39
References

References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Page 2: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis in

Candida albicans during blastospore formation at 24.5 °c and during germ tube formation at 37

0c. J. Gen. Microbiol. 129: 1133-1139.

Alex, L. A., C. Korch, C. P. Selitrennikoff, and M. I. Simon. 1998. COS}, a two-component

histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida

albicans. Proc. Natl. Acad. Sci. USA 95: 7069-7073.

Alonso-Monge, R, F. Navarro-Garcia, E. Roman, A. I. Negredo, B. Eisman, C. Nombela, and

J. Pia. 2003. The Hogl mitogen-activated protein kinase is essential in the oxidative stress

response and chlamydospore formation in Candida albicans. Eukaryot. Cell 2:351-361.

Alonso-Monge, R, F. Navarro-Garcia, G. Molero, R Diez-Orejas, M. Gustin, J. Pia, M.

Sanchez, and C. Nombela. 1999. Role of the mitogen-activated protein kinase Hog1 p in

morphogenesis and virulence of Candida albicans. J. Bacteriol181: 3058-3068.

Anderson, J., R Mihalik, and D. R Soli. 1990 Ultrastructure and antigenicity of the unique cell

wall pimple of the Candida opaque phenotype. J. Bacteriol. 172:224-235.

Anderson, J. M., and D. R Soli. 1987. Unique phenotype of opaque cells in the white-opaque

transition of Candida albicans. J. Bacteriol. 169:5579-5588.

Anderson, J., L. Cundiff, B. Schnars, M. X. Gao, I. Mackenzie, and D. R Soli. 1989. Hypha

formation in the white-opaque transition of Candida albicans. Infect. Immun. 57:458-467.

Andre, B. 1995. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast

11 : 1575-1611.

Andrianopoulos, A., and W. E. Timberlake. 1994. The Aspergillus nidulans abaA gene encodes

a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. BioI.

14:2503-2515

Antley, P.P., and K. C. Hazen. 1988. Role of yeast cell growth temperature on Candida albicans

virulence in mice. Infect Immun. 56: 2884-2890.

Aramayo, R, Y. Peleg, R Addison, and R Metzenberg. 1996. Asm-l+, a Neurospora crassa

gene related to transcriptional regulators of fungal development. Genetics 144:991-1003.

Asleson, C. M., E. S. Bensen, C. A. Gale, A. S. Melms, C. Kurischko, and J. Berman. 2001.

Candida albicans INTi-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.

Mol. Cell. BioI. 21: 1272-1284.

Astrom, S. U., A. Kegel, J. O. Sjostrand, and J. Rine 2000. Kluyveromyces lactis Sir2p regulates

cation sensitivity and maintains a specialized chromatin structure at the cryptic alpha-locus.

Genetics 156:81-91.

173

Page 3: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

Relerences

Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K.

Struhl 1994. Current protocols in molecular biology. John Wiley & Sons, New York.

Ayer, D. E. 1999. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends

Cell BioI. 9: 193-198.

Babior, B.M., R. S. Kipnes, and J. T. Curnutte. 1973. Biological defense mechanisms. The

production by leukocytes of superoxide, a potential bactericidal agent. 1. Clin. Invest. 52:741-

744.

Bachewich, c., D.Y. Thomas, and M. Whiteway. 2003. Depletion of a polo-like kinase in

Candida albicans activates cyclase-dependent hyphal-like growth. Mol. BioI. Cell. 14:2163-

2180.

Bahn, Y. S. and P. Sundstrom. 2001. CAPi, an adenyl ate cyclase-associated protein gene,

regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for

virulence of Candida albicans. J. Bacteriol. 183:3211-3223.

Bahn, Y.S., J. Staab, and P. Sundstrom 2003. Increased high-affinity phosphodiesterase PDE2

gene expression in germ tubes counteracts CAP i-dependent synthesis of cyclic AMP, limits

hypha production and promotes virulence of Candida albicans. Mol. Microbiol. 50:391-409.

Balan, I., A. M. Alarco, and M. Raymond. 1997. The Candida albicans CDR3 gene codes for an

opaque-phase ABC transporter. J. Bacteriol. 179:7210-7218.

Banerjee, A., K. Ganesan, and A. Datta. 1991 a. Induction of secretory acid proteinase In

Candida albicans. Journal of General Microbiology 137: 2455-2461.

