89
Yiannis Sakellaridis Introduction Linear reduction Asymptotics along a torus Equivariant toroidal compactifications Regularization of orbital integrals Details on the construction of rHs F Regularization of orbital integrals. Yiannis Sakellaridis Rutgers–Newark and National Technical University of Athens Simons Symposium on Geometric Aspects of the Trace formula Schloss Elmau, Germany, 10-16 April 2016.

Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Regularization of orbital integrals.

Yiannis Sakellaridis

Rutgers–Newark and National Technical University of Athens

Simons Symposium onGeometric Aspects of the Trace formula

Schloss Elmau, Germany, 10-16 April 2016.

Page 2: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Outline

Introduction

Linear reduction

Asymptotics along a torus

Equivariant toroidal compactifications

Regularization of orbital integrals

Details on the construction of rHsF

Page 3: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Question: What is the (Relative) Trace Formula?Setup: Xi “ HizG , i “ 1, 2.“Naive” isomorphisms: X1 ˆ X2{G

diag » H1zG{H2.If X1 “ X2 “ H, G “ H ˆ H, this is also: » H{H-conj.At a more sophisticated level: Need these isomorphisms tobe true for F -points. OK if we think of the quotients asstacks.Deeper reason: Need all Langlands parameters to appear onthe spectral side. (E.g., for Gross-Prasad it is not enough toconsider one orthogonal/hermitian space.)

Page 4: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Question: What is the (Relative) Trace Formula?Setup: Xi “ HizG , i “ 1, 2.“Naive” isomorphisms: X1 ˆ X2{G

diag » H1zG{H2.If X1 “ X2 “ H, G “ H ˆ H, this is also: » H{H-conj.At a more sophisticated level: Need these isomorphisms tobe true for F -points. OK if we think of the quotients asstacks.Deeper reason: Need all Langlands parameters to appear onthe spectral side. (E.g., for Gross-Prasad it is not enough toconsider one orthogonal/hermitian space.)

Page 5: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Question: What is the (Relative) Trace Formula?Setup: Xi “ HizG , i “ 1, 2.“Naive” isomorphisms: X1 ˆ X2{G

diag » H1zG{H2.If X1 “ X2 “ H, G “ H ˆ H, this is also: » H{H-conj.At a more sophisticated level: Need these isomorphisms tobe true for F -points. OK if we think of the quotients asstacks.Deeper reason: Need all Langlands parameters to appear onthe spectral side. (E.g., for Gross-Prasad it is not enough toconsider one orthogonal/hermitian space.)

Page 6: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Question: What is the (Relative) Trace Formula?Setup: Xi “ HizG , i “ 1, 2.“Naive” isomorphisms: X1 ˆ X2{G

diag » H1zG{H2.If X1 “ X2 “ H, G “ H ˆ H, this is also: » H{H-conj.At a more sophisticated level: Need these isomorphisms tobe true for F -points. OK if we think of the quotients asstacks.Deeper reason: Need all Langlands parameters to appear onthe spectral side. (E.g., for Gross-Prasad it is not enough toconsider one orthogonal/hermitian space.)

Page 7: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

F -local field, X-smooth stack, now have notion ofSpXpF qq-Schwartz space of XpF q.Naively: if X “ X {G , SpXpF qq “ SpX pF qqGpF q(coinvariants),so that distributions DpXpF qq “ DpX pF qqGpF q.Global Schwartz space: SpXpAkqq “

Â1v SpXpkv qq.

Problem: Define a distribution RTF : SpXpAkqq Ñ C.From now on: X “ X {G , X : smooth affine, G : reductive.Pretend SpXpF qq “ SpX pF qqGpF q.

Page 8: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

F -local field, X-smooth stack, now have notion ofSpXpF qq-Schwartz space of XpF q.Naively: if X “ X {G , SpXpF qq “ SpX pF qqGpF q(coinvariants),so that distributions DpXpF qq “ DpX pF qqGpF q.Global Schwartz space: SpXpAkqq “

Â1v SpXpkv qq.

Problem: Define a distribution RTF : SpXpAkqq Ñ C.From now on: X “ X {G , X : smooth affine, G : reductive.Pretend SpXpF qq “ SpX pF qqGpF q.

Page 9: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

F -local field, X-smooth stack, now have notion ofSpXpF qq-Schwartz space of XpF q.Naively: if X “ X {G , SpXpF qq “ SpX pF qqGpF q(coinvariants),so that distributions DpXpF qq “ DpX pF qqGpF q.Global Schwartz space: SpXpAkqq “

Â1v SpXpkv qq.

Problem: Define a distribution RTF : SpXpAkqq Ñ C.From now on: X “ X {G , X : smooth affine, G : reductive.Pretend SpXpF qq “ SpX pF qqGpF q.

Page 10: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

F -local field, X-smooth stack, now have notion ofSpXpF qq-Schwartz space of XpF q.Naively: if X “ X {G , SpXpF qq “ SpX pF qqGpF q(coinvariants),so that distributions DpXpF qq “ DpX pF qqGpF q.Global Schwartz space: SpXpAkqq “

Â1v SpXpkv qq.

Problem: Define a distribution RTF : SpXpAkqq Ñ C.From now on: X “ X {G , X : smooth affine, G : reductive.Pretend SpXpF qq “ SpX pF qqGpF q.

Page 11: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

F -local field, X-smooth stack, now have notion ofSpXpF qq-Schwartz space of XpF q.Naively: if X “ X {G , SpXpF qq “ SpX pF qqGpF q(coinvariants),so that distributions DpXpF qq “ DpX pF qqGpF q.Global Schwartz space: SpXpAkqq “

Â1v SpXpkv qq.

