24
References [1] K. Smith and A. Sedra. The current conveyer - a new circuit building block. Proc. IEEE, 56:1368-1369, Aug. 1968. [2] A. Sedra and K. Smith. A second-generation current conveyer and its appli- cations. IEEE Trans. Circuit Theory, CT-17(1):132-134, Feb. 1970. [3] C. Toumazou, F. Lidgey, and D. Haigh. Analogue IC Design - the Current Mode Approaches. Peter Peregrinus Ltd., London, 1990. [4] G. Palmisano, G. Palumbo, and S. Pennisi. CMOS Current Amplifiers. Kluwer Academic Publisher, Boston, 1999. [5] G. Ferri and N. Guerrini. Low Voltage, Low Power CMOS Current Conveyors. Springer, Boston, 2003. [6] K. Koli and K. Halonen. CMOS Current Amplifiers : Speed versus Nonlinear- ity. Kluwer Academic Publisher, Boston, 2002. [7] P. Ananda Mohan. Current-Mode VLSI Analog Filters. Bin Birkhuser Buch, 2003. [8] M. Alitot and G. Palumbo. Model and Design of Bipolar and MOS Current- Mode Logic - CML, ECL, and SCL Digital Circuits. Springer, Boston, 2005. [9] S. Franco. Design with operational amplifiers and analog integrated circuits. McGraw Hill, Boston, 3rd edition, 2002. [10] B. Wilson. Performance analysis of current conveyors. lEE Electronic Letters, 25(23):1596-1597, Nov. 1989. [11] B. Wilson. Universal conveyor instrumentation amphfier. lEE Electronics Letters, 254(7):470-471, Mar. 1989. [12] A. Sedra, G. Roberts, and F. Gohn. The current conveyor : history, progress and new results. lEE Proc, Part G. - Circuits, Devices, and Systems, 137(2):78-87, Apr. 1990.

References - Springer978-0-387-47691-9/1.pdf270 REFERENCES [13] B. Wilson ... analysis and design. IEEE Trans, on Circuits and Syst. I, 53(l) ... Microelectronic Circuits. Oxford University

  • Upload
    halien

  • View
    217

  • Download
    3

Embed Size (px)

Citation preview

References

[1] K. Smith and A. Sedra. The current conveyer - a new circuit building block. Proc. IEEE, 56:1368-1369, Aug. 1968.

[2] A. Sedra and K. Smith. A second-generation current conveyer and its appli­cations. IEEE Trans. Circuit Theory, CT-17(1):132-134, Feb. 1970.

[3] C. Toumazou, F. Lidgey, and D. Haigh. Analogue IC Design - the Current Mode Approaches. Peter Peregrinus Ltd., London, 1990.

[4] G. Palmisano, G. Palumbo, and S. Pennisi. CMOS Current Amplifiers. Kluwer Academic Publisher, Boston, 1999.

[5] G. Ferri and N. Guerrini. Low Voltage, Low Power CMOS Current Conveyors. Springer, Boston, 2003.

[6] K. Koli and K. Halonen. CMOS Current Amplifiers : Speed versus Nonlinear-ity. Kluwer Academic Publisher, Boston, 2002.

[7] P. Ananda Mohan. Current-Mode VLSI Analog Filters. Bin Birkhuser Buch, 2003.

[8] M. Alitot and G. Palumbo. Model and Design of Bipolar and MOS Current-Mode Logic - CML, ECL, and SCL Digital Circuits. Springer, Boston, 2005.

[9] S. Franco. Design with operational amplifiers and analog integrated circuits. McGraw Hill, Boston, 3rd edition, 2002.

[10] B. Wilson. Performance analysis of current conveyors. lEE Electronic Letters, 25(23):1596-1597, Nov. 1989.

[11] B. Wilson. Universal conveyor instrumentation amphfier. lEE Electronics Letters, 254(7):470-471, Mar. 1989.

[12] A. Sedra, G. Roberts, and F. Gohn. The current conveyor : history, progress and new results. lEE Proc, Part G. - Circuits, Devices, and Systems, 137(2):78-87, Apr. 1990.

270 REFERENCES

[13] B. Wilson. Recent developments in current conveyors and current-mode cir­cuits. lEE Proc. Pt G - Circuits, Devices, and Systems, 137(2):63-77, Apr. 1990.

[14] S. Rajput and S. Jamuar. Low voltage, low power, high performance current conveyors. In Proc. IEEE Int'l Symp. Circuits and Syst, volume 1, pages 723-726, 2001.

[15] G. Robert and A. Sedra. All current-mode frequency selective circuits. lEE Electronics Letters, 25(12):759-761, June 1989.

[16] S. Liu, H. Tsao, and J. Wu. CCII-based continuous-time filters with reduced gain-bandwidth sensitivity. lEE Proc, Part G - Circuits, Devices, and Systems, 138(2):210-216, Apr. 1991.

[17] A. Sohman. Current mode CCII oscillators using grounded capacitors and resistors. InVl J. Circuit Theory and Applications, 26:431-438, 1997.

[18] E. Bruun. Constant-bandwidth current mode operation amphfier. lEE Elec­tronics Letter, 27(18):1673-1674, Aug. 1991.

[19] B. Tellegen. A general network theorem and applications. Philip Research Report, 7:259-269, 1952.

[20] P. Penfield, Jr. R. Spence, and S. Duinker. Tellegen's theorem and electrical networks. MIT Press, Cambridge, Mass., 1970.

[21] T. Trick. Introduction to circuit analysis. John Wiley and Sons, New York, 1977.

[22] G. Robert and A. Sedra. Adjoint networks revisited. In Proc. IEEE Int'l Symp. Circuits Syst., volume 1, pages 540-544, 1990.

[23] F. Yuan and A. Opal. Computer methods for analysis of mixed-mode switching circuits. Kluwer Academic Publisher, Boston, 2004.

[24] T. Kaulberg. A CMOS current-mode operational amphfier. IEEE J. Solid-State Circuits, 28(7):849-852, Jul. 1993.

[25] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits - A Design Perspective. Pearson Education, New Jersey, 2nd edition, 2003.

[26] F. Yuan. Power sensitivity of low-voltage CMOS current-mode circuits. In Proc. IEEE Canadian Conf. Electrical and Computer Eng., pages 1741-1744, Niagara Falls, May 2004.

[27] F. Yuan and B. Sun. A comparative study of low-voltage CMOS current-mode circuits for optical communications. In Proc. of IEEE Mid- West Symp. on Circuits and Syst, volume 1, pages 315-319, Tulsa, Oklahoma, Aug. 2002.

[28] F. Yuan. Low-voltage CMOS current-mode preamplifier: analysis and design. IEEE Trans, on Circuits and Syst. I, 53(l):26-39, Jan. 2006.

[29] B. Wilson. A monolithic junction FET-npn operational amplifier. IEEE J. Solid-state Circuits, SC-3(6):341-348, Feb. 1968.

REFERENCES 271

[30] E. Sackinger and W. Guggenbuhl. A high-swing high-impedance MOS cascode circuit. IEEE J. Solid-State Circuits, 25(l):289-298, Feb. 1990.

[31] S. Donati. Photodetectors : Devices, Circuits, and Applications. Prentice-Hall, New Jersey, 2000.

[32] S. Lee, R. Zele, D. Allstot, and G. Liang. CMOS continuous-time current-mode filters for high-frequency applications. IEEE J. Solid-State Circuits, 28(3):323-328, Mar. 1993.

[33] D. Nairn and C. Salama. Current-mode algorithmic analog-to-digital convert­ers. IEEE J. Solid-State Circuits, 25(4):997-1004, Aug. 1990.

[34] F. Yuan. Low voltage CMOS current mode circuits - topology and character­istics. lEE Proc, Part G - Circuits, Devices, and Systems, 153(3):219-230, June 2006.

[35] T. Serrano and B. Linares-Barranco. The active-input regulated-cascode cur­rent mirror. IEEE Trans. Circuits and Syst I, 41(6):464-467, Jun. 1994.