Banerjee, A., K. Ganesan, and A. Datta. 1991 b. Rapid purification of secretory acid proteinase

from Candida albicans and its characterization. Indian 1. of Biochem. Biophys. 28: 444-448.

Banuett, F. 1998. Signalling in the yeasts: an informational cascade with links to the filamentous

fungi. Microbiol. Mol. BioI. Rev. 62: 249-274.

Barrett, A. J., and N. D. Rawlings. 1991. Types and families of endopeptidases. Biochem. Soc.

Trans. 19:707-715.

Barrett-Bee, K. and M. Hamilton. 1984. The detection and analysis of chitinase activity from the

yeast form of Candida albicans. J. Gen. Microbiol. 130:1857-186l.

Bassilana, M., J. Blyth, and R. A. Arkowitz. 2003. Cdc24, the GDP-GTP exchange factor for

Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot. Cell 2:9-18.

Belfield, G. P., and M. F. Tuite, 1993. Translation elongation factor 3: a fungus-specific

translation factor? Mol. Microbiol. 9: 411-418.

174

Page 4: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Bendel, C. M., K. M. Kinneberg, K. Y. Jechorek, L. A. (jale, S. L. )!;rlandsen, M. K. Hostetter,

and C. L. Wells. 1999. Systemic infection following intravenous inoculation of mice with

Candida albicans intI mutant strains. Mol. Genet. Metab. 67:343-351.

Bendel, C.M., J. St Sauver, S. Carlson, and M. K Hostetter. 1995. Epithelial adhesion in yeast

species: correlation with surface expression of the integrin analog. 1. Infect. Dis. 171:1660-1663.

Bennett, R J., and A. D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans

by induced chromosome loss in tetraploid strains. EMBO 1.22:2505-2515.

Bennett, R J., M. A. Uhl, M. G. Miller, and A. D. Johnson. 2003. Identification and

characterization of a Candida albicans mating pheromone. Mol. Cell. BioI. 23:8189-8201.

Bensen, E. S., S. G. Filler, and J. Berman. 2002. A forkhead transcription factor is important for

true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1:787-798.

Berman H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov

and P. E. Bourne. 2000. The Protein Data Bank. Nucleic Acids Res. 28: 235-242.

Bernard, F., and B. Andre. 2001. Ubiquitin and SCFGrrl ubiquitin ligase complex are involved in

the signaling pathway activated by external amino acid in Saccharomyces cerevisiae. FEBS

Letters 496,81-85.

Bernstein, B.E., J. K Tong, and S. L. Schreiber. 2000. Genome wide studies of histone

deacetylase function in yeast. Proc. Natl. Acad. Sci. USA. 97:13708-13713.

Bhattacharya, A. and A. Datta. 1977. Effect of cyclic AMP on RNA and protein synthesis in

Candida albicans. Biochem. Biophys. Res. Commun. 77: 1438-1444.

Bhattacharya, A., M. Puri, A. Datta. 1974a. Induction ofN-acetylglucosamine kinase in yeast.

Biochem. 1. 141: 593-595.

Bhattacharya, A., S. Banerjee, and A. Datta. 1974b. Regulation ofN-acetylglucosamine kinase

synthesis in yeast. Biochim. Biophys. Acta. 374:384-391

Biswas, K, K J. Rieger, and J. Morschhauser. 2003a. Functional analysis of CaRAP 1, encoding

the Repressor/activator protein 1 of Candida albicans. Gene 307: 151-158.

Biswas, M., B. Singh and A. Datta (1979). Induction ofN-acetylmannosamine catabolic pathway

in yeast. Biochim. Biophys. Acta. 585:535-542.

Biswas, S., M. Roy, and A. Datta. 2003b. N-acetylglucosamine-inducible CaGAP 1 encodes a

general amino acid permease which co-ordinates external nitrogen source response and

morphogenesis in Candida albicans. Microbiology 149:2597-2608.

Blankenship, J. R, F. L. Wormley, M. K Boyce, W. A. Schell, S. G. Filler, J. R Perfect, and

J. Heitman. 2003. Calcineurin is essential for Candida albicans survival in serum and

virulence. Eukaryot. Cell 2:422--430.

175

Page 5: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Blinder, D., P.W. Coschigano, and B. Magasanik. 1996. Interaction of GAT A factor Gln3p with

the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178, 4734-4736.