Problem: Define a distribution RTF : SpXpAkqq Ñ C.From now on: X “ X {G , X : smooth affine, G : reductive.Pretend SpXpF qq “ SpX pF qqGpF q.

Page 12: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

F -local field, X-smooth stack, now have notion ofSpXpF qq-Schwartz space of XpF q.Naively: if X “ X {G , SpXpF qq “ SpX pF qqGpF q(coinvariants),so that distributions DpXpF qq “ DpX pF qqGpF q.Global Schwartz space: SpXpAkqq “

Â1v SpXpkv qq.

Problem: Define a distribution RTF : SpXpAkqq Ñ C.From now on: X “ X {G , X : smooth affine, G : reductive.Pretend SpXpF qq “ SpX pF qqGpF q.

Page 13: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Outline

Introduction

Linear reduction

Asymptotics along a torus

Equivariant toroidal compactifications

Regularization of orbital integrals

Details on the construction of rHsF

Page 14: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: X “ smooth affine variety. Then RTF “ř

Xpkq.Special case of this: X “ X {G with G acting freely on X , sothat X is a variety.Then

RTFpf q “ÿ

ξPX pkq{Gpkq

Oξpf q “

ż

rG s

ÿ

γPX pkq

f pγgqdg , (1)

rG s “ G pkqzG pAkq.

We will try to generalize (1). Can group terms intoequivalence classes according to “the semisimple part of theJordan decomposition”:

ÿ

o

ż ˚

rG s

ÿ

γPopkq

f pγgqdg .

Page 15: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: X “ smooth affine variety. Then RTF “ř

Xpkq.Special case of this: X “ X {G with G acting freely on X , sothat X is a variety.Then

RTFpf q “ÿ

ξPX pkq{Gpkq

Oξpf q “

ż

rG s

ÿ

γPX pkq

f pγgqdg , (1)

rG s “ G pkqzG pAkq.

We will try to generalize (1). Can group terms intoequivalence classes according to “the semisimple part of theJordan decomposition”:

ÿ

o

ż ˚

rG s

ÿ

γPopkq

f pγgqdg .

Page 16: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: X “ smooth affine variety. Then RTF “ř

Xpkq.Special case of this: X “ X {G with G acting freely on X , sothat X is a variety.Then

RTFpf q “ÿ

ξPX pkq{Gpkq

Oξpf q “

ż

rG s

ÿ

γPX pkq

f pγgqdg , (1)

rG s “ G pkqzG pAkq.

We will try to generalize (1). Can group terms intoequivalence classes according to “the semisimple part of theJordan decomposition”:

ÿ

o

ż ˚

rG s

ÿ

γPopkq

f pγgqdg .

Page 17: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: X “ smooth affine variety. Then RTF “ř

Xpkq.Special case of this: X “ X {G with G acting freely on X , sothat X is a variety.Then

RTFpf q “ÿ

ξPX pkq{Gpkq

Oξpf q “

ż

rG s

ÿ

γPX pkq

f pγgqdg , (1)

rG s “ G pkqzG pAkq.

We will try to generalize (1). Can group terms intoequivalence classes according to “the semisimple part of theJordan decomposition”:

ÿ

o

ż ˚

rG s

ÿ

γPopkq

f pγgqdg .

Page 18: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: X “ smooth affine variety. Then RTF “ř

Xpkq.Special case of this: X “ X {G with G acting freely on X , sothat X is a variety.Then

RTFpf q “ÿ

ξPX pkq{Gpkq

Oξpf q “

ż

rG s

ÿ

γPX pkq

f pγgqdg , (1)

rG s “ G pkqzG pAkq.

We will try to generalize (1). Can group terms intoequivalence classes according to “the semisimple part of theJordan decomposition”:

ÿ

o

ż ˚

rG s

ÿ

γPopkq

f pγgqdg .

Page 19: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Each o contains a unique semisimple (= geometricallyclosed) G pkq-orbit. Let x0 P X pkq be a representative,H “ Gx0 , V “ the fiber of the normal bundle to x0G at x0.Luna slice theorem: the stack X {G is etale-locallyisomorphic to V {H.This reduces the problem to the “Lie algebra version” V {H,with o replaced by the k-points of N “ tv P V |0 P v ¨ hu.The isomorphism is not canonical, but one can show thatthe definitions we will give do not depend on choices.Goal: regularize

ş˚

rHs

ř

γPNpkq f pγhqdh.References: Arthur, Jacquet, Lapid, Rogawski, Ichino,Yamana, Zydor, Jason Levy.

Page 20: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Each o contains a unique semisimple (= geometricallyclosed) G pkq-orbit. Let x0 P X pkq be a representative,H “ Gx0 , V “ the fiber of the normal bundle to x0G at x0.Luna slice theorem: the stack X {G is etale-locallyisomorphic to V {H.This reduces the problem to the “Lie algebra version” V {H,with o replaced by the k-points of N “ tv P V |0 P v ¨ hu.The isomorphism is not canonical, but one can show thatthe definitions we will give do not depend on choices.Goal: regularize

ş˚

rHs

ř

γPNpkq f pγhqdh.References: Arthur, Jacquet, Lapid, Rogawski, Ichino,Yamana, Zydor, Jason Levy.

Page 21: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Each o contains a unique semisimple (= geometricallyclosed) G pkq-orbit. Let x0 P X pkq be a representative,H “ Gx0 , V “ the fiber of the normal bundle to x0G at x0.Luna slice theorem: the stack X {G is etale-locallyisomorphic to V {H.This reduces the problem to the “Lie algebra version” V {H,with o replaced by the k-points of N “ tv P V |0 P v ¨ hu.The isomorphism is not canonical, but one can show thatthe definitions we will give do not depend on choices.Goal: regularize

ş˚

rHs

ř

γPNpkq f pγhqdh.References: Arthur, Jacquet, Lapid, Rogawski, Ichino,Yamana, Zydor, Jason Levy.

