24
volume 6, issue 3, article 64, 2005. Received 01 February, 2005; accepted 20 May, 2005. Communicated by: S.S. Dragomir Abstract Contents Home Page Go Back Close Quit Journal of Inequalities in Pure and Applied Mathematics REFINEMENTS OF REVERSE TRIANGLE INEQUALITIES IN INNER PRODUCT SPACES ARSALAN HOJJAT ANSARI AND MOHAMMAD SAL MOSLEHIAN Department of Mathematics Ferdowsi University P.O. Box 1159, Mashhad 91775, Iran. EMail : [email protected] URL: http://www.um.ac.ir/moslehian/ c 2000 Victoria University ISSN (electronic): 1443-5756 026-05

Refinements of Reverse Triangle Inequalities in Inner Product Spaces

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

volume 6, issue 3, article 64,2005.

Received 01 February, 2005;accepted 20 May, 2005.

Communicated by: S.S. Dragomir

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure andApplied Mathematics

REFINEMENTS OF REVERSE TRIANGLE INEQUALITIES ININNER PRODUCT SPACES

ARSALAN HOJJAT ANSARI AND MOHAMMAD SAL MOSLEHIANDepartment of MathematicsFerdowsi UniversityP.O. Box 1159, Mashhad 91775, Iran.

EMail : [email protected]: http://www.um.ac.ir/∼moslehian/

c©2000Victoria UniversityISSN (electronic): 1443-5756026-05

Please quote this number (026-05) in correspondence regarding this paper with the Editorial Office.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Abstract

Refining some results of S.S. Dragomir, several new reverses of the triangleinequality in inner product spaces are obtained.

2000 Mathematics Subject Classification: Primary 46C05; Secondary 26D15.Key words: Triangle inequality, Reverse inequality, Diaz-Metkalf inequality, Inner

product space.

Contents1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5References

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

1. IntroductionIt is interesting to know under which conditions the triangle inequality reversesin a normed spaceX; in other words, we would like to know if there is a con-stantc with the property thatc

∑nk=1 ‖xk‖ ≤ ‖

∑nk=1 xk‖ for some finite set

x1, . . . , xn ∈ X. M. Nakai and T. Tada [7] proved that the normed spaces withthis property for any finite setx1, . . . , xn ∈ X are only those of finite dimen-sion.

The first authors to investigate the reverse of the triangle inequality in innerproduct spaces were J. B. Diaz and F. T. Metcalf [2]. They did so by establishingthe following result as an extension of an inequality given by M. Petrovich [8]for complex numbers:

Theorem 1.1 (Diaz-Metcalf Theorem).Let a be a unit vector in the innerproduct space(H; 〈·, ·〉). Suppose the vectorsxk ∈ H, k ∈ {1, . . . , n} satisfy

0 ≤ r ≤ Re〈xk, a〉‖xk‖

, k ∈ {1, . . . , n}.

Then

rn∑

k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ ,

where equality holds if and only if

n∑k=1

xk = rn∑

k=1

‖xk‖a.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Inequalities related to the triangle inequality are of special interest; cf. Chap-ter XVII of [ 6] and may be applied to obtain inequalities in complex numbersor to study vector-valued integral inequalities [3], [4].

Using several ideas and the notation of [3], [4] we modify or refine someresults of S.S. Dragomir to procure some new reverses of the triangle inequality(see also [1]).

We use repeatedly the Cauchy-Schwarz inequality without mentioning it.The reader is referred to [9], [5] for the terminology of inner product spaces.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

2. Main ResultsThe following theorem is an improvement of Theorem2.1 of [4] in which thereal numbersr1, r2 are not neccesarily nonnegative. The proof seems to bedifferent as well.

Theorem 2.1.Leta be a unit vector in the complex inner product space(H; 〈·, ·〉).Suppose that the vectorsxk ∈ H, k ∈ {1, . . . , n} satisfy

(2.1) 0 ≤ r21‖xk‖ ≤ Re〈xk, r1a〉, 0 ≤ r2

2‖xk‖ ≤ Im〈xk, r2a〉

for somer1, r2 ∈ [−1, 1]. Then we have the inequality

(2.2) (r21 + r2

2)12

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

The equality holds in (2.2) if and only if

(2.3)n∑

k=1

xk = (r1 + ir2)n∑

k=1

‖xk‖a.