Bobola N., R P. Jansen, T. Ho Shin and K. Nasmyth. 1996. Asymmetric accumulation of Ashlp

in postanaphase nuclei depends on a myosin and restricts yeast making type switching to mother

cells. Cell 84: 699-709.

Bockmiihl, D. P., and J. F. Ernst. 200l. A potential phosphorylation site for an A-type kinase in

the Efgl regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics

157:1523-1530.

Bockmuhl, D. P., S. Krishnamurthy, M. Gerads, A. Sonneborn, and J. F. Ernst. 200l. Distinct

and redundant roles of the two protein kinase A isofonns Tpkl p and Tpk2p in morphogenesis

and growth of Candida albicans. Mol. Microbiol. 42:1243-1257.

Borg, M., and R Ruchel. 1988. Expression of extracellular acid proteinase by proteolytic

Candida spp. during experimental infection of oral mucosa. Infect. Immun. 56:626-631.

Borg-von Zepelin, M., S. Beggah, K. Boggian, D. Sanglard, and M. Monod. 1998. The

expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine

macrophages. Mol. Microbiol. 28:543-554.

Braun, B. R, and A. D. Johnson. 1997. Control offilament formation in Candida albicans by the

transcriptional repressor TUPI. Science 277,105-109.

Braun, B. R, and A. D. Johnson. 2000. TUP 1, CPHI and EFGI make independent contributions

to filamentation in Candida albicans. Genetics 155: 57-67.

Braun, B. R, D. Kadosh, and A. D. Johnson. 200l. NRGI, a repressor of filamentous growth in

Candida albicans, is down-regulated during filament induction. EMBO J. 20:4753-476l.

Braun, B. R, W.S. Head, M. X. Wang, and A. D. Johnson. 2000. Identification and

characterization of TUP I-regulated genes in Candida albicans. Genetics 156:31-44.

Brega, E., R Zufferey and C. B. Mamoun. 2004. Candida albicans Csyl p is a nutrient sensor

important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot. Cell 3: 135-

143.

Brown, A. J., and N. A. Gow. 1999. Regulatory networks controlling Candida albicans

morphogenesis. Trends Microbiol. 7:333-338

Brummel, M. and D. R Soli. 1982. The temporal regulation of protein synthesis during

synchronous bud or mycelium fonnation in the dimorphic yeast Candida albicans. Dev. BioI.

89:211-224.

Bruno, V. M., and A. P. Mitchell. 2004. Large-scale gene function analysis in Candida albicans.

Trends Microbiol.12: 157-16l.

176

Page 6: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Buffo, J., M. A. Herman, and D. R Soli. 1984. A characterization of pH-regulated dimorphism in

Candida albicans. Mycopathologia 85:21-30.

Cabib, E., R Roberts, and B. Bowers. 1982. Synthesis of the yeast cell wall and its regulation.

Annu Rev Biochem. 51: 763-793.

Calcagno, M., P. J. Campos, G. Mulliert, and J. Suastegui. 1984. Purification, molecular and

kinetic properties of glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli.

Biochim. Biophys. Acta. 787: 165-173.

Calderone, RA., and W. A. Fonzi. 200l. Virulence factors of Candida albicans. Trends

Microbiol. 9:327-335.

Calera, J. A., and R Calderone. 1999. Flocculation of hyphae is associated with a deletion in the

putative CaHKl two-component histidine kinase gene from Candida albicans. Microbiology

145: 1431-1442.

Calera, J. A., X. J. Zhao, and R Calderone. 2000. Defective hyphal development and avirulence

caused by a deletion of the SSKl response regulator gene in Candida albicans. Infect. Immun.

68:518-525.

Calera, J. A., X. J. Zhao, F. De Bernardis, M. Sheridan, and R Calderone. 1999. Avirulence

of Candida albicans CaHKl mutants in a murine model of hematogenously disseminated

candidiasis. Infect. Immun. 67: 4280-4284.

Cannon, RD., H. F. Jenkinson, and M. G. Shepherd. 1992. Cloning and expression of Candida

albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in

Saccharomyces cerevisiae. Mol. Gen. Genet. 235: 453-457.

Cannon, RD., K. Niimi, H. F. Jenkinson, and M. G. Shepherd. 1994. Molecular cloning and

expression of the Candida albicans beta-N-acetylglucosaminidase (HEX1) gene. J. Bacteriol.

176:2640-2647.