[36] E. Seevinck, M. Plessis, T. Joubert, and A. Theron. Active-bootstrapped gain-enhancement technique for low-voltage circuits. IEEE Trans. Circuit and Syst. II, 45(9):1250-1254, Sept. 1998.

[37] G. Palmisano and G. Palumbo. Offset-compensated low power current com­parator. lEE Electronics Letters, 30(20):1637-1338, Sept. 1994.

[38] G. Palmisano and G. Palumbo. High performance CMOS current comparator design. IEEE Trans. Circuits and Syst. II, 43(12):785-790, Dec. 1996.

[39] P. Allen and P. Holberg. CMOS Analog Circuit Design. Oxford University Press, London, 2nd edition, 2002.

[40] R. Zele, D. Allstot, and T. Fiez. Fully balanced CMOS current-mode circuits. IEEE J. Solid-state Circuits, 28(5):569-575, May 1993.

[41] B. Sun and F. Yuan. A new low-voltage wide-band fully differential current amplifier. In Proc. IEEE Mid-West Symp. on Circuits and Syst., volume 2, pages 57-60, Tulsa, Oklahoma, Aug. 2002.

[42] W. Liu and T. Kalkur. A high CMRR current mode CMOS preamplifier for magnetic recording systems. IEEE Trans. Circuits and Syst. II, 46(2): 129-133, Feb. 1999.

[43] T. Voo and C. Toumazou. A novel high speed current mirror compensation technique and application. In Proc. IEEE InVl Symp. on Circuit and Syst., volume 3, pages 2108-2111, Seattle, May 1995.

[44] T. Voo and C. Toumazou. High-speed current mirror resistive compensation technique. lEE Electronics Letters, 31(4):248-250, Feb. 1995.

[45] A. Sedra and K. Smith. Microelectronic Circuits. Oxford University Press, London, 1998.

[46] N. Nise. Control Systems Engineering. Addison-Wesley, 2000.

272 REFERENCES

[47] S. Mohan, S. Hershenson, M. Boyd, and T. Lee. Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits, 34(10): 1419-1424, Oct. 1999.

[48] S. Mohan, S. Hershenson, M. Boyd, and T. Lee. Bandwidth extension in CMOS with optimized on-chip inductors. IEEE J. Solid-State Circuits, 35(3):346-355, Mar. 2000.

[49] A. Zolfaghari, A. Chan, and B. Razavi. Stacked inductors and transformers in CMOS technology. IEEE J. Solid-State Circuits, 36(4):620-628, Apr. 2001.

[50] B. Razavi. Design of analog CMOS integrated circuits. McGraw-Hill, Boston, 2001.

[51] R Gray, P. Hurst, S. Lewis, and R. Meyer. Analysis and design of analog integrated circuits. John Wiley and Sons, New York, 4th edition, 2001.

[52] G. Palmisano and S. Pennisi. Low-voltage dynamic biasing technique for CMOS class AB current-mode circuits. lEE Electronics Letters, 36(2): 114-115, Jan. 2000.

[53] S. Kawahito and Y. Tadokoro. CMOS class-ab current mirrors for precision current-mode analog-signal-processing elements. IEEE Trans, on Circuits and Syst. II, 43(12):843-845, Dec. 1996.

[54] G. Palumbo and S. Pennisi. Low-voltage class AB CMOS current output stage. lEE Electronics Letters, 35(16):1329-1330, Aug. 1999.

[55] J. Lau T. Lee C. Yue, C. Ryu and S. Wong. A physical model for planar spiral inductor on sihcon. In Proc. Int'l Electron Devices Meeting, pages 155-158, Dec. 1996.

[56] F. Elhnger, M. Kossel, M. Huber, M. Schmatz, C. Kromer, G. Sialm, D. Barras, L. Rodoni, G. Buren, and H. Jackel. High-Q inductors on digital VLSI CMOS substrate for analog RF applications. In Proc. SBMO/IEEE MTT-S Int'l Microwave and Optoelectronics Conf, volume 2, pages 869-872, Sept. 2003.

[57] A. Thanachayanont and A. Payne. VHF CMOS integrated active inductor. lEE Electronics Letters, 32(11):999-1000, May 1996.

[58] A. Thanachayanont and A. Payne. CMOS floating active inductor and its applications to band-pass filter and oscillator design. lEE Proc, Part G -Circuits, Devices, and Systems, 147(l):42-48, Feb. 2000.

[59] A. Thanachayanont and S. Ngow. Class AB VHF CMOS active inductor. In Proc. IEEE Mid-West Symp. Circuits and Syst, volume 1, pages 64-67, Aug. 2002.

[60] A. Thanachayanont. CMOS transistor-only active inductor or IF/RF applica­tions. In Proc. IEEE Int'l Industrial Tech. Conf., volume 2, pages 1209-1212, Bangkok, 2002.

[61] E. Sackinger and W. Fischer. A 3-GHz 32-dB CMOS hmiting amplifier for SONET OC-48 receivers. IEEE J. Solid-State Circuits, 35(12):1884-1888, Dec. 2000.

REFERENCES 273

[62] T. Lin and A. Payne. Design of a low-voltage, low-power, wide-tuning inte­grated oscillator. In Proc. IEEE InVl Symp. Circuits and Syst^ volume 5, pages 629-632, Geneva, Switzerland, May 2000.

[63] Y. Wu, M. Ismail, and H. Olsson. A novel CMOS fully differential inductorless RF band-pass. In Proc. IEEE Int'l Symp. Circuits and Syst.^ volume 4, pages 149-152, Geneva, Switzerland, May 2000.

[64] Y. Wu, M. Ismail, and H. Olsson. CMOS VHF/RF CCO based on active inductors. lEE Electronics Letters, 37(8):472-473, Apr. 2001.

[65] Y. Wu, X. Ding, M. Ismail, and H. Olsson. Inductorless CMOS RF band-pass filter. lEE Electronics Letters, 37(16):1027-1028, Aug. 2001.

[66] Y. Wu, X. Ding, M. Ismail, and H. Olsson. RF band-pass filter design based on CMOS active inductors. IEEE Trans. Circuits and Syst. II, 50(12):942-949, Dec. 2003.

[67] M. Grozing, A. Pascht, and M. Berroth. A 2.5V CMOS differential active inductor with tunable L and Q for frequencies up to 5 GHz. In Proc. InVl Microwave Symp., volume 1, pages 575-578, Phoenix, May 2001.

[Q^] W. Chen and C. Lu. A 2.5 Gbps CMOS optical receiver analog front-end. In Proc. IEEE Custom Integrated Circuits Conf., pages 359-362, May 2002.

[69] S. Song, S. Park, and H. Yoo. A 4-Gb/s CMOS clock and data recovery circuit using 1/8-rate clock technique. IEEE J. Solid-State Circuits, 38(7):1213-1219, Jul. 2003.

[70] C. Hsiao, C. Kuo, C. Ho, and Y. Chan. Improved quality factor of 0.18/xm CMOS active inductor by a feedback resistance design. IEEE Microwave and Wireless Components Letters, 12(2):467-469, Dec. 2002.

[71] H. Xiao and R. Schaumann. A low-voltage low-power CMOS 5GHz oscillator based on active inductors. In Proc. Int'l Symp. Circuits and Syst., volume 1, pages 231-234, Sept. 2002.

[72] H. Xiao and R. Schaumann. Very-high-frequency lowpass filter based on a CMOS active inductor. In Proc. Int'l Symp. Circuits and Syst., volume 2, pages 1-4, May 2002.

[73] K. Sharaf. 2-v, 1-GHz CMOS inductorless LNAs with 2-3dB NF. In Proc. Int'l Conf. Microelectronics, pages 379-382, Tehran, Nov. 2000.

[74] A. Pascht, J. Fischer, and M. Berroth. A CMOS low noise ampHfier at 2.4 GHz with active inductor load. In Proc. Silicon Monolithic Integrated Circuits in RF Systems - Digest of Papers., pages 1-5, Sept. 2001.

[75] C. Yue. On-chip spiral inductors for silicon-based radio-frequency integrated circuits. PhD. Dissertation, Stanford University, 1998.