Page 22: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Each o contains a unique semisimple (= geometricallyclosed) G pkq-orbit. Let x0 P X pkq be a representative,H “ Gx0 , V “ the fiber of the normal bundle to x0G at x0.Luna slice theorem: the stack X {G is etale-locallyisomorphic to V {H.This reduces the problem to the “Lie algebra version” V {H,with o replaced by the k-points of N “ tv P V |0 P v ¨ hu.The isomorphism is not canonical, but one can show thatthe definitions we will give do not depend on choices.Goal: regularize

ş˚

rHs

ř

γPNpkq f pγhqdh.References: Arthur, Jacquet, Lapid, Rogawski, Ichino,Yamana, Zydor, Jason Levy.

Page 23: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Each o contains a unique semisimple (= geometricallyclosed) G pkq-orbit. Let x0 P X pkq be a representative,H “ Gx0 , V “ the fiber of the normal bundle to x0G at x0.Luna slice theorem: the stack X {G is etale-locallyisomorphic to V {H.This reduces the problem to the “Lie algebra version” V {H,with o replaced by the k-points of N “ tv P V |0 P v ¨ hu.The isomorphism is not canonical, but one can show thatthe definitions we will give do not depend on choices.Goal: regularize

ş˚

rHs

ř

γPNpkq f pγhqdh.References: Arthur, Jacquet, Lapid, Rogawski, Ichino,Yamana, Zydor, Jason Levy.

Page 24: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Outline

Introduction

Linear reduction

Asymptotics along a torus

Equivariant toroidal compactifications

Regularization of orbital integrals

Details on the construction of rHsF

Page 25: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

By an easy argument, enough to regularize

ż ˚

rHs

ÿ

γPV pkq

f pγhqdh.

Behavior along a 1-dimensional torus λ : Gm Ñ H:Decompose: V “ V`

λ ‘ V 0λ ‘ V´

λ

(positive, zero and negative weights).

ÿ

γPV

“ÿ

γ´PV´

ÿ

γ0PV 0

ÿ

γ`PV`

Terms with γ´ ‰ 0 contribute something of rapid decayalong λptq as |t| Ñ 0:

f ppγ´ ` γ0 ` γ`qλptqq “ f pγ´λptq ` pγ0 ` γ`qλptqq

Ñ 0 very rapidly as |t| Ñ 0, because γ´λptq Ñ 8.

Page 26: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

By an easy argument, enough to regularize

ż ˚

rHs

ÿ

γPV pkq

f pγhqdh.

Behavior along a 1-dimensional torus λ : Gm Ñ H:Decompose: V “ V`

λ ‘ V 0λ ‘ V´

λ

(positive, zero and negative weights).

ÿ

γPV

“ÿ

γ´PV´

ÿ

γ0PV 0

ÿ

γ`PV`

Terms with γ´ ‰ 0 contribute something of rapid decayalong λptq as |t| Ñ 0:

f ppγ´ ` γ0 ` γ`qλptqq “ f pγ´λptq ` pγ0 ` γ`qλptqq

Ñ 0 very rapidly as |t| Ñ 0, because γ´λptq Ñ 8.

Page 27: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

By an easy argument, enough to regularize

ż ˚

rHs

ÿ

γPV pkq

f pγhqdh.

Behavior along a 1-dimensional torus λ : Gm Ñ H:Decompose: V “ V`

λ ‘ V 0λ ‘ V´

λ

(positive, zero and negative weights).

ÿ

γPV

“ÿ

γ´PV´

ÿ

γ0PV 0

ÿ

γ`PV`

Terms with γ´ ‰ 0 contribute something of rapid decayalong λptq as |t| Ñ 0:

f ppγ´ ` γ0 ` γ`qλptqq “ f pγ´λptq ` pγ0 ` γ`qλptqq

Ñ 0 very rapidly as |t| Ñ 0, because γ´λptq Ñ 8.

Page 28: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

By an easy argument, enough to regularize

ż ˚

rHs

ÿ

γPV pkq

f pγhqdh.

Behavior along a 1-dimensional torus λ : Gm Ñ H:Decompose: V “ V`

λ ‘ V 0λ ‘ V´

λ

(positive, zero and negative weights).

ÿ

γPV

“ÿ

γ´PV´

ÿ

γ0PV 0

ÿ

γ`PV`

Terms with γ´ ‰ 0 contribute something of rapid decayalong λptq as |t| Ñ 0:

f ppγ´ ` γ0 ` γ`qλptqq “ f pγ´λptq ` pγ0 ` γ`qλptqq

Ñ 0 very rapidly as |t| Ñ 0, because γ´λptq Ñ 8.

Page 29: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

By an easy argument, enough to regularize

ż ˚

rHs

ÿ

γPV pkq

f pγhqdh.

Behavior along a 1-dimensional torus λ : Gm Ñ H:Decompose: V “ V`

λ ‘ V 0λ ‘ V´

λ

(positive, zero and negative weights).

ÿ

γPV

“ÿ

γ´PV´

ÿ

γ0PV 0

ÿ

γ`PV`

Terms with γ´ ‰ 0 contribute something of rapid decayalong λptq as |t| Ñ 0:

f ppγ´ ` γ0 ` γ`qλptqq “ f pγ´λptq ` pγ0 ` γ`qλptqq

Ñ 0 very rapidly as |t| Ñ 0, because γ´λptq Ñ 8.

