49
Regulation of renal drug transport under physiological and pathological conditions Rosalinde Masereeuw Radboud University Nijmegen Medical Centre Nijmegen Centre for Molecular Life Sciences October 13, 2010

Regulation of renal drug transport under physiological and pathological conditions · 2013. 2. 14. · Urate scavenges potential harmful radicals in our body, but may cause gout,

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Regulation of renal drug transport under physiological and pathological conditions

    Rosalinde Masereeuw

    Radboud University Nijmegen Medical Centre

    Nijmegen Centre for Molecular Life Sciences

    October 13, 2010

  • Drug transport in the kidney

  • nephron

    Drug transport in the kidney

  • nephron

    glomerulus

    tubulus

    Glomerular filtration

    Reabsorption

    Secretion

    Drug transport in the kidney

  • nephron

    glomerulus

    tubulus

    bloed urine

    Tubule cell

    Drug transport in the kidney

  • Renal drug handling

    Two major pathways:

    • Organic anion system (eg.

    PAH, MTX, penicillines)

    • Organic cation system (eg.

    choline, dopamine, cisplatin)

    Multiple transporters identified :

    • Solute Carriers (SLCO,

    SLC22, SLC47)

    • ATP Binding Cassette

    transporters (ABC)

  • Transport mechanismTransporter

    The organic anion system

    Substrates (examples)

    blood urine

    Renal tubular cell

    antiport (dicarboxylates)OAT1/3 PAH, methotrexate (MTX), hippurate, indoxyl sulfate, etc.

    OAT1/3

    αKG2-

    OA-

    URAT1 antiport ((organic )anions) urate

    OAT4/URAT1OA-

    OAT4 OTA, DHEA-sulfate, estrone-sulfate, urate, MTX

    antiport (dicarboxylates)

    MRP2/4 (ABCC2/4)

    MRP2/ABCC2 glutathione, glucuronide/sulfate conjugates, PAH, GSH, GSSG, MTX

    pump (ATP)

    cidofovir, PMEA, MTX, PAH, cAMP, cGMP, prostaglandins, urate

    MRP4/ABCC4 pump (ATP)

    BCRP (ABCG2)

    BCRP/ABCG2 pump (ATP) dimer MTX, urate, sulfates

    OATP4C1?

    OA-

    αKG2-

  • Organic cation transport system

    blood urine

    Renal tubular cellP-gp (ABCB1)

    BCRP (ABCG2)

    Transport mechanismTransporter Substrates (examples)

    potential driven, electrogenic

    OCT2 TEA, histamine, dopamine, norepinephrine, cisplatin,cimetidine, etc.

    ?OATP4C1 digoxin, ouabain, thyroxine, T3, cAMP, MTX

    antiport (protons)

    MATE1/2-K TEA, cimetidine, creatinine, guanidine, cisplatin, oxaliplatin

    BCRP/ABCG2 pump (ATP) dimer chemotherapeutics

    P-gp/ABCB1 pump (ATP) chemotherapeutics, antivirals, antibiotics, cimetidine

    ?

    OATP4C1OC+

    OCTN1/2

    antiport (protons)

    TEA, verapamil, carnitine

    MATE1/2-KH+

    OC+

    OCTN1/2

    OCT2OC+

    OC+

  • Drug transporters and the kidney

    • Many drugs and their metabolites leave the human body via the urine

    • Nephrotoxic injury contributes to 30-40% of all acute renal failures, which complicates 5% of all hospital admissions

    • In chronic renal failure, increased levels of uremic toxins cause severe problems, including cardiovascular injury

  • Human urate homeostasis

    Humans excrete uric acid as the final breakdown product of unwanted purinenucleotides.

    Urate scavenges potential harmful radicals in our body, but may cause gout, nephrolitiasis, hypertension, and vascular disease.

    Blood levels of urate are maintained by the balance between generation and excretion by specialized transporters located in renal proximal tubule cells.