Capa, L., A. Mendoza, J. L. Lavandera, F. Gomez de las Heras, and J. F. Garcia-Bustos.

1998. Translation elongation factor 2 is part of the target for a new family of antifungals.

Antimicrob. Agents Chemother. 42: 2694-2699.

Carmen, A. A., S. E. Rundlett, and M. Grunstein. 1996. HDAl and HDA3 are components of a

yeast histone deacetylase (HDA) complex. J. BioI. Chem. 271: 15837-15844.

Casselton, L.A., and N. S. Olesnicky. 1998. Molecular genetics of mating recognition In

basidiomycete fungi. Microbiol. Mol. BioI. Rev. 62:55-70.

Cassola, A., M. Parrot, S. Silberstein, B. B. Magee, S. Passeron, L. Giasson, and M. L.

Cantore. 2004. Candida albicans lacking the gene encoding the regulatory subunit of protein

177

Page 7: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

kinase A displays a defect in hypha I formation and an altered localization of the catalytic

subunit. Eukaryot. Cell 3: 190-199.

Castilla, R., S. Passeron, and M. L. Cantore. 1998. N-Acetyl-D-glucosamine induces

germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP­

dependent protein kinase. Cell Signal. 10: 713-719.

Chalfie, M. C., T. Tu, G. Euskirchen, W. W. Ward, and K. Stuhl. 1994. Green fluorescent

protein as a marker of gene expression. Science 263: 802-805.

Chen E. J., and C. A. Kaiser 2002. Amino acids regulate the intracellular trafficking of the

general amino acid permease of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA

99:14837-14842

Chen, J., J. Chen, S. Lane, and H. Liu. 2002. A conserved mitogen-activated protein kinase

pathway is required for mating in Candida albicans. Mol. Microbiol. 46: 1335-1344.

Chen, J., S. Zhou, Q. Wang, X. Chen, T. Pan, and H. Liu. 2000. Crkl, a novel Cdc2-related

protein kinase, is required for hyphal development and virulence in Candida albicans. Mol. Cell.

BioI. 20:8696-8708.

Chen, X., and J. Y. Chen. 2000. Cloning and Functional Analysis of ALS Family Genes from

Candida albicans. Sheng. Wu. Hua. Xue. Yu. Sheng. Wu. Wu. Li. Xue. Bao. (Shanghai).

32:586-594.

Chin, D. and A. R. Means 2000. Calmodulin: a prototypical calcium sensor. Trends Cell BioI.

10:322-328.

Chisholm, G. and T. G. Cooper. 1982. Isolation and characterization of mutants that produce the

allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae. Mol. Cell. BioI.

2:1088-1095.

Cho, T., H. Hamatake, H. Kaminishi, Y. Hagihara, and K. Watanabe, 1992. The relationship

between cyclic adenosine 3', 5'-monophosphate and morphology in exponential phase Candida

albicans. 1. Med. Vet. Mycol. 30:35-42.

Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79: 13-21

Clark, K. L., P. J. Feldmann, D. Dignard, R. Larocque, A. J. Brown, M. G. Lee, D. Y.

Thomas, and M. Whiteway. 1995. Constitutive activation of the Saccharomyces cerevisiae

mating response pathway by a MAP kinase kinase from Candida albicans. Mol. Gen. Genet.

249: 609-621.

Cloutier, M., R. Castilla, N. Bolduc, A. Zelada, P. Martineau, M. Bouillon, B. B. Magee, S.

Passeron, L. Giasson, and M. L. Cantore. 2003. The two isoforms of the cAMP-dependent

178

Page 8: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal

pathogen Candida albicans. Fungal. Genet. BioI. 38: 133-141.

Coffman J. A., R Rai, D. M. Loprete, T. Cunningham, V. SvetIov and T. G. Cooper. 1997.

Cross regulation of four GAT A factors that control nitrogen catabolic gene expression in

Saccharomyces cerevisiae. J. Bacteriol. 179:3416-3429.

Coffman, J. A., R Rai, T. Cunningham, V. SvetIov, and T. G. Cooper. 1996. Gatl p, a GAT A

family protein whose production is sensitive to nitrogen catabolite repression, participates in

transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol. Cell.

BioI. 16:847-858.

Cognetti, D., D. Davis, and J. Sturtevant. 2002. The Candida albicans 14-3-3 gene, BMH1, is

essential for growth. Yeast 19:55-67.