Page 30: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Hence,ÿ

γPV

„ÿ

γ0PV 0

ÿ

γ`PV`

Poisson summation on V` (f : partial Fourier transform):

ÿ

γ`PV`

f pγ`q “ÿ

δPpV`q˚

f pδq,

But now Gm acts through λ with negative weights onpV`q˚. Hence, only the term with δ “ 0 remains, up tomoderate growth.Notice: f pδ “ 0q “

ş

V`pAk qf pnqdn.

In the end:

ÿ

γPV

f pγλptqq|t|Ñ0„

ÿ

γ0PV 0

ż

V`pAk q

f ppγ0 ` nqλptqqdn.

Page 31: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Hence,ÿ

γPV

„ÿ

γ0PV 0

ÿ

γ`PV`

Poisson summation on V` (f : partial Fourier transform):

ÿ

γ`PV`

f pγ`q “ÿ

δPpV`q˚

f pδq,

But now Gm acts through λ with negative weights onpV`q˚. Hence, only the term with δ “ 0 remains, up tomoderate growth.Notice: f pδ “ 0q “

ş

V`pAk qf pnqdn.

In the end:

ÿ

γPV

f pγλptqq|t|Ñ0„

ÿ

γ0PV 0

ż

V`pAk q

f ppγ0 ` nqλptqqdn.

Page 32: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Hence,ÿ

γPV

„ÿ

γ0PV 0

ÿ

γ`PV`

Poisson summation on V` (f : partial Fourier transform):

ÿ

γ`PV`

f pγ`q “ÿ

δPpV`q˚

f pδq,

But now Gm acts through λ with negative weights onpV`q˚. Hence, only the term with δ “ 0 remains, up tomoderate growth.Notice: f pδ “ 0q “

ş

V`pAk qf pnqdn.

In the end:

ÿ

γPV

f pγλptqq|t|Ñ0„

ÿ

γ0PV 0

ż

V`pAk q

f ppγ0 ` nqλptqqdn.

Page 33: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Hence,ÿ

γPV

„ÿ

γ0PV 0

ÿ

γ`PV`

Poisson summation on V` (f : partial Fourier transform):

ÿ

γ`PV`

f pγ`q “ÿ

δPpV`q˚

f pδq,

But now Gm acts through λ with negative weights onpV`q˚. Hence, only the term with δ “ 0 remains, up tomoderate growth.Notice: f pδ “ 0q “

ş

V`pAk qf pnqdn.

In the end:

ÿ

γPV

f pγλptqq|t|Ñ0„

ÿ

γ0PV 0

ż

V`pAk q

f ppγ0 ` nqλptqqdn.

Page 34: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

ÿ

γPV

f pγλptqq|t|Ñ0„

ÿ

γ0PV 0

ż

V`pAk q

f pγ0 ` nλptqqdn.

The integralş

V`pAk qis a λpAk

ˆq-eigendistribution witheigencharacter equal to the absolute value of:

ź

χ

χ´mχ ,

where χ ranges over the characters of Gm on V`pAkq (viaλ) and mχ is the multiplicity of χ.If we write the characters additively:

´ÿ

χ

mχ ¨ χ.

Page 35: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

ÿ

γPV

f pγλptqq|t|Ñ0„

ÿ

γ0PV 0

ż

V`pAk q

f pγ0 ` nλptqqdn.

The integralş

V`pAk qis a λpAk

ˆq-eigendistribution witheigencharacter equal to the absolute value of:

ź

χ

χ´mχ ,

where χ ranges over the characters of Gm on V`pAkq (viaλ) and mχ is the multiplicity of χ.If we write the characters additively:

´ÿ

χ

mχ ¨ χ.

Page 36: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

ÿ

γPV

f pγλptqq|t|Ñ0„

ÿ

γ0PV 0

ż

V`pAk q

f pγ0 ` nλptqqdn.

The integralş

V`pAk qis a λpAk

ˆq-eigendistribution witheigencharacter equal to the absolute value of:

ź

χ

χ´mχ ,

where χ ranges over the characters of Gm on V`pAkq (viaλ) and mχ is the multiplicity of χ.If we write the characters additively:

´ÿ

χ

mχ ¨ χ.

Page 37: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

To sum up: to describe the asymptotic behavior of thefunction

Σf phq :“ÿ

γPV pkq

f pγhq

on rHs, need a way to encode the fact that

for every λ : Gm Ñ H, as |t| Ñ 0,

Σf pλptqq „ź

χ|λě0

χ´mχptq.

Page 38: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

To sum up: to describe the asymptotic behavior of thefunction

Σf phq :“ÿ

γPV pkq

f pγhq

on rHs, need a way to encode the fact that

for every λ : Gm Ñ H, as |t| Ñ 0,

Σf pλptqq „ź

χ|λě0

χ´mχptq.

Page 39: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Outline

Introduction

Linear reduction

Asymptotics along a torus

Equivariant toroidal compactifications

Regularization of orbital integrals

Details on the construction of rHsF

Page 40: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Let A “ maximal (central) split torus in P0{N0 “ universalCartan of H.a “ HompGm,Aq bZ Q.Recall: a strictly convex polyhedral cone C in a describes anaffine toric embedding: A ãÑ AC , characterized by:

limtÑ0

λptq P AC ðñ λ P C.

A more general toric variety is described by a fan F on a (=subdivision of a subset into cones C).We are interested in a subdivision F of a` “anti-dominantcone.Definition: the subdivision F of a` is determined by its walls,and the hyperplanes perpendicular to χ, χ a weight of V .

Page 41: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Let A “ maximal (central) split torus in P0{N0 “ universalCartan of H.a “ HompGm,Aq bZ Q.Recall: a strictly convex polyhedral cone C in a describes anaffine toric embedding: A ãÑ AC , characterized by:

limtÑ0

λptq P AC ðñ λ P C.