Proof. If r21 +r2

2 = 0, the theorem is trivial. Assume thatr21 +r2

2 6= 0. Summinginequalities (2.1) overk from 1 to n, we have

(r21 + r2

2)n∑

k=1

‖xk‖ ≤ Re

⟨n∑

k=1

xk, r1a

⟩+ Im

⟨n∑

k=1

xk, r2a

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

= Re

⟨n∑

k=1

xk, (r1 + ir2)a

∣∣∣∣∣⟨

n∑k=1

xk, (r1 + ir2)a

⟩∣∣∣∣∣≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ ‖(r1 + ir2)a‖

= (r21 + r2

2)12

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

Hence (2.2) holds.If (2.3) holds, then∥∥∥∥∥

n∑k=1

xk

∥∥∥∥∥ =

∥∥∥∥∥(r1 + ir2)n∑

k=1

‖xk‖a

∥∥∥∥∥ = (r21 + r2

2)12

n∑k=1

‖xk‖.

Conversely, if the equality holds in (2.2), we have

(r21 + r2

2)12

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ = (r21 + r2

2)n∑

k=1

‖xk‖

≤ Re

⟨n∑

k=1

xk, (r1 + ir2)a

∣∣∣∣∣⟨

n∑k=1

xk, (r1 + ir2)a

⟩∣∣∣∣∣ ≤ (r21 + r2

2)12

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

From this we deduce∣∣∣∣∣⟨

n∑k=1

xk, (r1 + ir2)a

⟩∣∣∣∣∣ =

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ ‖(r1 + ir2)a‖.

Consequently there existsη ≥ 0 such that

n∑k=1

xk = η(r1 + ir2)a.

From this we have

(r21 + r2

2)12 η = ‖η(r1 + ir2)a‖ =

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ = (r21 + r2

2)12

n∑k=1

‖xk‖.

Hence

η =n∑

k=1

‖xk‖.

The next theorem is a refinement of Corollary 1 of [4] since, in the notationof Theorem2.1,

√2 − p2

1 − p22 ≤

√α2

1 + α22.

Theorem 2.2.Leta be a unit vector in the complex inner product space(H; 〈·, ·〉).Suppose the vectorsxk ∈ H − {0}, k ∈ {1, . . . , n}, are such that

(2.4) ‖xk − a‖ ≤ p1, ‖xk − ia‖ ≤ p2, p1, p2 ∈(0,√

α2 + 1)

,

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

whereα = min1≤k≤n‖xk‖. Let

α1 = min

{‖xk‖2 − p2

1 + 1

2‖xk‖: 1 ≤ k ≤ n

},

α2 = min

{‖xk‖2 − p2

2 + 1

2‖xk‖: 1 ≤ k ≤ n

}.

Then we have the inequality

(α21 + α2

2)12

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ ,

where the equality holds if and only if

n∑k=1

xk = (α1 + iα2)n∑

k=1

‖xk‖a.

Proof. From the first inequality in (2.4) we have

〈xk − a, xk − a〉 ≤ p21,

‖xk‖2 + 1 − p21 ≤ 2 Re〈xk, a〉, k = 1, . . . , n,

and‖xk‖2 − p2

1 + 1

2‖xk‖‖xk‖ ≤ Re〈xk, a〉.

Consequently,α1‖xk‖ ≤ Re〈xk, a〉.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Similarly from the second inequality we obtain

α2‖xk‖ ≤ Re〈xk, ia〉 = Im〈xk, a〉.

Now apply Theorem2.1for r1 = α1, r2 = α2.

Corollary 2.3. Leta be a unit vector in the complex inner product space(H; 〈·, ·〉).Suppose that the vectorsxk ∈ H − {0}, k ∈ {1, . . . , n} such that

‖xk − a‖ ≤ 1, ‖xk − ia‖ ≤ 1.

Thenα√2

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ ,

in whichα = min1≤k≤n‖xk‖. The equality holds if and only if

n∑k=1

xk = α(1 + i)

2

n∑k=1

‖xk‖a.

