetic signal (A. Stamatakis, pers. comm.). Additionally, the dataset was analyzed with these settings (GTRCAT search from a randomized parsimony starting tree) numerous times (>20) as the final matrix was assembled and tested, representing hundreds of independent searches from random starting points. All of the estimated trees from these various analyses showed high overall congruence with the final topology. The concordance between the preliminary and final results suggests that the tree was not strongly impacted by searches stuck on local optima, and that it should be a good approximation of the ML tree.

We then performed a final topology optimization and assessed support. We passed our best ML estimate of the phylogeny (based on GTRCAT) from RAxML-Light to RAxMLv7.2.8, which does an additional search (using the GTRGAMMA model) to produce a nearest-neighbor interchange (NNI)-optimized estimate of the ML tree. This optimization is needed to calculate the SHL version of the aLRT for estimating support values [94]. The SHL-aLRT strategy approximates a test of the null hypothesis that the branch length subtending each node equals 0 (i.e. that the node can be resolved, rather than estimated as a polytomy) with a test of the more general null hypothesis that "the branch is incorrect" relative to the four next suboptimal arrangements of that node relative to the NNI-optimal arrangement [94]. Based on initial analyses, generating sufficient ML bootstrap replicates for a tree of this size proved computationally intractable, so we rely on SHL values alone to assess support.

The SHL approach has at least two major advantages over non-parametric bootstrapping for large ML trees: (i) values are apparently robust to many potential model violations and have the same properties as bootstrap proportions for all but the shortest branches [41,94,212], and (ii) values for short branches may be more accurate than bootstrap proportions, as support is evaluated based on whole-alignment likelihoods, rather than the frequency of re-sampled characters [94,213]. Additionally, the SHL approach is orders of magnitude faster than traditional bootstrapping [94,212,213], and it appears to be similarly robust to matrices with extensive missing data [41]. As in previous studies, we take a conservative view, considering SHL values of 85 or greater (i.e. a 15% chance that a branch is "incorrect") as strong support [41,212,213].

These analyses were performed on a 360-core SGI ICE supercomputing system ("ANDY") at the High Performance Computing Center at the City University of New York (CUNY). The final analysis was completed in 8.8 days of computer time using 188 nodes of the CUNY supercomputing cluster.

Finally, we assessed the potential impact of missing data on our branch-length estimates. We performed linear regression (in R) of the proportional completeness of each terminal taxa (non-missing data in bp / maximum amount of non-missing data, 12896 bp) against the length of its terminal branch. This test addresses whether incomplete taxa have branch-length estimates that are consistently biased in one direction (shorter vs. longer) relative to more complete terminals. However, it does not directly test whether branch length estimates are correct or not, nor how branch length estimates are impacted by replacing non-missing data with missing data (see [87] for results suggesting that such replacements have little effect in real data sets).

Page 29: Répteis 1.1

Authors' contributions

RAP and JJW conceived the study. RAP, FTB, and JJW conducted analyses and checked results. RAP, FTB, and JJW wrote the MS. All authors read and approved the final manuscript.

Acknowledgements

We thank the many researchers who made this study possible through their detailed studies of squamate phylogeny with a (mostly) shared set of molecular markers, and uploading their sequence data to GenBank. We thank E. Paradis, J. Lombardo T. Guiher, R. Walsh, and P. Muzio for computational assistance, T. Gamble, D. Frost, D. Cannatella, H. Zaher, F. Grazziotin, P. Uetz, T. Jackman, and A. Bauer for taxonomic advice, and A. Larson, M. Vences, and five anonymous reviewers for comments on this manuscript. The research was supported in part by the U.S. National Science Foundation, including a Bioinformatics Postdoctoral grant to R.A.P. (DBI-0905765), an AToL grant to J.J.W. (EF-0334923), and grants to the CUNY HPCC (CNS-0958379 and CNS-0855217).

Appendix I

Note that we only provide here an account for the one subfamily newly erected in this study. We do not provide accounts for subfamilies with changes in content (Boinae, Erycinae, Dipsadinae, Pseudaspidinae, Scincinae, Ungaliophiinae), that have been resurrrected (Sanziniinae), or that represent elevation of lower-ranked taxa (tribe Bachiini here recognized as Bachiinae).

Candoiinae subfam. nov. (family Boidae)

Type: genus and species Candoia carinata [214].

Content: one genus, 4 species; C. aspera, C. bibroni, C. carinata, C. paulsoni.

Definition: this subfamily consists of the most recent common ancestor of the extant species of Candoia, and all its descendants. These species are morphologically distinguished in part from other boid snakes by a flattened rostrum leading to an angular snout [215] and a wide premaxillary floor [167].

Distribution: these snakes are primarily restricted to the South Pacific islands of New Guinea and Melanesia, and the eastern Indonesian archipelago [150].

Remarks: the three species from this subfamily that are sampled in our tree are strongly supported as monophyletic (SHL = 100), and are well supported (SHL = 87) as the sister taxon to a moderately supported clade consisting of Erycinae + Boinae (SHL = 83).

Proposed Generic Composition of Higher Taxa

Below, we list the familial and subfamilial assignment of all squamate genera from the December, 2012 update of the Reptile Database, updated to reflect some recent changes and

Page 30: Répteis 1.1

the proposed subfamily level changes listed above. As this classification includes numerous taxa not sampled in our tree, we deal with this conservatively. For traditionally recognized families and subfamilies that we found to be monophyletic, we include all taxa traditionally assigned to them. Taxa are denoted incertae sedis if they are of ambiguous familial or subfamilial assignment due to uncertain placement in our tree, or due to absence from our tree and lack of assignment by previous authors. This classification includes 67 families and 56 subfamilies, and accounts for >9400 squamate species in 1018 genera [1]. Higher taxa are listed (more-or-less) phylogenetically (starting closest to the root; Figure 1), families are listed alphabetically within higher taxa, and subfamilies and genera are listed alphabetically within families.

Dibamidae (Anelytropsis, Dibamus)

Gekkota

Carphodactylidae (Carphodactylus, Nephrurus, Orraya, Phyllurus, Saltuarius, Underwoodisaurus, Uvidicolus); Diplodactylidae (Amalosia, Bavayia, Correlophus, Crenadactylus, Dactylocnemis, Dierogekko, Diplodactylus, Eurydactylodes, Hesperoedura, Hoplodactylus, Lucasium, Mniarogekko, Mokopirirakau, Naultinus, Nebulifera, Oedodera, Oedura, Paniegekko, Pseudothecadactylus, Rhacodactylus, Rhynchoedura, Strophurus, Toropuku, Tukutuku, Woodworthia); Eublepharidae (Aeluroscalabotes, Coleonyx, Eublepharis, Goniurosaurus, Hemitheconyx, Holodactylus); Gekkonidae (Afroedura, Afrogecko, Agamura, Ailuronyx, Alsophylax, Asiocolotes, Blaesodactylus, Bunopus, Calodactylodes, Chondrodactylus, Christinus, Cnemaspis, Colopus, Crossobamon, Cryptactites, Cyrtodactylus, Cyrtopodion, Dixonius, Ebenavia, Elasmodactylus, Geckolepis, Gehyra, Gekko, Goggia, Hemidactylus, Hemiphyllodactylus, Heteronotia, Homopholis, Lepidodactylus, Luperosaurus, Lygodactylus, Matoatoa, Mediodactylus, Nactus, Narudasia, Pachydactylus, Paragehyra, Paroedura, Perochirus, Phelsuma, Pseudoceramodactylus, Pseudogekko, Ptenopus, Ptychozoon, Rhinogecko, Rhoptropella, Rhoptropus, Stenodactylus, Tropiocolotes, Urocotyledon, Uroplatus); Phyllodactylidae (Asaccus, Gymnodactylus, Haemodracon, Homonota, Phyllodactylus, Phyllopezus, Ptyodactylus, Tarentola, Thecadactylus); Pygopodidae (Aprasia, Delma, Lialis, Ophidiocephalus, Paradelma, Pletholax, Pygopus); Spha (Aristelliger, Chatogekko, Coleodactylus, Euleptes, Gonatodes, Lepidoblepharis, Pristurus, Pseudogonatodes, Quedenfeldtia, Saurodactylus, Sphaerodactylus, Teratoscincus)

Scincoidea

Cordylidae, Cordylinae (Chamaesaura, Cordylus, Hemicordylus, Karusasaurus, Namazonurus, Ninurta, Ouroborus, Pseudocordylus, Smaug), Platysaurinae (Platysaurus); Gerrhosauridae, Gerrhosaurinae (Cordylosaurus, Gerrhosaurus, Tetradactylus), Zonosaurinae (Tracheloptychus, Zonosaurus); Scincidae, Acontiinae (Acontias, Typhlosaurus), Lygosominae (Ablepharus, Afroablepharus, Anomalopus, Asymblepharus, Ateuchosaurus, Bartleia, Bassiana, Bellatorias, Caledoniscincus, Calyptotis, Carlia, Cautula, Celatiscincus, Chioninia, Coeranoscincus, Coggeria, Cophoscincopus, Corucia, Cryptoblepharus, Ctenotus, Cyclodomorphus, Dasia, Egernia, Emoia, Eremiascincus, Eroticoscincus, Eugongylus, Eulamprus, Eumecia, Eutropis, Fojia, Geomyersia, Geoscincus, Glaphyromorphus, Gnypetoscincus, Graciliscincus, Haackgreerius, Hemiergis, Hemisphaeriodon, Insulasaurus, Isopachys, Kaestlea, Kanakysaurus, Lacertaspis,

Page 31: Répteis 1.1

Lacertoides, Lamprolepis, Lampropholis, Lankascincus, Larutia, Leiolopisma, Lepidothyris, Leptoseps, Leptosiaphos, Lerista, Liburnascincus, Liopholis, Lioscincus, Lipinia, Lissolepis, Lobulia, Lygisaurus, Lygosoma, Mabuya, Marmorosphax, Menetia, Mochlus, Morethia, Nangura, Nannoscincus, Niveoscincus, Notoscincus, Oligosoma, Ophioscincus, Otosaurus, Panaspis, Papuascincus, Parvoscincus, Phoboscincus, Pinoyscincus, Prasinohaema, Proablepharus, Pseudemoia, Ristella, Saiphos, Saproscincus, Scincella, Sigaloseps, Simiscincus, Sphenomorphus, Tachygyia, Tiliqua, Trachylepis, Tribolonotus, Tropidophorus, Tropidoscincus, Tytthoscincus, Vietnascincus), Scincinae (Amphiglossus, Androngo, Barkudia, Brachymeles, Chabanaudia, Chalcides, Chalcidoseps, Eumeces, Eurylepis, Feylinia, Gongylomorphus, Hakaria, Janetaescincus, Jarujinia, Madascincus, Melanoseps, Mesoscincus, Nessia, Ophiomorus, Pamelaescincus, Paracontias, Plestiodon, Proscelotes, Pseudoacontias, Pygomeles, Scelotes, Scincopus, Scincus, Scolecoseps, Sepsina, Sepsophis, Sirenoscincus, Typhlacontias, Voeltzkowia); Xantusiidae, Cricosaurinae (Cricosaura), Lepidophyminae (Lepidophyma), Xantusiinae (Xantusia)

Lacertoidea (including Amphisbaenia)

Amphisbaenidae (Amphisbaena, Ancylocranium, Baikia, Chirindia, Cynisca, Dalophia, Geocalamus, Loveridgea, Mesobaena, Monopeltis, Zygaspis); Bipedidae (Bipes); Blanidae (Blanus); Cadeidae (Cadea); Gymnophthalmidae, Alopoglossinae (Alopoglossus, Ptychoglossus), Bachiinae (Bachia), Cercosaurinae (Anadia, Cercosaura, Echinosaura, Euspondylus, Macropholidus, Neusticurus, Opipeuter, Petracola, Pholidobolus, Placosoma, Potamites, Proctoporus, Riama, Riolama, Teuchocercus), Ecpleopinae (Adercosaurus, Amapasaurus, Anotosaura, Arthrosaura, Colobosauroides, Dryadosaura, Ecpleopus, Kaieteurosaurus, Leposoma, Marinussaurus, Pantepuisaurus), Gymnophthalminae (Acratosaura, Alexandresaurus, Calyptommatus, Caparaonia, Colobodactylus, Colobosaura, Gymnophthalmus, Heterodactylus, Iphisa, Micrablepharus, Nothobachia, Procellosaurinus, Psilophthalmus, Scriptosaura, Stenolepis, Tretioscincus, Vanzosaura), Rhachisaurinae (Rhachisaurus); Lacertidae, Gallotiinae (Gallotia, Psammodromus), Lacertinae (Acanthodactylus, Adolfus, Algyroides, Anatololacerta, Apathya, Archaeolacerta, Atlantolacerta, Australolacerta, Congolacerta, Dalmatolacerta, Darevskia, Dinarolacerta, Eremias, Gastropholis, Heliobolus, Hellenolacerta, Holaspis, Iberolacerta, Ichnotropis, Iranolacerta, Lacerta, Latastia, Meroles, Mesalina, Nucras, Omanosaura, Ophisops, Parvilacerta, Pedioplanis, Philochortus, Phoenicolacerta, Podarcis, Poromera, Pseuderemias, Scelarcis, Takydromus, Teira, Timon, Tropidosaura, Zootoca); Rhineuridae (Rhineura); Teiidae, Teiinae (Ameiva, Aspidoscelis, Cnemidophorus, Dicrodon, Kentropyx, Teius), Tupinambinae (Callopistes, Crocodilurus, Dracaena, Tupinambis); Trogonophiidae (Agamodon, Diplometopon, Pachycalamus, Trogonophis)

Iguania

Agamidae, Agaminae (Acanthocercus, Agama, Brachysaura, Bufoniceps, Laudakia, Phrynocephalus, Pseudotrapelus, Trapelus, Xenagama), Amphibolurinae (Amphibolurus, Chelosania, Chlamydosaurus, Cryptagama, Ctenophorus, Diporiphora, Hypsilurus, Intellagama, Lophognathus, Moloch, Physignathus, Pogona, Rankinia, Tympanocryptis), Draconinae (Acanthosaura, Aphaniotis, Bronchocela, Calotes, Ceratophora, Complicitus, Cophotis, Coryphophylax, Dendragama, Draco, Gonocephalus, Harpesaurus, Hypsicalotes, Japalura, Lophocalotes, Lyriocephalus, Mantheyus, Oriocalotes, Otocryptis, Phoxophrys, Psammophilus, Pseudocalotes, Pseudocophotis, Ptyctolaemus, Salea, Sitana, Thaumatorhynchus), Hydrosaurinae (Hydrosaurus), Leiolepidinae (Leiolepis),

Page 32: Répteis 1.1

Uromastycinae (Uromastyx); Chamaeleonidae, Brookesiinae (Brookesia), Chamaeleoninae (Archaius, Bradypodion, Calumma, Chamaeleo, Furcifer, Kinyongia, Nadzikambia, Rhampholeon, Rieppeleon, Trioceros); Corytophanidae (Basiliscus, Corytophanes, Laemanctus); Crotaphytidae (Crotaphytus, Gambelia); Dactyloidae (Anolis); Hoplocercidae (Enyalioides, Hoplocercus, Morunasaurus); Iguanidae (Amblyrhynchus, Brachylophus, Conolophus, Ctenosaura, Cyclura, Dipsosaurus, Iguana, Sauromalus); Leiocephalidae (Leiocephalus); Leiosauridae, Enyaliinae (Anisolepis, Enyalius, Urostrophus), Leiosaurinae (Diplolaemus, Leiosaurus, Pristidactylus); Liolaemidae (Ctenoblepharys, Liolaemus, Phymaturus); Opluridae (Chalarodon, Oplurus); Phrynosomatidae (Callisaurus, Cophosaurus, Holbrookia, Petrosaurus, Phrynosoma, Sceloporus, Uma, Urosaurus, Uta); Polychrotidae (Polychrus); Tropiduridae (Eurolophosaurus, Microlophus, Plica, Stenocercus, Strobilurus, Tropidurus, Uracentron, Uranoscodon)

Anguimorpha

Anguidae, Anguinae (Anguis, Dopasia, Ophisaurus, Pseudopus), Diploglossinae (Celestus, Diploglossus, Ophiodes), Gerrhonotinae (Abronia, Barisia, Coloptychon, Elgaria, Gerrhonotus, Mesaspis); Anniellidae (Anniella); Helodermatidae (Heloderma); Lanthanotidae (Lanthanotus); Shinisauridae (Shinisaurus); Varanidae (Varanus); Xenosauridae (Xenosaurus)

Serpentes

Acrochordidae (Acrochordus); Aniliidae (Anilius); Anomalepididae (Anomalepis, Helminthophis, Liotyphlops, Typhlophis); Anomochilidae (Anomochilus); Boidae, Boinae (Boa, Corallus, Epicrates, Eunectes), Candoiinae (Candoia), Erycinae (Eryx), Sanziniinae (Acrantophis, Sanzinia), Ungaliophiinae (Charina, Exiliboa, Lichanura, Ungaliophis); Bolyeriidae (Bolyeria, Casarea); Calabariidae (Calabaria); Colubridae incertae sedis (Blythia, Cyclocorus, Elapoidis, Gongylosoma, Helophis, Myersophis, Oreocalamus, Poecilopholis, Rhabdops, Tetralepis), Calamariinae (Calamaria, Calamorhabdium, Collorhabdium, Etheridgeum, Macrocalamus, Pseudorabdion, Rabdion), Colubrinae (Aeluroglena, Ahaetulla, Aprosdoketophis, Archelaphe, Argyrogena, Arizona, Bamanophis, Bogertophis, Boiga, Cemophora, Chilomeniscus, Chionactis, Chironius, Chrysopelea, Coelognathus, Coluber, Colubroelaps, Conopsis, Coronella, Crotaphopeltis, Cyclophiops, Dasypeltis, Dendrelaphis, Dendrophidion, Dipsadoboa, Dispholidus, Dolichophis, Drymarchon, Drymobius, Drymoluber, Dryocalamus, Dryophiops, Eirenis, Elachistodon, Elaphe, Euprepiophis, Ficimia, Geagras, Gonyophis, Gonyosoma, Gyalopion, Hapsidophrys, Hemerophis, Hemorrhois, Hierophis, Lampropeltis, Leptodrymus, Leptophis, Lepturophis, Limnophis, Liopeltis, Lycodon, Lytorhynchus, Macroprotodon, Mastigodryas, Meizodon, Oligodon, Oocatochus, Opheodrys, Oreocryptophis, Orthriophis, Oxybelis, Pantherophis, Philothamnus, Phyllorhynchus, Pituophis, Platyceps, Pseudelaphe, Pseudoficimia, Pseustes, Ptyas, Rhadinophis, Rhamnophis, Rhinechis, Rhinobothryum, Rhinocheilus, Rhynchocalamus, Rhynchophis, Salvadora, Scaphiophis, Scolecophis, Senticolis, Simophis, Sonora, Spalerosophis, Spilotes, Stegonotus, Stenorrhina, Symphimus, Sympholis, Tantilla, Tantillita, Telescopus, Thelotornis, Thrasops, Toxicodryas, Trimorphodon, Xenelaphis, Xyelodontophis, Zamenis), Dipsadinae (Adelphicos, Alsophis, Amastridium, Amnesteophis, Antillophis, Apostolepis, Arrhyton, Atractus, Boiruna, Borikenophis, Caaeteboia, Calamodontophis, Caraiba, Carphophis, Cercophis, Chapinophis, Chersodromus, Clelia, Coniophanes, Conophis, Contia, Coronelaps, Crisantophis, Cryophis, Cubophis,

Page 33: Répteis 1.1

Darlingtonia, Diadophis, Diaphorolepis, Dipsas, Ditaxodon, Drepanoides, Echinanthera, Elapomorphus, Emmochliophis, Enuliophis, Enulius, Erythrolamprus, Farancia, Geophis, Gomesophis, Haitiophis, Helicops, Heterodon, Hydrodynastes, Hydromorphus, Hydrops, Hypsiglena, Hypsirhynchus, Ialtris, Imantodes, Leptodeira, Lioheterophis, Lygophis, Magliophis, Manolepis, Mussurana, Ninia, Nothopsis, Ocyophis, Omoadiphas, Oxyrhopus, Paraphimophis, Phalotris, Philodryas, Phimophis, Plesiodipsas, Pliocercus, Pseudalsophis, Pseudoboa, Pseudoeryx, Pseudoleptodeira, Pseudotomodon, Psomophis, Ptychophis, Rhachidelus, Rhadinaea, Rhadinella, Rhadinophanes, Rodriguesophis, Saphenophis, Schwartzophis, Sibon, Sibynomorphus, Siphlophis, Sordellina, Synophis, Tachymenis, Taeniophallus, Tantalophis, Thamnodynastes, Thermophis, Tomodon, Tretanorhinus, Trimetopon, Tropidodipsas, Tropidodryas, Uromacer, Uromacerina, Urotheca, Xenodon, Xenopholis), Grayiinae (Grayia), Natricinae (Adelophis, Afronatrix, Amphiesma, Amphiesmoides, Anoplohydrus, Aspidura, Atretium, Balanophis, Clonophis, Hologerrhum, Hydrablabes, Hydraethiops, Iguanognathus, Lycognathophis, Macropisthodon, Natriciteres, Natrix, Nerodia, Opisthotropis, Parahelicops, Pararhabdophis, Paratapinophis, Regina, Rhabdophis, Seminatrix, Sinonatrix, Storeria, Thamnophis, Trachischium, Tropidoclonion, Tropidonophis, Virginia, Xenochrophis), Pseudoxenodontinae (Plagiopholis, Pseudoxenodon), Sibynophiinae (Scaphiodontophis, Sibynophis); Cylindrophiidae (Cylindrophis); Elapidae (Acanthophis, Aipysurus, Aspidelaps, Aspidomorphus, Austrelaps, Bungarus, Cacophis, Calliophis, Cryptophis, Demansia, Dendroaspis, Denisonia, Drysdalia, Echiopsis, Elapognathus, Elapsoidea, Emydocephalus, Ephalophis, Furina, Hemachatus, Hemiaspis, Hemibungarus, Hoplocephalus, Hydrelaps, Hydrophis, Kolpophis, Laticauda, Loveridgelaps, Maticora, Micropechis, Micruroides, Micrurus, Naja, Notechis, Ogmodon, Ophiophagus, Oxyuranus, Parahydrophis, Parapistocalamus, Parasuta, Pseudechis, Pseudohaje, Pseudolaticauda, Pseudonaja, Rhinoplocephalus, Salomonelaps, Simoselaps, Sinomicrurus, Suta, Thalassophis, Toxicocalamus, Tropidechis, Vermicella, Walterinnesia); Gerrhopilidae (Gerrhopilus); Homalopsidae (Bitia, Brachyorrhos, Cantoria, Cerberus, Djokoiskandarus, Enhydris, Erpeton, Fordonia, Gerarda, Heurnia, Homalopsis, Myron, Pseudoferania); Lamprophiidae incertae sedis (Micrelaps, Montaspis, Oxyrhabdium), Aparallactinae (Amblyodipsas, Aparallactus, Brachyophis, Chilorhinophis, Elapotinus, Hypoptophis, Macrelaps, Polemon, Xenocalamus), Atractaspidinae (Atractaspis, Homoroselaps), Lamprophiinae (Boaedon, Bothrophthalmus, Chamaelycus, Dendrolycus, Gonionotophis, Hormonotus, Inyoka, Lamprophis, Lycodonomorphus, Lycophidion, Pseudoboodon), Prosymninae (Prosymna), Psammophiinae (Dipsina, Hemirhagerrhis, Malpolon, Mimophis, Psammophis, Psammophylax, Rhagerhis, Rhamphiophis), Pseudaspidinae (Buhoma, Psammodynastes, Pseudaspis, Pythonodipsas), Pseudoxyrhophiine (Alluaudina, Amplorhinus, Bothrolycus, Brygophis, Compsophis, Ditypophis, Dromicodryas, Duberria, Exallodontophis, Heteroliodon, Ithycyphus, Langaha, Leioheterodon, Liophidium, Liopholidophis, Lycodryas, Madagascarophis, Micropisthodon, Pararhadinaea, Parastenophis, Phisalixella, Pseudoxyrhopus, Thamnosophis); Leptotyphlopidae (Epacrophis, Epictia, Leptotyphlops, Mitophis, Myriopholis, Namibiana, Rena, Rhinoleptus, Siagonodon, Tetracheilostoma, Tricheilostoma, Trilepida); Loxocemidae (Loxocemus); Pareatidae (Aplopeltura, Asthenodipsas, Pareas); Pythonidae (Antaresia, Apodora, Aspidites, Bothrochilus, Broghammerus, Leiopython, Liasis, Morelia, Python); Tropidophiidae (Trachyboa, Tropidophis); Typhlopidae (Acutotyphlops, Afrotyphlops, Austrotyphlops, Cyclotyphlops, Grypotyphlops, Letheobia, Megatyphlops, Ramphotyphlops, Rhinotyphlops, Typhlops); Uropeltidae (Brachyophidium, Melanophidium, Platyplectrurus, Plectrurus, Pseudotyphlops, Rhinophis, Teretrurus, Uropeltis); Viperidae, Azemiopinae (Azemiops), Crotalinae (Agkistrodon, Atropoides, Bothriechis, Bothriopsis, Bothrocophias, Bothropoides, Bothrops, Calloselasma, Cerrophidion, Crotalus, Deinagkistrodon, Garthius,

Page 34: Répteis 1.1

Gloydius, Hypnale, Lachesis, Mixcoatlus, Ophryacus, Ovophis, Porthidium, Protobothrops, Rhinocerophis, Sistrurus, Trimeresurus, Tropidolaemus), Viperinae (Atheris, Bitis, Causus, Cerastes, Daboia, Echis, Eristicophis, Macrovipera, Montatheris, Montivipera, Proatheris, Pseudocerastes, Vipera); Xenodermatidae (Achalinus, Fimbrios, Stoliczkia, Xenodermus, Xylophis); Xenopeltidae (Xenopeltis); Xenophidiidae (Xenophidion); Xenotyphlopidae (Xenotyphlops)

Additional files

Additional_file_1 as TXT Additional file 1: Data File S1 The 4162-species ML phylogeny in Newick format; taxonomic changes are given in Additional file 2: Table S1.