A more general toric variety is described by a fan F on a (=subdivision of a subset into cones C).We are interested in a subdivision F of a` “anti-dominantcone.Definition: the subdivision F of a` is determined by its walls,and the hyperplanes perpendicular to χ, χ a weight of V .

Page 42: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Let A “ maximal (central) split torus in P0{N0 “ universalCartan of H.a “ HompGm,Aq bZ Q.Recall: a strictly convex polyhedral cone C in a describes anaffine toric embedding: A ãÑ AC , characterized by:

limtÑ0

λptq P AC ðñ λ P C.

A more general toric variety is described by a fan F on a (=subdivision of a subset into cones C).We are interested in a subdivision F of a` “anti-dominantcone.Definition: the subdivision F of a` is determined by its walls,and the hyperplanes perpendicular to χ, χ a weight of V .

Page 43: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Let A “ maximal (central) split torus in P0{N0 “ universalCartan of H.a “ HompGm,Aq bZ Q.Recall: a strictly convex polyhedral cone C in a describes anaffine toric embedding: A ãÑ AC , characterized by:

limtÑ0

λptq P AC ðñ λ P C.

A more general toric variety is described by a fan F on a (=subdivision of a subset into cones C).We are interested in a subdivision F of a` “anti-dominantcone.Definition: the subdivision F of a` is determined by its walls,and the hyperplanes perpendicular to χ, χ a weight of V .

Page 44: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Let A “ maximal (central) split torus in P0{N0 “ universalCartan of H.a “ HompGm,Aq bZ Q.Recall: a strictly convex polyhedral cone C in a describes anaffine toric embedding: A ãÑ AC , characterized by:

limtÑ0

λptq P AC ðñ λ P C.

A more general toric variety is described by a fan F on a (=subdivision of a subset into cones C).We are interested in a subdivision F of a` “anti-dominantcone.Definition: the subdivision F of a` is determined by its walls,and the hyperplanes perpendicular to χ, χ a weight of V .

Page 45: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: In the group case, V “ h, weights of V are theroots, and a` is not divided further.For each cone C (including “faces”) of the subdivision, wehave a character:

χC “ ´ÿ

χ

mχχ,

where mχ is the multiplicity of χ in V` “ the positivesubspace of all cocharacters in C.Example: In the group case, this is just the modularcharacter 2ρ.

RemarkWe are only interested in the restriction of χC to thesubtorus AC spanned by cocharacters in C. From now on χCis considered as a character of AC only.

Page 46: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: In the group case, V “ h, weights of V are theroots, and a` is not divided further.For each cone C (including “faces”) of the subdivision, wehave a character:

χC “ ´ÿ

χ

mχχ,

where mχ is the multiplicity of χ in V` “ the positivesubspace of all cocharacters in C.Example: In the group case, this is just the modularcharacter 2ρ.

RemarkWe are only interested in the restriction of χC to thesubtorus AC spanned by cocharacters in C. From now on χCis considered as a character of AC only.

Page 47: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: In the group case, V “ h, weights of V are theroots, and a` is not divided further.For each cone C (including “faces”) of the subdivision, wehave a character:

χC “ ´ÿ

χ

mχχ,

where mχ is the multiplicity of χ in V` “ the positivesubspace of all cocharacters in C.Example: In the group case, this is just the modularcharacter 2ρ.

RemarkWe are only interested in the restriction of χC to thesubtorus AC spanned by cocharacters in C. From now on χCis considered as a character of AC only.

Page 48: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: In the group case, V “ h, weights of V are theroots, and a` is not divided further.For each cone C (including “faces”) of the subdivision, wehave a character:

χC “ ´ÿ

χ

mχχ,

where mχ is the multiplicity of χ in V` “ the positivesubspace of all cocharacters in C.Example: In the group case, this is just the modularcharacter 2ρ.

RemarkWe are only interested in the restriction of χC to thesubtorus AC spanned by cocharacters in C. From now on χCis considered as a character of AC only.

Page 49: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

TheoremThere is an HpAkq-equivariant compactification rHsF of rHs,such that for every f P SpV pAkqq, the function

Σf phq “ÿ

γPV pkq

f pγhq

on rHs is a section of the sheaf over rHsF of χC-equivariantfunctions.

Example

(Tate’s thesis)H “ Gm, V “ Ga, a “ Q, F “ C` Y C0 Y C´, C˘ “ Q˘,C0 “ t0u.χC` “ ´1, χC´ “ 0.Σf ptq „ |t|´1 when |t| Ñ 0, „ 1 when |t| Ñ 8.

Page 50: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

TheoremThere is an HpAkq-equivariant compactification rHsF of rHs,such that for every f P SpV pAkqq, the function

Σf phq “ÿ

γPV pkq

f pγhq

on rHs is a section of the sheaf over rHsF of χC-equivariantfunctions.

Example

(Tate’s thesis)H “ Gm, V “ Ga, a “ Q, F “ C` Y C0 Y C´, C˘ “ Q˘,C0 “ t0u.χC` “ ´1, χC´ “ 0.Σf ptq „ |t|´1 when |t| Ñ 0, „ 1 when |t| Ñ 8.

Page 51: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

TheoremThere is an HpAkq-equivariant compactification rHsF of rHs,such that for every f P SpV pAkqq, the function

Σf phq “ÿ

γPV pkq

f pγhq

on rHs is a section of the sheaf over rHsF of χC-equivariantfunctions.