  • Glomerular filtration 100%

    Secretion 50%

    Renal urate handling

    Post-secretory reabsorption 40%

    Excretion 10%

    Reabsorption 99-100%

    URAT1

  • Renal urate handling: URAT1

    Enomoto et al. Nature, 2002

  • Renal urate handling: MRP4

    MRP4 apicalbasolateral

    MRP4 MRP2 merge

    Van Aubel et al. JASN, 2002

  • Renal urate handling: MRP4

    Van Aubel et al. AJP Renal, 2005

    MRP4 apicalbasolateral

    MRP4 MRP2 merge

  • human rat

    BCRP KO mouse

    BCRP in renal proximal tubule

    M. Huls, C.D. Brown et al. Kidney Int. 2008

  • Renal urate handling: BCRP

    Woodward et al. PNAS. 2009

  • blood urine

    OAT1/3

    αKG2-

    urateURAT1

    OA-

    MRP4 (ABCC4)

    BCRP (ABCG2)

    ?

    Renal urate handling

    Multiple transporters responsible for physiological urate balance; multiple sites for drug interaction(s)!

  • blood urine

    ATP Mrp2Multidrug Resistence

    Protein 2 (MRP2)

    Regulation of Mrp2 in renal proximal tubules

  • Mrp2 and the kidney

    • Killifish renal proximal tubules

    • MDCKII-MRP2 cells

    • Rat in vivo

  • Mrp2 in killifish renal proximal tubules

    Masereeuw et al., Mol. Pharmacol. 2000

    Transmitted light

    Confocal microscopy

    FL-MTX

    Mrp2

  • Contr

    ol

    10 M

    Gen

    t0

    1000

    2000

    3000LumenCell

    **

    Fluo

    resc

    ence

    inte

    nsity

    Terlouw et al., Mol. Pharmacol. 2001

    FL-MTX +gentamicin

    Mrp2 in killifish renal proximal tubules

  • Mrp2 in killifish renal proximal tubules

    ET-1

    Ca2+ET-1

    ET-1

    ATP

    Mrp2

    (-)

    ETB(+)

    NOS

    PKCcGMP(+)

    (+)NO

    sGC

    Notenboom et al., AJP Renal Physiol. 2004

    aminoglycosides

    radiocontrast agents

    heavy metals

    X

  • Killifish model, gentamicin exposure

    • Reduction of ATP-consuming processes in order to conserve ATP for more important cellular functions

    • A reduction of transport activity may contribute to the progression of cellular damage

    Function of inhibition of Mrp2-mediated efflux?

  • Contr

    ol

    Gent

    (1.5h

    )

    Gent

    (3h)

    Gent

    (12h)

    Gent

    (24h)

    0

    25

    50

    75

    100

    125

    150

    175 LumenCell

    *

    *Fl

    uore

    scen

    ce in

    tens

    ity(%

    of c

    ontr

    ol)

    Killifish model, gentamicin exposure

    Notenboom et al., J Pharmacol Exp Ther. 2005

  • 20 m

    A

    20 m

    B

    Increase of Mrp2 after 24h recovery

    Notenboom et al., 2004

    Contr

    ol

    M Ge

    nt

    10

    M L-N

    MMA

    50

    Gent+

    L-NMM

    A0

    20

    40

    60

    80

    100

    120

    140 **

    Fluo

    resc

    ence

    inte

    nsity

  • Control Preconditioned

    0

    50

    100

    150

    200

    250Cell

    *

    ***

    Fluo

    resc

    ence

    inte

    nsity

    Preconditioning of cellular function measured using Mito Tracker Red CM-H2XRos

    Notenboom et al., 2004

  • ATP

    Mrp2

    ATP

    Mrp2

    Short-termgentamicin (-)

    gentamicinLong-term (+)

    Killifish model, gentamicin exposure

  • • Killifish renal proximal tubules

    • MDCKII transfected with MRP2

    • Rat in vivo

    Mrp2 and the kidney

  • MDCKII transfected with MRP2

    1=Esterase2=Glutathione-S-transferase

    CMFDA

    CMFDA GSH

    CMF

    GSMFDA

    1

    1

    2

    2

  • GS-MF efflux from MDCKII cells(mean ± SD)

    0 10 20 300

    25

    50

    75

    100

    Time (min)