[76] A. Karsilayan and R. Schaumann. A high-frequency high-Q CMOS active inductor with dc bias control. In Proc. IEEE 43rd Mid-West Symp. Circuits and Syst., pages 486-489, Lansing, Aug. 2000.

274 REFERENCES

[77] H. Xiao, R. Schaumann, and W. Daasch. A radio-frequency CMOS active inductor and its application in designing high-Q filters. In Proc. IEEE Int'l Symp. Circuits and Syst^ volume 4, pages 197-200, Vancouver, May 2004.

[78] J. Yang, Y. Cheng, and C. Lee. A design of CMOS broadband amplifier with high-Q active inductor. In Proc. 3rd IEEE InVl Workshop on SOC for Real-Time Appl, pages 86-89, Jul. 2003.

[79] D. Li and Y. Tsividis. Active LC filters on sificon. lEE Proc, Part G - Circuits, Devices, and Systems, 147(l):49-56, Feb. 2000.

[80] S. Hara, T. Tokumitsu, T. Tanaka, and M. Aikawa. Broadband monolithic microwave active inductor and its application to miniaturized wideband am­plifiers. IEEE Trans. Microwave Theory and Appl., 36(12): 1920-1924, Dec. 1988.

[81] Y. Wang and A. Abidi. CMOS active filter design at very high frequencies. IEEE J. Solid-State Circuits, 25(6):1562-1573, Dec. 1990.

[82] A. Abidi. Noise in active resonators and the available dynamic range. IEEE Trans. Circuits and Syst. /, 39(4):296-299, Apr. 1992.

[83] G. Groenewold. The design of high dynamic range continuous-time integrat-able band-pass filters. IEEE Trans. Circuits and Syst., 38(8):838-852, Aug. 1991.

[84] B. Razavi. RF Microelectronics. Prentice-Hall, Upper Saddle River, N.J., 1998.

[85] J. Smith. Modem communication circuits. McGraw-Hill, Boston, 2nd edition, 1986.

[86] A. Deutsch, G. Kopcsay, P. Restle, H. Smith, G. Katopis, W. Becker, P. Coteus, C. Surovic, B. Rubin, R. Dunne Jr., T. Gallo, K. Jenkins, L. Terman, R. Den-nard, G. Sai-Halasz, B. Krauter, and D. Knebel. When are transmission-line effects important for on-chip interconnects? IEEE Trans. Microwave Theory and Tech., 45(10):1836-1846, Oct. 1997.

[87] B. Kleveland, X. Qi, L. Madden, T. Furusawa, R. Dutton, M. Horowitz, and S. Wang. High-frequency characterization of on-chip digital interconnects. IEEE J. Solid-state Circuits, 37(6):716-725, June 2002.

[88] L. Hwang and I. Turlik. A review of the skin effect as applied to thin film interconnects. IEEE Trans. Components, Hybrids, and Manufacturing Tech., 15(l):43-55, Feb. 1992.

[89] R. Ludwig and P. Bretchko. RF Circuit Design - Theory and Applications. Prentice-Hall, Upper Saddle River, N.J., 2000.

[90] R. Poon. Computer Circuits Electrical Design. Prentice-Hall, Upper Saddle River, N.J., 1995.

[91] E. Boggatin. Design rules for microstrip capacitance. IEEE Trans. Compo­nents, Hybrids, and Manufacturing Tech., ll(3):253-259, Sept. 1988.

REFERENCES 275

[92] E. Bogatin. A closed form analytical model for the electrical properties of mi-crostrip interconnects. IEEE Trans. Components, Hybrids, and Manufacturing Tech., 13(2):258-266, Feb. 1992.

[93] K. Martin. Digital Integrated Circuit Design. Oxford University Press, London, 1999.

[94] A. Reuhli. Inductance calculations in a complex integrated circuit environ­ment. IBM J. Research and Develop., pages 470-481, Sept. 1972.

[95] C. Holloway and E. Kuester. Net and partial inductance of a microstrip ground plane. IEEE Trans. Electromagnetic Compatibility, 40(l):33-46, Feb. 198.

[96] S. Wong, P. Yue, R. chang, S. Kim, B. Kleveland, and F. O'Mahony. On-chip interconnect inductance - friend or foe. In Proc. Int'l Symp. Quality Electronic Design, pages 1-6, 2003.

[97] P. Restle, A. Ruehli, and S. Walker. Multi-GHz interconnect effects in micro­processors. In Proc. InVl Symp. Physical Design, pages 93-97, Sonoma, CA., 2001.

[98] M. Popovich, E. Friedman, M. Sotman, and A. Kolodny. On-chip power dis­tribution grids with multiple supply voltages for high performance integrated circuits. In Proc. ACM Great Lakes Symp. VLSI., pages 2-7, Chicago, Apr. 2005.

[99] R. German, H. Ott, and C. Paul. Effect of an image plane on printed circuit board radiation. In Proc. IEEE InVl Symp. Electromagnetic Compatibility, pages 284-291, 1990.

[100] F. Grover. Inductance calculations, working formulas and tables. Instrument Society of America, Research Triangle Park, NC, 1973.

[101] T. Hubing, T. van Doren, and J. Drewniak. Identifying and quantifying printed circuit board inductance. In Proc. IEEE InVl Symp. Electromagnetic Compat­ibility, pages 205-208, Aug. 1995.

[102] N. Arora. Modehng and characterization of copper interconnects for SOC de­sign. In Proc. Int'l Conf Simulation of Semiconductor Processes and Devices, pages 1-6, Sept. 2003.

[103] E. Elmore. The transient response of damped Hnear network with particular regard to wide-band amplifiers. J. Applied Physics, 19(l):55-63, Jan. 1948.

[104] S. Kang and Y. Leblebici. CMOS digital integrated circuits - analysis and design. McGraw-Hill, Boston, 2003.

[105] K. Agarwal, D. Sylvester, and D. Blaauw. Dynamic clamping : on-chip dynamic shielding and termination for high-speed RLC buses. In Proc. IEEE Int'l Symp. System-on-Chip, pages 97-100, Nov. 2003.

[106] G. Ahn, D. Jeong, and G. Kim. A 2-Gbaud 0.7-V swing voltage-mode driver and on-chip terminator for high-speed NRZ data transmission. IEEE J. Solid-State Circuits, 35(6):915-918, June 2000.

276 REFERENCES

107] H. Conrad. 2.4 Gbit/s CML I/Os with integrated line termination resistors realized in 0.5/im BiCMOS technology. In Proc. IEEE BCTM, pages 120-122, 1997.

108] J. Maneatis. Low-jitter process-independent DLL and PLL based on self-biased techniques. IEEE J. Solid-State Circuits, 31(11):1723-1732, Nov. 1996.

109] T. Gabara and S. Knauer. Digitally adjustable resistors in CMOS for high-performance applications. IEEE J. Solid-State Circuits, 27(8):1176-1185, Aug. 1992.

110] M. Dolle. A dynamic line-termination circuit for multi-receiver nets. IEEE J. Solid-state Circuits, 28(12): 1370-1373, Dec. 1993.

I l l ] T. Knight and A. Krymn. A self-terminating low-voltage swing CMOS output driver. IEEE J. Solid-State Circuits, 23(2):457-464, Apr. 1988.

112] A. Tanabe, M. Umetani, I. Fujiwara, T. Ogura, K. Kataoka, M. Oki-hara, H. Sakuraba, T. Endoh, and F. Masuoka. 0.18/im CMOS 10-Gb/s multiplexer/de-multiplexer ICs using current model logic with tolerance to threshold voltage fluctuation. IEEE J. Solid-State Circuits, 36(6):988-996, June 2001.

113] H. Johnson and M. Graham. High-Speed Digital Design - A Handbook of Black Magic. Prentice-Hall, Upper Saddle River, New Jersey, 1993.

114] A. Carusone, K. Farzan, and D. Johns. Differential signaling with a reduced number of signal paths. IEEE Trans. Circuits and Syst. II, 48(3):294-300, Mar. 2001.