Example

(Tate’s thesis)H “ Gm, V “ Ga, a “ Q, F “ C` Y C0 Y C´, C˘ “ Q˘,C0 “ t0u.χC` “ ´1, χC´ “ 0.Σf ptq „ |t|´1 when |t| Ñ 0, „ 1 when |t| Ñ 8.

Page 52: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

TheoremThere is an HpAkq-equivariant compactification rHsF of rHs,such that for every f P SpV pAkqq, the function

Σf phq “ÿ

γPV pkq

f pγhq

on rHs is a section of the sheaf over rHsF of χC-equivariantfunctions.

Example

(Tate’s thesis)H “ Gm, V “ Ga, a “ Q, F “ C` Y C0 Y C´, C˘ “ Q˘,C0 “ t0u.χC` “ ´1, χC´ “ 0.Σf ptq „ |t|´1 when |t| Ñ 0, „ 1 when |t| Ñ 8.

Page 53: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 54: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 55: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 56: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 57: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 58: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 59: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 60: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

Orthogonal Gross-Prasad: X “ SOn`1{SOn-conj

H :“ Hn :“ SOn, V “ hn`1, V “ h‘ std .

Say n even, split SOn. (Odd or non-split case is similar.)GLn ãÑ H (into a Levi subgroup)ε1, . . . , εn: the standard characters of the torus of diagonalelements in GLn,a` : ε1 ď ¨ ¨ ¨ ď εn´1 ď εn ď ´εn´1,Non-zero weights of h: dual to the walls of a`.Non-zero weights of the std : ˘ε1,˘ε2, . . . ,˘εn.New wall: εn “ 0.Thus, the fan F: subdivision of a` into two subcones.

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ` εn (on εn ě 0)

χC “ 2ρ` ε1 ` ¨ ¨ ¨ ` εn´1 ´ εn (on εn ď 0)

Notice: in all cases, χC ‰ 2ρ, except for C “ t0u.

Page 61: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Outline

Introduction

Linear reduction

Asymptotics along a torus

Equivariant toroidal compactifications

Regularization of orbital integrals

Details on the construction of rHsF

Page 62: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Regularization: baby case

Let s P C. Consider the space SpΓzHqs of functions on ΓzH,where H is the complex upper half-plane and Γ “ SL2pZq,which are smooth and have the property that:

f px ` iyq „ y s

for y " 0, where „ means that the difference is a functionwhich, together with all its polynomial derivatives, is of rapiddecay. Then, the regularized integral:

ż ˚

ΓzHf px ` iyq

dxdˆy

y

(where dˆy denotes multiplicative measure dyy ) is

well-defined unless s “ 1, i.e. unless the growth of thefunction is inverse to that of volume. The exponent(multiplicative character) y ÞÑ y 1 is what I call a criticalexponent.

Page 63: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Regularization: baby case

Let s P C. Consider the space SpΓzHqs of functions on ΓzH,where H is the complex upper half-plane and Γ “ SL2pZq,which are smooth and have the property that:

f px ` iyq „ y s

for y " 0, where „ means that the difference is a functionwhich, together with all its polynomial derivatives, is of rapiddecay. Then, the regularized integral:

ż ˚

ΓzHf px ` iyq

dxdˆy

y

(where dˆy denotes multiplicative measure dyy ) is

well-defined unless s “ 1, i.e. unless the growth of thefunction is inverse to that of volume. The exponent(multiplicative character) y ÞÑ y 1 is what I call a criticalexponent.

Page 64: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Regularization: baby case (cont.)

The definition of the regularized integral is as follows: fixany large T ą 0, and define:

ftpx ` iyq “

#

f px ` iyq, if y ď T

f px ` iyq|y |´t , if y ą T .

Thenş

ΓzH ftpx ` iyqdxdˆy|y | is convergent for <ptq " 0, and

admits meromorphic continuation with only a simple pole att ` 1 “ s. Thus, if s ‰ 1 we can define the regularizedintegral as the analytic continuation of the above integral tot “ 0.

Page 65: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Regularization: baby case (cont.)

The definition of the regularized integral is as follows: fixany large T ą 0, and define:

ftpx ` iyq “

#

f px ` iyq, if y ď T

f px ` iyq|y |´t , if y ą T .

Thenş

ΓzH ftpx ` iyqdxdˆy|y | is convergent for <ptq " 0, and

admits meromorphic continuation with only a simple pole att ` 1 “ s. Thus, if s ‰ 1 we can define the regularizedintegral as the analytic continuation of the above integral tot “ 0.

Page 66: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Local picture on rHsF:

ş˚f px , yq|x |s1 |y |s2dˆxdˆy .

Makes sense as long as |x |s1

or |y |s2 is not inverse to vol-ume growth (equal to themodular character).

TheoremThe regularized integral makes sense, as long as χC ‰ 2ρ forevery C ‰ t0u.

Page 67: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Local picture on rHsF:

ş˚f px , yq|x |s1 |y |s2dˆxdˆy .

Makes sense as long as |x |s1

or |y |s2 is not inverse to vol-ume growth (equal to themodular character).

TheoremThe regularized integral makes sense, as long as χC ‰ 2ρ forevery C ‰ t0u.

Page 68: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Local picture on rHsF:

ş˚f px , yq|x |s1 |y |s2dˆxdˆy .

Makes sense as long as |x |s1

or |y |s2 is not inverse to vol-ume growth (equal to themodular character).

TheoremThe regularized integral makes sense, as long as χC ‰ 2ρ forevery C ‰ t0u.

Page 69: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

In the Gross-Prasad case, χC ‰ 2ρ. Thus,ş˚

makes sense.

Example

In the group case, V “ h, χC “ 2ρ for every C. Thus,ş˚

does not make sense.There is no purely geometric regularization of orbitalintegrals.