    Rel

    ativ

    e flu

    ores

    cenc

    ein

    tens

    ity (%

    )

    wild type

    MRP2+MK571+CDNB

    MDCKII transfected with MRP2

  • 1h exposure+24h recovery

    M 0

    M

    100

    M

    200

    M

    500

    M

    1000

    0

    50

    100

    150

    200

    *** ***

    Gentamicin

    % G

    S-M

    F flu

    ores

    cenc

    e(e

    xtra

    cellu

    lar/

    intr

    acel

    lula

    r)

    Notenboom et al., J Pharmacol Exp Ther. 2006

    MDCKII transfected with MRP2

  • 250 kD

    150 kD

    Total membrane

    Apical membrane

    Con

    trol

    1h 24h

    1h +

    24h

    reco

    very

    250 kD

    150 kD

    250 kD

    150 kD

    250 kD

    150 kD

    250 kD

    150 kD

    Con

    trol

    1h 24h

    1h +

    24h

    reco

    very

    250 kD

    150 kD

    Con

    trol

    1h 24h

    1h +

    24h

    reco

    very

    250 kD

    150 kD

    250 kD

    150 kD- Mrp2

    - Mrp2

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5 Apical membrane

    ***

    1h e

    xpos

    ure+

    24h

    reco

    very

    24h

    expo

    sure

    1h e

    xpos

    ure

    Con

    trol

    Rel

    ativ

    e pi

    xel i

    nten

    sity

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5 Total membrane

    Rel

    ativ

    e pi

    xel i

    nten

    sity

    MDCKII transfected with MRP2

  • • Killifish renal proximal tubules

    • Rat in vivo

    Mrp2 regulation in rat kidney

  • computer

    T

    37.5°C

    O2 pO2

    pressure

    Vit B12

    urine flow

    computer

    T

    37.5°C

    O2 pO2

    pressure

    Vit B12

    urine flow

    Calcein-AM

    Calcein-AM

    Mrp2 regulation in rat kidney

  • Masereeuw et al., J Am Soc Nephrol. 2003

    0 25 50 75 100 125 150

    0

    20

    40

    60

    80

    100

    120 WH

    Mrp2-/-

    **

    Time (min)

    Excr

    etio

    nrat

    e/G

    FR (p

    mol

    /ml)

    Mrp2 regulation in rat kidney

  • 0 25 50 75 100 125 150

    0

    20

    40

    60

    80

    100

    120 WH

    siRNA Mrp2Mrp2-/-

    **

    *

    Time (min)

    Excr

    etio

    nrat

    e/G

    FR (p

    mol

    /ml)

    Van de Water et al., Drug Metab Dispos. 2006

    Mrp2 regulation in rat kidney

  • Mrp2 in killifish renal proximal tubules

    ET-1

    Ca2+ET-1

    ET-1

    gentamicin

    Mrp2ETB

    ATP(-)

    (+)NOS

    PKCcGMP(+)

    (+)NO

    sGC

  • 0 25 50 75 100 125 1500

    25

    50

    75

    100

    125 Control100 mg/kg Gent ip 7dg

    **

    Time (min)

    Excr

    etio

    nrat

    e/G

    FR (p

    mol

    /ml)

    Mrp2 regulation in rat kidney

  • Gen

    t+B

    os

    Con

    trol

    Gen

    t

    Mrp2-

    Mrp2 gene expression

    Untre

    ated

    gent

    gent

    + bos

    entan

    0

    1

    2

    3

    4

    5

    Xn v

    alue

    s

    0 25 50 75 100 125 1500

    25

    50

    75

    100

    125 Control100 mg/kg Gent ip 7dg

    **

    100 mg Gent+Bosentan ip 7dg

    Time (min)

    Excr

    etio

    nrat

    e/G

    FR (p

    mol

    /ml)