115] IEEE Standard for Low-Voltage Differential Signals (LVDS) for Scalable Co­herent Interface (SCI), IEEE Std 1596.3-1996. IEEE, 1996.

116] LVDS Owner's Manual. National Semiconductor, 3rd edition, 2004.

117] Hewlett-Packard. Universal Serial Bus Specification, version 2.0. 2002.

118] T. Wang and F. Yuan. A novel current-mode incremental signaling scheme for high-speed parallel links. In Proc IEEE Mid-West Symp. Circuits and Syst., pages 1802-1806, Cincinnati, Aug. 2005.

119] T. Wang and F. Yuan. A new current-mode incremental signaling scheme with applications to Gb/s parallel links. In Proc IEEE Int'l Symp. Circuits and Syst, Kos, Greece, Accepted for publication in Feb. 2006.

120] W. Dally and J. Poulton. Transmitter equahzation for 4-Gbps signahng. IEEE Micro, 17(l):48-56, Jan/Feb. 1997.

121] M. Horowitz, C. Yang, and S. Sidiropoulos. High-speed electrical signahng: overview and limitations. IEEE Micro, 18(l):12-24, Jan./Feb. 1998.

122] J. Liu and X. Lin. Equalization in high-speed communication systems. IEEE Circuits and Systems Magazine, 2nd Quarter:4-17, 2004.

REFERENCES 277

123] C. Yang and M. Horowitz. A 0.8//m CMOS 2.5 Gb/s oversampling receiver and transmitter for serial links. IEEE J. Solid-State Circuits, 31(2):2015-2023, Dec. 1996.

124] C. Yang, R. Farjad-Rad, and M. Horowitz. A 0.5-m CMOS 4.0-Gbit/s serial link transceiver with data recovery using oversampling. IEEE J. Solid-State Circuits, 33(5):713 -722, May 1998.

125] R. Farjad-Rad, C. Yang, and M. Horowitz. A O.Sbfim CMOS 8-Gb/s 4PAM serial link transceiver. IEEE J. Solid-State Circuits, 35(5):757-764, May 2000.

126] M. Lee, W. Dally, and P. Chiang. Low-power area-efRcient high-speed I/O circuit techniques. IEEE J. Solid-State Circuits, 35(11):1591 -1599, Nov. 2000.

127] W. Ellersick, C. Yang, V. Stojanovic, S. Modjtahed, and M. Horowitz. A serial-hnk transceiver based on 8GSampes/s A/D and D/A converters in 0.25/xm CMOS. Proc. IEEE InVl Solid-State Circuits Conf., pages 58-59, 2001.

128] J. Kim and M. Horowitz. An efficient digital sliding controller for adaptive power-supply regulation. IEEE J. Solid-State Circuits, 37(5):12-24, May 2002.

129] J. Cao, M. Green, A. Momtaz, and K. Vakilian. OC-192 transmitter and receiver in standard 0.18)Lim CMOS. IEEE J. Solid-State Circuits, 37(12):1768-1780, Dec. 2002.

130] J. Jiang and F. Yuan. A new CMOS current-mode multiplexer for lOGbps serial links. Analog Integrated Circuits and Signal Processing, 44(l):61-67, Jul. 2005.

131] A. Fiedler, R. Mactaggart, J. Welch, and S. Krishnan. A 1.0625 Gbps transceiver with 2x-oversampling and transmit signal pre-emphasis. In Proc. IEEE Int'l Solid-State Circuits Conf., pages 238-239, Feb. 1997.

132] R. Farjad-Rad, C. Yang, and M. Horowitz. A 0.3-m CMOS 8-Gb/s 4-PAM serial Hnk transceiver. IEEE J. of Solid-State Circuits, 35(5)-.757-764, May 2000.

133] F. Yuan. A fully differential 8-to-l current-mode multiplexer for 10 Gbps serial links in 0.18y^m CMOS. lEE Electronics Letters, 40(13):789-790, June 2004.

134] A. Boni, A. Pierazzi, and D. Vecchi. LVDS I/O interface for Gb/s-per-pin operation in 0.35//m CMOS. IEEE J. Solid-State Circuits, 36(4).-706-711, Apr. 2001.

135] K. Farzan and D. Johns. A CMOS 10-Gb/s power-efficient 4PAM transmitter. IEEE J. Solid-State Circuits, 39(3):529-532, Mar. 2004.

136] D. Foley and M. Flynn. A low-power 8-PAM serial transceiver in 0.5^m digital CMOS. IEEE J. Solid-state Circuits, 37(3).-310-316, Mar. 2002.

137] W. Dally and J. Poulton. Transmitter equalization for 4 Gb/s signaling. In Proc. Hot Interconnects, pages 29-39, Stanford University, Aug. 1996.

278 REFERENCES

138] R. Farjad-Rad, C. Yang, M. Horowitz, and T. Lee. A 0.4-)um CMOS 10-Gb/s 4-PAM pre-emphasis serial link transmitter. IEEE J. of Solid-State Circuits, 34(4):580-585, May 1999.

139] J. Stonick, G. Wei, J. Sonntag, and D. Weinlader. An adaptive PAM-4 5-Gb/s backplane transceiver in 0.25-/xm CMOS. IEEE J. Solid-State Circuits, 38(3):436-443, Mar. 2003.

140] F. Yuan. A new power-area efficient 4PAM full-clock CMOS pre-emphasis transmitter for lOGb/s serial links. In IEEE/ACM Great Lakes Symp. Circuits and Syst, pages 127-130, Philadelphia, April 2006.

141] F. Yuan and A. Li. A new area-efficient 4PAM 10 Gb/s CMOS serial link transmitter. In IEEE Int'l Symp. Circuits and Syst., Kos, Greece. Accepted for publication, 2006.

142] W. Ellersick, V. Stojanovic, S. Modjtahed, M. Horowitz, and W. Ellersick. A serial-link transceiver based on 8GSampes/s A/D and D/A converters in 0.25/im CMOS. IEEE J. Solid-State Circuits, 36(11):1684-1692, Nov. 2001.

143] J. Jiang and F. Yuan. A new CMOS class AB transmitter for 10 Gbps serial links. Analog Integrated Circuits and Signal Processing, 47(3), May 2006.

144] F. Yuan and M. Li. A new CMOS class AB serial link transmitter with low supply voltage sensitivity. Analog Integrated Circuits and Signal Processing, Accepted for publication in June 2006.

145] J. Franca and Y. Tsividis. Design of Analog-Digital VLSI Circuits for telecom­munications and signal processing. Prentice-Hall, Upper Saddle River, N.J., 1994.

146] T. Vanisri and C. Toumazou. Integrated high frequency low-noise current-mode optical trans-impedance pre-amplifiers: theory and practice. IEEE J. Solid-State Circuits, 30(6):667-685, June 1995.

147] S. Park and C. Papavassihou. On the design of low-noise, giga-hertz band­width pre-amplifiers for optical receiver application. In Proc. of Int'l Conf Electronics, Circuits, and Syst, volume 2, pages 785-788, Sept. 1999.

148] J. Chang, M. Lee, S. Jung, M. Brooke, N. Jokerst, and D. Wills. Fully differ­ential current-input CMOS ampHfier front-end suppressing mixed signal sub­strate noise for optoelectronic applications. In Proc. Int'l Symp. on Circuit and Syst, volume 1, pages 327-330, 1999.

149] B. Sun, F. Yuan, and A. Opal. Inductive peaking in wideband CMOS current amplifiers. In Proc. IEEE Int'l Symp. on Circuits and Syst., volume 4, pages 285-288, Vancouver, May 2004.

150] J. Kim and D. Jeong. Multi-gigabit-rate clock and data recovery based on blind oversampling. IEEE Communications Magazine, pages 68-74, Dec. 2003.

151] C. Yang, R. Farjad-Rad, and M. Horowitz. A 0.6//m CMOS 4Gb/s transceiver with data recovery using oversampling. Proc. IEEE Symp. VLSI Digest of Technical Papers, pages 71-72, 1997.