Remark

ÿ

γPV pkq

f pγhq “ÿ

γPV˚pkq

f pγhq,

so Poisson summation automatically holds for theregularized integrals

ş˚.

Page 70: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

In the Gross-Prasad case, χC ‰ 2ρ. Thus,ş˚

makes sense.

Example

In the group case, V “ h, χC “ 2ρ for every C. Thus,ş˚

does not make sense.There is no purely geometric regularization of orbitalintegrals.

Remark

ÿ

γPV pkq

f pγhq “ÿ

γPV˚pkq

f pγhq,

so Poisson summation automatically holds for theregularized integrals

ş˚.

Page 71: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

In the Gross-Prasad case, χC ‰ 2ρ. Thus,ş˚

makes sense.

Example

In the group case, V “ h, χC “ 2ρ for every C. Thus,ş˚

does not make sense.There is no purely geometric regularization of orbitalintegrals.

Remark

ÿ

γPV pkq

f pγhq “ÿ

γPV˚pkq

f pγhq,

so Poisson summation automatically holds for theregularized integrals

ş˚.

Page 72: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example

In the Gross-Prasad case, χC ‰ 2ρ. Thus,ş˚

makes sense.

Example

In the group case, V “ h, χC “ 2ρ for every C. Thus,ş˚

does not make sense.There is no purely geometric regularization of orbitalintegrals.

Remark

ÿ

γPV pkq

f pγhq “ÿ

γPV˚pkq

f pγhq,

so Poisson summation automatically holds for theregularized integrals

ş˚.

Page 73: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: Kudla-Rallis regularized period for theSiegel-Weil formula.

H “ SOpW q, dim W “ 2m, acting on V “ W b X ,dim X “ n.Assume split, a` : ε1 ď ¨ ¨ ¨ ď εm´1 ď εm ď ´εm´1 as before.Weights: n times the weights of the standard representation:˘ε1, . . . ,˘εm. Decomposition of a` into two subcones asbefore.Extremal rays of the cones:

vi “ px , x , . . . , xpi-th positionq, 0, . . . , 0q, x ď 0

and v 1m “ px , x , . . . , x ,´xq.Character χC for C “ R`vi : vi ÞÑ nix .Modular character: 2ρ “

ř

i 2pm ´ iqεi .On vi : 2ρpvi q “ 2xipm ´ i`1

2 q.

Page 74: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: Kudla-Rallis regularized period for theSiegel-Weil formula.

H “ SOpW q, dim W “ 2m, acting on V “ W b X ,dim X “ n.Assume split, a` : ε1 ď ¨ ¨ ¨ ď εm´1 ď εm ď ´εm´1 as before.Weights: n times the weights of the standard representation:˘ε1, . . . ,˘εm. Decomposition of a` into two subcones asbefore.Extremal rays of the cones:

vi “ px , x , . . . , xpi-th positionq, 0, . . . , 0q, x ď 0

and v 1m “ px , x , . . . , x ,´xq.Character χC for C “ R`vi : vi ÞÑ nix .Modular character: 2ρ “

ř

i 2pm ´ iqεi .On vi : 2ρpvi q “ 2xipm ´ i`1

2 q.

Page 75: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: Kudla-Rallis regularized period for theSiegel-Weil formula.

H “ SOpW q, dim W “ 2m, acting on V “ W b X ,dim X “ n.Assume split, a` : ε1 ď ¨ ¨ ¨ ď εm´1 ď εm ď ´εm´1 as before.Weights: n times the weights of the standard representation:˘ε1, . . . ,˘εm. Decomposition of a` into two subcones asbefore.Extremal rays of the cones:

vi “ px , x , . . . , xpi-th positionq, 0, . . . , 0q, x ď 0

and v 1m “ px , x , . . . , x ,´xq.Character χC for C “ R`vi : vi ÞÑ nix .Modular character: 2ρ “

ř

i 2pm ´ iqεi .On vi : 2ρpvi q “ 2xipm ´ i`1

2 q.

Page 76: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: Kudla-Rallis regularized period for theSiegel-Weil formula.

H “ SOpW q, dim W “ 2m, acting on V “ W b X ,dim X “ n.Assume split, a` : ε1 ď ¨ ¨ ¨ ď εm´1 ď εm ď ´εm´1 as before.Weights: n times the weights of the standard representation:˘ε1, . . . ,˘εm. Decomposition of a` into two subcones asbefore.Extremal rays of the cones:

vi “ px , x , . . . , xpi-th positionq, 0, . . . , 0q, x ď 0

and v 1m “ px , x , . . . , x ,´xq.Character χC for C “ R`vi : vi ÞÑ nix .Modular character: 2ρ “

ř

i 2pm ´ iqεi .On vi : 2ρpvi q “ 2xipm ´ i`1

2 q.

Page 77: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: Kudla-Rallis regularized period for theSiegel-Weil formula.

H “ SOpW q, dim W “ 2m, acting on V “ W b X ,dim X “ n.Assume split, a` : ε1 ď ¨ ¨ ¨ ď εm´1 ď εm ď ´εm´1 as before.Weights: n times the weights of the standard representation:˘ε1, . . . ,˘εm. Decomposition of a` into two subcones asbefore.Extremal rays of the cones:

vi “ px , x , . . . , xpi-th positionq, 0, . . . , 0q, x ď 0

and v 1m “ px , x , . . . , x ,´xq.Character χC for C “ R`vi : vi ÞÑ nix .Modular character: 2ρ “

ř

i 2pm ´ iqεi .On vi : 2ρpvi q “ 2xipm ´ i`1

2 q.

Page 78: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Example: Kudla-Rallis regularized period for theSiegel-Weil formula (cont.).

