23
Regional Characteristics of Unit Hydrographs and Storm Hyetographs Theodore G. Cleveland, Ph.D., P.E.

Regional Characteristics of Unit Hydrographs and Storm Hyetographs

  • Upload
    questa

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

Regional Characteristics of Unit Hydrographs and Storm Hyetographs. Theodore G. Cleveland, Ph.D., P.E. Instantaneous Unit Hydrograph Approach. Unit hydrograph is one of several methods examined in this research. University of Houston has focused exclusively on this technique. - PowerPoint PPT Presentation

Citation preview

Page 1: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Regional Characteristics of Unit Hydrographs and Storm

HyetographsTheodore G. Cleveland, Ph.D., P.E.

Page 2: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Instantaneous Unit Hydrograph Approach

• Unit hydrograph is one of several methods examined in this research.

• University of Houston has focused exclusively on this technique.

• Two major components– Analysis (Find IUH from rainfall-runoff data)– Synthesis (Estimate IUH from watershed

character)

Page 3: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Storm Analysis

• Central Texas Database• Analyze all storms using five different IUH model

equations.• Pick a “good” model• Aggregate model parameter values by station.• Re-run each storm using the aggregated values.• Test these results for acceptability• Interpret results• Conclusions and Recommendations

Page 4: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Central Texas Database

Page 5: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Different Unit Hydrograph Models

• Five IUH Models– Gamma– Rayleigh– Weibull – NRCS (DUH as an IUH)– Commons

Page 6: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Gamma-family

• Gamma, Rayleigh, and Weibull are all generalized gamma-distributions. The IUH model equation is

• Gamma when p=1; Rayleigh when p=2

)exp()( 1 p

pNp

pNp

p

p

t

t

t

t

t

tp

A

tq

Page 7: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

NRCS DUH

• NRCS DUH as an IUH. Using a Gamma-type functional representation is

pt

t

pp

et

t

Aq

tq 88.381.3)(5387.37

)(

NRCS Curve-Fitting Using Gamma function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

t/Tp

q/qp

NRCS-Tabulation Equation

Page 8: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Commons Model

• Commons’ Hydrograph– Empirically derived for large watersheds

Figure 1. Hydrograph developed by trial to cover a typical flood. from: Commons, G. G., 1942. “Flood hydrographs,” Civil Engineering, 12(10), pp

571-572.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

Units of Time

Uni

ts o

f Flo

w

Approximation Original

p

p

p

t

t

p

t

t

p

t

t

p

et

t

et

t

et

t

A

tq

641.5132.0

694.2965.0

707.4176.0

)641.5

()288.0(

88.3

)694.2

()925.0(

58.7

)707.4

()118.0(

001.77)(

Page 9: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Analyze Each Storm

• Supply observed precipitation data to the hydrograph function.

• Convolution of sequence of the IUH models to create a DRH.

• Compare observed runoff with DRH, adjust parameters in IUH to minimize some error function.

Page 10: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Typical Result

0

1

2

3

4

5

6

7

100 600 1100 1600 2100

Time (minutes)

Cu

mu

lati

ve D

epth

(in

ches

)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

Rat

e (i

nch

es/m

in)

ACC_PRECIP(IN) ACC_RUNOFF(IN)

ACC_MOD_RUNOFF(IN/MIN) RATE_PRECIP(IN/MIN)

RATE_RUNOFF(IN/MIN) RATE_MODEL(IN/MIN)

Figure 7.4 Plot of Observed and Model Runoff, Ash Creek, June 3, 1973 storm using the Weibull IUH model.

Page 11: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Typical Result

0

1

2

3

4

5

6

7

0 500 1000 1500 2000

Time (minutes)

Cu

mu

lati

ve D

epth

(in

ches

)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

Rat

e (i

nch

es/m

in)

ACC_PRECIP(IN) ACC_RUNOFF(IN)

ACC_MOD_RUNOFF(IN/MIN) RATE_PRECIP(IN/MIN)

RATE_RUNOFF(IN/MIN) RATE_MODEL(IN/MIN)

0

1

2

3

4

5

6

7

0 500 1000 1500 2000

Time (minutes)

Cu

mu

lati

ve D

epth

(in

ches

)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

Rat

e (i

nch

es/m

in)

ACC_PRECIP(IN) ACC_RUNOFF(IN)

ACC_MOD_RUNOFF(IN/MIN) RATE_PRECIP(IN/MIN)

RATE_RUNOFF(IN/MIN) RATE_MODEL(IN/MIN)

0

1

2

3

4

5

6

7

0 500 1000 1500 2000

Time (minutes)

Cu

mu

lati

ve D

epth

(in

ches

)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

Rat

e (i

nch

es/m

in)

ACC_PRECIP(IN) ACC_RUNOFF(IN)