Proof. Apply Theorem2.2for α1 = α2

= α2.

Theorem 2.4. Let a be a unit vector in the inner product space(H; 〈·, ·〉) overthe real or complex number field. Suppose that the vectorsxk ∈ H − {0},k ∈ {1, . . . , n} satisfy

‖xk − a‖ ≤ p, p ∈(0,√

α2 + 1)

, α = min1≤k≤n

‖xk‖.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Then we have the inequality

α1

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ ,

whereα1 = min

{‖xk‖2 − p2 + 1

2‖xk‖: 1 ≤ k ≤ n

}.

The equality holds if and only ifn∑

k=1

xk = α1

n∑k=1

‖xk‖a.

Proof. The proof is similar to Theorem2.2 in which we use Theorem2.1withr2 = 0.

The next theorem is a generalization of Theorem2.1. It is a modification ofTheorem 3 of [4], however our proof is apparently different.

Theorem 2.5. Let a1, . . . , am be orthonormal vectors in the complex innerproduct space(H; 〈·, ·〉). Suppose that for1 ≤ t ≤ m, rt, ρt ∈ R and thatthe vectorsxk ∈ H, k ∈ {1, . . . , n} satisfy

0 ≤ r2t ‖xk‖ ≤ Re〈xk, rtat〉,(2.5)

0 ≤ ρ2t‖xk‖ ≤ Im〈xk, ρtat〉, t ∈ {1, . . . ,m}.

Then we have the inequality

(2.6)

(m∑

t=1

r2t + ρ2

t

) 12 n∑

k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

The equality holds in (2.7) if and only if

(2.7)n∑

k=1

xk =n∑

k=1

‖xk‖m∑

t=1

(rt + iρt)at.

Proof. If∑m

t=1(r2t + ρ2

t ) = 0, the theorem is trivial. Assume that∑m

t=1(r2t +

ρ2t ) 6= 0. Summing inequalities (2.6) overk from 1 to n and again overt from 1

to m, we get

m∑t=1

(r2t + ρ2

t )n∑

k=1

‖xk‖ ≤ Re

⟨n∑

k=1

xk,m∑

t=1

rtat

⟩+ Im

⟨n∑

k=1

xk,m∑

t=1

ρtat

= Re

⟨n∑

k=1

xk,m∑

t=1

rtat

⟩+ Re

⟨n∑

k=1

xk, im∑

t=1

ρtat

= Re

⟨n∑

k=1

xk,m∑

t=1

(rt + iρt)at

∣∣∣∣∣⟨

n∑k=1

xk,m∑

t=1

(rt + iρt)at

⟩∣∣∣∣∣≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥∥∥∥∥∥

m∑t=1

(rt + iρt)at

∥∥∥∥∥=

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥(

m∑t=1

(r2t + ρ2

t )

) 12

.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Then

(2.8)

(m∑

t=1

(r2t + ρ2

t )

) 12 n∑

k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

If (2.8) holds, then∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ =

∥∥∥∥∥n∑

k=1

‖xk‖m∑

t=1

(rt + iρt)at

∥∥∥∥∥ =n∑

k=1

‖xk‖

(m∑

t=1

(r2t + ρ2

t )

) 12

.

Conversely, if the equality holds in(2.7), we obtain from (2.6) that(m∑

t=1

(r2t + ρ2

t )

) 12∥∥∥∥∥

n∑k=1

xk

∥∥∥∥∥ =m∑

t=1

(r2t + ρ2

t )n∑

k=1

‖xk‖

≤ Re

⟨n∑

k=1

xk,m∑

t=1

(rt + iρt)at

∣∣∣∣∣⟨

n∑k=1

xk,m∑

t=1

(rt + iρt)at

⟩∣∣∣∣∣≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥∥∥∥∥∥

m∑t=1

(rt + iρt)at

∥∥∥∥∥=

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥(

m∑t=1

(r2t + ρ2

t )

) 12

.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Thus we have∣∣∣∣∣⟨

n∑k=1

xk,m∑

t=1

(rt + iρt)at

⟩∣∣∣∣∣ =

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥∥∥∥∥∥

m∑t=1

(rt + iρt)at

∥∥∥∥∥ .