    Mrp2 regulation in rat kidney

    Notenboom et al., J Pharmacol Exp Ther. 2006

  • Gentamicin

    exposure period

    Killifish

    MDCKII-

    MRP2

    Rat

    Short = =

    Short + recovery

    Long

    Regulation of Mrp2 from fish to mammal

    Long-term effect of ET-signaling is nephroprotective

  • ATPMrp2iNOS

    (+)NO

    PKCcGMP(+)

    sGC

    Mrp2 regulation in rat kidney

    LPS

  • A: iNOS

    B: Mrp2

    C: both

    D + E:

    nitrotyrosine

    adducts

    F + G:

    tubule injury

    F G

  • Heemskerk et al., Pflügers Arch. EJP. 2007

    kDa

    150

    100

    dLPS 3 6 12 24 48

    iNOS --

    Mrp2 --

    Mrp2 regulation in rat kidney

  • Rat endotoxemia: effect on other transporters

    P-gpATPADP

    B: NO-independent

    TNF-a

    TIRLRRMD-2

    TLR4

    +

    + TRAF2

    +

    TRAF2

    NF-kB

    +

    IKKb

    NIK

    +

    +

    +

    +

    TIRLRR

    CD14

    MD-2

    P-gpATPADP

    A: NO-dependent

    iNOS NO+

    ?

    +

    ++

    TLR4

    ?

    150

    kDa

    100

    3 6 12 24 LPS-

    150

    kDa

    100

    3 6 12 24 LPS-

    P-gp

    Heemskerk et al., J. Biomed. Biotech. 2010

    Contr

    olg/m

    l

    LPS 1

    0 10 ng

    /ml

    a

    TNF-

    a

    LPS +

    TNF-

    0

    50

    100

    150 *** ***

    *

    Rel

    ativ

    e P-

    gp a

    ctiv

    ity (1

    00%

    )

  • Rat endotoxemia: effect on influx transporters

    Protein (Oct-2)

    50

    75

    150100

    kDa LPS- 3 6 12 24 Am 6 Am 12

    Heemskerk et al., Eur J Pharmacol. 2008 and unpublished

    -2

    -1

    0

    1Oat1Oat3

    dLPS 3 6 12 24 48

    mR

    NA

    exp

    ress

    ion

    (rel

    ativ

    e Xn

    )

    -7-6-5-4-3-2-1012

    dLPSLPS

    Oatp1a1 Oatp1a3

    mR

    NA

    exp

    ress

    ion

    (rela

    tive

    Xn)

  • iNOS

    NO

    Heemskerk et al., 2007, 2008, unpublished

    Mrp2

    (+)

    P-gp

    OC+

    OC+

    a-KG

    OA-

    (-)

    LPS

    injuryMrp2

    P-gp

    OC+

    OC+

    a-KG

    OA-

    (-)

    Regulation of drug transporters during endotoxemia

  • 0

    10

    20

    30

    40

    ControlsLPS

    LPS + aminoguanidine

    3 6 12 24Time after LPS injection (h)

    cum

    ulat

    ive

    GST

    - a (µ

    mol

    )

    LPS

    basa

    l

    endo

    toxem

    ia

    + ami

    nogu

    anidi

    ne0

    20

    40

    60

    80*

    iNOS-gene expression

    indu

    ctio

    n (X

    n)

    0 500 1000 1500 2000 25000

    1020304050607080

    r2 = 0.6688

    p = 0.0131Controls

    LPS

    r2 = 0.0608p = 0.4922

    CUM NOx (mol)

    CU

    M G

    ST- a

    ( m

    ol)

    Kidney failure in human experimental endotoxemia

  • Conclusions

    • A down-regulation of influx carriers and an up-regulation

    of efflux pumps diminishes the accumulation of toxic

    compounds and attenuates further proximal tubular

    damage during inflammation

    • Important consequences for pharmacotherapy

    Regulation of drug transporters in kidney injury

  • Acknowledgements

    Dept. of Intensive CarePeter PickkersHans van der Hoeven

    Radboud University Nijmegen

    Medical Centre

    Inst. for Cell and Molecular BiosciencesColin D.A. Brown

    Newcastle University

    NIEHS/NIH; MDIBL

    Lab. Pharmacology and ToxicologyDavid S. Miller

    Science FacultyLab. Organismal Animal PhysiologyGert Flik

    Dept. Pharmacology and ToxicologyFrans G.M. RusselJeroen van den HeuvelMiriam HulsSuzanne HeemskerkSylvia NotenboomSylvie TerlouwFemke van de Water