ACC_MOD_RUNOFF(IN/MIN) RATE_PRECIP(IN/MIN)

RATE_RUNOFF(IN/MIN) RATE_MODEL(IN/MIN)

0

1

2

3

4

5

6

7

0 500 1000 1500 2000

Time (minutes)

Cu

mu

lati

ve D

epth

(in

ches

)

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

Rat

e (i

nch

es/m

in)

ACC_PRECIP(IN) ACC_RUNOFF(IN)

ACC_MOD_RUNOFF(IN/MIN) RATE_PRECIP(IN/MIN)

RATE_RUNOFF(IN/MIN) RATE_MODEL(IN/MIN)

Commons

NRCS

Rayleigh

Gamma

Page 12: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Choosing a Model

• Establish acceptance criteria:– Averages

• Bias

• Fractional Bias

• Fractional Variance

• Normalized Mean Square Error

– Peak• Peak Relative Error:• Peak Temporal Bias:

PmPo ttTB

PoPmPo QQQQB /

N

iimiomo QQ

NQQBias

1,,

1

mo

mo

QQ

QQFB 2

qmqo

qmqoFV

22

22

2

mo

mo

QQ

QQNMSE

2

Page 13: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Acceptance AnalysisC r i t e r i a ( B a s e f l o w

S e p a r a t e d ) G a m m a R a y l e i g h W e i b u l l N R C S C o m m o n s

A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d

S t o r m s A n a l y z e d 1 6 4 2 - - 1 6 4 2 - - 1 6 4 2 - - 1 6 4 2 - - 1 6 4 2 - -

2

1NMSE

1 5 5 6 9 4 . 8 % 6 9 5 4 2 . 3 % 1 5 6 9 9 5 . 6 % 3 4 7 2 1 . 1 % 7 0 . 4 %

21

21 FB

1 5 3 1 9 3 . 2 % 5 2 9 3 2 . 2 % 1 5 4 5 9 4 . 1 % 2 9 7 1 8 . 1 % 5 0 . 3 %

21

21 FV

1 4 3 2 8 7 . 2 % 8 3 7 5 1 . 0 % 1 4 7 1 8 9 . 6 % 2 5 1 1 5 . 3 % 2 0 . 1 %

45

43 MG

1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 2 4 9 8 . 9 %

45

43 VG

1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 4 1 9 9 . 9 %

41

41 QB

4 0 3 2 4 . 5 % 5 6 3 3 4 . 3 % 5 5 1 3 3 . 6 % 9 3 5 . 7 % 0 0 . 0 %

3030 TB 8 9 2 5 4 . 3 % 5 4 3 3 3 . 1 % 9 1 1 5 5 . 5 % 5 7 9 3 5 . 3 % 1 9 4 1 1 . 8 % N M S E M a x i m u m 1 . 3 3 E + 1 4 1 2 4 0 0 2 2 5 1 8 1 0 0 1 8 1 0 0 0 0 N M S E M i n i m u m 2 . 2 7 E - 0 9 8 . 5 5 E - 0 6 2 . 3 3 E - 0 9 2 . 1 4 E - 0 8 0 . 0 0 0 4 2 3 N M S E A v e r a g e N M S E M e d i a n 0 . 1 4 2 5 0 . 7 7 8 0 . 1 3 4 5 4 . 4 5 1 6 5 C r i t e r i a ( B a s e f l o w I n c l u d e d )

G a m m a R a y l e i g h W e i b u l l N R C S C o m m o n s

A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d A c c e p t e d % - A c c e p t e d

S t o r m s A n a l y z e d 1 6 4 2 - - 1 6 4 2 - - 1 6 4 2 - - 1 6 4 2 - - 1 6 4 2 - -

2

1NMSE

1 5 4 1 9 3 . 5 % 8 4 8 5 1 . 6 % 1 5 6 9 9 5 . 6 % 8 3 3 5 0 . 7 % 1 2 9 5 7 8 . 9 %

21

21 FB

1 5 1 2 9 1 . 7 % 6 9 9 4 2 . 6 % 1 5 3 9 9 3 . 7 % 7 6 0 4 6 . 3 % 1 1 5 4 7 0 . 3 %

21

21 FV

1 4 4 8 8 7 . 8 % 1 0 2 5 6 2 . 4 % 1 4 7 2 8 9 . 6 % 7 7 6 4 7 . 2 % 1 2 8 2 7 8 . 1 %

45

43 MG

1 6 4 2 9 9 . 6 % 1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 4 1 9 9 . 9 % 1 6 4 1 9 9 . 9 %

45

43 VG

1 6 4 2 9 9 . 6 % 1 6 4 2 1 0 0 . 0 % 1 6 4 2 1 0 0 . 0 % 1 6 4 1 9 9 . 9 % 1 6 4 1 9 9 . 9 %