Cogoni c., L. Valenzuela, D. Gonzalez-Halphen, H. Olivera, G. Macino, Ballario P. and A.

Gonzalez 1995. Saccharomyces cerevisiae has a single glutamate synthase gene coding for a

plant-like high-molecular-weight polypeptide. J. Bacteriol. 177: 792-798.

Colina, A. R, F. Aumont, N. Deslauriers, P. Belhumeur, and L. de Repentigny. 1996.

Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl

proteinase. Infect. Immun. 64:4514-4519.

Cooper T. G., D. Ferguson, R Rai and N. Bysani. 1990. The GLN3 gene product is required for

transcriptional activation of aIlantoin system gene expression in Saccharomyces cerevisiae. J.

Bacteriol. 172:1014-1018.

Coppin, E., R Debuchy, S. Arnaise, and M. Picard. 1997. Mating types and sexual development

in filamentous ascomycetes. Microbiol. Mol. BioI. Rev.61 :411-428.

Cormack, B. P., G. Bertram, M. Egerton, N. A. Gow, S. Falkow, A. J. Brown 1997. Yeast­

enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans.

Microbiology 143: 303-311.

Coschigano, P.W. and B. Magasanik. 1991. The URE2 gene product of Saccharomyces

cerevisiae plays an important role in the cellular response to the nitrogen source and has

homology to glutathione s-transferases. Mol. Cell. BioI. 11: 822-832.

Courchesne, W.E, and B. Magasanik. 1983. Ammonia regulation of amino acid penn ease in

Saccharomyces cerevisiae. Mol Cell Bioi 3: 672-683.

Csank, c., K. Schroppel, E. Leberer, D. Harcus, O. Mohamed, S. Meloche, D. Y. Thomas,

and M Whiteway. 1998. Roles of the Candida albicans mitogen-activated protein kinase

homolog, Ceklp, in hyphal development and systemic candidiasis. Infect. Immun. 66: 2713-

2721.

179

Page 9: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Cunningham, T. S. and Cooper, T. G. 1991, Expression of the DAL80 gene, whose product is

homologous to the GAT A factors and is a negative regulator of mUltiple nitrogen catabolic

genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol. Cell.

BioI. 11:6205-6215.

Cunningham, T. S., and T. G. Cooper. 1993. The Saccharomyses cerevisiae DAL80 repressor

protein binds to multiple copies of GAT AA-containing sequences (URSGAT A). 1. Bacteriol.

175,5851-5861.

Cunningham, T. S., R. Andhare, and. T. G. Cooper. 2000. Nitrogen catabolite repression of

DAL80 expression depends on the relative levels of Gatlp and Ure2p production in

Saccharomyces cerevisiae. J. BioI. Chern. 275:14408-14414.

Cutler, F. E. 1991. Putative virulence factor of Candida albicans. Annu. Rev. Microbiol. 45: 187-

218.

Dabrowa, N., D. H. Howard, J. W. Landau, and Y. Shechter. 1970. Synthesis of nueic acids

and proteins in the dimorphic forms of Candida albicans. Sabouraudia. 8: 163-169.

Datta, A., K. Ganeshan, and K. Natarajan 1989. Current trends in Candida albicans research.

Adv. Microb. Physiol. 30:53-88.

Davies, D. R. 1990. The structure and function of the aspartic proteinases. Annu. Rev. Biophys.

Bio Chern. 19:189-215.

Davies, J. M, A. J. Stacey, and C. A. Gilligan. 1999. Candida albicans hyphal invasion:

thigmotropism or chemotropism? FEMS Microbiol. Lett. 171: 245-249.

Davis, D. A., V. M. Bruno, L. Loza, S. G Filler, and A. P. Mitchell. 2002. Candida albicans

Mds3p, a conserved regulator of pH responses and virulence identified through insertional

mutagenesis. Genetics 162: 1573-1581

Davis, D., J. E. Jr Edwards, A. P. Mitchell, and A. S. Ibrahim. 2000a. Candida albicans

RIM 1 0 1 pH response pathway is required for host-pathogen interactions. Infect.

Immun.68:5953-5959.

Davis, D., R. B. Wilson, and A. P. Mitchell. 2000b. RIMI01-dependent and-independent

pathways govern pH responses in Candida albicans. Mol. Cell. BioI. 20:971-978.

Davis, T. N., M. S. Urdea, F. R. Masiarz and J. Thorner. 1986. Isolation of the yeast calmodulin

gene: calmodulin is an essential protein. Cell 47: 423-431.