Additional_file_2 as DOCX Additional file 2: Table S1 GenBank accession numbers for all taxa included in this analysis.

References

1. Uetz P: The Reptile Database. http://www.reptile-database.org/ Accessed December, 2012.

2. Greene HW: Snakes: the Evolution of Mystery in Nature. Berkeley: University of California Press; 1997.

3. Vitt LJ, Caldwell JP: Herpetology. 4th edition. Burlington: Elsevier; 2009.

4. Pianka ER, Vitt LJ: Lizards: Windows to the Evolution of Diversity. Berkeley: University of California Press; 2003.

5. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ: The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 2008, 5:1591–1604.

6. Mahdavi A, Ferreira L, Sundback C, Nichol JW, Chan EP, Carter DJD, Bettinger CJ, Patanavanich S, Chignozha L, Ben-Joseph E, et al: A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc Natl Acad Sci USA 2008, 105:2307–2312.

7. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY: Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2003, 2:461–463.

8. Huey RB, Bennett AF: Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 1987, 41:1098–1115.

9. Losos JB: The evolution of form and function: morphology and locomotor performance in West-Indian Anolis lizards. Evolution 1990, 44:1189–1203.

Page 35: Répteis 1.1

10. Wiens JJ, Brandley MC, Reeder TW: Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 2006, 60:123–141.

11. Bergmann PJ, Irschick DJ: Vertebral evolution and the diversification of squamate reptiles. Evolution 2012, 66:1044–1058.

12. Losos JB, Hillis DM, Greene HW: Who speaks with a forked tongue? Science 2012, 338:1428–1429.

13. Estes R, de Queiroz K, Gauthier J: Phylogenetic relationships within Squamata. In Phylogenetic Relationships of the Lizard Families. Edited by Estes R, Pregill G. Stanford: Stanford University Press; 1988:119–281.

14. Gauthier JA, Kearney M, Maisano JA, Rieppel O, Behike ADB: Assembling the Squamate Tree of Life: perspectives from the phenotype and the fossil record. Bull Peabody Mus Nat Hist 2012, 53:3–308.

15. Conrad JL: Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull Am Mus Nat Hist 2008, 310:1–182.

16. Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW Jr, Wiens JJ: Estimating divergence times and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol Phylogenet Evol 2012, 65:974–991.

17. Townsend TM, Larson A, Louis E, Macey JR: Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst Biol 2004, 53:735–757.

18. Vidal N, Hedges SB: The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. CR Biol 2005, 328:1000–1008.

19. Wiens JJ, Kuczynski CA, Townsend T, Reeder TW, Mulcahy DG, Sites JW: Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst Biol 2010, 59:674–688.

20. Wiens JJ, Hutter CR, Mulcahy DG, Noonan BP, Townsend TM, Sites JW, Reeder TW: Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett 2012, 8:1043–1046.

21. Camp CL: Classification of the lizards. Bull Am Mus Nat Hist 1923, 48:289–480.

22. Lee MSY: Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biol J Linn Soc 1998, 65:369–453.

23. Vidal N, Hedges SB: Molecular evidence for a terrestrial origin of snakes. Proc R Soc B 2004, 271:S226–S229.

Page 36: Répteis 1.1

24. Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SFR, Kuruppu S, Fung K, Hedges SB, Richardson MK, et al: Early evolution of the venom system in lizards and snakes. Nature 2006, 439:584–588.

25. Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 2002, 51:588–598.

26. Poe S: Evaluation of the strategy of long-branch subdivision to improve the accuracy of phylogenetic methods. Syst Biol 2003, 52:423–428.

27. Heath TA, Zwickl DJ, Kim J, Hillis DM: Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst Biol 2008, 57:160–166.

28. Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 1998, 47:9–17.

29. Blankers T, Townsend TM, Pepe K, Reeder TW, Wiens JJ: Contrasting global-scale evolutionary radiations: phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. Biol J Linn Soc 2013, 108:127–143.

30. Schulte JA, Moreno-Roark F: Live birth among iguanian lizards predates Pliocene-Pleistocene glaciations. Biol Lett 2010, 6:216–218.

31. Frost DR, Etheridge RE, Janies D, Titus TA: Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). Am Mus Novit 2001, 3343:38.

32. Macey JR, Schulte JA, Larson A, Ananjeva NB, Wang YZ, Pethiyagoda R, Rastegar-Pouyani N, Papenfuss TJ: Evaluating trans-Tethys migration: an example using acrodont lizard phylogenetics. Syst Biol 2000, 49:233–256.

33. Schulte JA, Valladares JP, Larson A: Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica 2003, 59:399–419.

34. Townsend TM, Mulcahy DG, Noonan BP, Sites JW, Kuczynski CA, Wiens JJ, Reeder TW: Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet Evol 2011, 61:363–380.

35. Slowinski JB, Lawson R: Snake phylogeny: evidence from nuclear and mitochondrial genes. Mol Phylogenet Evol 2002, 24:194–202.

36. Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW, Townsend TM, Reeder TW: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Syst Biol 2008, 57:420–431.

37. Lawson R, Slowinski JB, Burbrink FT: A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia. J Zool 2004, 263:285–294.

Page 37: Répteis 1.1

38. Vidal N, Marin J, Morini M, Donnellan S, Branch WR, Thomas R, Vences M, Wynn A, Cruaud C, Hedges SB: Blindsnake evolutionary tree reveals long history on Gondwana. Biol Lett 2010, 6:558–561.

39. Adalsteinsson SA, Branch WR, Trape S, Vitt LJ, Hedges SB: Molecular phylogeny, classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia, Squamata). Zootaxa 2009, 2244:1–50.

40. Kelly CMR, Barker NP, Villet MH, Broadley DG: Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene. Cladistics 2009, 25:38–63.

41. Pyron RA, Burbrink FT, Colli GR, de Oca ANM, Vitt LJ, Kuczynski CA, Wiens JJ: The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol 2011, 58:329–342.

42. Zaher H, Grazziotin FG, Cadle JE, Murphy RW, de Moura JC, Bonatto SL: Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: a revised classification and descriptions of new taxa. Pap Av Zool 2009, 49:115–153.

43. Grazziotin FG, Zaher H, Murphy RW, Scrocchi G, Benavides MA, Zhang Y-P, Bonatto SL: Molecular phylogeny of the New World Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics 2012, 28:437–459.

44. Pyron RA, Kandambi HKDK, Hendry CR, Pushpamal V, Burbrink FT, Somaweera R: Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Mol Phylogenet Evol 2013, 66:969–978.

45. Vidal N, Delmas AS, David P, Cruaud C, Coujoux A, Hedges SB: The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. CR Biol 2007, 330:182–187.

46. Sanders KL, Lee MSY, Bertozzi T, Rasmussen AR: Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Mol Phylogenet Evol 2012, 66:575–591.

47. Noonan BP, Chippindale PT: Dispersal and vicariance: the complex evolutionary history of boid snakes. Mol Phylogenet Evol 2006, 40:347–358.

48. Lynch VJ, Wagner GP: Did egg-laying boas break Dollo's law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae). Evolution 2010, 64:207–216.

49. Schmitz A, Brandley MC, Mausfeld P, Vences M, Glaw F, Nussbaum RA, Reeder TW: Opening the black box: phylogenetics and morphological evolution of the Malagasy fossorial lizards of the subfamily "Scincinae". Mol Phylogenet Evol 2005, 34:118–133.

50. Brandley MC, Schmitz A, Reeder TW: Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 2005, 54:373–390.

Page 38: Répteis 1.1

51. Whiting AS, Bauer AM, Sites JW: Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Mol Phylogenet Evol 2003, 29:582–598.

52. Skinner A, Lee MSY, Hutchinson MN: Rapid and repeated limb loss in a clade of scincid lizards. BMC Evol Biol 2008, 8:310.

53. Gamble T, Colli GR, Rodrigues MT, Werneck FP, Simons AM: Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America's open biomes. Mol Phylogenet Evol 2012, 62:943–953.

54. Gamble T, Daza JD, Colli GR, Vitt LJ, Bauer AM: A new genus of miniaturized and pug-nosed gecko from South America (Sphaerodactylidae: Gekkota). Zool J Linn Soc 2011, 163:1244–1266.

55. Gamble T, Bauer AM, Colli GR, Greenbaum E, Jackman TR, Vitt LJ, Simons AM: Coming to America: multiple origins of New World geckos. J Evol Biol 2011, 24:231–244.

56. Gamble T, Bauer AM, Greenbaum W, Jackman TR: Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). Zool Scripta 2008, 37:355–366.

57. Oliver PM, Bauer AM, Greenbaum E, Jackman T, Hobbie T: Molecular phylogenetics of the arboreal Australian gecko genus Oedura Gray 1842 (Gekkota: Diplodactylidae): another plesiomorphic grade? Mol Phylogenet Evol 2012, 63:255–264.

58. Nielsen SV, Bauer AM, Jackman TR, Hitchmough RA, Daugherty CH: New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Mol Phylogenet Evol 2011, 59:1–22.

59. Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM: Repeated origin and loss of adhesive toepads in geckos. PLoS One 2012, 7:e39429.

60. Wood PL Jr, Heinicke MP, Jackman TR, Bauer AM: Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Mol Phylogenet Evol 2012, 65:992–1003.

61. Giugliano LG, Collevatti RG, Colli GR: Molecular dating and phylogenetic relationships among Teiidae (Squamata) inferred by molecular and morphological data. Mol Phylogenet Evol 2007, 45:168–179.

62. Reeder TW, Cole CJ, Dessauer HC: Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevalution of karyotypic evolution, and review of hybrid origins. Am Mus Novit 2002, 3365:1–61.

63. Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y, Sites JW: A molecular perspective on the evolution of microteiid lizards (Squamata, Gymnophthalmidae), and a new classification for the family. Biol J Linn Soc 2001, 74:315–338.

Page 39: Répteis 1.1

64. Castoe TA, Doan TM, Parkinson CL: Data partitions and complex models in Bayesian analysis: the phylogeny of gymnophthalmid lizards. Syst Biol 2004, 53:448–469.

65. Pavlicev M, Mayer W: Fast radiation of the subfamily Lacertinae (Reptilia: Lacertidae): history or methodical artefact? Mol Phylogenet Evol 2009, 52:727–734.

66. Mayer W, Pavilcev M: The phylogeny of the family Lacertidae (Reptilia) based on nuclear DNA sequences: convergent adaptations to arid habitats within the subfamily Eremiainae. Mol Phylogenet Evol 2007, 44:1155–1163.

67. Fu JZ: Toward the phylogeny of the family Lacertidae: why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol J Linn Soc 2000, 71:203–217.

68. Arnold EN, Arribas O, Carranza S: Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa 2007, 1430:1–86.

69. Greenbaum E, Villanueva CO, Kusamba C, Aristote MM, Branch WR: A molecular phylogeny of equatorial African Lacertidae, with the description of a new genus and species from eastern Democratic Republic of the Congo. Zool J Linn Soc 2011, 163:913–942.

70. Mott T, Vieites DR: Molecular phylogenetics reveals extreme morphological homoplasy in Brazilian worm lizards challenging current taxonomy. Mol Phylogenet Evol 2009, 51:190–200.

71. Kearney M, Stuart BL: Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc R Soc B 2004, 271:1677–1683.

72. Driskell AC, Ane C, Burleigh JG, McMahon MM, O'Meara BC, Sanderson MJ: Prospects for building the tree of life from large sequence databases. Science 2004, 306:1172–1174.

73. Wiens JJ, Fetzner JW, Parkinson CL, Reeder TW: Hylid frog phylogeny and sampling strategies for speciose clades. Syst Biol 2005, 54:719–748.

74. de Queiroz A, Gatesy J: The supermatrix approach to systematics. Trends Ecol Evol 2007, 22:34–41.

75. Thomson RC, Shaffer HB: Sparse supermatrices for phylogenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst Biol 2010, 59:42–58.

76. Pyron RA, Wiens JJ: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 2011, 61:543–583.

77. Hinchcliff CE, Roalson EH: Using supermatrices for phylogenetic inquiry: an example using the sedges. Syst Biol 2013, 62:205–219.

Page 40: Répteis 1.1

78. Guo P, Liu Q, Xu Y, Jiang K, Hou M, Ding L, Pyron RA, Burbrink FT: Out of Asia: natricine snakes support the Cenozoic Beringian Dispersal Hypothesis. Mol Phylogenet Evol 2012, 63:825–833.

79. Pyron RA, Burbrink FT: Neogene diversification and taxonomic stability in the snake tribe Lampropeltini (Serpentes: Colubridae). Mol Phylogenet Evol 2009, 52:524–529.

80. Burbrink FT, Lawson R: How and when did Old World ratsnakes disperse into the New World? Mol Phylogenet Evol 2007, 43:173–189.

81. Lawson R, Slowinski JB, Crother BI, Burbrink FT: Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol 2005, 37:581–601.

82. Wiens JJ, Kuczynski CA, Arif S, Reeder TW: Phylogenetic relationships of phrynosomatid lizards based on nuclear and mitochondrial data, and a revised phylogeny for Sceloporus. Mol Phylogenet Evol 2010, 54:150–161.

83. Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM: The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst Biol 2009, 58:130–145.

84. Roure B, Baurain D, Philippe H: Impact of missing data on phylogenies inferred from empirical phylogenomic datasets. Mol Biol Evol 2013, 30:197–214.

85. Wiens JJ, Morrill MC: Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol 2011, 60:719–731.

86. Pyron RA: Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst Biol 2011, 60:466–481.

87. Wiens JJ, Tiu J: Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS One 2012, 7:e42925.

88. Scanlon JD, Lee MSY: The Pleistocene serpent Wonambi and the early evolution of snakes. Nature 2000, 403:416–420.

89. Tchernov E, Rieppel O, Zaher H, Polcyn MJ, Jacobs LL: A fossil snake with limbs. Science 2000, 287:2010–2012.

90. Rage J-C: Serpentes. Stuttgart: Gustav Fischer Verlag; 1984.

91. Estes R: Sauria terrestria, Amphisbaenia. Stuttgart: Gustav Fischer Verlag; 1983.

92. Holman JA: Fossil Snakes of North America: Origin, Evolution, Distribution, Paleoecology. Bloomington: Indiana University Press; 2000.

93. Rage J-C: Fossil history. In Snakes: Ecology and Evolutionary Biology. Edited by Seigel RA, Collins JT, Novak SS. New York: McMillan; 1987:51–76.

Page 41: Répteis 1.1

94. Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006, 55:539–552.

95. Lee MSY: Squamate phylogeny, taxon sampling, and data congruence. Org Div Evol 2005, 5:25–45.

96. Townsend TM, Leavitt DH, Reeder TW: Intercontinental dispersal by a microendemic burrowing reptile (Dibamidae). Proc R Soc B 2011, 278:2568–2574.

97. Kluge AG: Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc Pub Mus Zool Univ Mich 1987, 173:1–54.

98. Gamble T, Bauer AM, Greenbaum E, Jackman TR: Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. J Biogeogr 2008, 35:88–104.

99. Melville J, Schulte JA, Larson A: A molecular study of phylogenetic relationships and evolution of antipredator strategies in Australian Diplodactylus geckos, subgenus Strophurus. Biol J Linn Soc 2004, 82:123–138.

100. Jennings WB, Pianka ER, Donnellan S: Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biotas. Syst Biol 2003, 52:757–780.

101. Bauer AM, Jackman TR, Sadlier RA, Whitaker AH: Revision of the giant geckos of New Caledonia (Reptilia: Diplodactylidae: Rhacodactylus). Zootaxa 2012, 3404:1–52.

102. Brown RM, Siler CD, Das I, Min Y: Testing the phylogenetic affinities of Southeast Asia's rarest geckos: flap-legged geckos (Luperosaurus), flying geckos (Ptychozoon) and their relationship to the pan-Asian genus Gekko. Mol Phylogenet Evol 2012, 63:915–921.

103. Vicario S, Caccone A, Gauthier J: Xantusiid "night" lizards: a puzzling phylogenetic problem revisited using likelihood-based Bayesian methods on mtDNA sequences. Mol Phylogenet Evol 2003, 26:243–261.

104. Hedges SB, Bezy RL, Maxson LR: Phylogenetic relationships and biogeography of xantusiid lizards, inferred from mitochondrial DNA sequences. Mol Biol Evol 1991, 8:767–780.

105. Smith HM: The name of the non-nominotypical subfamily of the lizard family Xantusiidae. Syst Zool 1987, 36:326–328.

106. Savage JM: The Amphibians and Reptiles of Costa Rica: a Herpetofauna between Two Continents, between Two Seas. Chicago: University of Chicago Press; 2002.

107. Crother BI, Miyamoto MM, Presch WF: Phylogeny and biogeography of the lizard family Xantusiidae. Syst Zool 1986, 35:37–45.

108. Stanley EL, Bauer AM, Jackman TR, Branch WR, Mouton PLFN: Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizards (Squamata: Cordylidae). Mol Phylogenet Evol 2011, 58:53–70.

Page 42: Répteis 1.1

109. Frost DR, Janies D, Mouton PIN, Titus TA: A molecular perspective on the phylogeny of the girdled lizards (Cordylidae, Squamata). Am Mus Novit 2001, 3310:1–10.

110. Greer AE: A subfamilial classification of scincid lizards. Bull Mus Comp Zool 1970, 139:151–183.

111. Smith SA, Sadlier RA, Bauer AM, Austin CC, Jackman T: Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the endemic skinks of Tasmantis. Mol Phylogenet Evol 2007, 43:1151–1166.

112. Hedges SB, Conn CE: A new skink fauna from Caribbean islands (Squamata, Mabuyidae, Mabuyinae). Zootaxa 2012, 3288:1–244.

113. Vences M, Guayasamin JM, Miralles A, de La Riva I: To name or not to name: criteria to promote economy of change in supraspecific Linnaean classification schemes. Zootaxa 2013, 3636:201–244. in press.

114. Bauer AM: On the identity of Lacerta punctata Linnaeus, 1758, the type species of the genus Euprepis Wagler, 1830, and the generic assignment of Afro-Malagasy skinks. Afr J Herpetol 2003, 52:1–7.

115. Austin JJ, Arnold EN: Using ancient and recent DNA to explore relationships of extinct and endangered Leiolopisma skinks (Reptilia: Scincidae) in the Mascarene islands. Mol Phylogenet Evol 2006, 39:503–511.

116. Skinner A: Phylogenetic relationships and rate of early diversification of Australian Sphenomorphus group scincids (Scincoidea, Squamata). Biol J Linn Soc 2007, 92:347–366.

117. Linkem CW, Diesmos AC, Brown RM: Molecular systematics of the Philippine forest skinks (Squamata: Scincidae: Sphenomorphus): testing morphological hypotheses of interspecific relationships. Zool J Linn Soc 2011, 163:1217–1243.

118. Siler CD, Diesmos AC, Alcala AC, Brown RM: Phylogeny of Philippine slender skinks (Scincidae: Brachymeles) reveals underestimated species diversity, complex biogeographical relationships, and cryptic patterns of lineage diversification. Mol Phylogenet Evol 2011, 59:53–65.

119. Brandley MC, Ota H, Hikida T, de Oca ANM, Feria-Ortiz M, Guo XG, Wang YZ: The phylogenetic systematics of blue-tailed skinks (Plestiodon) and the family Scincidae. Zool J Linn Soc-Lond 2012, 165:163–189.

120. Crottini A, Dordel J, Kohler J, Glaw F, Schmitz A, Vences M: A multilocus phylogeny of Malagasy scincid lizards elucidates the relationships of the fossorial genera Androngo and Cryptoscincus. Mol Phylogenet Evol 2009, 53:345–350.

121. Sindaco R, Metallinou M, Pupin F, Fasola M, Carranza S: Forgotten in the ocean: systematics, biogeography and evolution of the Trachylepis skinks of the Socotra Archipelago. Zool Scripta 2012, 41:346–362.

Page 43: Répteis 1.1

122. Miralles A, Fuenmayor GR, Bonillo C, Schargel WE, Barros T, Garcia-Perez JE, Barrio-Amoros CL: Molecular systematics of Caribbean skinks of the genus Mabuya (Reptilia, Scincidae), with descriptions of two new species from Venezuela. Zool J Linn Soc 2009, 156:598–616.

123. Harvey MB, Ugueto GN, Gutberlet RL: Review of teiid morphology with a revised taxonomy and phylogeny of the Teiidae (Lepidosauria: Squamata). Zootaxa 2012, 3459:1–156.

124. Doan TM, Castoe TA: Phylogenetic taxonomy of the Cercosaurini (Squamata: Gymnophthalmidae), with new genera for species of Neusticurus and Proctoporus. Zool J Linn Soc 2005, 143:405–416.

125. Vidal N, Azvolinsky A, Cruaud C, Hedges SB: Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett 2008, 4:115–118.

126. Vidal N, Hedges SB: The molecular evolutionary tree of lizards, snakes, and amphisbaenians. CR Biol 2009, 332:129–139.

127. Lee MSY: Hidden support from unpromising data sets strongly unites snakes with anguimorph 'lizards'. J Evol Biol 2009, 22:1308–1316.

128. Hugall AF, Foster R, Lee MSY: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 2007, 56:543–563.

129. Macey JR, Schulte JA, Larson A, Tuniyev BS, Orlov N, Papenfuss TJ: Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Mol Phylogenet Evol 1999, 12:250–272.

130. Conrad JL, Ast JC, Montanari S, Norell MA: A combined evidence phylogenetic analysis of Anguimorpha (Reptilia: Squamata). Cladistics 2011, 27:230–277.

131. Collar DC, Schulte JA, Losos JB: Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution 2011, 65:2664–2680.

132. Chippindale PT, Ammerman LK, Campbell JA: Molecular approaches to phylogeny of Abronia (Anguidae: Gerrhonotinae), with emphasis on relationships in subgenus Auriculabronia. Copeia 1998, 4:883–892.

133. Conroy CJ, Bryson RW, Lazcano D, Knight A: Phylogenetic placement of the pygmy alligator lizard based on mitochondrial DNA. J Herp 2005, 39:142–147.

134. Okajima Y, Kumazawa Y: Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol 2010, 10:141.

135. Castoe TA, de Koning APJ, Kim HM, Gu WJ, Noonan BP, Naylor G, Jiang ZJ, Parkinson CL, Pollock DD: Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA 2009, 106:8986–8991.

Page 44: Répteis 1.1

136. Raxworthy CJ, Forstner MRJ, Nussbaum RA: Chameleon radiation by oceanic dispersal. Nature 2002, 415:784–787.

137. Townsend TM, Vieites DR, Glaw F, Vences M: Testing species-level diversification hypotheses in Madagascar: the case of microendemic Brookesia leaf chameleons. Syst Biol 2009, 58:641–656.