REFERENCES 279

152] J. Poulton, W. Dally, and S. Tell. A tracking clock recovery receiver for 4Gb/ s signaling, pages 157-169, 1997.

153] M. Lee, W. Dally, R. Farjad-Rad, H. Ng, R. Senthinathan, J. Edmondson, and J. Poulton. CMOS high-speed I /Os - present and future. In Proc. 21th InVl Conf. Computer Design^ pages 454-461, Oct. 2003.

154] Y. Moon and J. Kang. 2x oversamphng 2.5Gbps clock and da ta recovery with phase picking method. Current Applied Physics^ 4:75-81, 2004.

155] R. Aguiar and M. Figueiredo. Design and performance of 155mbps clock/data recovery circuits on heavy loaded PLDs. Analog Integrated Circuits and Signal Processing, 43:159-170, 2005.

156] Y. Moon, D. Jeong, and G. Ahn. A 0.6-2.5-Gbaud CMOS tracked 3x over-sampling transceiver with dead-zone phase detection for robust clock/data recovery. IEEE J. Solid-State Circuits, 36(12): 1974-1983, Dec. 2001.

157] S. Lee, M. Hwang, Y. Choi, S. Kim, Y. Moon, B. Lee, D. Jeong, W. Kim, Y. Park, and G. Ahn. A 5-Gb/s 0.25/xm CMOS jitter-tolerant variable-interval oversamphng clock/data recovery circuit. IEEE J. Solid-State Cir­cuits, 37(2):1822-1830, Dec. 2002.

158] M. Lee. An efficient I/O and clock recovery design for Terabit integrated circuits. PhD. Dissertation, Stanford University, 2001.

159] J. Kang and D. Kim. A CMOS clock and da ta recovery with two-XOR phase-frequency detector circuit. Proc. Int'I Solid-State Circuits Conf., Digest Tech. Papers, 4:226-229, 2001.

160] S. Anand and B. Razavi. A CMOS clock recovery circuit for 2.5-Gb/s NRZ data. IEEE J. Solid-State Circuits, 36(3):432-439, Mar. 2001.

161] J. Savoj and B. Razavi. A 10-Gb/s CMOS clock and da ta recovery circuit with a half-rate linear phase detector. IEEE J. Solid-State Circuits, 36(5):761-767, May 2001.

162] M. Ramezani and C. Salama. An improved bang-bang phase detector for clock and da ta recovery applications. Int'l Solid-State Circuit Conf- Digest of Tech. Papers, 1:715-717, 2001.

163] M. Ramezani and C. Salama. A lOGb/s CDR with a half-rate bang-bang phase detector. Int'l Solid-State Circuit Conf - Digest of Tech. Papers, 2:181, 2003.

164] K. Lee, S. Kim, G. Ahn, and D. Jeong. A CMOS serial hnk for fully duplexed da ta communication. IEEE J. Solid-State Circuits, 30(4):353-364, Apr. 1995.

165] W. Lee, J. Cho, and S. Lee. A high speed and low power phase-frequency de­tector and charge pump. In Proc. IEEE Asia-South Pacific Design Automation Conf, pages 269-272, Jan. 1999,

166] A. Djemouai and M. Sawan. Fast-locking low-jitter integrated CMOS phase-locked loop. In Proc. IEEE Int'l Symp. Circuits Syst, volume 1, pages 264-267, May 2001.

280 REFERENCES

167] S. Kim, K. Lee, Y. Moon, D. Jeong, Y. Choi, and H. Lim. A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL. IEEE J. Solid-State Cir­cuits, 32(5):691-700, May 1997.

168] J. Yuan and C. Svensson. New single-clock CMOS latches and flipflops with improved speed and power savings. IEEE J. Solid-State Circuits, 32(l):62-69, Jan. 1997.

169] W. Rhee. Design of high-performance CMOS charge-pumps in phase-locked loop. Proc. IEEE InVl Symp. Circuits Syst, 1:545-548, 1999.

170] J. Parker and D. Ray. A 1.6GHz CMOS PLL with on-chip loop filter. IEEE J. Solid-State Circuits, 33(3):337-343, Mar. 1998.

171] R. Chang and L. Kuo. A new low-voltage charge-pump circuit for PLL. Proc. InVl Symp. Circuits and Syst, 5:701-703, May 2000.

172] E. Juarez-Hernandez and A. Diaz-Sanchez. A novel CMOS charge-pump cir­cuit with positive feedback for PLL applications. Proc. Int'l Conf. Electronics, Circuits, and Syst, 1:349-352, 2001.

173] M. Lee, T. Cheung, and W.Choi. A novel charge-pump PLL with reduced jitter characteristics. Proc. 6th InVl Conf. on VLSI and CAD, pages 596-598, Oct. 1999.

174] J. Lee and B. Kim. A low-noise fast-lock phase-locked loop with adaptive bandwidth control. IEEE J. Solid-State Circuits, 35(8):1137-1145, Aug. 2000.

175] C. Hung and K. Kenneth. A fully integrated 1.5V 5.5GHz CMOS phase-locked loop. IEEE J. Solid-state Circuits, 37(4):521-525, Apr. 2002.

176] H. Ahn and D. Allstot. A 0.5-8.5 GHz fully differential CMOS distributed amplifier. IEEE J. Solid-State Circuits, 37(8):985-993, Aug. 2002.

177] A. Hajimiri, S. Limotyakis, and T. Lee. Jitter and phase noise in ring oscilla­tors. IEEE J. Solid-State Circuits, 34(6):790-804, June 1999.

178] J. Kim, S. Lee, T. Jung, S. Cho C. Kim, and B. Kim. A low-jitter mixed-mode DLL for high-speed dram applications. IEEE J. Solid-State Circuits, 35(10):1430-1436, Oct. 2000.

179] F. Yuan. A fully differential VCO cell with active inductors for Gbps serial links. Analog Integrated Circuits and Signal Processing, 47(2), May 2006.

180] C. Park and B. Kim. A low-noise, 900-Mhz VCO in 0.6/im CMOS. IEEE J. Solid-State Circuits, 34(5):586-591, May 1999.

181] Y. Eken and J. Uyemura. A 5.9-GHz voltage-controlled ring oscillator in 0.18/im CMOS. IEEE J. Solid-State Circuits, 39(l):230-233, Jan. 2004.

182] F. Yuan. A modified Park-Kim voltage-controlled ring oscillator for multi-Gbps serial links. Analog Integrated Circuits and Signal Processing, 47(3), June 2006.

REFERENCES 281

[183] I. Hwang, C. Kim, and S. Kang. A CMOS self-regulating VCO with low supply sensitivity. IEEE J. Solid-State Circuits, 39(l):42-48, Jan. 2004.

[184] M. Mansuri and C. Yang. A low-power adaptive bandwidth PLL and clock buffer with supply-noise compensation. IEEE J. Solid-State Circuits, 38(11):1804-1812, Nov. 2003.

[185] D. DiClemente and F. Yuan. Current-mode phase-locked loops - a new archi­tecture. IEEE Trans, on Circuits and Syst. II, Revised with minor revisions in August 2006.

[186] S. Sidiropoulos and Horowitz M. A 700-Mb/s/pin CMOS signahng interface using current integrating receivers. IEEE J. Solid-State Circuits, 32(5):681-690, May 1997.

[187] J. Zerbe, C. Werner, V. STojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. Stonecypher, A. Ho, T. Thrush, R. Kollipara, M. Horowitz, and K. Don­nelly. Equalization and clock recovery for a 2.5-10-Gb/s 2PAM/4-PAM back­plane transceiver cell. IEEE J. of Solid-State Circuits, 38(12):2121-2130, Dec. 2003.

[188] T. Wang and F. Yuan. A new current-mode incremental signaling scheme with applications to Gb/s parallel links. IEEE Trans, on Circuits and Syst. I, Accepted for publication in August 2006.

[189] B. Razavi. Monolithic Phase-Locked Loops and Clock Recovery Circuits, The­ory and Design. IEEE Press, New York, 1996.