De Backer, M. D., B. Nelissen, M. Logghe, J. Viaene, I. Loonen, S. Vandoninck, R. de Hoogt,

S. Dewaele, F. A. Simons, P. Verhasselt, G. Vanhoof, R. Contreras, and W. H. Luyten.

2001. An antisense-based functional genomics approach for identification of genes critical for

growth of Candida albicans. Nat. Biotechnol. 19:212-213.

180

Page 10: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

De Bernardis, F., F. A. Muhlschlegel, A. Cassone, and W. A. Fonzi. 1998. The pH of the host

niche controls gene expression in and virulence of Candida albicans. Infect. Immun. 66: 3317-

3325.

De Bernardis, F., F. Mondello, R. San Millan, J. Ponton, and A. Cassone. 1999. Biotyping and

virulence properties of skin isolates of Candida parapsilosis. J. Clin. Microbiol. 37:3481-3486.

De Bernardis, F., M. Boccanera, D. Adriani, E. Spreghini, G. Santoni, and A. Cassone. 1997.

Protective role of antimannan and anti-aspartyl proteinase antibodies in an experimental model

of Candida albicans vaginitis in rats. Infect. Immun. 65:3399-3405.

De Bernardis, F., P. Chiani, M. Ciccozzi, G. Pellegrini, T. Ceddia, G. D'offizzi, I. Quinti, P. A.

Sullivan, and A. Cassone. 1996. Elevated aspartic proteinase secretion and experimental

pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human

immunodeficiency virus. Infect. Immun. 64: 466-471.

De Rubertis, F., D. Kadosh, S. Henchoz, D. Pauli, G. Reuter, K. Struhl, and P. Spierer. 1996.

The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature

384:589-591.

de Viragh, P. A., D. Sanglard, G. Togni, R. Falchetto, and M. Monod. 1993. Cloning and

sequencing of two Candida parapsilosis genes encoding acid proteases. 1. Gen. Microbiol.

139:335-342.

Delbruck, S., A. Sonneborn, M. Gerads, A. H. GrabIowitz, and J. F. Ernst. 1997.

Characterization and regulation of the genes encoding ribosomal proteins L39 and S7 of the

human pathogen Candida albicans. Yeast 13: 1199-1210.

Denison, S. H., M. Orejas, and H. N. Jr Arst. 1995. Signaling of ambient pH in Aspergillus

involves a cysteine protease. J. BioI. Chem. 270:28519-28522.

Denison, S. H., S. Negrete-Urtasun, J. M. Mingot, J. Tilburn, W. A. Mayer, A. Goel, E. A.

Espeso, and M. A. Penalva, 1998. Arst HN Jr. Putative membrane components of signal

transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces

are homologous. Mol. Microbiol. 30:259-264.

Dhillon, N. K., S. Sharma, and G. K. Khuller. 2003. Biochemical characterization of

Ca+2/calmodu1in dependent protein kinase from Candida albicans. Mol. Cell. Biochem.

252:183-191

Didion, T., B. Regenberg, M. U Jorgensen, M. C. KiellandBrandt, and H. A. Andersen. 1998.

The permease homologue Ssy I p controls the expression of amino acid and peptide transporter

genes in Saccharomyces cerevisiae. Mol. Microbiol. 27: 643-650.

181

Page 11: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Diggle, T. A., N. T. Redpath, K. J. Heesom, and R. M. Denton. 1998. Regulation of protein­

synthesis elongation-factor-2 kinase by cAMP in adipocytes. Biochem. l. 336:525-529.

Diggle, T. A., T. Subkhankulova, K. S. Lilley, N. Shikotra, A. E.Willis, and N. T. Redpath.

2001. Phosphorylation of elongation factor-2 kinase on serine 499 by cAMP-dependent protein

kinase induces Ca2+/calmodulin-independent activity. Biochem. 1. 353:621-626.

Doedt, T., S. Krishnamurthy, D. P. Bockmuhl, B. Tebarth, C. Stempel, C. L. Russell, A. J.

Brown, J. F. Ernst. 2004. APSES proteins regulate morphogenesis and metabolism in Candida

albicans. Mol. BioI. Cell. Apr 16 [Epub ahead of print]

Donaton, M. c., I. Holsbeeks, O. Lagatie, G. Van Zeebroeck, M. Crauwels, J. Winderickx,

and J. M. Thevelein. 2003. The Gapl general amino acid permease acts as an amino acid

sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol.