138. Townsend TM, Tolley KA, Glaw F, Bohme W, Vences M: Eastward from Africa: palaeocurrent-mediated chameleon dispersal to the Seychelles islands. Biol Lett 2011, 7:225–228.

139. Tolley KA, Townsend TM, Vences M: Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proc R Soc B 2013, 280:20130184. in press.

140. Honda M, Ota H, Kobayashi M, Nabhitabhata J, Yong H-S, Sengoku S, Hikida T: Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) inferred from mitochondrial DNA sequences. Zool Sci 2000, 17:527–537.

141. Hugall AF, Foster R, Hutchinson M, Lee MSY: Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biol J Linn Soc 2008, 93:343–358.

142. Honda M, Ota H, Sengoku S, Yong HS, Hikida T: Molecular evaluation of phylogenetic significances in the highly divergent karyotypes of the genus Gonocephalus (Reptilia: Agamidae) from tropical Asia. Zool Sci 2002, 19:129–133.

143. Baig KJ, Wagner P, Ananjeva NB, Bohme W: A morphology-based taxonomic revision of Laudakia Gray, 1845 (Squamata: Agamidae). Vertebr Zool 2012, 62:213–260.

144. Wilms TM, Bohme W, Wagner P, Lutzmann N, Schmitz A: On the phylogeny and taxonomy of the genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae): resurrection of the genus Saara Gray, 1845. Bonner zoologische Beiträge 2009, 56:55–99.

145. Wagner P, Melville J, Wilms TM, Schmitz A: Opening a box of cryptic taxa: the first review of the North African desert lizards in the Trapelus mutabilis Merrem, 1820 complex (Squamata: Agamidae) with descriptions of new taxa. Zool J Linn Soc 2011, 163:884–912.

146. Etheridge R, de Queiroz K: A phylogeny of Iguanidae. In Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L Camp. Edited by Estes RD, Pregill GK. Stanford: Stanford University Press; 1988:283–367.

147. Frost DR, Etheridge R: A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia: Squamata). Misc Publ Univ Kansas 1989, 81:1–65.

148. Macey JR, Larson A, Ananjeva NB, Papenfuss TJ: Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. J Mol Evol 1997, 44:660–674.

Page 45: Répteis 1.1

149. Noonan BP, Chippindale PT: Vicariant origin of Malagasy reptiles supports late Cretaceous antarctic land bridge. Am Nat 2006, 168:730–741.

150. Noonan BP, Sites JW: Tracing the origins of iguanid lizards and boine snakes of the Pacific. Am Nat 2010, 175:61–72.

151. Schulte JA, Cartwright EM: Phylogenetic relationships among iguanian lizards using alternative partitioning methods and TSHZ1: a new phylogenetic marker for reptiles. Mol Phylogenet Evol 2009, 50:391–396.

152. Nicholson KE, Crother BI, Guyer C, Savage JM: It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 2012, 3477:1–108.

153. Poe S: Phylogeny of anoles. Herp Monogr 2004, 18:37–89.

154. Guyer C, Savage JM: Cladistic relationships among anoles (Sauria, Iguanidae). Syst Zool 1986, 35:509–531.

155. Losos JB: Lizards in an Evolutionary Tree: the Ecology of Adaptive Radiation in Anoles. Berkeley: University of California Press; 2009.

156. Cannatella DC, de Queiroz K: Phylogenetic systematics of the anoles: is a new taxonomy warranted. Syst Zool 1989, 38:57–69.

157. Poe S: 1986 redux: new genera of anoles (Squamata: Dactyloidae) are unwarranted. Zootaxa 2013, 3626:295–299.

158. Heise PJ, Maxson LR, Dowling HG, Hedges SB: Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol Biol Evol 1995, 12:259–265.

159. Burbrink FT, Pyron RA: The taming of the skew: estimating proper confidence intervals for divergence dates. Syst Biol 2008, 57:317–328.

160. Pyron RA, Burbrink FT: Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 2012, 66:163–178.

161. Gower DJ, Vidal N, Spinks JN, McCarthy CJ: The phylogenetic position of Anomochilidae (Reptilia: Serpentes): first evidence from DNA sequences. J Zool Syst Evol Res 2005, 43:315–320.

162. Cadle JE, Dessauer HC, Gans C, Gartside DF: Phylogenetic relationships and molecular evolution in uropeltid snakes (Serpentes, Uropeltidae): allozymes and albumin immunology. Biol J Linn Soc 1990, 40:293–320.

163. Wallach V, Wuster W, Broadley DG: In praise of subgenera: taxonomic status of cobras of the genus Naja Laurenti (Serpentes: Elapidae). Zootaxa 2009, 2236:26–36.

Page 46: Répteis 1.1

164. Williams D, Wuster W, Fry BG: The good, the bad and the ugly: Australian snake taxonomists and a history of the taxonomy of Australia's venomous snakes. Toxicon 2006, 48:919–930.

165. Rawlings LH, Rabosky DL, Donnellan SC, Hutchinson MN: Python phylogenetics: inference from morphology and mitochondrial DNA. Biol J Linn Soc 2008, 93:603–619.

166. Burbrink FT: Inferring the phylogenetic position of Boa constrictor among the Boinae. Mol Phylogenet Evol 2005, 34:167–180.

167. Kluge AG: Boine snake phylogeny and research cycles. Misc Publ Mus Zool Univ Mich 1991, 178:1–58.

168. Romer AS: Osteology of the Reptiles. Chicago: University of Chicago Press; 1956.

169. Kelly CMR, Barker NP, Villet MH: Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. Syst Biol 2003, 52:439–459.

170. Kraus F, Brown WM: Phylogenetic relationships of colubroid snakes based on mitochondrial DNA sequences. Zool J Linn Soc 1998, 122:455–487.

171. Boulenger GA: Catalogue of snakes in the British Museum. London: British Museum of Natural History; 1894.

172. Guo P, Wu Y, He S, Shi H, Zhao E: Systematics and molecular phylogenetics of Asian snail-eating snakes (Pareatidae). Zootaxa 2011, 3001:57–64.

173. Garrigues T, Dauga C, Ferquel E, Choumet V, Failloux AB: Molecular phylogeny of Vipera Laurenti, 1768 and the related genera Macrovipera (Reuss, 1927) and Daboia (Gray, 1842), with comments about neurotoxic Vipera aspis aspis populations. Mol Phylogenet Evol 2005, 35:35–47.

174. Lenk P, Kalyabina S, Wink M, Joger U: Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 2001, 19:94–104.

175. Castoe TA, Parkinson CL: Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol Phylogenet Evol 2006, 39:91–110.

176. Fenwick AM, Gutberlet RL, Evans JA, Parkinson CL: Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zool J Linn Soc 2009, 156:617–640.

177. Kelly CMR, Branch WR, Broadley DG, Barker NP, Villet MH: Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol Phylogenet Evol 2011, 58:415–426.

Page 47: Répteis 1.1

178. Vidal N, Branch WR, Pauwels OSG, Hedges SB, Broadley DG, Wink M, Cruaud C, Joger U, Nagy ZT: Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia). Zootaxa 2008, 1945:51–66.

179. Sanders KL, Lee MSY, Leys R, Foster R, Keogh JS: Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J Evol Biol 2008, 21:682–695.

180. Sanders KL, Lee MSY: Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes (Elapidae, Colubroidea). Mol Phylogenet Evol 2008, 46:1165–1173.

181. Chen X, Huang S, Guo P, Colli GR, de Oca AN M, Vitt LJ, Pyron RA, Burbrink FT: Understanding the formation of ancient intertropical disjunct distributions using Asian and Neotropical hinged-teeth snakes (Sibynophis and Scaphiodontophis: Serpentes: Colubridae). Mol Phylogenet Evol 2012, 66:254–261.

182. Huang S, Liu SY, Guo P, Zhang YP, Zhao EM: What are the closest relatives of the hot-spring snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan Plateau? Mol Phylogenet Evol 2009, 51:438–446.

183. He M, Feng JC, Liu SY, Guo P, Zhao EM: The phylogenetic position of Thermophis (Serpentes: Colubridae), an endemic snake from the Qinghai-Xizang Plateau, China. J Nat Hist 2009, 43:479–488.

184. Socha JJ: Gliding flight in Chrysopelea: turning a snake into a wing. Integr Comp Biol 2011, 51:969–982.

185. Helfenberger N: Phylogenetic relationship of Old World ratsnakes based on visceral organ topography, osteology, and allozyme variation. Russ J Herp 2001, 8:1–56.

186. Alfaro ME, Arnold SJ: Molecular systematics and evolution of Regina and the Thamnophiine snakes. Mol Phylogenet Evol 2001, 21:408–423.

187. de Queiroz A, Lawson R, Lemos-Espinal JA: Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough? Mol Phylogenet Evol 2002, 22:315–329.

188. Cope ED: Eleventh contribution to the herpetology of tropical America: Dugés, A. Proc Amer Philos Soc 1879, 18:261–277.

189. Fitzinger L: Systema Reptilium. Fasciculus Primus, Amblyglossae. Vienna: Apud Braumüller and Seidel Bibliopolas; 1843.

190. Vidal N, Dewynter M, Gower DJ: Dissecting the major American snake radiation: a molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). CR Biol 2010, 333:48–55.

191. Caldwell MW: Squamate phylogeny and the relationships of snakes and mosasauroids. Zool J Linn Soc 1999, 125:115–147.

Page 48: Répteis 1.1

192. Heath TA, Hedtke SM, Hillis DM: Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 2008, 46:239–257.

193. Hedtke SM, Townsend TM, Hillis DM: Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 2006, 55:522–529.

194. Rannala B, Huelsenbeck JP, Yang ZH, Nielsen R: Taxon sampling and the accuracy of large phylogenies. Syst Biol 1998, 47:702–710.

195. Poe S, Swofford DL: Taxon sampling revisited. Nature 1999, 398:299–300.

196. Fisher-Reid MC, Wiens JJ: What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. BMC Evol Biol 2011, 11:300.

197. McMahon MM, Sanderson MJ: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes. Syst Biol 2006, 55:818–836.

198. Lemmon AR, Emme SA, Lemmon EM: Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 2012, 61:727–744.

199. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC: Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 2012, 61:717–726.

200. Crawford NG, Faircloth BC, McCormack JE, Brumfield D, Winker K, Glenn TC: More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 2012, 8:783–786.

201. Edwards SV, Liu L, Pearl DK: High-resolution species trees without concatenation. Proc Natl Acad Sci USA 2007, 104:5936–5941.

202. Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data. Mol Biol Evol 2010, 27:570–580.

203. Ricklefs RE, Losos JB, Townsend TM: Evolutionary diversification of clades of squamate reptiles. J Evol Biol 2007, 20:1751–1762.

204. Brandley MC, Huelsenbeck JP, Wiens JJ: Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution 2008, 62:2042–2064.

205. Pyron RA, Burbrink FT: Systematics of the Common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa 2009, 2241:22–32.

206. Pyron RA: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol 2010, 59:185–194.

Page 49: Répteis 1.1

207. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792–1797.

208. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947–2948.

209. Stamatakis A, Aberer AJ, Goll C, Smith SA, Berger SA, Izquierdo-Carrasco F: RAxML-Light: a tool for computing terabyte phylogenies. Bioinformatics 2012, 28:2064–2066.

210. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688–2690.

211. Felsenstein J: Inferring Phylogenies. Sunderland: Sinauer Associates; 2004.

212. Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O: Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 2011, 60:685–699.

213. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307–321.

214. Schneider JG: Historiae Amphibiorum Naturalis et Literariae. Fasciculus Secundus continens Crocodilos, Scincos, Chamaesauras, Boas, Pseudoboas, Elapes, Angues, Amphisbaenas et Caecilias. Jena: Frommani; 1801.

215. Mcdowell SB: A catalog of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop museum. Part III. Boinae and Acrochordoidea (Reptilia, Serpentes). J Herp 1979, 13:1–92.

Page 50: Répteis 1.1

0.2 subst./site

Scincidae

Xantusiidae

Gerrhosauridae

Teiidae

Gymnophthalmidae

Lacertidae

Anguidae

Chamaeleonidae

Agamidae

Leiosauridae

Boidae

Viperidae

Colubridae

Lamprophiidae

A

B

C

D

E

F

G

A) Gekkota

B) Scincoidea

C) Episquamata

D) Lacertoidea

E) Toxicofera

F) Anguimorpha

G) Iguania

H) Serpentes

H

Dipsadinae

Gekkonidae

Cercosaurinae

Acontiinae

Lacertinae

Hydrosaurinae

Xenodermatidae

Anniellidae

Crotaphytidae

Hoplocercidae

Sphenodontidae

Leiolepidinae

Polychrotidae

Pseudoxyrhophiinae

Loxocemidae

Dibamidae

Prosymninae

Lygosominae

Natricinae

Xantusiinae

Tropiduridae

Corytophanidae

Ecpleopinae

Anomochilidae

Amphisbaenidae

Leiosaurinae

Xenophiidae

Scincinae

Draconinae

Bipedidae

Gerrhosaurinae

Rhineuridae

Anomalepididae

Trogonophiidae

Aniliidae

Azemiopinae

Alopoglossinae

Lanthanotidae

Pseudaspidinae

Tupinambinae

Xenotyphlopidae

Blanidae

Gerrhopilidae

Liolaemidae

Candoiinae

Gallotiinae

Leptotyphlopidae

Platysaurinae

Pythonidae

Boinae

Colubrinae

Opluridae

Elapidae

Typhlopidae

Pareatidae

Cadeidae

Crotalinae

Sibynophiinae

Chamaeleoninae

Rhachisaurinae

Grayiinae

Ungaliophiinae

Erycinae

Phyllodactylidae

Anguinae

Helodermatidae

Phrynosomatidae

Sanziniinae

Tropidophiidae

Viperinae

Cricosaurinae

Shinisauridae

Teiinae

Diplodactylidae

Cylindrophiidae

Brookesiinae

Lepidophyminae

Enyaliinae

Varanidae

Bachiinae

Aparallactinae

Sphaerodactylidae

Atractaspidinae

Uropeltidae

LeiocephalidaeIguanidae

Homalopsidae

Amphibolurinae

Xenopeltidae

Diploglossinae

Calamariinae

Xenosauridae

Uromasticinae

Agaminae

Acrochordidae

Pygopodidae

Calabariidae

Psammophiinae

Carphodactylidae

Cordylinae

Gymnophthalminae

Pseudoxenodontinae

Bolyeriidae

Dactyloidae

Gerrhonotinae

Eublepharidae

Lamprophiinae

Zonosaurinae

83

98

100

100

98

99

100

99

100

99

83

54

98

99

84

100

68

100

100

95

100

94

63

84

71

90

100

100

100

100

100

81

100

100

100

100

87

9969

90

100

100

88

65

97

72

89

100

90

100

100

100

100

96

100

100

96

100

94

100

95

100

97

100

100

100

100

100

100

100

100

58

100

77

100

74

100

95

95

100

99

95

54

100

95

96

79

95

100

99

87

100

100

100

Squamata

Cordylidae

Figure 1

Page 51: Répteis 1.1

!

!"#$%&∃(# &##+%"

!"#$%&∃(-#++#"!"#$%&∃(% .%$.&∃

/.+0∗%# !∃"∃(!$!"00 ∃&∃!"#$%&∃(%" %$.+.∃"∃

!"#$%&∃(. ∋$+-&".+$+

!"#$%&∃(4+0+#+.∃"∃!"#$%&∃(∃+#$%+.∃"∃

56∗00&#&∃(7$#"7$#"

56∗00&#&∃($%."4 0$56∗00&#&∃(!0$%&#&∃

8$0%&$#"&∃(∃$0+## ∃&∃8$0%&$#"&∃(4 #.&%&∃

8$0%&$#"&∃((∗#+##$8$0%&$#"&∃(7$%+$+

8$0%&$#"&∃(% #"%+"8$0%&$#"&∃(∃($"."

;##$∗$( 44&0%&∃<$#!6 =$4%∗0&∃(0$+∋"∃

>∋"="4 0&∃(∃!6∗#&#&∃>.=+#( ="∃$&#&∃(%"0""?+!6#&#&∃((6++0+#"

?+!6#&#&∃($∃!+#

?+!6#&#&∃(∃6+$"?+!6#&#&∃($%∗$+

?+!6#&#&∃(0+∋"∃?+!6#&#&∃(∃%+00$%&∃?+!6#&#&∃(∋+#%+##$0"∃

?+!6#&#&∃(=+0+$."?+!6#&#&∃(0$+∋"∃∃"%&∃

!+0%$($&∃%#$0"∃!+0%$(% #∀&$%$

!+0%$(4 .4"..$!+0%$(0$#"$0"∃

!+0%$(# #+$

!+0%$(%".4%$!+0%$(!$)

!+0%$(%"%+00$

!+0%$("%!$#!+0%$(% 00+#"

!+0%$(#&%0+#"!+0%$(.$∃&%$

!+0%$(". #.$%$

!+0%$(-#$∗""!+0%$(B#$∃+#"

;!6"=" 4+!6$0&∃(%$+."$%&∃

C"$0"∃(D"4$#"C"$0"∃(#&#% ."∃

50+%6 0$)(-#$4"0"∃5$#$=+0%$( #"+.%$0"∃

5∗- !&∃(0+!"= ! =&∃5∗- !&∃(."-#"4+!∃

/!#$∃"$(!"4%&#$%$/!#$∃"$(!&046+00$/!#$∃"$(B&∃4$

/!#$∃"$(#+!+.∃/!#$∃"$(∃%"%6"

/!#$∃"$($&#"%$

/!#$∃"$(!∃+&= !&046+00$/!#$∃"$(!$#$!&046+00$/!#$∃"$(".$&#"%$/!#$∃"$(∃%#" 0$%$

5∃+&= %6+4$=$4%∗0&∃(0".=.+#"E6$4 =$4%∗0&∃(%#$46∗#6∗.46&∃;+= =+#$(%$#% #$%$

!"+# -+77 (! &%+.∃"∃!"+# -+77 (".+)!+4%$%&∃

!"+# -+77 (.+6 &++.∃"∃!"+# -+77 (∋$0"="40$∋"∃

!"+# -+77 (".∃&0$#"∃!"+# -+77 (7 ."$%#

!"+# -+77 (7$$0$+.∃"∃!"+# -+77 (%6 %$∃(6"%+"

F$∋$∗"$(!&046+00$

F$∋$∗"$(-+"%$".$F$∋$∗"$(∃$&∋$-""

5$."+-+77 (%$=D E6$4 =$4%∗0&∃(0+$46"$.&∃

F$∋$∗"$( #.$%$F$∋$∗"$(- # +.∃"∃

F$∋$∗"$(4∗40&#$F$∋$∗"$(% .%$.$

E6$4 =$4%∗0&∃($&#"4&0$%&∃

< ##+0 !6&∃(∃$#$∃". #&%< ##+0 !6&∃(4"0"$%&∃

G&#∗=$4%∗0 =+∃(∃∗%%+%#"4&∃H."$# -+77 (46$6 &$

G&#∗=$4%∗0 =+∃( 44"=+.%$0"∃

G&#∗=$4%∗0 =+∃($-#"4 0$+G&#∗=$4%∗0 =+∃(∋"+"00$#="

<#+.$=$4%∗0&∃( 4+00$%&∃I !0 =$4%∗0&∃(=&∋$&4+0""

J =( #%6"$(46#∗∃ ∃"#+%"4&∃J =( #%6"$(%$4&0$%&∃

K # !&7&(∃%+!6+.∃"!$4%∗0 4.+%"∃(!$4"B"4&∃

H 7 !"#"#$7$&(4#∗!% + "4&∃H 7 !"#"#$7$&(.+#&0 ∃&∃H 7 !"#"#$7$&(-#$.&0$%&∃H 7 !"#"#$7$&(7$6&%$#$+

K&7&%&7&(#$7"&#$+?$&0%".&∃(-+%%+&∃

?$&0%".&∃(+0+-$.∃?$&0%".&∃(-#$∗""

?$&0%".&∃(%&#+#4&0$%&∃?$&0%".&∃(∃%+00$%&∃

?$&0%".&∃(%$.&7$.&∃

?$&0%".&∃(! +4"0 460 #&∃?$&0%".&∃(#&="∃

8%# !6&#&∃(%$+."4$&=$?+#&0"B+#$(# #&∃%$

/%$0 ∃"$(0+∃&+&#""

/%$0 ∃"$(#6 %#"B+#/%$0 ∃"$( #∃4&#$

I+∃!+# +=&#$(#+%"4&0$%$

;+=&#$(-+%%$%$;+=&#$(%$#% #$%$;+=&#$(B"0"4"! =$

;+=&#$(-#$4"0"∃;+=&#$(4$∃%+0.$&"

;+=&#$(4 --+#";+=&#$(%#∗ .";+=&#$(% ."0"∃

8%# !6&#&∃(%4%"00$."8%# !6&#&∃(%$+."$%&∃

8%# !6&#&∃(+0=+#"8%# !6&#&∃(D+$.$+

8%# !6&#&∃(∃%# !6&#&∃8%# !6&#&∃($∃∃"%"0"∃

8%# !6&#&∃(7#"∃$0∗∃

8%# !6&#&∃(4"0"$#"∃8%# !6&#&∃((+00".-% .$+

8%# !6&#&∃(("00"$%∃"8%# !6&#&∃(".%+#%+="&∃

8%# !6&#&∃(#$.7"."8%# !6&#&∃(∃!"."-+#&∃

E6∗.46 +=&#$( #.$%$C&4$∃"&%(#∗#.+"C&4$∃"&%($0# -&%%$%&%

C&4$∃"&%(%$"."C&4$∃"&%(=$%$+&%

C&4$∃"&%("%%$4&0$%&%C&4$∃"&%(∃%+".=$46.+#"

C&4$∃"&%(( %#+∗"

C&4$∃"&%(∃%+. =$4%∗0&%C&4$∃"&%(∃∀&$## ∃&%

!"!0 =$4%∗0&∃(-#$.$#"+.∃"∃!"!0 =$4%∗0&∃(B&00+#"!"!0 =$4%∗0&∃(∋"%%$%&∃

!"!0 =$4%∗0&∃(-$0+$%&∃!"!0 =$4%∗0&∃(%+∃∃+00$%&∃

!"!0 =$4%∗0&∃( #.$%&∃!"!0 =$4%∗0&∃(! 0∗ !6%6$0%&∃

!"!0 =$4%∗0&∃(4 .∃!"4"00$%&∃

!"!0 =$4%∗0&∃(%"%46+00"!"!0 =$4%∗0&∃(4$!+.∃"∃

!"!0 =$4%∗0&∃(∃$∋$-+"

!"!0 =$4%∗0&∃(70&-+"!"!0 =$4%∗0&∃(!&046+#

!"

#$$

#$$

#$$

!%

#$$

!#

&%

!!

#$$

!!

'%

&(&!

!!

')

'&&! ''

#$$

#$$

!'

!&

!&!)

!*

!!

!!

#$$

''

!!

"'

!*!''&

#$$

#$$

#$$

!(!!

!!

!!

#$$

!(

&$

!''%

#$$

#$$

!)

#$$

!(

''!*'#

!&#$$

!!

#$$

#$$

!!

#$$

&%

!(

!)

*#

'&

'"

'!

#$$

!"

&(

!(

'&

#$$!*

!!

!''&

!%

!!

&&

#$$

"(

!!

"%

#$$

#$$&(&#!*

&'

!#

#$$

#$$

!%

#$$

#$$

!"

'!

'%

!!

#$$

!!

*!

#$$

"$

#$$

#$$

"(

&"!%

#$$

!*

'&

#$$

!$#$$

#$$

!#

#$$!"

&*

'"

**

&!