Consequently there existsη ≥ 0 such that

n∑k=1

xk = ηm∑

t=1

(rt + iρt)at

from which we have

η

(m∑

t=1

(r2t + ρ2

t )

) 12

=

∥∥∥∥∥ηm∑

t=1

(rt + iρt)at

∥∥∥∥∥=

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥=

n∑k=1

‖xk‖

(m∑

t=1

(r2t + ρ2

t )

) 12

.

Hence

η =n∑

k=1

‖xk‖.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Corollary 2.6. Let a1, . . . , am be orthornormal vectors in the inner productspace(H; 〈·, ·〉) over the real or complex number field. Suppose for1 ≤ t ≤ mthat the vectorsxk ∈ H, k ∈ {1, . . . , n} satisfy

0 ≤ r2t ‖xk‖ ≤ Re〈xk, rtat〉.

Then we have the inequality(m∑

t=1

r2t

) 12 n∑

k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

The equality holds if and only ifn∑

k=1

xk =n∑

k=1

‖xk‖m∑

t=1

rtat.

Proof. Apply Theorem2.5for ρt = 0.

Theorem 2.7. Let a1, . . . , am be orthornormal vectors in the complex innerproduct space(H; 〈·, ·〉). Suppose that the vectorsxk ∈ H−{0}, k ∈ {1, . . . , n}satisfy

‖xk − at‖ ≤ pt, ‖xk − iat‖ ≤ qt, pt, qt ∈(0,√

α2 + 1)

, 1 ≤ t ≤ m,

whereα = min1≤k≤n‖xk‖. Let

αt = min

{‖xk‖2 − p2

t + 1

2‖xk‖: 1 ≤ k ≤ n

},

βt = min

{‖xk‖2 − q2

t + 1

2‖xk‖: 1 ≤ k ≤ n

}.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Then we have the inequality(m∑

t=1

α2t + β2

t

) 12 n∑

k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ ,

where equality holds if and only if

n∑k=1

xk =n∑

k=1

‖xk‖m∑

t=1

(αt + iβt)at.

Proof. For1 ≤ t ≤ m, 1 ≤ k ≤ n it follows from ‖xk − at‖ ≤ pt that

〈xk − at〉, xk − at〉 ≤ p2t ,

‖xk‖2 − p2t + 1

2‖xk‖‖xk‖ ≤ Re〈xk, at〉,

αt‖xk‖ ≤ Re〈xk, at〉,

and similarlyβt‖xk‖ ≤ Re〈xk, iat〉 = Im〈xk, at〉.

Now applying Theorem2.4 with rt = αt, ρt = βt we deduce the desired in-equality.

Corollary 2.8. Let a1, . . . , am be orthornormal vectors in the complex innerproduct space(H; 〈·, ·〉). Suppose that the vectorsxk ∈ H, k ∈ {1, . . . , n}satisfy

‖xk − at‖ ≤ 1, ‖xk − iat‖ ≤ 1, 1 ≤ t ≤ m.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Thenα√2

√m

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

The equality holds if and only ifn∑

k=1

xk = α(1 + i)

2

n∑k=1

‖xk‖m∑

t=1

at.

Proof. Apply Theorem2.7for αt = α2

= βt.

Remark 1. It is interesting to note that

α√2

√m ≤ ‖

∑nk=1 xk‖∑n

k=1 ‖xk‖≤ 1,

where

α ≤√

2

m.

Corollary 2.9. Leta be a unit vector in the complex inner product space(H; 〈·, ·〉).Suppose that the vectorsxk ∈ H − {0}, k ∈ {1, . . . , n} satisfy

‖xk − a‖ ≤ p1, ‖xk − ia‖ ≤ p2, p1, p2 ∈ (0, 1].