Microbiol. 50:911-929.

Donovan, M. G., and J. W. Bodley. 1991. Saccharomyces cerevisiae elongation factor 2 is

phosphorylated by an endogenous kinase. FEBS Lett. 291:303-306.

Drazinic, C. M., J. B. Smerage, M. C. Lopez, and H. V. Baker. 1996. Activation mechanism of

the multifunctional transcription factor repressor-activator protein 1 (Raplp). Mol. Cell. BioI.

16: 3187-3196.

Dubois, N., Colina, A. R., F. Aumont, P. Belhumeur, and L. de Repentigny. 1998.

Overexpression of Candida albicans secretory aspartyl proteinase 2 and its expression tn

Saccharomyces cerevisiae do not augment virulence in mice. Microbiology 144: 2299-2310.

Egidy, G., C. Paveto, S. Passeron, and M. A. Galvagno, 1989. Relationship between cyclic

adenosine 3' :5' monophosphate and germination in Candida albicans. Exp. Mycol. 13:428-432

Egidy, G., C. Pave to, S. Passeron, and M. A. Galvagno. 1990. cAMP levels and in situ

measurement of cAMP related enzymes during yeast-to-hyphae transition in Candida albicans.

Cell. BioI. Int. Rep. 14:59-68.

EI Barkani, A., O. Kurzai, W. A. Fonzi, A. Ramon, A. Porta, M. Frosch, and F. A.

Muhlschlegel. 2000. Dominant active alleles of RIM 1 01 (PRR2) bypass the pH restriction on

filamentation of Candida albicans. Mol. Cell. BioI. 20:4635-4647.

Erni, B., and B. Zanolari. 1985. The mannose-permease of the bacterial phosphotransferase

system. Gene cloning and purification of the enzyme IIManlIIIMan complex of Escherichia coli.

l. BioI. Chern. 260: 15495-15503.

Ernst, J. F. 2000. Transcription factors in Candida albicans environmental control of

morphogenesis. Microbiology 146: 1763-1774.

182

Page 12: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Fallon, K, K Bausch, J. Noonan, E. Huguenel, and P. Tamburini. 1997 Role of aspartic

proteases in disseminated Candida albicans infection in mice. Infect. Immun. 65:551-556.

Felk, A., M. Kretschmar, A. Albrecht, M. Schaller, S. Beinhauer, T. Nichterlein, D. Sanglard,

H. C. Korting, W. Schafer, and B. Hube. 2002. Candida albicans hyphal formation and the

expression of the Efgl-regulated proteinases Sap4 to Sap6 are required for the invasion of

parenchymal organs. Infect Immun. 70:3689-3700.

Feng, Q., E. Summers, B. Guo, and G. Fink. 1999. Ras signaling is required for serum-induced

hyphal differentiation in Candida albicans. J. Bacteriol. 181: 6339-6346.

Fonzi, W. A. 2002. Role of pH response in Candida albicans virulence. Mycoses 45: 16-21.

Fonzi, W. A., and M. Y. Irwin. 1993. Isogenic strain construction and gene mapping in Candida

. albicans. Genetics 134: 717-728.

Fu, Y., A. S. Ibrahim, D. C. Sheppard, Y. C. Chen, S. W. French, J. E. Cutler, S. G. Filler,

and J. E. Jr Edwards. 2002 Candida albicans Als 1 p: an adhesin that is a downstream effector

of the EFG 1 filamentation pathway. Mol. Microbiol. 44:61-72.

Fu, Y., G. Rieg, and W. A. Fonzi. 1998. Belanger PH, Edwards JE Jr, Filler SG. Expression of the

Candida albicans gene ALSI in Saccharomyces cerevisiae induces adherence to endothelial and

epithelial cells. Infect. Immun. 66: 1783-1786.

Futai, E., T. Maeda, H. Sorimachi, K Kitamoto, S. Ishiura, and K Suzuki. 1999. The protease

activity of a calpain-like cysteine protease in Saccharomyces cerevisiae is required for alkaline

adaptation and sporulation. Mol. Gen. Genet. 260:559-568.

Gale, C. A., C. M. Bendel, M. McClellan, M. Hauser, J. M Becker, J. Berman, and M. K

Hostetter. 1998. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to

a single gene, lNTl. Science. 279: 1355-1358.