#$$

&&#$$

#$$#$$

!!#$$!"#$%"&$'

($)*+,&$-./0"&$'

1/2,*,&"&$'

!"*0,&$-./0"&$'

"#!! $#%Figure 2

Page 52: Répteis 1.1

BTarentola gigas

Tarentola caboverdianaTarentola rudis

Tarentola darwiniTarentola chazaliae

Tarentola delalandiiTarentola gomerensis

Tarentola annularisTarentola ephippiata

Tarentola boettgeriTarentola mindiae

Tarentola neglectaTarentola angustimentalisTarentola mauritanica

Tarentola desertiTarentola boehmei

Tarentola americanaPhyllopezus maranjonensis

Phyllopezus lutzaePhyllopezus pollicaris

Phyllopezus periosusPhyllodactylus homolepidurus

Phyllodactylus davisiPhyllodactylus duellmani

Phyllodactylus delcampoiPhyllodactylus paucituberculatus

Phyllodactylus nocticolusPhyllodactylus bugastrolepisPhyllodactylus unctus

Phyllodactylus xantiPhyllodactylus bordai

Phyllodactylus laneiPhyllodactylus tuberculosus

Phyllodactylus reissiiPhyllodactylus wirshingi

Homonota andicolaHomonota darwinii

Homonota borelliiHomonota underwoodi

Homonota fasciataHomonota gaudichaudii

Ptyodactylus guttatusPtyodactylus hasselquistii

Ptyodactylus oudriiPtyodactylus ragazzii

Asaccus platyrhynchusHaemodracon riebeckii

Thecadactylus rapicaudaThecadactylus solimoensis

Sphaerodactylus nicholsiSphaerodactylus ocoae

Sphaerodactylus gaigeaeSphaerodactylus klauberi

Sphaerodactylus semasiopsSphaerodactylus goniorhynchus

Sphaerodactylus townsendiSphaerodactylus armstrongi

Sphaerodactylus macrolepisSphaerodactylus argus

Sphaerodactylus rooseveltiSphaerodactylus altavelensis

Sphaerodactylus notatusSphaerodactylus darlingtoni

Sphaerodactylus cryphiusSphaerodactylus shrevei

Sphaerodactylus elegansSphaerodactylus leucaster

Sphaerodactylus copeiSphaerodactylus nigropunctatus

Sphaerodactylus intermediusSphaerodactylus torrei

Sphaerodactylus cinereusSphaerodactylus thompsoni

Sphaerodactylus glaucusSphaerodactylus molei

Sphaerodactylus oliveriSphaerodactylus richardi

Sphaerodactylus cricoderusSphaerodactylus ramsdeni

Sphaerodactylus schwartziSphaerodactylus kirbyiSphaerodactylus vincenti

Sphaerodactylus microlepisSphaerodactylus parvus

Sphaerodactylus sabanusSphaerodactylus elegantulus

Sphaerodactylus sputatorSphaerodactylus fantasticus

Pseudogonatodes guianensisPseudogonatodes lunulatus

Pseudogonatodes manessiColeodactylus natalensis

Coleodactylus meridionalisColeodactylus brachystoma

Coleodactylus septentrionalisGonatodes ocellatusGonatodes ceciliaeGonatodes seigliei

Gonatodes concinnatusGonatodes antillensis

Gonatodes humeralisGonatodes falconensis

Gonatodes taniaeGonatodes purpurogularis

Gonatodes alexandermendesiGonatodes superciliaris

Gonatodes annularisGonatodes hasemani

Gonatodes infernalisGonatodes vittatus

Gonatodes petersiGonatodes albogularis

Gonatodes daudiniGonatodes caudiscutatus

Gonatodes eladioiLepidoblepharis festae

Lepidoblepharis xanthostigmaChatogekko amazonicus

Saurodactylus mauritanicusTeratoscincus roborowskii

Teratoscincus przewalskiiTeratoscincus scincusTeratoscincus microlepisEuleptes europaea

Saurodactylus fasciatusAristelliger georgeensis

Aristelliger praesignisAristelliger lar

Quedenfeldtia moerensQuedenfeldtia trachyblepharus

Pristurus somalicusPristurus crucifer

Pristurus carteriPristurus minimusPristurus rupestrisPristurus flavipunctatus

Pristurus abdelkuriPristurus guichardi

Pristurus sokotranusPristurus insignis

Pristurus celerrimusGoniurosaurus araneus

Goniurosaurus luiiGoniurosaurus catbaensis

Goniurosaurus lichtenfelderiGoniurosaurus kuroiwae

Hemitheconyx tayloriHemitheconyx caudicinctus

Holodactylus africanusEublepharis turcmenicusEublepharis macularius

Coleonyx elegansColeonyx mitratus

Coleonyx variegatusColeonyx brevis

Aeluroscalabotes felinus

100

100

92

73100

99

93

769162

100 99

73

100

100

87100

99

10090

92

93

100

10065

100

99

100

6775

9657

97

97 100

86

10085

92

65 100

100

98

100

100

83

100

79

82

87

100

83

84

69

93

8590

85

9384

8366

94

99

79

52

99

83

81

100100

91

84

100

84

98

81

82 100

87

10096

10099

100

99

100

60

97

89

99100

10093

10095

98

7060

100

89100

96

97

100

60

78100

9798

75

100100

91

100

100

76

10063

8598

92100

100

100

100

97100

9690

100

100100

100

79

100100

100

100

Phyllodactylidae

Eublepharidae

Sphaerodactylidae

CFigure 3

Page 53: Répteis 1.1

CPhelsuma kely

Phelsuma lineataPhelsuma comorensis

Phelsuma pusillaPhelsuma quadriocellata

Phelsuma antanosyPhelsuma klemmeri

Phelsuma robertmertensiPhelsuma laticaudaPhelsuma serraticaudaPhelsuma malamakibo

Phelsuma berghofiPhelsuma hielscheriPhelsuma flavigularis

Phelsuma ravenalaPhelsuma dubiaPhelsuma modesta

Phelsuma nigristriataPhelsuma inexpectata

Phelsuma ornataPhelsuma guimbeaui

Phelsuma cepedianaPhelsuma borbonica

Phelsuma guentheriPhelsuma gigas

Phelsuma edwardnewtoniPhelsuma standingi

Phelsuma andamanensePhelsuma mutabilis

Phelsuma brevicepsPhelsuma pronkiPhelsuma barbouri

Phelsuma seippiPhelsuma parkeri

Phelsuma abbottiPhelsuma madagascariensis

Phelsuma guttataPhelsuma sundbergiPhelsuma astriata

Phelsuma vanheygeniLygodactylus keniensis

Lygodactylus kimhowelliLygodactylus luteopicturatusLygodactylus picturatus

Lygodactylus williamsiLygodactylus chobiensis

Lygodactylus gutturalisLygodactylus angularis

Lygodactylus thomensisLygodactylus conraui

Lygodactylus klugeiLygodactylus bradfieldiLygodactylus capensisLygodactylus stevensoni

Lygodactylus lawrenceiLygodactylus pictus

Lygodactylus mirabilisLygodactylus tuberosus

Lygodactylus montanusLygodactylus gravis

Lygodactylus paulianiLygodactylus arnoulti

Lygodactylus blancaeLygodactylus verticillatusLygodactylus heterurus

Lygodactylus tolampyaeLygodactylus guibei

Lygodactylus miopsLygodactylus madagascariensis

Lygodactylus rarusLygodactylus expectatus

Rhoptropella ocellataCnemaspis tropidogaster

Cnemaspis kandianaCnemaspis podihuna

Pachydactylus affinisPachydactylus vansoni

Pachydactylus capensisPachydactylus oshaughnessyi

Pachydactylus tigrinusPachydactylus montanus

Pachydactylus vanzyliPachydactylus rangei

Pachydactylus austeniPachydactylus mariquensis

Pachydactylus mclachlaniPachydactylus monicaePachydactylus weberi

Pachydactylus servalPachydactylus griffini

Pachydactylus carinatusPachydactylus fasciatus

Pachydactylus tsodiloensisPachydactylus waterbergensis

Pachydactylus purcelliPachydactylus oculatus

Pachydactylus maculatusPachydactylus geitje

Pachydactylus labialisPachydactylus barnardi

Pachydactylus formosusPachydactylus rugosus

Pachydactylus punctatusPachydactylus scherzi

Pachydactylus sansteynaePachydactylus caraculicus

Pachydactylus bicolorPachydactylus oreophilus

Pachydactylus gaiasensisPachydactylus reconditus

Pachydactylus parascutatusPachydactylus scutatus

Pachydactylus namaquensisPachydactylus kladaroderma

Pachydactylus haackeiColopus kochii

Colopus wahlbergiiPachydactylus robertsi

Chondrodactylus bibroniiChondrodactylus fitzsimonsi

Chondrodactylus turneriPachydactylus laevigatus

Chondrodactylus anguliferElasmodactylus tuberculosus

Elasmodactylus tetensisRhoptropus barnardi

Rhoptropus biporosusRhoptropus boultoni

Rhoptropus bradfieldiRhoptropus afer

Goggia lineataBlaesodactylus sakalava

Blaesodactylus antongilensisBlaesodactylus boiviniHomopholis mulleri

Homopholis walbergiiHomopholis fasciataGeckolepis maculataGeckolepis typica

Afroedura karroicaAfroedura pondolia

Afrogecko porphyreusMatoatoa brevipes

Cryptactites peringueyiAfrogecko swartbergensis

Christinus marmoratusParagehyra gabriellae

Uroplatus fimbriatusUroplatus giganteus

Uroplatus henkeliUroplatus sikorae

Uroplatus lineatusUroplatus pietschmanni

Uroplatus alluaudiUroplatus phantasticus

Uroplatus ebenauiUroplatus malama

Uroplatus malaheloUroplatus guentheri

Cnemaspis africanaCnemaspis dickersonae

Cnemaspis uzungwaeNarudasia festiva

Ptenopus carpiCalodactylodes aureusCalodactylodes illingworthorum

Ailuronyx trachygasterAiluronyx seychellensis

Ailuronyx tachyscopaeusParoedura bastardi

Paroedura tanjakaParoedura vazimba

Paroedura androyensisParoedura picta

Paroedura sanctijohannisParoedura stumpffi

Paroedura lohatsaraParoedura karstophila

Paroedura ovicepsParoedura homalorhina

Paroedura gracilisParoedura masobe

Ebenavia inunguisUrocotyledon inexpectata

Perochirus ateles

69

89

95

90

100

100

100

95

99

8799

10057

94

96

95

100

9894

99

100

55

85

94

9995

100100

100

99

8292

96 100

100

100100

87

92

100

100

99

68

9778

6794

9468

9793

100

81

8993

84

82

7398

100

8191

85

100

7198

92

100 99

52

98

99

100

96

100

89

70

85

61

74

72100

100

100

99

100

100

85

69

98

68

97

100

84

5293

99

68

100

6386

96

91

74

9590

100

98

100

93

100100 86

100

86

10098 98

79

93

100

99100

99100

100

56

10052

100

97

100

65

53

92

100

85

50

10077

100100

100

100

100

87100

98 100

100

100

93

98

100

99

9261

99

100

100

85

83100

99

73

(ii)

Hemidactylus homoeolepisHemidactylus forbesii

Hemidactylus oxyrhinusHemidactylus macropholis

Hemidactylus mindiaeHemidactylus lemurinus

Hemidactylus turcicusHemidactylus robustus

Hemidactylus yerburiiHemidactylus persicus

Hemidactylus grantiHemidactylus dracaenacolus

Hemidactylus pumilioHemidactylus foudaii

Hemidactylus citerniiHemidactylus modestus

Hemidactylus agriusHemidactylus palaichthusHemidactylus bouvieri

Hemidactylus brasilianusHemidactylus greeffiiHemidactylus platycephalus

Hemidactylus longicephalusHemidactylus mercatoriusHemidactylus mabouia

Hemidactylus haitianusHemidactylus angulatus

Hemidactylus gracilisHemidactylus reticulatus

Hemidactylus albofasciatusHemidactylus imbricatus

Hemidactylus sataraensisHemidactylus brookii

Hemidactylus frenatusHemidactylus flaviviridis

Hemidactylus leschenaultiiHemidactylus maculatus

Hemidactylus prashadiHemidactylus triedrus

Hemidactylus depressusHemidactylus giganteus

Hemidactylus aaronbaueriHemidactylus fasciatus

Hemidactylus platyurusHemidactylus karenorum

Hemidactylus garnotiiHemidactylus bowringii

Cyrtodactylus louisiadensisCyrtodactylus epiroticusCyrtodactylus tripartitus

Cyrtodactylus robustusCyrtodactylus klugei

Cyrtodactylus tuberculatusCyrtodactylus novaeguineae

Cyrtodactylus loriaeCyrtodactylus sermowaiensis

Cyrtodactylus pulchellusCyrtodactylus intermedius

Cyrtodactylus agusanensisCyrtodactylus philippinicus

Cyrtodactylus annulatusCyrtodactylus consobrinus

Cyrtodactylus irregularisCyrtodactylus marmoratus

Cyrtodactylus triedrusCyrtodactylus jarujini

Cyrtodactylus angularisCyrtodactylus ayeyarwadyensis

Cyrtodactylus oldhamiCyrtopodion gastropholeCyrtopodion agamuroides

Cyrtopodion caspiumCyrtopodion longipes

Cyrtopodion scabrumCyrtopodion sistanensis

Agamura persicaBunopus crassicauda

Crossobamon orientalisBunopus tuberculatus

Mediodactylus heteropholisMediodactylus heterocercum

Mediodactylus sagittiferumMediodactylus kotschyi

Stenodactylus sthenodactylusStenodactylus yemenensis

Stenodactylus doriaeStenodactylus leptocosymbotus

Stenodactylus petriiStenodactylus arabicus

Tropiocolotes tripolitanusPseudoceramodactylus khobarensis

Mediodactylus russowiiMediodactylus spinicaudum

Cnemaspis kendalliiCnemaspis limi

Tropiocolotes helenaeAlsophylax pipiens

Gehyra minutaGehyra montium

Gehyra pilbaraGehyra punctata

Gehyra variegataGehyra purpurascensGehyra nana

Gehyra xenopusGehyra australis

Gehyra occidentalisGehyra koira

Gehyra robustaGehyra borroloola

Gehyra pamelaGehyra catenata

Gehyra dubiaGehyra membranacruralis

Gehyra oceanicaGehyra marginata

Gehyra bareaGehyra baliola

Gehyra brevipalmataGehyra lacerata

Gehyra mutilataGehyra fehlmanni

Hemiphyllodactylus aurantiacusHemiphyllodactylus yunnanensis

Hemiphyllodactylus typusNactus pelagicusNactus multicarinatus

Nactus chevertiNactus galgajuga

Nactus vankampeniNactus eboracensisNactus acutus

Heteronotia speleaHeteronotia binoeiHeteronotia planiceps

Dixonius siamensisDixonius vietnamensis

Dixonius melanostictusGekko grossmanni

Gekko badeniiGekko petricolus

Gekko vittatusLuperosaurus iskandari

Ptychozoon lionotumPtychozoon kuhli

Ptychozoon rhacophorusGekko porosusGekko crombota

Gekko romblonGekko mindorensis

Gekko monarchusGekko athymus

Gekko swinhonisGekko auriverrucosus

Gekko hokouensisGekko japonicus

Gekko chinensisGekko gecko

Gekko smithiiLepidodactylus moestusLepidodactylus lugubris

Luperosaurus joloensisLuperosaurus cumingii

Luperosaurus macgregoriLepidodactylus orientalis

Pseudogekko compressicorpusPseudogekko smaragdinus

Lepidodactylus novaeguineae

99

100

97

100

99

98

97

91

91

96

6697

98

99

82

100

9698

57

100

100

9695

97

97

100

100

81

93

100100

9956

97

100

93

8988

76

100

100100

87

99

92

94

9898

99

98

77

96

79

88

10052

9798

92

100

100

75

95

79

99

100

99

100

86

9969

99

98

9692

10096

85

100

100

65 100

64

100

100

96

55

9898

9892

100

10097

70

100

100

97

8459

91

100

100

10085

100

100

83

98 100

100

100

100

100100

100

100

100

9496

97

89

95

10099

80100

100

100

9598

54

100

100

79

91100

100

100

Gekko

nid

ae

(i)

100

(i)

(ii)

Figure 4

Page 54: Répteis 1.1

DCordylus cordylusCordylus tasmani

Cordylus oelofseniCordylus mclachlani

Cordylus nigerCordylus minorCordylus aridusCordylus imkeae

Cordylus macropholisCordylus rhodesianus

Cordylus jonesiiCordylus beraducciiCordylus ukingensisCordylus vittifer

Cordylus meculaeCordylus tropidosternum

Hemicordylus capensisHemicordylus nebulosusNinurta coeruleopunctatusPseudocordylus melanotusPseudocordylus spinosus

Pseudocordylus microlepidotusPseudocordylus langi

Chamaesaura anguinaChamaesaura aenea

Smaug giganteusSmaug warreni

Namazonurus peersiNamazonurus lawrenci

Namazonurus namaquensisNamazonurus pustulatus

Namazonurus campbelliKarusasaurus polyzonus

Karusasaurus jordaniOuroborus cataphractus

Platysaurus monotropisPlatysaurus minor

Platysaurus intermediusPlatysaurus capensis

Platysaurus broadleyiPlatysaurus mitchelli

Platysaurus pungweensisZonosaurus rufipes

Zonosaurus aeneusZonosaurus bemaraha

Zonosaurus subunicolorZonosaurus brygooiZonosaurus tsingy

Zonosaurus boettgeriZonosaurus laticaudatus

Zonosaurus anelanelanyZonosaurus karsteni

Zonosaurus quadrilineatusZonosaurus trilineatus

Zonosaurus ornatusZonosaurus madagascariensis

Zonosaurus haraldmeieriTracheloptychus petersi

Tracheloptychus madagascariensisGerrhosaurus flavigularis

Gerrhosaurus multilineatusGerrhosaurus nigrolineatus

Gerrhosaurus typicusGerrhosaurus skoogi

Gerrhosaurus validusTetradactylus tetradactylus

Tetradactylus africanusTetradactylus seps

Cordylosaurus subtessellatusGerrhosaurus major

Lepidophyma dontomasiLepidophyma radula

Lepidophyma loweiLepidophyma cuicatecaLepidophyma smithii

Lepidophyma lineriLepidophyma gaigeae

Lepidophyma sylvaticumLepidophyma micropholis

Lepidophyma occulorLepidophyma pajapanensis

Lepidophyma reticulatumLepidophyma flavimaculatumLepidophyma lipetziLepidophyma tuxtlae

Lepidophyma mayaeXantusia wigginsi

Xantusia bezyiXantusia vigilis

Xantusia arizonaeXantusia riversiana

Xantusia sancheziXantusia bolsonaeXantusia henshawi

Xantusia gracilisCricosaura typica

99

100

100

100

55

95

96

99

100

8586

100

84

92

83

100

99

81

8283

88

95

86100

93

10099

100

94

100

100

99

100

92

91

100

100

100

91

96

66

82

8987

73

100

100

100

100

100

100

79

91100

76

95

9869

100

100

100

87

95

9594

100100

94

100

100

100

100

100

84

92

10066

97

100

100

Platysaurinae

Cordylinae

Cordylidae

Gerrhosauridae

Gerrhosaurinae

Zonosaurinae

Lepidophyminae

Xantusiinae

Cricosaurinae

Xantusiidae

Figure 5

Page 55: Répteis 1.1

EAmphiglossus frontoparietalisAmphiglossus punctatus

Amphiglossus macrocercusAmphiglossus anosyensis

Amphiglossus splendidusVoeltzkowia rubrocaudataVoeltzkowia lineata

Voeltzkowia fierinensisAmphiglossus astrolabi

Amphiglossus reticulatusAmphiglossus tsaratananensis

Androngo trivittatusPygomeles braconnieri

Amphiglossus tanysomaAmphiglossus mandokava

Amphiglossus ornaticepsAmphiglossus melanurus

Madascincus intermediusMadascincus polleni

Madascincus stumpffiMadascincus nanus

Madascincus mouroundavaeMadascincus igneocaudatus

Pseudoacontias menamaintyMadascincus melanopleura

Paracontias rothschildiParacontias hildebrandti

Paracontias manifyParacontias brocchii

Paracontias holomelasScelotes kasneri

Scelotes montispectusScelotes gronovii

Scelotes sexlineatusScelotes bipes

Scelotes arenicolusScelotes mirus

Scelotes anguineusScelotes caffer

Proscelotes eggeliHakaria simonyi

Melanoseps loveridgeiMelanoseps ater

Melanoseps occidentalisFeylinia currori

Feylinia polylepisFeylinia grandisquamis

Typhlacontias punctatissimusTyphlacontias brevipes

Sepsina angolensisChalcides montanus

Chalcides polylepisChalcides manueli

Chalcides mionectonChalcides sphenopsiformis

Chalcides viridanusChalcides coeruleopunctatus

Chalcides sexlineatusChalcides lanzaiChalcides parallelus

Chalcides boulengeriChalcides bedriagaiChalcides colosii

Chalcides sepsoidesChalcides ocellatus

Chalcides striatusChalcides pseudostriatusChalcides chalcides

Chalcides guentheriChalcides minutus

Chalcides mauritanicusGongylomorphus bojerii

Janetaescincus braueriJanetaescincus veseyfitzgeraldi

Pamelaescincus gardineriScincus mitranusScincus scincus

Eumeces algeriensisScincopus fasciatus

Eumeces schneideriEurylepis taeniolatus

Plestiodon dugesiiPlestiodon brevirostris

Plestiodon copeiPlestiodon parvulus

Plestiodon ochoterenaePlestiodon lynxe

Plestiodon sumichrastiPlestiodon parviauriculatus

Plestiodon skiltonianusPlestiodon lagunensis

Plestiodon gilbertiPlestiodon longirostris

Plestiodon septentrionalisPlestiodon multivirgatus

Plestiodon fasciatusPlestiodon obsoletus

Plestiodon callicephalusPlestiodon tetragrammus

Plestiodon laticepsPlestiodon inexpectatus

Plestiodon anthracinusPlestiodon egregius

Plestiodon reynoldsiPlestiodon stimpsonii

Plestiodon marginatusPlestiodon elegans

Plestiodon latiscutatusPlestiodon japonicusPlestiodon barbouri

Plestiodon capitoPlestiodon tunganus

Plestiodon quadrilineatusPlestiodon chinensis

Plestiodon kishinouyeiPlestiodon tamdaoensis

Brachymeles pathfinderiBrachymeles gracilis

Brachymeles bicolorBrachymeles boulengeri

Brachymeles schadenbergiBrachymeles eleraeBrachymeles talinis

Brachymeles samarensisBrachymeles cebuensis

Brachymeles minimusBrachymeles bonitae

Brachymeles tridactylusBrachymeles miriamae

Brachymeles apusOphiomorus latastiiOphiomorus punctatissimus

Mesoscincus managuaeMesoscincus schwartzei

Acontias poecilusAcontias plumbeus

Acontias gracilicaudaAcontias breviceps

Acontias rieppeliAcontias percivali

Acontias meleagrisAcontias kgalagadi

Acontias litoralisAcontias lineatus

Acontias gariepensisTyphlosaurus lomiaeTyphlosaurus vermisTyphlosaurus caecusTyphlosaurus meyeri