Let

α1 = min

{‖xk‖2 − p2

1 + 1

2‖xk‖: 1 ≤ k ≤ n

},

α2 = min

{‖xk‖2 − p2

2 + 1

2‖xk‖: 1 ≤ k ≤ n

}.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

If α1 6= (1 − p21)

12 , or α2 6= (1 − p2

2)12 , then we have the following strictly

inequality

(2 − p21 − p2

2)12

n∑k=1

‖xk‖ <

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

Proof. If equality holds, then by Theorem2.2we have

(α21 + α2

2)12

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ = (2 − p21 − p2

2)12

n∑k=1

‖xk‖

and so(α2

1 + α22)

12 ≤ (2 − p2

1 − p22)

12 .

On the other hand for1 ≤ k ≤ n,

‖xk‖2 − p21 + 1

2‖xk‖≥ (1 − p2

1)12

and soα1 ≥ (1 − p2

1)12 .

Similarlyα2 ≥ (1 − p2

2)12 .

Hence(2 − p2

1 − p22)

12 ≤ (α2

1 + α22)

12 .

Thus √α2

1 + α22 = (2 − p2

1 − p22)

12 .

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Thereforeα1 = (1 − p2

1)12 and α2 = (1 − p2

2)12 ,

a contradiction.

The following result looks like Corollary 2 of [4].

Theorem 2.10. Let a be a unit vector in the complex inner product space(H; 〈·, ·〉), M ≥ m > 0, L ≥ ` > 0 and xk ∈ H − {0}, k ∈ {1, . . . , n}such that

Re〈Ma− xk, xk −ma〉 ≥ 0, Re〈Lia − xk, xk − `ia〉 ≥ 0,

or equivalently,

‖xk −m + M

2a‖ ≤ M −m

2, ‖xk −

L + `

2ia‖ ≤ L − `

2.

Let

αm,M = min

{‖xk‖2 + mM

(m + M)‖xk‖: 1 ≤ k ≤ n

}and

α`,L = min

{‖xk‖2 + `L

(` + L)‖xk‖: 1 ≤ k ≤ n

}.

Then we have the inequlity

(α2m,M + α2

`,L)12

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 19 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

The equality holds if and only if

n∑k=1

xk = (αm,M + iα`,L)n∑

k=1

‖xk‖a.

Proof. For each1 ≤ k ≤ n, it follows from

‖xk −m + M

2a‖ ≤ M −m

2

that ⟨xk −

m + M

2a, xk −

m + M

2

⟩≤(

M −m

2

)2

.

Hence‖xk‖2 + mM ≤ (m + M) Re〈xk, a〉.

Then‖xk‖2 + mM

(m + M)‖xk‖‖xk‖ ≤ Re〈xk, a〉,

and consequentlyαm,M‖xk‖ ≤ Re〈xk, a〉.

Similarly from the second inequality we deduce

α`,L‖xk‖ ≤ Im〈xk, a〉.

Applying Theorem2.1 for r1 = αm,M , r2 = α`,L, we infer the desired inequal-ity.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 20 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Theorem 2.11. Let a be a unit vector in the complex inner product space(H; 〈·, ·〉), M ≥ m > 0, L ≥ ` > 0 and xk ∈ H − {0}, k ∈ {1, . . . , n}such that

Re〈Ma− xk, xk −ma〉 ≥ 0, Re〈Lia − xk, xk − `ia〉 ≥ 0,

or equivalently∥∥∥∥xk −m + M

2a

∥∥∥∥ ≤ M −m

2,

∥∥∥∥xk −L + `

2ia

∥∥∥∥ ≤ L − `

2.

Let

αm,M = min

{‖xk‖2 + mM

(m + M)‖xk‖: 1 ≤ k ≤ n

}and

α`,L = min

{‖xk‖2 + `L

(` + L)‖xk‖: 1 ≤ k ≤ n

}.

If αm,M 6= 2√

mMm+M

, or α`,L 6= 2√

`L`+L

, then we have

2

(mM

(m + M)2+

`L

(` + L)2

) 12

n∑k=1

‖xk‖ <

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥ .

Proof. If

2

(mM

(m + M)2+

`L

(` + L)2

) 12

n∑k=1

‖xk‖ =

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

then by Theorem2.10we have

(α2m,M + α2

`,L)12

n∑k=1

‖xk‖ ≤

∥∥∥∥∥n∑

k=1

xk

∥∥∥∥∥= 2

(mM

(m + M)2+

`L

(` + L)2

) 12

n∑k=1

‖xk‖.