[190] D. Leeson. A simple model of feedback oscillator noise spectrum. Proc. IEEE, 54(2):329-330, Feb. 1966.

[191] T. Weigandt, B. Kim, and P. Grey. Analysis of timing jitter in ring oscillators. In Proc. IEEE Int'l Symp. Circuits Syst, pages 27-30, London 1994.

[192] T. Weigandt. Low-phase-noise, low-timing-jitter design techniques for delay cell based VCOs and frequency synthesizer. PhD. Dissertation, University of California, Berkeley, 1998.

[193] J. Cranincks and M. Steyaert. Low-noise voltage-controlled oscillators using enhanced LC-tanks. IEEE Trans. Circuits Syst. II, 42(12):794-804, Dec. 1995.

[194] A. Hajimiri and T. Lee. A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits, 33(6):179-194, 1998.

[195] L. Dai and R. Harjani. Design of low-phase-noise CMOS ring oscillators. IEEE Trans. CAS - II, 49(5):328-338, May 2002.

[196] B. Razavi. Design of Integrated Circuits for Optical Communications. McGraw-Hill, Boston, 2003.

[197] S. Sidiropoulos and Horowitz M. A semidigital dual delay-locked loop. IEEE J. Solid-state Circuits, 32(11):1683-1692, Nov. 1997.

282 REFERENCES

[198] D. Shim W. Kim C. Kim S. Cho Y. Jung, S. Lee. A dual-loop delay-locked loop using multiple voltage-controlled delay lines. IEEE J. Solid-State Circuits^ 36(5):784-791, May 2001.

[199] S. Lin and N. Chang. Challenges in power-ground integrity. In Proc. IEEE Int'l Conf. Computer-Aided Design^ pages 651-654, 2001.

[200] M. Pant, P. Pant, and D. Wills. On-chip decoupling capacitor optimization using architecture level prediction. IEEE Trans. VLSI, 10(3):319-326, June 2002.

[201] P. Larsson. di/dt noise in CMOS integrated circuits. Analog Integrated Circuits and Signal Processing, 14:113-129, 1997.

[202] T. Sakurai and A. Newton. Alpha-power law MOSFET model and its applica­tion to CMOS inverter delay and other formulas. IEEE J. Solid-State Circuits, 25(4):584-594, Apr. 1990.

[203] S. Vemuru. Accurate simultaneous switching noise estimation including velocity-saturation effects. IEEE Trans. Components, Packagings, and Man­ufacturing Tech. - Part B, 19(2):344-349, May 1996.

[204] H. Cha and O. Kwon. An analytical model of simultaneous switching noise in CMOS systems. IEEE Trans. Advanced Packaging, 23(l):62-68, Feb. 2000.

[205] S. Jou, W. Cheng, and Y. Lin. Simultaneous switching noise analysis and low-bounce buffer design. lEE Proc. - Circuits, Devices, Syst., 148(6):303-311, Dec. 2001.

[206] S. Jou, S. Kou, J. Chiu, and T. Lin. Low switching noise and load-adaptive output buffer design techniques,. IEEE J. Solid-State Circuits, 36(8): 1239-1249, Aug. 2001.

[207] K. Tang and G. Friedman. Simultaneous switching noise in on-chip CMOS power distribution networks. IEEE Trans. VLSI, 10(4):487-493, Aug. 2002.

[208] P. Larsson. Parasitic resistance in an MOS transistor used as on-chip decou-phng capacitance. IEEE J. Solid-State Circuits, 32(4):574-576, Apr. 1997.

[209] H. Cha and O. Kwon. A new analytical model of simultaneous switching noise in CMOS systems. In Proc. Electronic Components and Tech. Conf., pages 615-621, 1998.

[210] L. Ding and P. Mazumder. Simultaneous switching noise analysis using ap-phcation specific device modeling. IEEE Trans. VLSI, 11(6):1146-1152, Dec. 2003.

[211] T. Tang. On-chip interconnect noise in high performance CMOS integrated circuits. PhD. Dissertation, University of Rochester, 2000.

[212] E. Chioffi, F. Maloberti, G. Marchesi, and G. Torelh. High-speed, low-switching noise CMOS memory data output buffer. IEEE J. Solid-State Cir­cuits, 29(11):1359-1365, Nov. 1994.

REFERENCES 283

[213] T. Gabara, W. Fischer, J. Harrington, and W. Troutman. Forming damped Ire parasitic circuits in simultaneously switched CMOS output buffers. IEEE J. Solid-state Circuits, 32(3):407-418, Mar. 1997.

[214] S. Lee, D. Shim, Y. Jung, D. Lee, C. Kim, and W. Kim. Load-adaptive, low switching-noise output buffer. lEE Electronic Letters, 35(2):952-953, June 1999.

[215] J. Gonzalez and A. Rubio. Low delta-I noise CMOS circuits based on differen­tial logic and current hmiters. IEEE Trans. Circuits and Syst. /, 46(7):872-876, Jul. 1999.

[216] L. Yang and J. Yuan. Output buffer design for low noise and load adaptability. lEE Proc- Circuits, Devices, and Syst, 152(2):146-150, Apr. 2005.

[217] R. Downing, R Gebler, and G. Katopis. Decoupling capacitor effects on switching noise. IEEE Trans. Components, Hybrids, and Manufacturing Tech., 16(5):484-489, Aug. 1993.

[218] S. Bobba, T. Thorp, K. Aingaran, and D. Liu. IC power distribution challenges. In Proc. IEEE InVl Conf. Computer-Aided Design, pages 643-650, 2001.

[219] M. Goetz. Time and frequency domain analysis of integrated decoupling ca­pacitors. IEEE Trans. Components, Packaging and Manufacturing Tech. -Part B, 19(3):518-522, Aug. 1996.

[220] A. Rainal. Transmission properties of balanced interconnects. IEEE Trans. Components, Hybrids, and Manufacturing Tech., 16(1): 137-145, Feb. 1993.

[221] A. Rainal. Ehminating inductive noise of external chip interconnections. IEEE J. Solid-state Circuits, 29(2): 126-129, Feb. 1994.

[222] M. Nagata, J. Nagai, K. Hijikata, T. Morie, and A. Iwata. Physical design guides for substrate noise reduction in CMOS digital circuits. IEEE J. Solid-State Circuits, 36(3):539-549, Mar. 2001.

[223] D. Kosaka and M. Nagata. Isolation strategy against substrate coupling in CMOS mixed-signal/RF circuits. In Proc. Symp. VLSI Circuits Digest of Papers, pages 276-279, 2005.

[224] D. Su, M. Loinaz, S. Masui, and B. Wooley. Experimental results and modehng techniques for substrate noise in mixed-signal integrated circuits. IEEE J. Solid-state Circuits, 28(4):420-430, Apr. 1993.

[225] B. Owens, S. Adluri, R Birrir, R. Shreeve, S. Arunachalam, K. Mayaram, and T. Fiez. Simulation and measurement of supply and substrate noise in mixed-signal ICs. IEEE J. Solid-State Circuits, 40(2):382-391, Feb. 2005.

[226] S. Ardalan and M. Sachdev. An overview of substrate noise reduction tech­niques. In Proc. 4^h Int'l Symp. Quality Electronic Design, pages 291-296, 2004.

[227] T. Blalack, Y. Leclercq, and P. Yue. On-chip RF isolation techniques. In Proc. IEEE Bipolar/BiCMOS Circuit and Technology Meeting, pages 205-211, 2002.

284 REFERENCES

[228] K. Chew, J. Zhang, K. Shao, W. Loh, and S. Chu. Impact of deep n-well implantation on substrate noise couphng and R F transistor performance for system-on-a-chip integration. In Proc. ESSDERC^ pages 251-254, 2002.

[229] K. Fukuda, S. Maeda, T. Tsukada, and T. Matsuura. Substrate noise reduction using active grand band filters in mixed-signal integrated circuits. In Proc. Symp. VLSI Circuits^ volume 5, pages 33-34, 1995.