Typhlosaurus braini

100

97

81

100

97

92

100

100

85

93

24

8070

9096

10095

93

86

100

90100

100

100

52

9764 100

87

89

100

6069

93

100

99

100 97

7594

8089

87

97

100

96

96100

100

98

100

57

100

88

100

9495

96

9899

74

9174

8799

55

10086

75

92

99

100

100100 100

77

85

100

70

88

100

100

73

76

98

91

73

92

100

97

56

100747671

98 86

74

100

100

93

100

86

97

98

100100

100

94

95

83

88

85

85

73

94

99

91

99

98

100

9694

98

9892

100

100

9599

100

89

94

Scincidae

Acontiinae

Scincinae

F-I

Figure 6

Page 56: Répteis 1.1

Lygosominae

Lygosominae

cont.FPapuascincus stanleyanus

Lipinia noctua

Lipinia pulchella

Insulasaurus victoria

Insulasaurus wrighti

Insulasaurus arborens

Prasinohaema virens

Sphenomorphus buenloicus

Scincella assatus

Scincella cherriei

Scincella gemmingeri

Scincella lateralis

Asymblepharus sikimmensis

Scincella reevesii

Sphenomorphus sabanus

Sphenomorphus cyanolaemus

Sphenomorphus variegatus

Sphenomorphus multisquamatus

Sphenomorphus indicus

Sphenomorphus maculatus

Larutia seribuatensis

Parvoscincus lawtoni

Parvoscincus kitangladensis

Parvoscincus luzonense

Parvoscincus laterimaculatus

Parvoscincus beyeri

Parvoscincus sisoni

Parvoscincus tagapayo

Parvoscincus leucospilos

Parvoscincus decipiens

Parvoscincus steerei

Sphenomorphus acutus

Sphenomorphus diwata

Pinoyscincus llanosi

Pinoyscincus abdictus

Pinoyscincus coxi

Pinoyscincus jagori

Pinoyscincus mindanensis

Otosaurus cumingi

Sphenomorphus maindroni

Sphenomorphus cranei

Sphenomorphus leptofasciatus

Sphenomorphus fasciatus

Sphenomorphus solomonis

Sphenomorphus scutatus

Sphenomorphus concinnatus

Tytthoscincus atrigularis

Tytthoscincus hallieri

Tytthoscincus parvus

Tytthoscincus aesculeticola

Sphenomorphus muelleri

Sphenomorphus jobiensis

Sphenomorphus melanopogon

Isopachys anguinoides

Lipinia vittigera

Tropidophorus misaminius

Tropidophorus partelloi

Tropidophorus brookei

Tropidophorus beccarii

Tropidophorus baconi

Tropidophorus grayi

Tropidophorus microlepis

Tropidophorus cocincinensis

Tropidophorus thai

Tropidophorus robinsoni

Tropidophorus sinicus

Tropidophorus baviensis

Tropidophorus hainanus

Tropidophorus murphyi

Tropidophorus noggei

Tropidophorus latiscutatus

Tropidophorus matsuii

Tropidophorus berdmorei

Sphenomorphus simus

Sphenomorphus praesignis

Ablepharus pannonicus

Asymblepharus alaicus

Ateuchosaurus pellopleurus

100

98

89

97

77

94

93

76

99

91

99

98

99

94100

100

80

65

96

9354

99

100

100

100

100

99

90

96

100

89

100

97

99

6883

100

100

100

80

100

95

100

1008776

100

100

10092

98

86

100

100

95

94

89

95

83

99

98

10098

60100

90

81

100

H-I GFigure 7

Page 57: Répteis 1.1

Lerista kennedyensisLerista onsloviana

Lerista uniduoLerista connivens

Lerista variaLerista lineopunctulata

Lerista yunaLerista kendricki

Lerista nichollsiLerista gascoynensis

Lerista petersoniLerista humphriesi

Lerista praepeditaLerista bougainvillii

Lerista viduataLerista muelleri

Lerista haroldiLerista allochira

Lerista stictopleuraLerista planiventralis

Lerista lineataLerista christinae

Lerista distinguendaLerista elegans

Lerista emmottiLerista punctatovittata

Lerista dorsalisLerista terdigitata

Lerista tridactylaLerista elongata

Lerista speciosaLerista zietzi

Lerista flammicaudaLerista picturata

Lerista baynesiLerista edwardsae

Lerista arenicolaLerista microtis

Lerista macropisthopusLerista axillaris

Lerista gerrardiiLerista eupoda

Lerista desertorumLerista puncticaudaLerista neander

Lerista zonulataLerista ingrami

Lerista orientalisLerista taeniata

Lerista aericepsLerista xanthura

Lerista chordaeLerista fragilis

Lerista frostiLerista borealis

Lerista walkeriLerista simillima

Lerista vermicularisLerista robusta

Lerista greeriLerista labialis

Lerista bipesLerista ips

Lerista griffiniLerista apoda

Lerista kalumburuLerista wilkinsiLerista cinerea

Lerista amelesLerista carpentariae

Lerista karlschmidtiLerista stylis

Ctenotus pulchellusCtenotus gagudju

Ctenotus hilliCtenotus hebetior

Ctenotus essingtoniiCtenotus piankai

Ctenotus hanloniCtenotus angusticeps

Ctenotus grandisCtenotus atlas

Ctenotus maryaniCtenotus olympicus

Ctenotus regiusCtenotus septenarius

Ctenotus astarteCtenotus mimetes

Ctenotus tanamiensisCtenotus greeri

Ctenotus serventyiCtenotus quattuordecimlineatus

Ctenotus leonhardiiCtenotus leae

Ctenotus australisCtenotus uber

Ctenotus rutilansCtenotus taeniolatus

Ctenotus robustusCtenotus spaldingi

Ctenotus inornatusCtenotus saxatilis

Ctenotus fallensCtenotus rawlinsoni

Ctenotus calurusCtenotus schomburgkiiCtenotus youngsoni

Ctenotus strauchiiCtenotus pantherinus

Ctenotus nasutusCtenotus rubicundus

Ctenotus brooksiCtenotus labillardieri

Notoscincus ornatusEulamprus tympanum

Eulamprus heatwoleiEulamprus kosciuskoi

Eulamprus leuraensisEulamprus quoyii

Glaphyromorphus darwiniensisGlaphyromorphus cracens

Glaphyromorphus pumilusGlaphyromorphus fuscicaudis

Glaphyromorphus mjobergiGlaphyromorphus punctulatus

Hemiergis decresiensisHemiergis millewae

Hemiergis gracilipesHemiergis quadrilineatum

Hemiergis peroniiHemiergis initialis

Eremiascincus isolepisEremiascincus douglasiEremiascincus richardsoniiEremiascincus pardalis

Eremiascincus fasciolatusAnomalopus leuckartii

Anomalopus verreauxiAnomalopus mackayi

Anomalopus swansoniOphioscincus truncatus

Coeranoscincus reticulatusSaiphos equalis

Ophioscincus ophioscincusCoeranoscincus frontalis

Coggeria naufragusEulamprus murrayi

Eulamprus tryoniEulamprus luteilateralis

Eulamprus brachyosomaEulamprus sokosoma

Eulamprus martiniEulamprus tigrinus

Eulamprus tenuisEulamprus amplus

Gnypetoscincus queenslandiaeCalyptotis ruficauda

Calyptotis scutirostrumCalyptotis lepidorostrum

Nangura spinosaEulamprus frerei

100

95

55

100

85

82

87

90

93

93

89

98

84

10096

100100

1008177

56

100

100

93

8996

90

92

100

90

100

61100

10099

100

100

100

98

90

100

99

10093

79

87

100

99

100100

100

96

8997

99

91100

99

9398

90 100

88

100

9997

95

81

99

95

85

67

76

95

86

66

51

85

78

9165

90

7992

97

83

8873

63

100

100

88

89

84

85

99

81

100

76

70

93

78

93 100

8287

95

99

91

100

8260

100100

10097

6288

100100

97

80

91

95

95

77

85

83

98

7896

88 100

10077

G

Lygosominae

cont.

Figure 8

Page 58: Répteis 1.1

Mabuya heathiMabuya caissara

Mabuya agilisMabuya guaporicola

Mabuya macrorhynchaMabuya agmosticha

Mabuya frenataMabuya bistriata

Mabuya falconensisMabuya unimarginata

Mabuya mabouyaMabuya meridensis

Mabuya dorsivittataMabuya cochabambae

Mabuya nigropunctataMabuya altamazonica

Mabuya sloaniiMabuya nigropalmata

Mabuya croizatiMabuya carvalhoiChioninia stangeri

Chioninia fogoensisChioninia spinalis

Chioninia cocteiChioninia delalandii

Chioninia vaillantiiEumecia anchietae

Trachylepis dumasiTrachylepis aureopunctata

Trachylepis vatoTrachylepis boettgeriTrachylepis madagascariensis

Trachylepis elegansTrachylepis gravenhorstiiTrachylepis acutilabris

Trachylepis homalocephalaTrachylepis sulcata

Trachylepis variegataTrachylepis hoeschi

Trachylepis striataTrachylepis spilogaster

Trachylepis occidentalisTrachylepis capensis

Trachylepis variaTrachylepis atlantica

Trachylepis margaritiferaTrachylepis quinquetaeniata

Trachylepis perrotetiiTrachylepis affinis

Trachylepis sechellensisTrachylepis wrightii

Trachylepis maculilabrisTrachylepis socotrana

Trachylepis brevicollisTrachylepis vittata

Trachylepis aurataDasia olivacea

Dasia griseaDasia vittata

Eutropis trivittataEutropis nagarjuniEutropis beddomii

Eutropis bibroniiEutropis clivicola

Eutropis multicarinataEutropis cumingi

Eutropis multifasciataEutropis macrophthalma

Eutropis rudisEutropis macularia

Eutropis longicaudataLankascincus fallax

Ristella rurkiiLiopholis montana

Liopholis guthegaLiopholis whitiiLiopholis margaretae

Liopholis modestaLiopholis pulchra

Liopholis kintoreiLiopholis multiscutata

Liopholis inornataLiopholis striata

Tiliqua scincoidesTiliqua gigas

Tiliqua nigroluteaTiliqua occipitalis

Tiliqua rugosaTiliqua adelaidensisCyclodomorphus branchialis

Cyclodomorphus casuarinaeCyclodomorphus michaeli

Egernia hosmeriEgernia stokesii

Lissolepis luctuosaEgernia napoleonis

Egernia richardiBellatorias frerei

Egernia kingiiEgernia depressa

Bellatorias majorEgernia saxatilis

Corucia zebrataTribolonotus pseudoponceleti

Tribolonotus ponceletiTribolonotus brongersmai

Tribolonotus schmidtiTribolonotus blanchardi

Tribolonotus gracilisTribolonotus novaeguineae

83

97

91

99

87

100

98

89

81

70

7780

10099

100

97

96

95

100

78

90

98

80

100

91

98

92

84

90

74

98

10097

95

10095

95

54

78

89

99100

100

100

100

99

83100

99

93

97

95

90

97

96 100

80

73

100

96

88

94

93

100

96

91

99

5652

90

73

9890

85

88

97

84

71

100

81

95

66

86

74

73

90

77

100

8697

93 96

100

Lygosominae

cont.

HFigure 9

Page 59: Répteis 1.1

Carlia vivaxCarlia dogare

Carlia rostralisCarlia amax

Carlia tetradactylaCarlia rubrigularis

Carlia rhomboidalisCarlia rufilatus

Carlia pectoralisCarlia munda

Carlia mysiCarlia longipes

Carlia fuscaCarlia storri

Carlia schmeltziiLygisaurus malleolus

Lygisaurus tanneriLygisaurus absconditaLygisaurus foliorum

Lygisaurus laevisLygisaurus aeratus

Lygisaurus novaeguineaeLygisaurus macfarlani

Lygisaurus parrhasiusLygisaurus sesbrauna

Carlia gracilisCarlia bicarinata

Carlia jarnoldaeCarlia johnstonei

Carlia triacanthaMenetia timlowi

Liburnascincus mundivensisLiburnascincus scirtetis

Liburnascincus coensisCautula zia

Niveoscincus metallicusNiveoscincus pretiosus

Niveoscincus ocellatusNiveoscincus greeni

Proablepharus reginaeLampropholis robertsi

Lampropholis coggeriLampropholis delicata

Lampropholis guichenotiSaproscincus spectabilis

Saproscincus roseiSaproscincus challengeri

Saproscincus mustelinusSaproscincus oriarus

Saproscincus hannahaeSaproscincus tetradactylus

Saproscincus czechuraiSaproscincus lewisi

Saproscincus basiliscusBartleia jigurru

Morethia adelaidensisMorethia butleri

Morethia ruficaudaBassiana trilineata

Emoia isolataEmoia pseudocyanura

Emoia cyanuraEmoia impar

Emoia physicaeEmoia jakati

Emoia atrocostataEmoia caeruleocauda

Emoia cyanogasterEmoia schmidti

Menetia alanaeMenetia greyii

Cryptoblepharus novocaledonicusCryptoblepharus boutonii

Cryptoblepharus nigropunctatusCaledoniscincus terma

Caledoniscincus aquiloniusCaledoniscincus chazeaui

Caledoniscincus atropunctatusCaledoniscincus haplorhinus

Caledoniscincus austrocaledonicusCaledoniscincus festivus

Caledoniscincus auratusCaledoniscincus renevieri

Caledoniscincus orestesSimiscincus aurantiacus

Graciliscincus shonaeTropidoscincus variabilis

Tropidoscincus boreus

Tropidoscincus aubrianusLioscincus tillieri

Lioscincus maruiaLioscincus novaecaledoniaeSigaloseps deplanchei

Sigaloseps ruficaudaPhoboscincus garnieri

Lacertoides pardalisLioscincus nigrofasciolatum

Kanakysaurus viviparusLioscincus steindachneri

Lioscincus vivaeCelatiscincus euryotis

Celatiscincus similisMarmorosphax tricolor

Marmorosphax montanaNannoscincus humectus

Nannoscincus hanchisteusNannoscincus greeriNannoscincus mariei

Nannoscincus gracilisNannoscincus slevini

Nannoscincus garrulusOligosoma whitakeri

Oligosoma oliveriOligosoma townsi

Oligosoma ornatumOligosoma macgregori

Oligosoma mocoOligosoma alani

Oligosoma fallaiOligosoma hardyi

Oligosoma levidensumOligosoma aeneum

Oligosoma microlepisOligosoma smithi

Oligosoma striatumOligosoma homalonotumOligosoma zelandicum

Oligosoma notosaurusOligosoma inconspicuumOligosoma maccanni

Oligosoma stenotisOligosoma grande

Oligosoma nigriplantareOligosoma longipes

Oligosoma lineoocellatumOligosoma chloronoton

Oligosoma otagenseOligosoma waimatenseOligosoma infrapunctatum

Oligosoma acrinasumOligosoma taumakaeOligosoma pikitanga

Oligosoma suteriOligosoma lichenigera

Pseudemoia entrecasteauxiiBassiana duperreyi

Pseudemoia pagenstecheriLeptosiaphos vigintiserierumLeptosiaphos kilimensis

Leptosiaphos amietiLeptosiaphos graueri

Leptosiaphos hackarsiLacertaspis lepesmei

Lacertaspis gemmiventrisLacertaspis chriswildi

Lacertaspis rohdeiLacertaspis reichenowi

Afroablepharus africanusAfroablepharus annobonensis

Afroablepharus wahlbergiPanaspis togoensis

Panaspis brevicepsLeiolopisma mauritianaLeiolopisma telfairii

Emoia loyaltiensisEugongylus albofasciolatusEugongylus rufescens

Lygosoma bowringiiMochlus brevicaudisLygosoma punctata

Lygosoma sundevalliMochlus afer

Lygosoma lineolatumLepidothyris fernandi

Lygosoma albopunctataLygosoma koratense

Lygosoma quadrupesLamprolepis smaragdina

Emoia tonganaEmoia concolor

Sphenomorphus stellatusAblepharus kitaibelii

Ablepharus chernoviAblepharus budaki

90

100

100

84

52

79

100

72

87

88

98

90

88

68

80

85

7653

62

92

100

93

98100

73

91

75

98

85

78

89100

100 100

99

79

100

96

91

76

100

92100

72

76

71100 97

100

96

98

96

73

93

91

100

77

98 71 98

98100

100

93

100

79

61

99

96

96

98

87

97

95

83

53

8795

98

95

97

100

100 100

80

8585

92

100

80

90

9696

100100

98

8293

94

98

89

100

98

90

94

57

9893

899796

63

93

99

100

100

100

86

99

8598

100

98

99

100

99

9891

100

95

9980

75

84

85

100

8195 99

95

9396

91

90

9999

85

100

100

100

100

63

60

9593

7670

92100

98

96

I

Lygosominae

cont.

Figure 10

Page 60: Répteis 1.1

Gymnophthalmus cryptusGymnophthalmus underwoodi

Gymnophthalmus speciosusGymnophthalmus vanzoiGymnophthalmus leucomystax

Gymnophthalmus pleeiPsilophthalmus paeminosus

Calyptommatus nicterusCalyptommatus leiolepis

Calyptommatus confusionibusCalyptommatus sinebrachiatus

Nothobachia ablepharaProcellosaurinus tetradactylusProcellosaurinus erythrocercus

Vanzosaura rubricaudaMicrablepharus maximiliani

Micrablepharus atticolusTretioscincus oriximinensis

Tretioscincus agilisAcratosaura mentalisStenolepis ridleyi

Colobosaura modestaIphisa elegans

Colobodactylus taunayiColobodactylus dalcyanus

Heterodactylus imbricatusRhachisaurus brachylepis

Bachia heteropaBachia intermediaBachia barbouriBachia bicolorBachia peruana

Bachia panopliaBachia trisanale

Bachia scolecoidesBachia huallagana

Bachia dorbignyiBachia bresslaui

Bachia flavescensPetracola ventrimaculatus

Proctoporus bolivianusProctoporus unsaacae

Proctoporus guentheriProctoporus pachyurus

Proctoporus subsolanusProctoporus sucullucu

Cercosaura eigenmanniCercosaura schreibersii

Cercosaura ocellataCercosaura argulus

Cercosaura oshaughnessyiCercosaura quadrilineata

Potamites juruazensisPotamites ecpleopus

Pholidobolus macbrydeiPholidobolus montium

Placosoma glabellumPlacosoma cordylinum

Neusticurus bicarinatusNeusticurus rudis

Riama simoterusRiama colomaromani

Riama unicolorLeposoma guianense

Leposoma southiLeposoma parietale

Leposoma osvaldoiLeposoma percarinatum

Arthrosaura kockiiArthrosaura reticulata

Anotosaura collarisColobosauroides cearensis

Leposoma annectansLeposoma scincoides

Leposoma pukLeposoma baturitensis

Leposoma nanodactylusEcpleopus gaudichaudii

Alopoglossus angulatusAlopoglossus copii

Alopoglossus atriventrisPtychoglossus brevifrontalis

Cnemidophorus lacertoidesCnemidophorus longicaudus

Dicrodon guttulatumAmeiva fuscataAmeiva erythrocephala

Ameiva griswoldiAmeiva pluvianotata

Ameiva coraxAmeiva plei

Ameiva maynardiAmeiva lineolata

Ameiva taeniuraAmeiva chrysolaema

Ameiva leberiAmeiva wetmorei

Ameiva exsulAmeiva polops

Ameiva dorsalisAmeiva auberi

Aspidoscelis ceralbensisAspidoscelis hyperythra

Aspidoscelis tigrisAspidoscelis marmorata

Aspidoscelis lineattissimaAspidoscelis guttata

Aspidoscelis deppeiAspidoscelis velox

Aspidoscelis laredoensisAspidoscelis gularis

Aspidoscelis costataAspidoscelis communis

Aspidoscelis burtiAspidoscelis sexlineata

Aspidoscelis inornataCnemidophorus arenivagus

Cnemidophorus lemniscatusCnemidophorus gramivagus

Cnemidophorus vanzoiAmeiva festivaAmeiva quadrilineataAmeiva undulata

Kentropyx viridistrigaKentropyx vanzoi

Kentropyx paulensisKentropyx pelviceps

Kentropyx altamazonicaKentropyx striata

Kentropyx calcarataCnemidophorus ocellifer

Ameiva bifrontataAmeiva ameivaTeius teyou

Dracaena guianensisCrocodilurus amazonicus

Tupinambis teguixinTupinambis longilineus

Tupinambis quadrilineatusTupinambis duseni

Tupinambis merianaeTupinambis rufescens

Callopistes maculatusCallopistes flavipunctatus

100

98

100

84

99

100

100

50

100

10087

100

93

8893

86

72

9861

100

100

98

100

9196

100

93

10077

10088

9795 100

7874

98

100

99

80

100

97

55

98

94 99

100

98

99

82

100

92

100

98100

94

100

91

100

97

99

65

10095

96

86

100

10098

97

100100

99

54

100

56

93

98

92

99

59

100

94

8597

55

98

93

100

97

9695 100

100

86

100

99

84

98

100

98

99

93 99

8183

100

99

94

97 100

82

100

9196

71

99

100

97

9887

6691

100

97

J

Teiidae

Gymnophthalmidae

Tupinambinae

Teiinae

Alopoglossinae

Ecpleopinae

Cercosaurinae

Bachiinae

Rhachisaurinae

Gymnophthalminae

Figure 11

Page 61: Répteis 1.1

Amphisbaena xera

Amphisbaena bakeri

Amphisbaena caeca

Amphisbaena fenestrata

Amphisbaena manni

Amphisbaena schmidti

Amphisbaena carlgansi

Amphisbaena cubana

Amphisbaena barbouri

Amphisbaena anaemariae

Amphisbaena silvestrii

Amphisbaena leeseri

Amphisbaena angustifrons

Amphisbaena darwini

Amphisbaena munoai

Amphisbaena kingii

Amphisbaena cuiabana

Amphisbaena hastata

Amphisbaena infraorbitale

Amphisbaena microcephalum

Amphisbaena polystegum

Amphisbaena anomala

Amphisbaena bolivica

Amphisbaena camura

Amphisbaena alba

Amphisbaena vermicularis

Amphisbaena roberti

Amphisbaena kraoh

Amphisbaena saxosa

Amphisbaena ignatiana

Amphisbaena leali

Amphisbaena innocens

Amphisbaena hyporissor

Amphisbaena mertensii

Amphisbaena cunhai

Amphisbaena fuliginosa

Amphisbaena brasiliana

Monopeltis capensis

Geocalamus acutus

Chirindia swynnertoni

Cynisca leucura

Trogonophis wiegmanni

Diplometopon zarudnyi

Cadea blanoides

Blanus tingitanus

Blanus mettetali

Blanus cinereus

Blanus strauchi

Bipes canaliculatus

Bipes biporus

Bipes tridactylus

Rhineura floridana

99

100

84

100

91

86

89

95

90

92

87

100

100

97

100

100

90

78100

93

99

100

100

100

81

100

98

95100

100

91

100

55

96

67

95

89

100

100

100

10097

100

73

Blanidae

Cadeidae

Trogonophiidae

Amphisbaenidae

K

Bipedidae

Rhineuridae

Figure 12

Page 62: Répteis 1.1

Darevskia derjuginiDarevskia caucasica

Darevskia daghestanicaDarevskia mixta

Darevskia clarkorumDarevskia armeniaca

Darevskia bendimahiensisDarevskia sapphirina

Darevskia uzzelliDarevskia raddei

Darevskia rostombekoviDarevskia saxicola

Darevskia brauneriDarevskia lindholmi

Darevskia alpinaDarevskia chlorogaster

Darevskia praticolaDarevskia valentini

Darevskia portschinskiiDarevskia rudis

Darevskia parvulaIranolacerta zagrosicaIranolacerta brandtii

Algyroides fitzingeriAlgyroides marchi

Dinarolacerta montenegrinaDinarolacerta mosorensis

Algyroides nigropunctatusAlgyroides moreoticus

Anatololacerta danfordiAnatololacerta oertzeni

Anatololacerta anatolicaParvilacerta parva

Parvilacerta fraasiiIberolacerta aranicaIberolacerta bonnali

Iberolacerta aurelioiIberolacerta horvathi

Iberolacerta monticolaIberolacerta cyreni

Iberolacerta galaniApathya cappadocica

Archaeolacerta bedriagaeHellenolacerta graecaDalmatolacerta oxycephala

Podarcis carbonelliPodarcis bocagei

Podarcis hispanicusPodarcis vaucheri

Podarcis liolepisPodarcis peloponnesiacusPodarcis erhardii

Podarcis raffoneaePodarcis lilfordi

Podarcis pityusensisPodarcis siculus

Podarcis muralisPodarcis tiliguerta

Podarcis filfolensisPodarcis gaigeae

Podarcis milensisPodarcis tauricus

Podarcis melisellensisScelarcis perspicillata

Teira dugesiiLacerta pamphylicaLacerta trilineata

Lacerta mediaLacerta agilis

Lacerta schreiberiLacerta strigata

Lacerta bilineataLacerta viridis

Timon tangitanusTimon lepidusTimon pater

Timon princepsTakydromus stejnegeriTakydromus septentrionalisTakydromus toyamaiTakydromus wolteriTakydromus formosanus