41

41 QB

4 4 2 2 6 . 8 % 5 6 4 3 4 . 3 % 6 8 3 4 1 . 6 % 2 1 0 1 2 . 8 % 3 0 9 1 8 . 8 %

3030 TB 9 5 2 5 7 . 7 % 6 7 4 4 1 . 0 % 9 4 1 5 7 . 3 % 1 6 2 9 . 9 % 4 5 0 2 7 . 4 % N M S E M a x i m u m 4 E + 5 6 2 . 6 6 E + 3 5 1 . 6 2 E + 8 2 9 3 4 0 0 0 1 1 8 0 N M S E M i n i m u m 2 . 0 4 E - 0 8 3 . 6 7 E - 0 7 2 . 4 2 E - 1 2 6 . 4 1 E - 0 8 4 . 1 5 E - 0 9 N M S E A v e r a g e N M S E M e d i a n 0 . 0 1 7 7 0 . 4 2 4 0 . 0 1 3 9 0 . 4 5 0 . 0 8 2 8

Page 14: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Acceptance Analysis

• Aggregate model parameter values by station.– Test if parameter values depend on station or are

independent. (Dependent)

• Re-run each storm using the aggregated values.– (In-Progress)

• Test these results for acceptability– (Pending)

Page 15: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Interim Conclusions

• Parameter values vary by station and module. (Jonnalagadda, 2003)

• Weibull model is reasonable IUH model (He, 2004).References: Xin, He. 2004. Comparison of Gamma, Rayleigh, Weibull and NRCS Models with Observed Runoff Data for Central Texas Small Watersheds. Master's Thesis. Department of Civil and Environmental Engineering, University of Houston, Houston, Texas. 90p.Jonalagadda, Krishna, 2003. Determination of Instantaneous Unit Hydrographs for Small Watersheds of Central Texas. Master's Thesis. Department of Civil and Environmental Engineering, University of Houston, Houston, Texas. 132p.

Page 16: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Synthesis

• Evaluate methods to synthesize hydrographs in absence of data.

• Fundamental assumption: Watershed characteristics (slope, length, etc.) are predictors of hydrologic response and thus are predictors of IUH parameter values, and that there exists a UH.

Page 17: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Synthesis

• Determine watershed characteristics– Area, perimeter, slopes, lengths, etc.

• Relate regression models to IUH parameters to selected watershed characteristics.

• Use regression model to determine parameter values by station.

• Run each storm using these values.• Test results for acceptability• Interpret results• Make Conclusions and Recommendations

Page 18: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Watershed Characteristics

• These are measurements that can be made from a map, air photo, or possibly field visit.– Area, slope, etc.– Manual determination (University of Houston,

checked and corrected by Lamar)– Automated determination (USGS)

Page 19: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Regression Models• Power Law Model (representative)

• Weights determined by minimization of RMS error between “observed” IUH parameters and the power law model.

• Predict values of IUH model (t_bar,p,N) from watershed characteristics, then use resulting IUH.

SlopeStreamx

ShapeRatiox

PerimeterAreax

SlopeRawx

RatioAspectx

Areax

resNy

py

barty

xxxxxxwy wi

wi

wi

wi

wi

wioi

_

/

_

_

_

_

6

5

4

3

2

1

3

2

1

,6,5,4,3,2,1654321

Page 20: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Typical Interim Results

Tp(hrs) versus SQRT(Area)All Watersheds

0.1

1

10

100

0.1 1 10 100

SQRT(Area (mi 2))

Tim

e (h

rs)

Tp = 0.64*SQRT(Area)

Page 21: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Interim Conclusions

• Analysis of selected small, medium, and large watersheds in each module was used to test feasibility of approach

– The power-law model can produce parameter values that, when used as the IUH model could match peak discharge rates to within 15% of observed values, and match the arrival time of the peak within an hour.

References

Lazarescu, Ioana, 2003. Correlation of Geometric Properties of Small Watersheds in Central Texas with Observed Instantaneous Unit Hydrographs Master's Thesis. Department of Civil and Environmental Engineering, University of Houston, Houston, Texas. 84p.

Page 22: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Remaining Work

• Storm analysis– Aggregate results, perform comparisons and

acceptance tests. (in-progress)– Interpret results in raw form and transform into

conventional Qp,Tp,Tc format. (pending above)– Write research report. (in-progress)

Page 23: Regional Characteristics of Unit Hydrographs and Storm Hyetographs

Remaining Work

• Regionalization– Power-law model of entire data set (not just subset used

in Lazarescu’s thesis).– Interpret results, select most meaningful watershed

characteristic combinations. – Test with all storms, apply acceptance criteria.– Compare with NRCS methods to synthesize Unitgraphs

• 90 TR-20 models to be created this summer.

– Write research report with methodology and guidelines for use (Report started, quite empty).