[230] K. Fukuda, S. Maeda, T. Tsukada, and T. Matsuura. Substrate noise reduction using active grand band filters in mixed-signal integrated circuits. lEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, E80-A:313-320, Feb. 1997.

[231] T. Liu, J. Carothers, and W. Holman. A negative feedback based substrate coupling noise reduction method. In Proc. 12th Annual ASIC/SOC Conf., pages 49-53, 1999.

[232] M. Peng and H. Lee. Study of substrate noise and techniques for minimization. IEEE J. Solid-state Circuits, 39(1):2080-2086, Nov. 2004.

[233] S. Beebe. Characterization, modeling, and design of ESD protection circuits. PhD. Dissertation, Stanford University, 1998.

[234] K. Bock, G. Groeseneken, and H. Maes. ESD protection methodology for deep-sub-micron CMOS. Microelectronics Reliability, 38:997-1007, 1998.

[235] C. Duvvury, R. Routree, and R. McPhee. ESD protection : design and layout issues for VLSI circuits. IEEE Trans. Industry AppL, 25(l):41-47, Jan. 1989.

[236] A. Ameraseker and C. Duvvury. ESD in Silicon Integrated Circuits. John Wiley and Sons, New York, 1995.

[237] C. Duvvury and A. Amerasekera. ESD issues for advanced CMOS technologies. Microelectronics Reliability, 36(7/8):907-924, 1996.

[238] O. Semenov, H. Sarbishaei, V. Axelrad, and M. Sachdev. The impact of CMOS technology on MOSFETs second breakdown : evaluation of ESD robustness. Microelectronics Reliability, 44:1817-1822, 2004.

[239] C. Richier, P. Salome, G. Mabboux, I. Zaza, A. Juge, and P. Mortini. Investi­gation on different ESD protection strategies devoted to 3.3V R F applications (2GHz) in a 0.18/xm CMOS process. J. Electrostatics, 54:55-71, 2002.

[240] M. Ker and C. Chang. ESD protection design for CMOS R F integrated circuits using polysihcon diodes. Microelectronics Reliability, 42:863-872, 2002.

[241] S. Dabral and T. Maloney. Basic ESD and I/O Design. John Wiley and Sons, New York, 1998.

[242] K. Verhaege and C. Russ. Novel fully sihcided ballasting and mft design tech­niques for ESD protection in advanced deep sub-micron CMOS technologies. Microelectronics Reliability, 41:1739-1749, 2001.

REFERENCES 285

[243] K. Verhaege, M. Mergens, C. Russ, J. Armer, and P. Jozwiak. Novel design of driver and ESD transistors with significantly reduced silicon area. In Proc. EOS/BSD Symp., pages 1-12, 2002.

[244] A. Aerasekera and C. Duvvury. The impact of technology scaling on ESD ro­bustness and protection circuit design. IEEE Trans. Components, Packaging, and Manufacturing Tech, - Part A, 18(2):314-320, June 1995.

[245] M. Ker, C. Wu, T. Cheng, and H. Chang. Capacitor-couple ESD protec­tion circuit for deep-submicron low-volt age CMOS ASIC. IEEE Trans. VLSI, 4(3):307-321, Sept. 1996.

[246] C. Russ, M. Mergens, K. Verhaege, J. Armer, R Jozwiak, G. Kolluri, and L. Avery. GGSCRs : GGNMOS triggered sihcon controlled rectifiers for ESD protection in deep sub-micron CMOS processes. In Proc. EOS/ESD Symp., pages 1-10, Portland, Sept. 2001.

[247] M. Ker and H. Chang. How to safely apply the LVTSCR for CMOS whole-chip ESD protection without being accidentally triggered on. J. Electronics, 47:215-248, 1999.

[248] M. Ker, H. Chang, and C. Wu. ESD protection for deep-submicron CMOS technology using gate-coupled CMOS-trigger lateral SCR structure. In Proc. lEDM Technical Digest, pages 543-546, 1995.

[249] M. Ker, H. Chang, and C. Wu. A gate-coupled PTLSCR/NTLSCR ESD protection circuit or deep-submicron low-voltage CMOS IC's. IEEE J. Solid-State Circuits, 32(1):38-51, 1997.

[250] P. Sullivan, B. Xavier, and W. Ku. An integrated CMOS distributed amplifier utilizing packaging inductance. IEEE Trans. Microwave Theory and Tech., 45(10):1969-1976, Oct. 1997.

[251] B. Baaweber, R. Gupta, and D. Allstot. A fully integrated 0.5-5.5GHz CMOS distributed amplifier. IEEE J. Solid-State Circuits, 35(2):231-239, Feb. 2000.

[252] B. Kleveland, T. Maloney, I. Morgan, L. Madden, T. Lee, and S. Wong. Dis­tributed ESD protection for high-speed integrated circuits. IEEE Electron Device Letters, 21(8):390-392, Aug. 2000.

[253] M. Ker and B. Kuo. ESD protection design for broadband RF circuits with decreasing-size distributed protection scheme. In Proc. IEEE Radio Frequency Integrated Circuits Symp., pages 383-386, 2004.

[254] S. Galal and B. Raza,vi. Broadband ESD protection circuits in CMOS tech­nology. IEEE J. Solid-State Circuits, 38(12):2334-2340, Dec. 2003.

[255] S. Galal and B. Razavi. 40-Gb/s amphfier and ESD protection circuit in 0.18-fj,m CMOS technology. IEEE J. Solid-State Circuits, 39(12):2389-2396, Dec. 2004.

[256] M. Mergens, K. Verhaege, C. Russ, J. Armer, P. Jozwiak, G. Kolluri, and L. Avery. Multi-finger turn-on circuits and design techniques for enhanced

286 REFERENCES

ESD performance and width-scaling. In Proc. EOS/BSD Symp., pages 1-11, 2001.

Index

FO4,99

active feedback, 21 active inductors, 34

Bode plots of active inductors, 36 cascode gyrator-C active inductors,

39 dynamic range, 47 floating gyrator-C active inductors,

41 gyrator-C active inductors, 35 multi-regulated cascode gyrator-C

active inductors, 40 noise of active inductors, 43 noise of gyrator-C active inductors,

44 noise of Q-enhanced gyrator-C ac­

tive inductors, 45 noise of transconductors, 43 Q-enhanced gyrator-C active induc­

tors, 40 regulated cascode gyrator-C active

inductors, 40 self-biased active inductors, 41

adjoint network, 4 analog and digital grounding, 238 attenuation constant, 63 avalanche multiplication, 248

back-end ballast resistors, 264 back-to-back integrating receiver, 199 balancing networks, 22 ballast resistors, 252 basic current amplifiers, 13 bipolar junction transistor, 248 bonding wires

maximum frequency, 216 bootstrapping, 21 Butterworth response, 27

capacitance of bonding pads, 55 cascode current amplifiers, 15

basic cascodes, 15 low-volt age cascodes, 19 multi-regulated cascodes, 17 pseudo-cascodes, 18 regulated cascodes, 17

characteristic impedance, 63 charge pumps, 172

Ahn-Allstot charge pump, 180 basic charge pumps, 176 Charge pump with perfect current

matching, 179 current-steering charge pumps, 176 Diff"erential charge pump with common-

mode feedback, 179 Hung-Kenneth charge pump, 180 nonidealities, 173 self-biased differential current-steering

charge pump, 178 class A integrating receivers, 198 class AB current amplifiers, 32 clock and data recovery using phase-

picking, 140 complex propagation constant, 63 conductivity of n-well resistors, 247 contact resistance, 51 critically terminated, 67 current branching, 25 current-controlled ring oscillators, 189

current-starve delay cell, 189 Mansuri-Yang delay cell, 190

current-current feedback, 31 current-mode circuits, 1 current-mode integrating receiver, 200

reset phase, 202 current-mode loop filter, 191 current-mode multiplexers, 104 current-mode phase-locked loops, 191 current-mode signaling

288 INDEX

advantages, 82 current-steering multiplexers, 102 cut-off frequency of transconductors, 35