Takydromus hsuehshanensisTakydromus amurensis

Takydromus sylvaticusTakydromus dorsalis

Takydromus intermediusTakydromus sauteri

Takydromus smaragdinusTakydromus tachydromoides

Takydromus sexlineatusTakydromus kuehnei

Zootoca viviparaPhoenicolacerta cyanisparsa

Phoenicolacerta laevisPhoenicolacerta kulzeri

Acanthodactylus schreiberiAcanthodactylus boskianus

Acanthodactylus opheodurusAcanthodactylus gongrorhynchatus

Acanthodactylus masiraeAcanthodactylus cantoris

Acanthodactylus schmidtiAcanthodactylus longipes

Acanthodactylus scutellatusAcanthodactylus aureus

Acanthodactylus maculatusAcanthodactylus pardalis

Acanthodactylus beershebensisAcanthodactylus busacki

Acanthodactylus erythrurusAcanthodactylus blanci

Acanthodactylus tristramiAcanthodactylus orientalisOphisops elegans

Ophisops occidentalisMesalina rubropunctata

Mesalina brevirostrisMesalina adramitana

Mesalina balfouriMesalina guttulata

Mesalina bahaeldiniMesalina olivieri

Mesalina simoniOmanosaura jayakariOmanosaura cyanura

Congolacerta vauereselliEremias grammica

Eremias pleskeiEremias multiocellata

Eremias przewalskiiEremias arguta

Eremias nigrolateralisEremias persica

Eremias montanusEremias velox

Eremias vermiculataEremias argus

Eremias brenchleyiAdolfus jacksoni

Adolfus alleniAdolfus africanus

Gastropholis prasinaGastropholis vittata

Holaspis guentheriHolaspis laevis

Pedioplanis gaerdesiPedioplanis inornata

Pedioplanis rubensPedioplanis undata

Pedioplanis husabensisPedioplanis namaquensis

Pedioplanis brevicepsPedioplanis burchelli

Pedioplanis laticepsNucras tessellata

Pedioplanis lineoocellataMeroles cuneirostrisMeroles micropholidotus

Meroles ctenodactylusMeroles anchietaeIchnotropis squamulosa

Meroles suborbitalisMeroles knoxii

Meroles reticulatusIchnotropis capensis

Tropidosaura gularisAustralolacerta australis

Heliobolus spekiiHeliobolus lugubris

Pseuderemias smithiiPhilochortus spinalis

Latastia longicaudataNucras lalandii

Poromera fordiiAtlantolacerta andreanskyiGallotia bravoana

Gallotia simonyiGallotia intermedia

Gallotia caesarisGallotia galloti

Gallotia atlanticaGallotia stehlini

Psammodromus blanciPsammodromus algirus

Psammodromus hispanicus

100

100

100

58

94

86

64

73

53

97

100

96

93

9870

9990

94

100

100

97

100

10087

10094

99

100

9498

100

96

99100

89

100

100100

93

9186

92

97

92

62

100

78

88

9792 100

93

79

95

99

92

85

85

7455

100

99

100

9899

98

80

100

94

98 69

95

100

95

79

100

10099

75

99

97

85

100100

100

10098

92

96

93

73

100

99

100

8575

99

80

96

9593

95

94100

7686

99

100

100

100

89

6393

91

9798

96

100

95

9356

86

100

9976

97

100

7299

89

100

100

99

97

100

96100

7696

56

69

100

54

100

76100 97

80

84

73

9699

8890

100

10099

9568

10097

9995

Lacertidae

Gallotiinae

Lacertinae

LFigure 13

Page 63: Répteis 1.1

Varanus baritjiVaranus acanthurus

Varanus storriVaranus primordius

Varanus kingorumVaranus bushiVaranus gilleni

Varanus caudolineatusVaranus eremius

Varanus brevicaudaVaranus semiremex

Varanus mitchelliVaranus timorensis

Varanus scalarisVaranus glauerti

Varanus tristisVaranus pilbarensis

Varanus glebopalmaVaranus komodoensis

Varanus variusVaranus salvadoriiVaranus gouldiiVaranus panoptes

Varanus rosenbergiVaranus giganteus

Varanus spenceriVaranus mertensi

Varanus bengalensisVaranus flavescens

Varanus dumeriliiVaranus rudicollis

Varanus salvatorVaranus marmoratus

Varanus finschiVaranus doreanusVaranus yuwonoiVaranus jobiensis

Varanus caerulivirensVaranus cerambonensisVaranus melinusVaranus indicus

Varanus rainerguentheriVaranus prasinusVaranus macraeiVaranus boehmei

Varanus beccariiVaranus keithhornei

Varanus olivaceusVaranus yemenensis

Varanus albigularisVaranus exanthematicusVaranus niloticus

Varanus griseusLanthanotus borneensis

Shinisaurus crocodilurusAbronia auritaAbronia campbelliAbronia anzuetoiAbronia matudai

Abronia fimbriataAbronia lythrochilaAbronia ornelasi

Abronia frostiAbronia graminea

Abronia oaxacaeAbronia chiszari

Mesaspis gadoviiMesaspis moreletiiBarisia rudicollis

Barisia herreraeBarisia imbricataBarisia levicollis

Abronia mixtecaGerrhonotus infernalisGerrhonotus liocephalusColoptychon rhombifer

Gerrhonotus parvusElgaria multicarinataElgaria panamintinaElgaria paucicarinataElgaria kingii

Elgaria coeruleaDopasia harti

Dopasia gracilisOphisaurus attenuatus

Anguis fragilisPseudopus apodus

Ophisaurus koellikeriOphisaurus ventralis

Celestus haetianusCelestus agasepsoides

Ophiodes striatusDiploglossus pleii

Diploglossus bilobatusCelestus enneagrammus

Anniella geronimensisAnniella pulchra

Heloderma horridumHeloderma suspectum

Xenosaurus grandisXenosaurus platyceps

100

94

100

100

100

84

100

100

88

97

99100

99

99

100100

100

99

87

9676

86100

100

100

99

100

9296

94

100

8572

86

69

95

86

100

767974

8678

88

10095

75

98

9597

99

100

95

100

90

100

100

97

89

79

9689

9697

95

84

7266

99

100

9594

88

92

100

998584

100

87

100

83

99

98

93 100100

100

100

100

M

Xenosauridae

Helodermatidae

Anniellidae

Anguidae

Shinisauridae Lanthanotidae

Varanidae

Gerrhonotinae

Anguinae

Diploglossinae

Figure 14

Page 64: Répteis 1.1

Trioceros sternfeldiTrioceros rudis

Trioceros elliotiTrioceros hoehneliiTrioceros schubotzi

Trioceros narraiocaTrioceros jacksonii

Trioceros bitaeniatusTrioceros fuelleborni

Trioceros goetzeiTrioceros tempeli

Trioceros werneriTrioceros deremensis

Trioceros melleriTrioceros johnstoni

Trioceros oweniTrioceros pfefferiTrioceros quadricornisTrioceros wiedersheimi

Trioceros cristatusTrioceros montiumTrioceros feae

Trioceros balebicornutusTrioceros harennae

Trioceros affinisChamaeleo arabicus

Chamaeleo calyptratusChamaeleo zeylanicus

Chamaeleo chamaeleonChamaeleo calcaricarensChamaeleo africanus

Chamaeleo monachusChamaeleo senegalensis

Chamaeleo roperiChamaeleo dilepis

Chamaeleo quilensisChamaeleo gracilis

Chamaeleo necasiChamaeleo laevigatus

Chamaeleo namaquensisCalumma globifer

Calumma parsoniiCalumma oshaughnessyi

Calumma capuroniRhampholeon chapmanorum

Rhampholeon platycepsRhampholeon nchisiensis

Rhampholeon beraducciiRhampholeon boulengeriRhampholeon acuminatus

Rhampholeon uluguruensisRhampholeon moyeri

Rhampholeon marshalliRhampholeon viridis

Rhampholeon spinosusRhampholeon temporalis

Rhampholeon spectrumNadzikambia mlanjensis

Calumma nasutumCalumma boettgeri

Calumma fallaxCalumma gallus

Calumma maltheCalumma guibei

Calumma hilleniusiCalumma tsaratananense

Calumma brevicorneCalumma crypticum

Calumma cucullatumRieppeleon brevicaudatus

Rieppeleon brachyurusRieppeleon kerstenii

Calumma gastrotaeniaCalumma furcifer

Bradypodion ventraleBradypodion karrooicumBradypodion taeniabronchum

Bradypodion gutturaleBradypodion atromontanum

Bradypodion occidentaleBradypodion setaroi

Bradypodion nemoraleBradypodion dracomontanumBradypodion transvaalense

Bradypodion thamnobatesBradypodion melanocephalum

Bradypodion cafferBradypodion damaranumBradypodion pumilum

Kinyongia fischeriKinyongia vosseleri

Kinyongia multituberculataKinyongia matschiei

Kinyongia boehmeiKinyongia tavetana

Kinyongia uthmoelleriKinyongia carpenteri

Kinyongia xenorhinaKinyongia excubitor

Kinyongia adolfifridericiKinyongia tenue

Kinyongia oxyrhinaFurcifer antimenaFurcifer labordi

Furcifer lateralisFurcifer belalandaensis

Furcifer verrucosusFurcifer oustaleti

Furcifer angeliFurcifer pardalis

Furcifer polleniFurcifer cephalolepis

Furcifer campaniFurcifer petteri

Furcifer willsiiFurcifer minor

Furcifer bifidusFurcifer balteatus

Brookesia lineataBrookesia betschiBrookesia thieliBrookesia vadoni

Brookesia ebenauiBrookesia antakaranaBrookesia ambreensis

Brookesia stumpffiBrookesia griveaudi

Brookesia valerieaeBrookesia superciliaris

Brookesia therezieniBrookesia bonsiBrookesia brygooi

Brookesia decaryiBrookesia perarmata

Brookesia peyrierasiBrookesia karchei

Brookesia tuberculataBrookesia minima

Brookesia exarmataBrookesia dentata

Brookesia nasusBrookesia lolontany

100

100

58

85

100

98

92

97

7098

8587

9766

90

91

92

97

93

66

100

9650

10085

100

100

95

90

100

100

98100

95

99

99

100

100

10061

82

78

88

99

86

100

7391

90100

81

73

9898

100

100

9193

8597

94

75

88

98

99

100

100

55

100

98

85987495

95

94

7287

100

96

95

82

92

100100

59100

100

100

6798

100

99

99

93

94

99

9898

10094

93

91100

96

62

86

100

99

100

51

100

100

93

100

100

10098

100

83 100

63

10079

ChamaeleonidaeBrookesiinae

Chamaeleoninae

NFigure 15

Page 65: Répteis 1.1

Pseudocalotes flavigulaPseudocalotes brevipes

Pseudocalotes kakhienensisJapalura splendida

Japalura flavicepsOtocryptis wiegmanniSitana ponticeriana

Acanthosaura lepidogasterAcanthosaura capraAcanthosaura armataAcanthosaura crucigera

Salea horsfieldiiCalotes htunwiniCalotes calotes

Calotes irawadiCalotes versicolor

Calotes liolepisCalotes nigrilabris

Calotes ceylonensisCalotes liocephalusCalotes emma

Calotes chincolliumCalotes mystaceus

Ceratophora erdeleniCeratophora stoddartii

Ceratophora karuCeratophora aspera

Cophotis ceylanicaCophotis dumbara

Lyriocephalus scutatusGonocephalus kuhliiGonocephalus chamaeleontinus

Gonocephalus grandisBronchocela cristatella

Coryphophylax subcristatusAphaniotis fusca

Gonocephalus robinsoniiJapalura polygonata

Phoxophrys nigrilabrisDraco ornatusDraco palawanensisDraco spilopterus

Draco cornutusDraco guentheri

Draco quadrasiDraco cyanopterusDraco reticulatusDraco boschmai

Draco timorensisDraco volans

Draco bimaculatusDraco rhytismaDraco bourouniensis

Draco beccariiDraco biaroDraco caerulhians

Draco spilonotusDraco obscurusDraco taeniopterus

Draco blanfordiiDraco indochinensisDraco haematopogon

Draco melanopogonDraco quinquefasciatus

Draco mindanensisDraco maximus

Draco cristatellusDraco fimbriatus

Draco maculatusDraco lineatus

Draco dussumieriPtyctolaemus collicristatus

Ptyctolaemus gularisJapalura tricarinata

Japalura variegataMantheyus phuwuanensis

Agama paragamaAgama planiceps

Agama finchiAgama agama

Agama doriaeAgama sankaranicaAgama mwanzae

Agama kaimosaeAgama lionotus

Agama rueppelliAgama caudospinosa

Agama aculeataAgama armata

Agama hispidaAgama atraAgama anchietae

Agama weidholziAgama gracilimembris

Agama insularisAgama boulengeri

Agama castroviejoiAgama impalearis

Agama bouetiAgama spinosa

Trapelus savigniiTrapelus flavimaculatus

Trapelus pallidusTrapelus ruderatus

Trapelus agilisTrapelus mutabilisTrapelus sanguinolentus

Bufoniceps laungwalaensisXenagama taylori

Acanthocercus atricollisPseudotrapelus sinaitus

Phrynocephalus guttatusPhrynocephalus albolineatus

Phrynocephalus melanurusPhrynocephalus przewalskiiPhrynocephalus versicolorPhrynocephalus raddei

Phrynocephalus mystaceusPhrynocephalus helioscopus

Phrynocephalus axillarisPhrynocephalus lidskiiPhrynocephalus vlangalii

Phrynocephalus putjataiPhrynocephalus theobaldiPhrynocephalus forsythiiPhrynocephalus interscapularis

Phrynocephalus scutellatusLaudakia erythrogasterLaudakia caucasia

Laudakia microlepisLaudakia stoliczkana

Laudakia himalayanaLaudakia lehmanni

Laudakia nuptaLaudakia tuberculataLaudakia sacra

Laudakia stellio

100

100

100

52

81

50

96

69

99100

95

100

100

100

100

99

91

100

90

99

55

72

100

86

100

90100

97

100

97

8587

100

98

100

100

86

92

86

95

100

85

87

91

100

100

99

100

99

100

97

99

100

59

96

61100

6595

53

95

97

70100

100

100

100

91

98

100100

6868

99

100

9165

100

50100

100

76

8469

100100

96

66

10099

9989

100

93

100

95

84

100

64

91

89

94100

9690

100

100

907573

94

99

8488

100

85

99

Diporiphora lalliae

Diporiphora arnhemica

Diporiphora albilabris

Diporiphora bennettii

Diporiphora nobbi

Diporiphora australis

Diporiphora amphiboluroides

Diporiphora valens

Diporiphora pindan

Diporiphora bilineata

Diporiphora magna

Diporiphora reginae

Diporiphora winneckei

Diporiphora linga

Diporiphora superba

Pogona vitticeps

Pogona minor

Pogona minima

Pogona henrylawsoni

Pogona nullarbor

Pogona barbata

Rankinia diemensis

Tympanocryptis lineata

Tympanocryptis pinguicolla

Tympanocryptis cephalus

Tympanocryptis tetraporophora

Tympanocryptis intima

Tympanocryptis uniformis

Amphibolurus norrisi

Amphibolurus muricatus

Lophognathus gilberti

Chlamydosaurus kingii

Lophognathus longirostris

Lophognathus temporalis

Ctenophorus femoralis

Ctenophorus fordi

Ctenophorus maculatus

Ctenophorus pictus

Ctenophorus mckenziei

Ctenophorus scutulatus

Ctenophorus isolepis

Ctenophorus ornatus

Ctenophorus caudicinctus

Ctenophorus fionni

Ctenophorus decresii

Ctenophorus vadnappa

Ctenophorus tjantjalka

Ctenophorus rufescens

Ctenophorus reticulatus

Ctenophorus nuchalis

Ctenophorus cristatus

Ctenophorus salinarum

Ctenophorus gibba

Ctenophorus clayi

Ctenophorus adelaidensis

Ctenophorus maculosus

Intellagama lesueurii

Hypsilurus bruijnii

Hypsilurus nigrigularis

Hypsilurus papuensis

Hypsilurus modestus

Chelosania brunnea

Moloch horridus

Hypsilurus dilophus

Hypsilurus boydii

Hypsilurus spinipes

Physignathus cocincinus

Hydrosaurus amboinensis

Leiolepis guentherpetersi

Leiolepis guttata

Leiolepis reevesii

Leiolepis belliana

Uromastyx yemenensis

Uromastyx benti

Uromastyx ocellata

Uromastyx ornata

Uromastyx leptieni

Uromastyx aegyptia

Uromastyx thomasi

Uromastyx dispar

Uromastyx acanthinura

Uromastyx geyri

Uromastyx macfadyeni

Uromastyx princeps

Uromastyx asmussi

Uromastyx loricata

Uromastyx hardwickii

100

96

100

100

100

71

100

100

71

99

95

95

56

100

95

81

67

100

76

99

63

99

99

94

100

100

10053

99

100

94

97

71

100

100

79

53

76

90

10094

92

100

100

99

99

90

98

96

75

85

100

10051

98

92

97

100 100

100

100

86

74

91

70

100

100

99

100

100

94

94

95

Ag

am

idae

Uromasticinae

Leiolepidinae

Am

phib

olu

rinae

Hydrosaurinae Agam

inae

Draconinae

O

(i)

(ii)

(i)

(ii)

Figure 16

Page 66: Répteis 1.1

Ctenosaura oaxacanaCtenosaura quinquecarinataCtenosaura flavidorsalisCtenosaura palearis

Ctenosaura bakeriCtenosaura oedirhinaCtenosaura melanosterna

Ctenosaura pectinataCtenosaura acanthuraCtenosaura hemilophaCtenosaura similis

Conolophus pallidusConolophus subcristatusAmblyrhynchus cristatus

Cyclura cychluraCyclura nubila

Cyclura rileyiCyclura colleiCyclura carinataCyclura ricordiCyclura cornuta

Cyclura pinguisSauromalus variusSauromalus hispidusSauromalus klauberiSauromalus aterIguana delicatissima

Iguana iguanaBrachylophus vitiensisBrachylophus fasciatus

Dipsosaurus dorsalisTropidurus torquatusTropidurus hispidus

Tropidurus oreadicusTropidurus insulanus

Tropidurus erythrocephalusTropidurus mucujensis

Tropidurus etheridgeiTropidurus cocorobensis

Tropidurus itambereTropidurus psammonastes

Tropidurus montanusTropidurus hygomi

Eurolophosaurus nanuzaeEurolophosaurus amathites

Eurolophosaurus divaricatusTropidurus spinulosus

Tropidurus callathelysPlica plica

Plica lumariaPlica umbra

Strobilurus torquatusTropidurus bogerti

Uracentron flavicepsUranoscodon superciliosus

Microlophus duncanensisMicrolophus albemarlensisMicrolophus pacificusMicrolophus grayii

Microlophus delanonisMicrolophus stolzmanni

Microlophus habeliiMicrolophus bivittatus

Microlophus occipitalisMicrolophus koepckeorum

Microlophus yaneziMicrolophus theresioidesMicrolophus atacamensis

Microlophus quadrivittatusMicrolophus peruvianus

Microlophus tigrisMicrolophus heterolepis

Microlophus theresiaeMicrolophus thoracicus

Stenocercus stigmosusStenocercus melanopygus

Stenocercus latebrosusStenocercus orientalis

Stenocercus ornatissimusStenocercus chrysopygus

Stenocercus cupreusStenocercus boettgeriStenocercus empetrusStenocercus eunetopsisStenocercus imitator

Stenocercus variusStenocercus torquatus

Stenocercus crassicaudatusStenocercus marmoratus

Stenocercus humeralisStenocercus angel

Stenocercus guentheriStenocercus festae

Stenocercus chotaStenocercus rhodomelasStenocercus anguliferStenocercus iridescens

Stenocercus puyangoStenocercus percultusStenocercus ornatus

Stenocercus caducusStenocercus limitaris

Stenocercus doellojuradoiStenocercus azureusStenocercus roseiventris

Stenocercus ochoaiStenocercus formosus

Stenocercus apurimacusStenocercus scapularis

100

72

100

100

56

100

99

100

9972

74

98

629699

100

100

95

5785

86

94

97

92

100

61

99100

100

100

100

100

73

97

10098

89

83

98

100

100100

100

98

78

99

74

100

100

100100

6495

100

100

100

99

100

100

98

10096

100

78

84

100

73

88

79

100

8588

78

100

8994

71100

88

96

8299

96100

89

100

100

69

64

100

86

94

94

Iguanidae

Tropiduridae

PQ-RFigure 17

Page 67: Répteis 1.1

Sceloporus adleriSceloporus stejnegeriSceloporus formosusSceloporus subpictusSceloporus cryptus

Sceloporus lundelliSceloporus malachiticusSceloporus smaragdinus

Sceloporus taeniocnemisSceloporus spinosusSceloporus edwardtaylori

Sceloporus horridusSceloporus cautusSceloporus undulatus

Sceloporus consobrinusSceloporus woodiSceloporus virgatus

Sceloporus occidentalisSceloporus olivaceus

Sceloporus clarkiiSceloporus cyanogenysSceloporus serriferSceloporus ornatus

Sceloporus minorSceloporus dugesii

Sceloporus poinsettiiSceloporus macdougalli

Sceloporus mucronatusSceloporus bulleri

Sceloporus torquatusSceloporus jarrovii

Sceloporus insignisSceloporus megalepidurus

Sceloporus goldmaniSceloporus samcolemani

Sceloporus chaneyiSceloporus slevini

Sceloporus scalarisSceloporus bicanthalis

Sceloporus aeneusSceloporus heterolepis

Sceloporus palaciosiSceloporus grammicus

Sceloporus melanorhinusSceloporus hunsakeriSceloporus orcuttiSceloporus lickiSceloporus lineatulus

Sceloporus zosteromusSceloporus magister

Sceloporus arenicolusSceloporus graciosusSceloporus vandenburgianus

Sceloporus ochoterenaeSceloporus jalapae

Sceloporus maculosusSceloporus gadoviae

Sceloporus nelsoniSceloporus pyrocephalus

Sceloporus merriamiSceloporus siniferus

Sceloporus squamosusSceloporus carinatus

Sceloporus utiformisSceloporus angustus

Sceloporus grandaevusSceloporus cozumelae

Sceloporus smithiSceloporus variabilis

Sceloporus teapensisSceloporus chrysostictus

Sceloporus couchiiSceloporus parvus

Urosaurus auriculatusUrosaurus clarionensisUrosaurus ornatus

Urosaurus graciosusUrosaurus nigricaudusUrosaurus lahtelaiUrosaurus bicarinatus

Urosaurus gadoviUta stejnegeri

Uta stansburianaUta palmeriUta squamataPetrosaurus thalassinusPetrosaurus repens

Petrosaurus mearnsiPhrynosoma hernandesi

Phrynosoma douglassiiPhrynosoma ditmarsiPhrynosoma orbiculare

Phrynosoma modestumPhrynosoma taurusPhrynosoma braconnieri

Phrynosoma asioPhrynosoma wigginsiPhrynosoma cerroense

Phrynosoma blainvilliiPhrynosoma coronatum

Phrynosoma platyrhinosPhrynosoma mcalliiPhrynosoma solare

Phrynosoma cornutumHolbrookia maculataHolbrookia propinquaHolbrookia lacerata

Cophosaurus texanusCallisaurus draconoides

Uma notataUma inornataUma scoparia

Uma paraphygasUma exsul

Crotaphytus collarisCrotaphytus nebriusCrotaphytus bicinctores

Crotaphytus grismeriCrotaphytus insularis

Crotaphytus vestigiumCrotaphytus reticulatus

Crotaphytus antiquusGambelia copeiiGambelia sila

Gambelia wislizeniiLeiocephalus barahonensisLeiocephalus schreibersii

Leiocephalus personatusLeiocephalus psammodromus

Leiocephalus ravicepsLeiocephalus carinatus

54

81

87

100

100

86

90

75

100

96

89

100

99

96

82

99

100

100

61100

97

100

98100

100

74

10065

100

91

89

100

989898100

100

96

92

97

89

100

9898

100

99

99

100

97

100

10099

99

99

10099

82

100

100

95

100

100100

100

100

100

9197

96

100

10099

100100

99100

10076

100

100

100

100

100

95

10097

10099

8892

96

100

96

100

100

99

99100

100

100100

100

100

100

83

93100

100

82

99

100

100

92

93

94

Leio

cep

halid

ae

Crotaphytidae

Ph

ryn

oso

mati

dae

Liolaemus lavillaiLiolaemus ornatusLiolaemus calchaquiLiolaemus albicepsLiolaemus irregularis

Liolaemus crepuscularisLiolaemus abaucanLiolaemus espinozai

Liolaemus quilmesLiolaemus koslowskyi

Liolaemus laurentiLiolaemus darwiniiLiolaemus grosseorum

Liolaemus olongastaLiolaemus chacoensis

Liolaemus uspallatensisLiolaemus hermannuneziLiolaemus xanthoviridisLiolaemus fitzingerii

Liolaemus chehuachekenkLiolaemus morenoiLiolaemus canqueli

Liolaemus melanopsLiolaemus donosobarrosiLiolaemus cuyanus

Liolaemus telsenLiolaemus inacayali

Liolaemus boulengeriLiolaemus rothi

Liolaemus wiegmanniiLiolaemus azarai

Liolaemus scapularisLiolaemus multimaculatusLiolaemus riojanusLiolaemus salinicola