χCpvi q “ nix

2ρpvi q “ 2xipm ´i ` 1

2q

Condition:

nix ‰ 2xipm ´i ` 1

2q for all 1 ď i ď m

ðñ n R rm ´ 1, 2pm ´ 1qs

Page 79: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Outline

Introduction

Linear reduction

Asymptotics along a torus

Equivariant toroidal compactifications

Regularization of orbital integrals

Details on the construction of rHsF

Page 80: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

C ù a`P (face) Ø P “ MN Ă HFP “ restriction of F to a`P .

AFPP “ toric variety for AP .

rHsP “ MpkqNpAkqzHpAkq

DefinitionrHsFP :“ rHsP ˆ

APpRq AFPP pRq.

HpAkq-orbits Ø subcones P FP .ZC Ø C.

Page 81: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

C ù a`P (face) Ø P “ MN Ă HFP “ restriction of F to a`P .

AFPP “ toric variety for AP .

rHsP “ MpkqNpAkqzHpAkq

DefinitionrHsFP :“ rHsP ˆ

APpRq AFPP pRq.

HpAkq-orbits Ø subcones P FP .ZC Ø C.

Page 82: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

C ù a`P (face) Ø P “ MN Ă HFP “ restriction of F to a`P .

AFPP “ toric variety for AP .

rHsP “ MpkqNpAkqzHpAkq

DefinitionrHsFP :“ rHsP ˆ

APpRq AFPP pRq.

HpAkq-orbits Ø subcones P FP .ZC Ø C.

Page 83: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

PpkqzHpAkq

α

yy

β

&&rHs rHsP

α is an isomorphism “close to P-cusp”.

DefinitionFor all C P F, C ù P, glue ZC to rHs “in the P-cusp” byglueing it to PpkqzHpAkq: a sequence zn P PpkqzHpAkq

converges to z P ZC iff βpznq Ñ z in rHsFP .

RemarkWhen F “ the faces of a`, this is the reductive Borel-Serrecompactification.

Page 84: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

PpkqzHpAkq

α

yy

β

&&rHs rHsP

α is an isomorphism “close to P-cusp”.

DefinitionFor all C P F, C ù P, glue ZC to rHs “in the P-cusp” byglueing it to PpkqzHpAkq: a sequence zn P PpkqzHpAkq

converges to z P ZC iff βpznq Ñ z in rHsFP .

RemarkWhen F “ the faces of a`, this is the reductive Borel-Serrecompactification.

Page 85: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Suppose now that we are given a set E of characters χC ofAC , for each cone C P F.Define the space of “asymptotically pF,E q-finite” functionson rHs inductively:SpZC , χCq “ Schwartz pAC , χCq-sections over ZC .SpZC ,E q “ the space of sections which are “asymptoticallypF,E q-finite”.It is a cosheaf over ZC . In a neighborhood of ZD Ă ZC , itssections are equal to a section of SpZD,E q, up to rapiddecay (i.e. up to a section of SpZC , χCq).For C “ t0u ù SprHsF,E q.

Page 86: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Suppose now that we are given a set E of characters χC ofAC , for each cone C P F.Define the space of “asymptotically pF,E q-finite” functionson rHs inductively:SpZC , χCq “ Schwartz pAC , χCq-sections over ZC .SpZC ,E q “ the space of sections which are “asymptoticallypF,E q-finite”.It is a cosheaf over ZC . In a neighborhood of ZD Ă ZC , itssections are equal to a section of SpZD,E q, up to rapiddecay (i.e. up to a section of SpZC , χCq).For C “ t0u ù SprHsF,E q.

Page 87: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Suppose now that we are given a set E of characters χC ofAC , for each cone C P F.Define the space of “asymptotically pF,E q-finite” functionson rHs inductively:SpZC , χCq “ Schwartz pAC , χCq-sections over ZC .SpZC ,E q “ the space of sections which are “asymptoticallypF,E q-finite”.It is a cosheaf over ZC . In a neighborhood of ZD Ă ZC , itssections are equal to a section of SpZD,E q, up to rapiddecay (i.e. up to a section of SpZC , χCq).For C “ t0u ù SprHsF,E q.

Page 88: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Suppose now that we are given a set E of characters χC ofAC , for each cone C P F.Define the space of “asymptotically pF,E q-finite” functionson rHs inductively:SpZC , χCq “ Schwartz pAC , χCq-sections over ZC .SpZC ,E q “ the space of sections which are “asymptoticallypF,E q-finite”.It is a cosheaf over ZC . In a neighborhood of ZD Ă ZC , itssections are equal to a section of SpZD,E q, up to rapiddecay (i.e. up to a section of SpZC , χCq).For C “ t0u ù SprHsF,E q.

Page 89: Regularization of orbital integrals.pi.math.cornell.edu/~templier/geometric/16elmau_Sakellaridis.pdf · Asymptotics along a torus Equivariant toroidal compacti cations Regularization

Yiannis Sakellaridis

Introduction

Linear reduction

Asymptotics alonga torus

Equivarianttoroidalcompactifications

Regularization oforbital integrals

Details on theconstruction ofrHsF

Suppose now that we are given a set E of characters χC ofAC , for each cone C P F.Define the space of “asymptotically pF,E q-finite” functionson rHs inductively:SpZC , χCq “ Schwartz pAC , χCq-sections over ZC .SpZC ,E q “ the space of sections which are “asymptoticallypF,E q-finite”.It is a cosheaf over ZC . In a neighborhood of ZD Ă ZC , itssections are equal to a section of SpZD,E q, up to rapiddecay (i.e. up to a section of SpZC , χCq).For C “ t0u ù SprHsF,E q.