Data recovery using integration, 195 decoupling capacitors, 234 diffusion equation, 60 Diodes, 250 drain contact-gate spacing, 252

electrical signaling current-mode incremental signaling,

91 current-mode signaling, 89 fully differential signaling, 85 low-voltage differential signaling, 90 pseudo-differential signaling, 86 single-ended signaling, 84 unipolar current-mode signaling, 89 voltage-mode incremental signaling,

87 voltage-mode signaling, 84

electro-static discharge, 243 ESD protection circuit

Domino nMOS MFT, 265 ESD protection circuits

basic ESD protection circuits, 257 challenges in ESD Protection, 257 decreasing-size distributed ESD pro­

tection scheme, 262 distributed ESD protection circuits,

260 ESD protection with negative capac­

itors, 262 poly back-end ballast with segmen­

tation, 263 polysilicon diodes, 259 primary ESD protection stage, 257 scaling of gate oxide thickness, 258 scaling of junction depth, 258 secondary ESD protection stage, 257 soft-grounded-gate nMOS MFT, 264 stacked diodes, 260 uniform condition, 264

ESD protection principles, 246 current-limiting of n-well resistors,

247 ESD sources, 244

charged device model, 245 finger model, 244 human body model, 244 machine model, 245

first-generation current conveyers, 3 fringe capacitance of wire channels, 54 full-clock low-power DAC, 118

voltage-coupling capacitor, 254 volt age-holding resistor, 254

gate-grounded nMOS transistors, 251 grounding in mixed-Mode circuits, 236

half-clock low-power DAC, 117

ideal current-mode circuits, 3 ideal voltage-mode circuits, 2 impact ionization, 247 impedance matching, 75

active impedance matching, 75 digital trimming, 77 dynamic clamping, 78 low-power active impedance match­

ing, 77 passive impedance matching, 75 self-regulated active impedance match­

ing, 78 symmetric load, 76

improved Wilson current amplifier, 17 inductance of wire channels, 55 inductor series peaking, 28 input impedance of transmission lines, 65 integrating receiver

partial steering of tail current, 198 threshold state of logic state, 195 voltage-mode integrating receiver,

196 integration receiver

voltage comparator, 196 integration time, 195 inter-reciprocal, 4

Lee's multiplexer, 102 Lorezen force, 51 low input-capacitance current amplifiers,

20 low-voltage silicon-controlled rectifier, 256

maximum flat response, 31 Miller capacitances, 7 Miller effect, 7 Miller poles, 7 modeling of wire channels, 59

distributed RC model of wire chan­nels, 60

Elmore model of wire channels, 61 lumped RC model of wire channels,

59 transmission-line model of wire

channels, 62 modified silicon-controlled rectifier, 256 mutual capacitance of wire channels, 54 mutual inductance, 56

gate-coupled nMOS transistors, 253 n+/p-well diodes, 250

INDEX 289

n-well ballast resistors, 253 n-well resistors, 250 non-uniform scaling, 50

open lines, 64 over terminated, 67

p+/n-well diodes, 250 parallel data links, 95 partial inductance, 58 partial mutual-inductance, 58 partial self-inductance, 58 phase constant, 63 phase noise of oscillators, 204

Dai-Harjani model, 209 Hajimiri-Lee model, 207 impulse sensitivity function, 207 Lesson model, 204 Razavi model, 206 single-side-band phase noise, 204 Weigandt model, 205

phase-frequency detectors, 155 XOR phase detectors, 156

phase-locked loops damping factor, 210 pole resonant frequency, 210

Phase-picking 2x-oversampling clock and data re­

covery, 148 3x-oversampling clock and data re­

covery, 150 4x-oversampling clock and data re­

covery, 152 oversampling ratio, 141

Phase-tracking clock and data recovery using phase-

tracking, 154 phase-tracking, 154

conventional D-Flipflop bang-bang phase detector, 164

D-flipflop phase-frequency detector, 159

dynamic D-flipflop phase detector, 170

Half-rate phase detector, 162 improved D-flipflop bang-bang phase

detector, 165 improved XOR bang-bang phase de­

tector, 169 RS phase detectors, 157 Sample-and-hold phase detector,

161 Two-XOR phase detector, 160

pre-emphasis, 113 current-mode direct pre-emphasis,

121 current-mode pre-emphasis, 114

power-area efficient current-mode pre-emphasis, 115

voltage-mode pre-emphasis, 114 pseudo-nMOS multiplexers, 101

resistance of wire channels, 50 resistor series peaking, 27 Reuhli loop, 58

Samplers, 143 advantages of oversampling clock

and data recovery, 142 evaluation phase, 144 hold time, 144 maximum time window, 142 minimum input, 144 Moon-Kang sampler, 148 Poulton-Dally-Tell sampler, 145 pre-charge phase, 144 regenerative sense amplifier, 143 setup time, 144 setup-hold time, 141, 144 Yang-Horowitz sampler, 146

scaling of metal interconnects, 50 second-generation current conveyors, 3 self-inductance, 56 serial data links, 95

advantages, 97 serial links

advantages, 97 class A current-mode drivers, 109 class AB current-mode drivers. 111 drivers, 106 inverter drivers, 107 low-volt age differential-signaling drivers,

109 open-drain drivers, 107 serialization, 98

serialization multi-phase single-stage scheme, 99 single-phase multi-stage scheme, 98

sheet resistance, 51 shorted lines, 64 silicon-controlled rectifiers, 254 skin depth, 51 Slew rate, 7 snap back, 249 snapback holding voltage, 249 source contact-gate spacing, 252 stub, 55 substrate grounding, 239 substrate modeling, 237 supply voltage sensitivity, 9 switching noise, 217

analysis of switching noise, 220 efi'ects of switching noise, 218 noise margins, 218

switching noise analysis

290

a-power law approach, 222 application specific device modeling

approach, 231 improved a-power law approach,

225 partial buffer switching approach­

ing, 227 peak switching noise approach, 229 triangle waveform approach, 221

switching noise reduction techniques, 232 balanced drivers, 236 pre-skewing, 233

Tellegen's theorem, 4 termination schemes

AC parallel termination, 74 parallel termination, 74 series termination, 72 Thevenin termination, 75

termination schemes of transmission lines, 72

thermal breakdown, 249 thermal conductivity of silicon, 250 thermal conductivity of silicon dioxide,

250 transmission line effects, 67 transmission-gate multiplexers, 100 Transmitters

ADC-based serial link transmitter, 123

INDEX

current-mode area-power efficient 4PAM serial link transmitter, 132

current-mode class A 2PAM serial link transmitter, 124

current-mode Class AB 2PAM serial link transmitter, 124

current-mode power-insensitive Class AB 2PAM serial link transmit­ter, 126

under terminated, 67

voltage-controlled ring oscillators, 181 cross-coupled delay cells, 184 cross-coupled delay cells with active

inductor load, 184 Huang delay cells, 189 Park-Kim delay cells, 185 Park-Kim delay cells with active in­

ductor load, 187 source-coupled delay cells, 182 source-coupled delay cells with ac­

tive inductor load, 184 voltage-mode circuits, 1 voltage-mode integration receiver, 196

Yang's multiplexer, 103

About the Author

Fei Yuan received the PhD. degree in electrical engineering from University of Waterloo, Canada in October 1999. He is currently an Associate Professor in the Department of Electrical and Computer En­gineering, Ryerson University, Toronto, Ontario, Canada. He is the co-author of the book Computer Methods for Analysis of Mixed-Mode Switching Circuits (with Ajoy Opal, Kluwer Academic Publishers, April 2004), and the author / co-author of over 80 refereed journal and confer­ence papers in the field of mixed-mode circuits. Dr. Yuan is the recipient of the Ryerson Research Chair award from Ryerson University in 2005, the Research Excellence award from the Faculty of Engineering, Archi­tecture, and Science of Ryerson University in 2004, the doctoral scholar­ship from Natural Science and Engineering Research Council of Canada in 1997, and the Teaching Excellence award from Changzhou Institute of Technology, Jiangsu, China in 1988. He is a registered professional engineer in the province of Ontario, Canada and a senior member of IEEE.

Printed in the United States of America.