Liolaemus lutzaeLiolaemus occipitalis

Liolaemus pseudoanomalusLiolaemus andinus

Liolaemus multicolorLiolaemus molinaiLiolaemus dorbignyiLiolaemus huacahuasicusLiolaemus fabianiLiolaemus audituvelatus

Liolaemus ruibaliLiolaemus vallecurensisLiolaemus famatinae

Liolaemus orientalisLiolaemus stolzmanni

Liolaemus archeforusLiolaemus tristisLiolaemus zullyaeLiolaemus scolaroi

Liolaemus sarmientoiLiolaemus gallardoi

Liolaemus kingiiLiolaemus escarchadosiLiolaemus tari

Liolaemus bagualiLiolaemus somuncurae

Liolaemus uptoniLiolaemus magellanicus

Liolaemus kolenghLiolaemus silvanaeLiolaemus lineomaculatus

Liolaemus hatcheriLiolaemus saxatilis

Liolaemus gracilisLiolaemus robertmertensiLiolaemus ramirezae

Liolaemus yanalcuLiolaemus walkeriLiolaemus puna

Liolaemus chaltinLiolaemus bitaeniatus

Liolaemus pagaburoiLiolaemus bibronii

Liolaemus hernaniLiolaemus pictusLiolaemus cyanogaster

Liolaemus chiliensisLiolaemus schroederi

Liolaemus gravenhorstiiLiolaemus belliiLiolaemus coeruleusLiolaemus elongatus

Liolaemus kriegiLiolaemus leopardinus

Liolaemus ceiiLiolaemus buergeriLiolaemus petrophilusLiolaemus umbriferLiolaemus capillitasLiolaemus heliodermis

Liolaemus dicktracyiLiolaemus thermarum

Liolaemus austromendocinusLiolaemus paulinaeLiolaemus plateiLiolaemus nigromaculatus

Liolaemus pseudolemniscatusLiolaemus zapallarensisLiolaemus atacamensis

Liolaemus fuscusLiolaemus nigroviridisLiolaemus nitidus

Liolaemus monticolaLiolaemus lemniscatus

Liolaemus tenuisPhymaturus antofagastensisPhymaturus mallimacciiPhymaturus punaePhymaturus palluma

Phymaturus dorsimaculatusPhymaturus patagonicusPhymaturus somuncurensis

Phymaturus indistinctusCtenoblepharys adspersa

Leiosaurus catamarcensisLeiosaurus paronae

Leiosaurus belliiPristidactylus torquatus

Diplolaemus darwiniiPristidactylus scapulatus

Urostrophus vautieriAnisolepis longicauda

Urostrophus gallardoiEnyalius leechii

Enyalius bilineatusOplurus fierinensis

Oplurus grandidieriOplurus saxicola

Oplurus quadrimaculatusOplurus cuvieri

Oplurus cyclurusChalarodon madagascariensis

Enyalioides praestabilisEnyalioides microlepisEnyalioides palpebralis

Enyalioides oshaughnessyiEnyalioides heterolepis

Enyalioides laticepsMorunasaurus annularis

Hoplocercus spinosusPolychrus marmoratus

Polychrus femoralisPolychrus acutirostris

Polychrus gutturosus

63

95

96

95

100

100

100

99

78

100

66

996786

100

94100

94100

9599100

10098649579

93

99

100

85

97

85

99

98100

65100

99

100

82

72

8487

100

9882

78 99

100

100

100

100

99

9878

83

10095

99

94

70100

99

100

99

86

100

97

7484

100

91

5653

10068

100

98

99

98

97

100

59100

6698

100

100

9883

99

95

916766 97

100

99

68 93

100

100

100

968988

100

98

99

100

100

7877

70

98

97

99

100

7396

88

90

99

99100

88

9696

96

100

100

92

69

Po

lych

roti

dae

Ho

plo

cerc

idae

Opluridae

En

yaliid

ae

Lio

laem

idae

Leiosaurinae

Enyaliinae

(i)

(ii)

(i)(ii)

QRFigure 18

Page 68: Répteis 1.1

Anolis smaragdinusAnolis allisoniAnolis maynardi

Anolis brunneusAnolis longiceps

Anolis porcatusAnolis carolinensisAnolis isolepisAnolis oporinus

Anolis argillaceusAnolis centralis

Anolis pumilusAnolis loysiana

Anolis guazumaAnolis garridoi

Anolis angusticepsAnolis paternusAnolis alayoniAnolis sheplaniAnolis placidus

Anolis alutaceusAnolis inexpectatus

Anolis vanidicusAnolis alfaroi

Anolis macilentusAnolis cupeyalensisAnolis cyanopleurusAnolis rejectus

Anolis clivicolaAnolis lucius

Anolis whitemaniAnolis cybotes

Anolis armouriAnolis shreveiAnolis haetianusAnolis longitibialis

Anolis strahmiAnolis marcanoi

Anolis barahonaeAnolis baleatus

Anolis ricordiAnolis eugenegrahami

Anolis christopheiAnolis cuvieri

Anolis guamuhayaAnolis chamaeleonides

Anolis porcusAnolis barbatus

Anolis argenteolusAnolis alumina

Anolis semilineatusAnolis olssoni

Anolis barbouriAnolis insolitus

Anolis fowleriAnolis etheridgei

Anolis equestrisAnolis luteogularis

Anolis baracoaeAnolis nobleiAnolis smallwoodi

Anolis alinigerAnolis singularisAnolis chlorocyanusAnolis coelestinus

Anolis hendersoniAnolis dolichocephalus

Anolis bahorucoensisAnolis darlingtoni

Anolis monticolaAnolis occultus

Anolis vermiculatusAnolis bartschi

Anolis maculigulaAnolis casildae

Anolis frenatusAnolis princeps

Anolis chocorumAnolis fraseri

Anolis danieliAnolis insignisAnolis microtus

Anolis agassiziAnolis neblininusAnolis calimae

Anolis anatolorosAnolis jacare

Anolis tigrinusAnolis transversalisAnolis punctatus

Anolis inderenaeAnolis vanzoliniiAnolis heterodermusAnolis nicefori

Anolis euskalerriariAnolis gemmosusAnolis aequatorialisAnolis ventrimaculatusAnolis chlorisAnolis festae

Anolis peraccaeAnolis huilaeAnolis fitchi

Anolis extremusAnolis roquet

Anolis aeneusAnolis richardii

Anolis trinitatisAnolis griseus

Anolis bonairensisAnolis luciae

Anolis boettgeriBasiliscus basiliscus

Basiliscus plumifronsBasiliscus vittatus

Basiliscus galeritusCorytophanes cristatus

Corytophanes percarinatusLaemanctus longipes

99

100

100

93

60

80

86

98

95

99

100

7497

100

100

89

97

100

100

85

100 100

100

100

65

76100

99

97

100

100

96

9995

99

99

95

86

9090

10095

100

8666

97

86

97

99

9898

99

59

100

5989

90

94

10099

75

7982

56100

100

100

100

90

83

71

100

87

100100

80

98

100

98

100

99100

100

100100

9965

89

95

9996

96

67

64

10062

96100

100

100

9892

100

Anolis trachyderma

Anolis poecilopus

Anolis tropidogaster

Anolis lionotus

Anolis oxylophus

Anolis zeus

Anolis limifrons

Anolis lemurinus

Anolis bicaorum

Anolis carpenteri

Anolis ocelloscapularis

Anolis tropidonotus

Anolis capito

Anolis polylepis

Anolis cupreus

Anolis fuscoauratus

Anolis kemptoni

Anolis altae

Anolis humilis

Anolis pachypus

Anolis sericeus

Anolis isthmicus

Anolis intermedius

Anolis laeviventris

Anolis ortonii

Anolis quercorum

Anolis aquaticus

Anolis woodi

Anolis biporcatus

Anolis bitectus

Anolis uniformis

Anolis polyrhachis

Anolis sminthus

Anolis crassulus

Anolis utilensis

Anolis purpurgularis

Anolis loveridgei

Anolis chrysolepis

Anolis bombiceps

Anolis nitens

Anolis meridionalis

Anolis lineatus

Anolis onca

Anolis annectens

Anolis auratus

Anolis grahami

Anolis conspersus

Anolis garmani

Anolis opalinus

Anolis valencienni

Anolis reconditus

Anolis lineatopus

Anolis bremeri

Anolis quadriocellifer

Anolis sagrei

Anolis ophiolepis

Anolis mestrei

Anolis homolechis

Anolis jubar

Anolis confusus

Anolis guafe

Anolis ahli

Anolis allogus

Anolis rubribarbaris

Anolis imias

Anolis cristatellus

Anolis desechensis

Anolis ernestwilliamsi

Anolis scriptus

Anolis cooki

Anolis monensis

Anolis krugi

Anolis pulchellus

Anolis gundlachi

Anolis poncensis

Anolis evermanni

Anolis stratulus

Anolis acutus

Anolis caudalis

Anolis marron

Anolis brevirostris

Anolis websteri

Anolis distichus

Anolis marmoratus

Anolis sabanus

Anolis nubilus

Anolis lividus

Anolis ferreus

Anolis terraealtae

Anolis oculatus

Anolis gingivinus

Anolis bimaculatus

Anolis leachii

Anolis pogus

Anolis wattsi

75

100

99

92

100

93

90

100

56

94

97

9692

86

91

100

100

99

98

69

10086

86

93

100

100

90

72

95100

94

96

100

95

99

52

8459

99

100

58

100

90

100

100

90

100

10099

8999

100

7294

98

10098

100

95

100

98

100

96100

100

100

91

100

88

100

100

96

94100

100

99

99

10095

57

77

56

90

100

Corytophanidae

Dactyloidae

(i)

(ii)

(i)

(ii)

RFigure 19

Page 69: Répteis 1.1

Austrotyphlops pilbarensis

Austrotyphlops hamatus

Austrotyphlops endoterus

Austrotyphlops australis

Austrotyphlops waitii

Austrotyphlops splendidus

Austrotyphlops pinguis

Ramphotyphlops bicolor

Austrotyphlops ligatus

Austrotyphlops ganei

Austrotyphlops troglodytes

Austrotyphlops kimberleyensis

Austrotyphlops ammodytes

Austrotyphlops unguirostris

Austrotyphlops leptosomus

Austrotyphlops longissimus

Austrotyphlops grypus

Austrotyphlops bituberculatus

Austrotyphlops guentheri

Austrotyphlops howi

Austrotyphlops diversus

Ramphotyphlops polygrammicus

Acutotyphlops kunuaensis

Acutotyphlops subocularis

Ramphotyphlops acuticaudus

Ramphotyphlops lineatus

Typhlopidae sp. (Sri Lanka)

Ramphotyphlops braminus

Typhlops pammeces

Ramphotyphlops albiceps

Typhlops ruber

Typhlops luzonensis

Typhlops arenarius

Typhlops vermicularis

Afrotyphlops punctatus

Afrotyphlops congestus

Afrotyphlops lineolatus

Afrotyphlops bibronii

Afrotyphlops fornasinii

Megatyphlops schlegelii

Afrotyphlops angolensis

Typhlops elegans

Letheobia obtusa

Letheobia newtoni

Letheobia feae

Rhinotyphlops lalandei

Typhlops catapontus

Typhlops richardi

Typhlops platycephalus

Typhlops hypomethes

Typhlops granti

Typhlops dominicanus

Typhlops monastus

Typhlops notorachius

Typhlops anousius

Typhlops anchaurus

Typhlops contorhinus

Typhlops arator

Typhlops caymanensis

Typhlops agoralionis

Typhlops sylleptor

Typhlops jamaicensis

Typhlops capitulatus

Typhlops rostellatus

Typhlops sulcatus

Typhlops titanops

Typhlops schwartzi

Typhlops lumbricalis

Typhlops eperopeus

Typhlops syntherus

Typhlops hectus

Typhlops pusillus

Typhlops biminiensis

Typhlops reticulatus

Typhlops brongersmianus

Xenotyphlops grandidieri

Gerrhopilus mirus

Gerrhopilus hedraeus

Leptotyphlops scutifrons

Leptotyphlops distanti

Leptotyphlops conjunctus

Leptotyphlops sylvicolus

Leptotyphlops nigricans

Leptotyphlops nigroterminus

Namibiana occidentalis

Myriopholis adleri

Myriopholis macrorhyncha

Myriopholis blanfordi

Myriopholis boueti

Myriopholis rouxestevae

Myriopholis algeriensis

Myriopholis longicauda

Mitophis leptipileptus

Mitophis pyrites

Mitophis asbolepis

Tetracheilostoma breuili

Tetracheilostoma carlae

Rena humilis

Rena dulcis

Trilepida macrolepis

Epictia columbi

Epictia goudotii

Epictia albifrons

Siagonodon septemstriatus

Tricheilostoma bicolor

Typhlophis squamosus

Liotyphlops albirostris

100

90

100

83

100

87

76

99

72

91

100

98

76

99

988174

91

96

90

92

93

87

96

59

75

100 52

74

87

100

65

84100

97

100

87

100

77

99

87

9972

89

100

100

100

90

92

92

86

84999575

100

100

74

100

77

7792

99

71

87

8456

95

96

91

100

100

100

100

100

51100

99

100

56

79

69 100

100

97

97

100 100

98

100

100

100

93

100

100

100 Anomalepididae

Leptotyphlopidae

Gerrhopilidae

Xenotyphlopidae

Typ

hlo

pid

ae

ST-AAFigure 20

Page 70: Répteis 1.1

Antaresia childreniAntaresia stimsoniAntaresia perthensisAntaresia maculosaMorelia bredliMorelia spilota

Morelia carinataMorelia viridisBothrochilus boaLeiopython albertisii

Liasis fuscusLiasis mackloti

Apodora papuanaLiasis olivaceus

Aspidites melanocephalusAspidites ramsayi

Morelia amethistinaMorelia boeleniMorelia oenpelliensisBroghammerus timoriensisBroghammerus reticulatus

Python molurusPython sebaePython curtusPython regius

Python brongersmaiLoxocemus bicolor

Xenopeltis unicolorRhinophis blythiiRhinophis homolepisPseudotyphlops philippinusRhinophis oxyrhynchus

Rhinophis philippinusRhinophis dorsimaculatus

Rhinophis drummondhayiUropeltis phillipsiUropeltis melanogaster

Rhinophis travancoricusUropeltis ceylanicus

Uropeltis liuraBrachyophidium rhodogaster

Melanophidium punctatumCylindrophis ruffus

Cylindrophis maculatusAnomochilus leonardi

Epicrates striatusEpicrates exsulEpicrates chrysogasterEpicrates subflavus

Epicrates fordiEpicrates monensisEpicrates inornatus

Epicrates anguliferEunectes notaeusEunectes murinus

Epicrates cenchriaCorallus annulatus

Corallus caninusCorallus hortulanusBoa constrictorEryx tataricusEryx miliaris

Eryx elegansEryx jaculusEryx johnii

Eryx conicusEryx colubrinus

Eryx jayakariCandoia bibroni

Candoia carinataCandoia aspera

Lichanura trivirgataCharina bottae

Ungaliophis continentalisExiliboa placata

Calabaria reinhardtiiAcrantophis dumeriliAcrantophis madagascariensisSanzinia madagascariensisCasarea dussumieriXenophidion schaeferiTropidophis melanurusTropidophis feicki

Tropidophis haetianusTropidophis greenwayi

Tropidophis wrightiTropidophis pardalis

Trachyboa boulengeriTrachyboa gularis

Anilius scytale

100

97

69

88

89

98

100

100

100

96

71

96

85

5183100

84100

100

75

98

100

100

7697

98

99

8696

99

100

9886

90

73

80

69

77

848580

82

100

65

100

99

87

83

98

100

96

90

95

10092

9485

100

99

100

95

9693100

87

53

100

81

99100

100

100

100

98

100

100

5398

100

100

100 Aniliidae

Tropidophiidae

Xenophidiidae

Bolyeriidae

Boidae

Anomochilidae

Cylindrophiidae

Uropeltidae

XenopeltidaeLoxocemidae

Pythonidae

Calabariidae

Sanziniinae

Ungaliophiinae

Candoiinae

Erycinae

Boinae

TU-AAFigure 21

Page 71: Répteis 1.1

Bitis rubida

Bitis cornuta

Bitis atropos

Bitis xeropaga

Bitis caudalis

Bitis peringueyi

Bitis gabonica

Bitis nasicornis

Bitis arietans

Bitis worthingtoni

Atheris desaixi

Atheris nitschei

Atheris squamigera

Atheris hispida

Atheris chlorechis

Atheris barbouri

Atheris ceratophora

Echis pyramidum

Echis leucogaster

Echis coloratus

Echis omanensis

Echis jogeri

Echis ocellatus

Echis carinatus

Causus defilippii

Causus rhombeatus

Causus resimus

Cerastes gasperettii

Cerastes cerastes

Cerastes vipera

Proatheris superciliaris

Vipera lotievi

Vipera renardi

Vipera dinniki

Vipera ursinii

Vipera eriwanensis

Vipera kaznakovi

Vipera barani

Vipera berus

Vipera nikolskii

Vipera seoanei

Vipera aspis

Vipera latastei

Vipera ammodytes

Macrovipera mauritanica

Macrovipera deserti

Daboia russelii

Daboia palaestinae

Montivipera wagneri

Montivipera albizona

Montivipera bornmuelleri

Montivipera raddei

Montivipera xanthina

Macrovipera schweizeri

Macrovipera lebetina

Pseudocerastes fieldi

Pseudocerastes persicus

Eristicophis macmahoni

Pareas nuchalis

Pareas carinatus

Pareas hamptoni

Pareas macularius

Pareas margaritophorus

Pareas formosensis

Pareas boulengeri

Pareas monticola

Aplopeltura boa

Asthenodipsas vertebralis

Achalinus rufescens

Achalinus meiguensis

Xenodermus javanicus

Stoliczkia borneensis

Acrochordus arafurae

Acrochordus granulatus

Acrochordus javanicus

100

100

95

100

100

97

94

100

96

98

99

98

100

100

100

63

100

51

77

53

100

93

86

89

100

62

91

100

100

100

100

100

100

100

88

95

100

77

99

97

99

85

5980

93

100

100

96

59

100

100

99

9483

100

100

99

99

96

95

100100

91

100

95

100

98

97

100

95

Crotalus adamanteusCrotalus tigris

Crotalus mitchelliiCrotalus viridis

Crotalus oreganusCrotalus scutulatusCrotalus tortugensis

Crotalus atroxCrotalus catalinensis

Crotalus ruberCrotalus totonacusCrotalus molossus

Crotalus basiliscusCrotalus simusCrotalus durissus

Crotalus horridusCrotalus willardi

Crotalus ravusCrotalus cerastesCrotalus polystictus

Crotalus enyoCrotalus aquilus

Crotalus lepidusCrotalus pusillus

Crotalus triseriatusCrotalus tancitarensis

Crotalus transversusCrotalus intermedius

Crotalus priceiSistrurus miliarius

Sistrurus catenatusAgkistrodon bilineatus

Agkistrodon tayloriAgkistrodon piscivorus

Agkistrodon contortrixBothriechis rowleyi

Bothriechis auriferBothriechis bicolor

Bothriechis thalassinusBothriechis marchi

Bothriechis lateralisBothriechis nigroviridis

Bothriechis schlegeliiLachesis mutaLachesis stenophrys

Mixcoatlus melanurusMixcoatlus barbouri

Ophryacus undulatusBothrops leucurus

Bothrops moojeniBothrops atrox

Bothrops colombiensisBothrops marajoensis

Bothrops asperBothrops lanceolatus

Bothrops caribbaeusBothrops punctatusBothrops jararacussu

Bothrops braziliBothriopsis bilineata

Bothriopsis taeniataBothriopsis chloromelasBothriopsis pulchra

Bothropoides alcatrazBothropoides insularis

Bothropoides jararacaBothropoides neuwiedi

Bothropoides diporusBothropoides erythromelas

Rhinocerophis itapetiningaeRhinocerophis alternatus

Rhinocerophis fonsecaiRhinocerophis cotiara

Rhinocerophis ammodytoidesBothrops pictus

Bothrocophias hyoproraBothrocophias microphthalmus

Bothrocophias campbelliPorthidium lansbergii

Porthidium porrasiPorthidium nasutum

Porthidium yucatanicumPorthidium dunni

Porthidium ophryomegasCerrophidion petlalcalensis

Cerrophidion tzotzilorumCerrophidion godmani

Atropoides picadoiAtropoides olmec

Atropoides nummiferAtropoides occiduus

Gloydius saxatilisGloydius intermedius

Gloydius shedaoensisGloydius halys

Gloydius strauchiGloydius blomhoffiiGloydius ussuriensis

Gloydius brevicaudusGloydius tsushimaensis

Trimeresurus gracilisOvophis okinavensis

Protobothrops tokarensisProtobothrops flavoviridis

Protobothrops mucrosquamatusProtobothrops elegans

Protobothrops jerdoniiProtobothrops xiangchengensis

Protobothrops cornutusProtobothrops mangshanensis

Protobothrops sieversorumProtobothrops kaulbacki

Ovophis tonkinensisOvophis zayuensisOvophis monticola

Trimeresurus purpureomaculatusTrimeresurus erythrurus

Trimeresurus cantoriTrimeresurus albolabris

Trimeresurus andersoniiTrimeresurus septentrionalis

Trimeresurus insularisTrimeresurus fasciatus

Trimeresurus macropsTrimeresurus venustus

Trimeresurus kanburiensisTrimeresurus vogeli

Trimeresurus stejnegeriTrimeresurus gumprechti

Trimeresurus yunnanensisTrimeresurus medoensis

Trimeresurus tibetanusTrimeresurus popeiorum

Trimeresurus sumatranusTrimeresurus schultzei

Trimeresurus flavomaculatusTrimeresurus malcolmiTrimeresurus hageni

Trimeresurus trigonocephalusTrimeresurus gramineus

Trimeresurus malabaricusTrimeresurus borneensis

Trimeresurus puniceusHypnale zara

Hypnale hypnaleHypnale nepa

Calloselasma rhodostomaDeinagkistrodon acutus

Tropidolaemus wagleriGarthius chaseni

Azemiops feae

100

100

97

97

100

91

96

100

74

97

99

100

77

8990

98

58

100100

82

100100

91

100

63

87

99

56

100

95

52

10098 100

97

100

9999

85

53

98100 100

84

98

51

100

100

100

100

90

91

99

100

100

909972

87

97

100

100

9895

100

100

90

100

94

96

9499

100

99

99

90

78

100100

8690

96

9499

100100

85

100

96100

9995

100100

99

100

98

99

90

100

63 100

100

92100

97

100

100

98

93

64

100

9377

10099

85

96

100

94

8172

96

89

99

9989

97

98

100 96

99

100100

95

91

50

Vip

eri

dae

Acrochordidae

Xen

od

erm

ati

dae

Vip

erinae

Azemiopinae

Cro

talin

ae

UV-AA

(i)

(ii)

(i)

(ii)