Consequently

(α2m,M + α2

`,L)12 ≤ 2

(mM

(m + M)2+

`L

(` + L)2

) 12

.

On the other hand for1 ≤ k ≤ n,

‖xk‖2 + mM

(m + M)‖xk‖≥ 2

√mM

m + M, and

‖xk‖2 + `L

(` + L)‖xk‖≥ 2

√`L

` + L,

so

(α2m,M + α2

`,L)12 ≥ 2

(mM

(m + M)2+

`L

(` + L)2

) 12

.

Then

(α2m,M + α2

`,L)12 = 2

(mM

(m + M)2+

`L

(` + L)2

) 12

.

Hence

αm,M = 2

√mM

m + M

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 22 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

and

α`,L = 2

√`L

` + La contradiction.

Finally we mention two applications of our results to complex numbers.

Corollary 2.12. Let a ∈ C with |a| = 1. Suppose thatzk ∈ C, k ∈ {1, . . . , n}such that

|zk − a| ≤ p1, |zk − ia| ≤ p2, p1, p2 ∈(0,√

α2 + 1)

,

whereα = min{|zk| : 1 ≤ k ≤ n}.

Let

α1 = min

{|zk|2 − p2

1 + 1

2|zk|: 1 ≤ k ≤ n

},

α2 = min

{|zk|2 − p2

2 + 1

2|zk|: 1 ≤ k ≤ n

}.

Then we have the inequality√α2

1 + α22

n∑k=1

|zk| ≤

∣∣∣∣∣n∑

k=1

zk

∣∣∣∣∣ .The equality holds if and only if

n∑k=1

zk = (α1 + iα2)

(n∑

k=1

|zk|

)a.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 23 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

Proof. Apply Theorem2.2for H = C.

Corollary 2.13. Let a ∈ C with |a| = 1. Suppose thatzk ∈ C, k ∈ {1, . . . , n}such that

|zk − a| ≤ 1, |zk − ia| ≤ 1.

If α = min{|zk| : 1 ≤ k ≤ n}. Then we have the inequality

α√2

n∑k=1

|zk| ≤

∣∣∣∣∣n∑

k=1

zk

∣∣∣∣∣the equality holds if and only if

n∑k=1

zk = α(1 + i)

2

(n∑

k=1

|zk|

)a.

Proof. Apply Corollary2.3for H = C.

Refinements of ReverseTriangle Inequalities in Inner

Product Spaces

Arsalan Hojjat Ansari andMohammad Sal Moslehian

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 24 of 24

J. Ineq. Pure and Appl. Math. 6(3) Art. 64, 2005

http://jipam.vu.edu.au

References[1] A.H. ANSARI AND M.S. MOSLEHIAN, More on reverse triangle inequal-

ity in inner product spaces, arXiv:math.FA/0506198.

[2] J.B. DIAZ AND F.T. METCALF, A complementary triangle inequality inHilbert and Banach spaces,Proc. Amer. Math. Soc., 17(1) (1966), 88–97.

[3] S.S. DRAGOMIR, Reverses of the triangle inequality in inner productspaces, arXiv:math.FA/0405495.

[4] S.S. DRAGOMIR, Some reverses of the generalized triangle inequality incomplex inner product spaces, arXiv:math.FA/0405497.

[5] S.S. DRAGOMIR, Discrete Inequalities of the Cauchy-Bunyakovsky-Schwarz Type, Nova Science Publishers, Inc., Hauppauge, NY, 2004.

[6] D.S. MITRINOVIC, J.E. PECARIC AND A.M. FINK, Classical andNew Inequalities in Analysis, Kluwer Academic Publishers, Dor-drecht/Boston/London, 1993.

[7] M. NAKAI AND T. TADA, The reverse triangle inequality in normedspaces,New Zealand J. Math., 25(2) (1996), 181–193.

[8] M. PETROVICH, Module d’une somme,L’ Ensignement Mathématique,19 (1917), 53–56.

[9] Th.M. RASSIAS,Inner Product Spaces and Applications, Chapman-Hall,1997.