Pare

ati

dae

Figure 22

Page 72: Répteis 1.1

Liophidium chabaudiLiophidium mayottensis

Liophidium torquatumLiophidium therezieni

Liophidium vaillantiLiophidium rhodogaster

Liopholidophis sexlineatusLiopholidophis dolicocercus

Liopholidophis dimorphusHeteroliodon occipitalis

Pseudoxyrhopus ambreensisThamnosophis lateralis

Thamnosophis stumpffiThamnosophis epistibes

Thamnosophis martaeThamnosophis infrasignatus

Dromicodryas bernieriDromicodryas quadrilineatus

Lycodryas granulicepsLycodryas pseudogranuliceps

Lycodryas inopinaeLycodryas sanctijohannis

Lycodryas citrinusLycodryas inornatus

Madagascarophis meridionalisMadagascarophis colubrinus

Ithycyphus oursiIthycyphus miniatus

Micropisthodon ochraceusLangaha madagascariensis

Leioheterodon modestusLeioheterodon madagascariensis

Leioheterodon geayiParastenophis betsileanus

Alluaudina bellyiCompsophis infralineatus

Compsophis laphystiusCompsophis albiventris

Compsophis boulengeriDitypophis vivaxDuberria lutrix

Duberria variegataAmplorhinus multimaculatus

Lycodonomorphus whytiiLycodonomorphus laevissimus

Lycodonomorphus rufulusLycodonomorphus inornatus

Lamprophis fiskiiLamprophis aurora

Lamprophis fuscusLamprophis guttatus

Boaedon olivaceusBoaedon fuliginosus

Boaedon lineatusBoaedon virgatus

Bothrophthalmus lineatusBothrophthalmus brunneus

Bothrolycus aterPseudoboodon lemniscatus

Gonionotophis capensisGonionotophis poensis

Gonionotophis brussauxiGonionotophis nyassae

Gonionotophis stenophthalmusInyoka swazicus

Hormonotus modestusLycophidion ornatum

Lycophidion capenseLycophidion laterale

Lycophidion nigromaculatumBuhoma depressiceps

Buhoma procteraePsammodynastes pictus

Psammodynastes pulverulentusPseudaspis cana

Pythonodipsas carinataAparallactus guentheri

Aparallactus capensisAparallactus werneriAparallactus modestus

Polemon acanthiasPolemon collaris

Polemon notatusAmblyodipsas dimidiata

Xenocalamus transvaalensisAmblyodipsas polylepis

Macrelaps microlepidotusAtractaspis corpulenta

Atractaspis micropholisAtractaspis bibronii

Atractaspis boulengeriAtractaspis microlepidota

Atractaspis irregularisHomoroselaps lacteus

Psammophis phillipsiPsammophis mossambicusPsammophis leopardinus

Psammophis sibilansPsammophis rukwae

Psammophis orientalisPsammophis sudanensis

Psammophis subtaeniatusPsammophis lineatusPsammophis biseriatus

Psammophis tanganicusPsammophis praeornatus

Psammophis punctulatusPsammophis schokari

Psammophis angolensisPsammophis notostictusPsammophis leightoniPsammophis jallae

Psammophis trigrammusPsammophis condanarus

Psammophis lineolatusPsammophis crucifer

Psammophylax tritaeniatusPsammophylax variabilis

Psammophylax rhombeatusPsammophylax acutus

Hemirhagerrhis hildebrandtiiHemirhagerrhis kelleri

Hemirhagerrhis viperinaDipsina multimaculata

Mimophis mahfalensisRhagerhis moilensis

Malpolon monspessulanusRhamphiophis rubropunctatus

Rhamphiophis oxyrhynchusProsymna meleagris

Prosymna greigertiProsymna janii

Prosymna visseriProsymna ruspolii

Oxyrhabdium leporinumMicrelaps bicoloratus

Cerberus rynchopsCerberus microlepis

Cerberus australisHomalopsis buccataEnhydris punctata

Fordonia leucobaliaGerarda prevostiana

Cantoria violaceaBitia hydroides

Enhydris bocourtiErpeton tentaculatum

Pseudoferania polylepisMyron richardsonii

Enhydris innominataEnhydris longicauda

Enhydris jagoriiEnhydris enhydris

Enhydris matannensisEnhydris plumbea

Enhydris chinensis

100

58

98

95

96

90

100

95

76

99

10089 99

73

99

94

98100

95

98

100 9398

95

100

90

97

94100

98

54 100

100

100

100

100100

82

98100

94

99

99100

100

92

98

95

95

10098

99

100100

97100

93

100

100

97

100

6992

95

64

92

100

100

100

97

54

10092

100

10093

96

10094

98

9698

5899

95

100

90

100

100

80

69

96

73

100

8071

100100

97

60

100

76

1008550

70

100

97

65

97100

95

100

54

9996

99

10086

100

100

85

88

8897

100 100

96

7098

71

89

100

97

100100

100

53

100

Homalopsidae

Prosymninae

Psammophiinae

Atractaspidinae

Aparallactinae

Pseudaspidinae

Lamprophiinae

Pseudoxyrhophiinae

Lamprophiidae

VX-AA WFigure 23

Page 73: Répteis 1.1

Hydrophis ornataHydrophis peronii

Hydrophis kingiiHydrophis macdowelli

Hydrophis schistosaHydrophis majorHydrophis czeblukovi

Hydrophis caerulescensHydrophis brooki

Hydrophis atricepsHydrophis stokesii

Hydrophis platuraHydrophis curtus

Hydrophis parvicepsHydrophis melanocephala

Hydrophis cyanocinctaHydrophis pacificaHydrophis semperi

Hydrophis spiralisHydrophis lapemoides

Hydrophis elegansHydrelaps darwiniensis

Ephalophis greyaeParahydrophis mertoni

Aipysurus laevisAipysurus fuscusAipysurus apraefrontalisAipysurus duboisii

Aipysurus eydouxiiEmydocephalus annulatus

Hemiaspis dameliiHemiaspis signata

Tropidechis carinatusNotechis scutatus

Echiopsis atricepsHoplocephalus bitorquatus

Austrelaps superbusAustrelaps labialis

Drysdalia coronoidesDrysdalia mastersii

Echiopsis curtaPseudonaja textilisPseudonaja modesta

Oxyuranus scutellatusOxyuranus microlepidotus

Denisonia devisiSimoselaps calonotus

Vermicella intermediaSuta spectabilis

Suta sutaSuta monachus

Suta fasciataRhinoplocephalus bicolor

Cryptophis nigrescensElapognathus coronata

Cacophis squamulosusPseudechis guttatus

Pseudechis papuanusPseudechis colletti

Pseudechis australisPseudechis butleri

Pseudechis porphyriacusAcanthophis antarcticusAcanthophis praelongus

Aspidomorphus muelleriAspidomorphus lineaticollis

Aspidomorphus schlegeliSimoselaps bertholdi

Simoselaps anomalusSimoselaps semifasciatus

Furina diademaFurina ornata

Toxicocalamus loriaeDemansia psammophis

Demansia papuensisDemansia vestigiata

Toxicocalamus preussiMicropechis ikaheka

Laticauda colubrinaLaticauda guineai

Laticauda saintgironsiLaticauda laticaudata

Bungarus candidusBungarus multicinctus

Bungarus nigerBungarus caeruleus

Bungarus ceylonicusBungarus sindanus

Bungarus fasciatusBungarus bungaroidesBungarus flavicepsElapsoidea sundevalliiElapsoidea semiannulata

Elapsoidea nigraNaja ashei

Naja nigricollisNaja mossambica

Naja katiensisNaja pallida

Naja nubiaeNaja haje

Naja annuliferaNaja nivea

Naja annulataNaja melanoleuca

Naja multifasciataNaja sumatranaNaja siamensis

Naja mandalayensisNaja naja

Naja atraNaja kaouthia

Hemachatus haemachatusAspidelaps scutatus

Walterinnesia aegyptiaDendroaspis polylepis

Dendroaspis angusticepsOphiophagus hannah

Hemibungarus calligasterMicrurus brasiliensisMicrurus frontalisMicrurus spixii

Micrurus ibibobocaMicrurus altirostris

Micrurus pyrrhocryptusMicrurus baliocoryphus

Micrurus decoratusMicrurus lemniscatusMicrurus hemprichii

Micrurus surinamensisMicrurus dissoleucus

Micrurus mipartitusMicrurus narduccii

Micrurus diastemaMicrurus fulvius

Micrurus psychesMicrurus albicinctus

Micrurus corallinusSinomicrurus macclellandi

Sinomicrurus kelloggiSinomicrurus japonicus

Micruroides euryxanthusMaticora bivirgata

Calliophis melanurus

100

98

95

90

100

92

85

67

89

75

99

91

100

98

72

100

95

67

83

93

8874

100

8377

98

54

94

100

97100

75

94

96

100

9490 100

97

100

78

97

9899

98

98

100

100

71

100 97

100

94

88

98

100

90

88

95

68

100 100100

100

100

100

99100

82 100

100100

91

10098

100

98

100

100

99 100

9797

10099

87

100

91

90

83

92

9996

9676

78

100

88

69

58

100

9987

63

84

84 100

61

85

100

91

94

9888

8959

97

97

98

10090

99

10095

Elapidae

WFigure 24

Page 74: Répteis 1.1

Eirenis punctatolineatusEirenis barani

Eirenis collarisEirenis eiselti

Eirenis coronelloidesEirenis rothiiEirenis lineomaculatus

Eirenis thospitisEirenis medus

Eirenis levantinusEirenis decemlineatus

Eirenis persicusEirenis aurolineatus

Eirenis modestusHierophis spinalisHierophis gemonensis

Hierophis viridiflavusDolichophis caspius

Dolichophis schmidtiDolichophis jugularis

Platyceps florulentusPlatyceps collaris

Platyceps najadumPlatyceps ventromaculatus

Platyceps kareliniPlatyceps rogersi

Platyceps rhodorachisSpalerosophis diadema

Spalerosophis microlepisHemorrhois ravergieri

Hemorrhois nummiferHemorrhois algirus

Hemorrhois hippocrepisHemerophis socotrae

Macroprotodon abubakeriMacroprotodon cucullatus

Bamanophis dorriColuber zebrinus

Lytorhynchus diademaHapsidophrys principis

Hapsidophrys smaragdinaHapsidophrys lineatus

Philothamnus hoplogasterPhilothamnus natalensisPhilothamnus thomensis

Philothamnus girardiPhilothamnus angolensis

Philothamnus semivariegatusPhilothamnus nitidus

Philothamnus heterodermusPhilothamnus carinatus

Thelotornis capensisDispholidus typus

Thrasops jacksoniiCoelognathus flavolineatus

Coelognathus subradiatusCoelognathus erythrurus

Coelognathus helenaCoelognathus radiatus

Oligodon planicepsOligodon torquatus

Oligodon theobaldiOligodon cruentatus

Oligodon splendidusOligodon maculatus

Oligodon cinereusOligodon formosanus

Oligodon ocellatusOligodon chinensisOligodon taeniatusOligodon barroniOligodon cyclurus

Oligodon octolineatusOligodon taeniolatusOligodon sublineatus

Oligodon arnensisScaphiophis albopunctatus

Dasypeltis fasciataDasypeltis gansi

Dasypeltis sahelensisDasypeltis scabra

Dasypeltis atraDasypeltis confusa

Toxicodryas pulverulentaBoiga multomaculata

Boiga beddomeiBoiga ceylonensisBoiga trigonata

Boiga barnesiiBoiga cynodon

Boiga forsteniBoiga dendrophila

Boiga irregularisTelescopus fallax

Dipsadoboa unicolorCrotaphopeltis tornieri

Boiga kraepeliniDendrelaphis tristis

Dendrelaphis schokariDendrelaphis caudolineatus

Dendrelaphis caudolineolatusDendrelaphis bifrenalis

Chrysopelea paradisiChrysopelea ornata

Chrysopelea taprobanicaAhaetulla nasuta

Ahaetulla pulverulentaAhaetulla fronticincta

Grayia smithiiGrayia ornataGrayia tholloni

Sibynophis chinensisSibynophis collaris

Sibynophis triangularisSibynophis subpunctatus

Sibynophis bistrigatusScaphiodontophis annulatus

Pseudoxenodon karlschmidtiPseudoxenodon macrops

Pseudoxenodon bambusicolaPlagiopholis styani

Calamaria yunnanensisCalamaria pavimentata

Pseudorabdion oxycephalum

100

68

74

71

100

57

100

68

100

94

60

94

100

92

83

100

83

97

91

100

8659

86

82

100

100

100

100

99

100

100

9852

61

8695

100

100

100

9286 100

60

99

69

87

68 99

99

9490

88

52

9098

100

10099

86

100

99

98

98 100

97

93

56

100

89

9990

85

99

100

83

100

79

9870

9277

90

100

74

85

73

8996

9668

7199

100

10097

91

69

100100

100

100

96

68

100100

100

97

10097

85

99100

Co

lub

rid

ae

Calamariinae

Pseudoxenodontinae

Sibynophiinae

Grayiinae

Colu

brinae

XY

Z-AA Colubrinae cont.Figure 25

Page 75: Répteis 1.1

Lampropeltis californiaeLampropeltis splendidaLampropeltis holbrooki

Lampropeltis getulaLampropeltis nigraLampropeltis alterna

Lampropeltis extenuatumLampropeltis triangulumLampropeltis ruthveniLampropeltis mexicanaLampropeltis elapsoidesLampropeltis zonataLampropeltis pyromelana

Lampropeltis webbiLampropeltis calligaster

Cemophora coccineaPseudelaphe flavirufa

Arizona elegansRhinocheilus lecontei

Bogertophis rosaliaeBogertophis subocularis

Pantherophis bairdiPantherophis obsoletusPantherophis alleghaniensis

Pantherophis spiloidesPantherophis slowinskii

Pantherophis emoryiPantherophis guttatus

Pantherophis vulpinusPituophis cateniferPituophis ruthveniPituophis melanoleucus

Pituophis lineaticollisPituophis vertebralis

Pituophis deppeiSenticolis triaspis

Oocatochus rufodorsatusCoronella austriaca

Coronella girondicaElaphe sauromates

Elaphe quatuorlineataElaphe quadrivirgata

Elaphe schrenckiiElaphe climacophora

Elaphe dioneElaphe bimaculata

Elaphe carinataElaphe davidi

Zamenis situlaRhinechis scalaris

Zamenis lineatusZamenis longissimus

Zamenis persicusZamenis hohenackeri

Orthriophis cantorisOrthriophis moellendorffi

Orthriophis hodgsoniOrthriophis taeniurus

Oreocryptophis porphyraceusEuprepiophis mandarinus

Euprepiophis conspicillataArchelaphe bella

Lycodon aulicusLycodon zawi

Lycodon osmanhilliLycodon capucinus

Lycodon carinatusDryocalamus nympha

Lycodon semicarinatumLycodon rufozonatum

Lycodon paucifasciatusLycodon fasciatus

Lycodon laoensisLycodon ruhstrati

Rhadinophis frenatusRhynchophis boulengeri

Rhadinophis prasinusGonyosoma jansenii

Gonyosoma oxycephalumSympholis lippiens

Pseudoficimia frontalisGyalopion canum

Ficimia streckeriConopsis nasusConopsis biserialis

Sonora semiannulataChilomeniscus stramineus

Chionactis occipitalisStenorrhina freminvillei

Rhinobothryum lentiginosumMastigodryas bifossatus

Mastigodryas boddaertiMastigodryas melanolomus

Drymoluber braziliDrymoluber dichrous

Chironius multiventrisChironius laurenti

Chironius exoletusChironius monticola

Chironius bicarinatusChironius flavolineatus

Chironius grandisquamisChironius laevicollisChironius scurrulus

Chironius fuscusDrymarchon corais

Pseustes sulphureusSpilotes pullatus

Phyllorhynchus decurtatusTrimorphodon biscutatus

Drymobius rhombiferDendrophidion percarinatum

Dendrophidion dendrophisLeptophis ahaetulla

Chironius carinatusChironius quadricarinatus

Coluber flagellumColuber constrictor

Coluber taeniatusTantilla melanocephala

Salvadora mexicanaOpheodrys aestivusOpheodrys vernalisOxybelis aeneus

Oxybelis fulgidusPtyas mucosa

Ptyas korrosCyclophiops major

64

83

100

99

90

75

84

98

100

87

100

75

92

82

10096

74

96

6098

98

100

7279

94

98

100

100

96

100 98100

100

99

100

91

9499

98

83

100

61

83 100

55

93

100

99

64

100100

100

99

8898

100

53

83

98 94 76

86

9293

60

98

100100

100

93

93

100

87

94

100

99

71

89

10092

87

100

98

87

86

8183

5499

74

9182

9792

9966

92

93

88

96 10082

100

81

Colubrinae cont.

YFigure 26

Page 76: Répteis 1.1

Thamnophis butleri

Thamnophis radix

Thamnophis brachystoma

Thamnophis elegans

Thamnophis gigas

Thamnophis atratus

Thamnophis couchii

Thamnophis ordinoides

Thamnophis hammondii

Thamnophis marcianus

Thamnophis eques

Thamnophis cyrtopsis

Thamnophis chrysocephalus

Thamnophis fulvus

Thamnophis mendax

Thamnophis sumichrasti

Thamnophis scaliger

Thamnophis godmani

Thamnophis exsul

Thamnophis melanogaster

Thamnophis valida

Adelophis foxi

Thamnophis rufipunctatus

Thamnophis proximus

Thamnophis sauritus

Thamnophis sirtalis

Nerodia sipedon

Nerodia fasciata

Nerodia harteri

Nerodia erythrogaster

Nerodia rhombifer

Nerodia taxispilota

Nerodia floridana

Nerodia cyclopion

Tropidoclonion lineatum

Regina grahami

Regina septemvittata

Regina alleni

Regina rigida

Seminatrix pygaea

Storeria dekayi

Storeria occipitomaculata

Virginia striatula

Clonophis kirtlandii

Natrix tessellata

Natrix natrix

Natrix maura

Sinonatrix annularis

Sinonatrix percarinata

Sinonatrix aequifasciata

Opisthotropis cheni

Opisthotropis latouchii

Opisthotropis lateralis

Opisthotropis guangxiensis

Aspidura guentheri

Aspidura ceylonensis

Aspidura trachyprocta

Aspidura drummondhayi

Atretium yunnanensis

Xenochrophis asperrimus

Xenochrophis punctulatus

Atretium schistosum

Xenochrophis piscator

Xenochrophis flavipunctatus

Xenochrophis vittatus

Amphiesma stolatum

Rhabdophis nuchalis

Rhabdophis tigrinus

Rhabdophis subminiatus

Balanophis ceylonensis

Macropisthodon rudis

Lycognathophis seychellensis

Afronatrix anoscopus

Natriciteres olivacea

Amphiesma craspedogaster

Amphiesma sauteri

Trachischium monticola

100

98

100

100

100

100

96

86

99

100

92

63

73

94100

89

99

69

99

100

93

100

85

10098

72

69

100

96

100

99

100

100

100

76

50

97

80

100

72

98

100

88

100

82

100

86100

100

99

100

99

68

69

98

100

88

88

100

6296

98

99

100

Natricinae

ZFigure 27

Page 77: Répteis 1.1

Sibynomorphus neuwiedi

Sibynomorphus ventrimaculatus

Dipsas albifrons

Dipsas articulata

Sibynomorphus turgidus

Sibynomorphus mikanii

Dipsas pratti

Dipsas variegata

Dipsas neivai

Dipsas catesbyi

Dipsas indica

Tropidodipsas sartorii

Sibon nebulatus

Ninia atrata

Atractus zebrinus

Atractus trihedrurus

Atractus reticulatus

Atractus badius

Atractus flammigerus

Atractus elaps

Atractus albuquerquei

Atractus schach

Atractus wagleri

Atractus zidoki

Geophis godmani

Geophis carinosus

Cryophis hallbergi

Tretanorhinus nigroluteus

Hydromorphus concolor

Adelphicos quadrivirgatum

Leptodeira rubricata

Leptodeira maculata

Leptodeira bakeri

Leptodeira annulata

Leptodeira septentrionalis

Leptodeira punctata

Leptodeira splendida

Leptodeira frenata

Leptodeira uribei

Imantodes cenchoa

Imantodes gemmistratus

Imantodes lentiferus

Imantodes inornatus

Leptodeira nigrofasciata

Tretanorhinus variabilis

Hypsiglena chlorophaea

Hypsiglena torquata

Hypsiglena ochrorhyncha

Hypsiglena affinis

Hypsiglena jani

Hypsiglena slevini

Trimetopon gracile

Pseudoleptodeira latifasciata

Rhadinaea fulvivittis

Rhadinaea flavilata

Coniophanes fissidens

Tantalophis discolor

Amastridium veliferum

Nothopsis rugosus

Farancia erytrogramma

Farancia abacura

Carphophis amoenus

Diadophis punctatus

Heterodon nasicus

Heterodon simus

Heterodon platirhinos

Contia tenuis

Thermophis baileyi

Thermophis zhaoermii

100

100

93

63

89

90

91

83

70

100

82

70

75

79

88

79

96

84

100

90

86

96

73

75

73

97

89

68

68

94

100

64

67

100

91

97

88

100

98

100

71

100

86

99

100

99

84

85

80

96

86

68

58

87

80

98

72

100

99

100

Pseudoboa coronataPseudoboa nigra

Pseudoboa neuwiediiRhachidelus brazili

Boiruna maculataDrepanoides anomalus

Mussurana bicolorClelia clelia

Phimophis gueriniParaphimophis rusticus

Rodriguesophis iglesiasiOxyrhopus guibei

Oxyrhopus melanogenysOxyrhopus rhombifer

Oxyrhopus clathratusOxyrhopus trigeminus

Oxyrhopus formosusOxyrhopus petolarius

Siphlophis longicaudatusSiphlophis pulcher

Siphlophis compressusSiphlophis cervinus

Hydrodynastes gigasHydrodynastes bicinctus

Caaeteboia amaraliXenopholis scalarisXenopholis undulatus

Tropidodryas striaticepsTropidodryas serra

Thamnodynastes rutilusThamnodynastes strigatus

Thamnodynastes hypoconiaThamnodynastes laneiThamnodynastes pallidusTomodon dorsatus

Ptychophis flavovirgatusTachymenis peruviana

Pseudotomodon trigonatusCalamodontophis paucidens

Gomesophis brasiliensisHelicops angulatus

Helicops gomesiHelicops carinicaudus

Helicops hagmanniHelicops infrataeniatus

Pseudoeryx plicatilisHydrops triangularis

Manolepis putnamiApostolepis cearensisApostolepis sanctaeritae

Apostolepis flavotorquataApostolepis albicollaris

Apostolepis dimidiataApostolepis assimilis

Elapomorphus quinquelineatusPhalotris mertensi

Phalotris lativittatusPhalotris nasutusPhalotris lemniscatusTaeniophallus affinisEchinanthera undulataEchinanthera melanostigma

Taeniophallus nicagusTaeniophallus brevirostris

Sordellina punctataPhilodryas patagoniensis

Philodryas agassiziiPhilodryas aestiva

Philodryas psammophideaPhilodryas mattogrossensis

Philodryas georgeboulengeriPhilodryas argentea

Philodryas olfersiiPhilodryas viridissima

Philodryas nattereriPhilodryas baroni

Erythrolamprus aesculapiiErythrolamprus mimus

Eryrthrolamprus typhlusEryrthrolamprus pygmaea

Eryrthrolamprus brevicepsEryrthrolamprus reginae

Eryrthrolamprus miliarisEryrthrolamprus juliae

Eryrthrolamprus epinephelusEryrthrolamprus poecilogyrusEryrthrolamprus ceii

Eryrthrolamprus almadensisEryrthrolamprus jaegeri

Eryrthrolamprus atraventerXenodon pulcherXenodon matogrossensisXenodon semicinctusXenodon guentheri

Xenodon nattereriXenodon histricus

Xenodon dorbignyiXenodon neuwiedii

Xenodon werneriXenodon merremi

Xenodon severusLygophis meridionalis

Lygophis flavifrenatusLygophis paucidens

Lygophis lineatusLygophis elegantissimus

Lygophis anomalusUromacer frenatusUromacer oxyrhynchusUromacer catesbyi

Schwartzophis funereumSchwartzophis polylepis

Schwartzophis callilaemumAntillophis parvifrons

Hypsirhynchus feroxDarlingtonia haetiana

Ialtris dorsalisAlsophis rufiventrisAlsophis antiguaeAlsophis rijgersmaei

Alsophis antillensisBorikenophis portoricensisHaitiophis anomalusCaraiba andreae

Cubophis vudiiCubophis cantherigerus

Magliophis exiguumArrhyton dolichura

Arrhyton tanyplectumArrhyton procerum

Arrhyton landoiArrhyton vittatum

Arrhyton supernumArrhyton taeniatum

Pseudalsophis elegansPseudalsophis biserialis

Psomophis jobertiPsomophis genimaculatus

Psomophis obtususCrisantophis nevermanni

Conophis lineatus

91

90

90

91

68

100

95

87

96

74

92

100

87

90

96

95

6763

9567

98

100

91

87

56100

100

100

91

100

87

8694

9093 99

90

97

55

100

9891 99

79

100

5695

9794

6999

95

100100

95

6667

75

100

100

68

68

6294

96

100

88

51

81

89

78

100

94

99

87

96

88

87100

97

94

100

92

73

100

75

9971

61 98

62

98

9852

9976

7370

100

100

99

75

99

80

97

83

98100

100

99

99

100

97100

100

93

100

100

73

10098

100

100 94

95

AA

Dip

sadin

ae

(i)

(ii)

(ii)

(i)

Figure 28

Page 78: Répteis 1.1

Additional files provided with this submission:

Additional file 1: 2046042875907394_add1.txt, 264Khttp://www.biomedcentral.com/imedia/1032288879981940/supp1.txtAdditional file 2: 2046042875907394_add2.docx, 681Khttp://www.biomedcentral.com/imedia/7057154239819418/supp2.docx