Gale, c., D. Finkel, N. Tao, M. Meinke, M. McClellan, J. Olson, K Kendrick, and M.

Hostetter. 1996. Cloning and expression of a gene encoding an integrin-like protein in Candida

albicans. Proc. Natl. Acad. Sci. USA. 93:357-361.

Gale, c., M. Gerami-Nejad, M. McClellan, S. Vandoninck, M. S. Longtine and J. Berman.

2001. Candida albicans Intlp interacts with the septin ring in yeast and hyphal cells. Mol Bioi

Cell. 12:3538-3549

Gancedo, J. M. 2001. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS

Microbiol. Rev. 25:107-123.

Gaur, N. K, and S. A. Klotz. 1997. Expression, cloning, and characterization of a Candida

albicans gene, ALAl, that confers adherence properties upon Saccharomyces cerevisiae for

extracellular matrix proteins. Infect. Immun. 65:5289-5294.

183

Page 13: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Gaur, N. K., and S. A. Klotz. 2004. Accessibility of the peptide backbone of protein ligands is a

key specificity determinant in Candida albicans SRS adherence. Microbiology 150:277-284.

Gaur, N. K., Klotz, S. A., and R. L. Henderson, 1999. Overexpression of the Candida albicans

ALAl gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast

cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans.

Infect. Immun. 67: 6040-6047.

Gaur, N. K., R. L. Smith, and S. A. Klotz. 2002. Candida albicans and Saccharomyces

cerevisiae expressing ALAlIALS5 adhere to accessible threonine, serine, or alanine patches. Cell

Commun. Adhes. 9:45-57.

Gavrias, V., A. Andrianopoulos, C. J. Gimeno, and W. E. Timberlake. 1996. Saccharomyces

cerevisiae TECl is required for pseudohyphal growth. Mol. Microbiol. 19:1255-1263

Gerami-Nejad, M., J. Berman, and C. A. Gale. 2001. Cassettes for PCR-mediated construction

of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18:859-864.

Ghannoum, M. A. 1998. Extracellular phospholipases as universal virulence factor in pathogenic

fungi. Nippon Ishinkin Gakkai Zasshi 39: 55-59.

Ghannoum, M. A., B. SpeUberg, S. M. Saporito-Irwin, and W. A. Fonzi 1995. Reduced

virulence of Candida albicans P HRl mutants. Infect. Immun. 63: 4528-4530.

Ghannoum, M. A., I. Swairjo, and D. R. Soil. 1990. Variation in lipid and sterol contents in

Candida albicans white and opaque phenotypes. J. Med. Vet. Mycol. 28:103-115.

Ghannoum, M., and K. Abu-Elteen. 1986. Correlative relationship between proteinase

production, adherence and pathogenicity of various strains of Candida albicans. J. Med. Vet.

Mycol. 24: 407-413.

Gietz, D. St., R. A. Woods, and R. H. Schiest. 1992. Improved method for high efficiency

transformation of intact yeast cells. Nucleic Acid Res. 20: 1425.

Gilfillan, G. D., D. J. Sullivan, K. Haynes, T. Parkinson, D. C. Coleman, and N. A. Gow. 1998.

Candida dubliniensis: phylogeny and putative virulence factors. Microbiology 144:829-838.

Gimeno, C. J., and G. R. Fink. 1994. Induction of pseudohyphal growth by overexpression of

PHDl, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal

development. Mol. Cell. Bio1.14:2100-2112.

Gimeno, C. J., P. O. Ljungdahl, C. A Styles, and G. R. Fink. 1992. Unipolar cell divisions in the

yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS.

Cell 68:1077-1090.

184

Page 14: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Giusani, A. D., M. Vinces, and C. A. Kumamoto. 2002. Invasive filamentous growth of Candida

albicans is promoted by CzfI p-dependent relief of Efgl p-mediated repression. Genetics

160: 1749-1753.

Gopal, P., P. A. Sullivan, and M. G. Shepherd. 1982. Enzymes of N-acetylglucosamine

metabolism during germ-tube formation in Candida albicans. J. Gen. Microbiol. 128: 2319-

2326.

Gow, N. A., P. W. Robbins, J. W. Lester, A. J. Brown, W. A. Fonzi, T. Chapman, and O. S.

Kinsman. 1994. A hyphal-specific chitin synthase gene (CHS2) is not essential for growth,

dimorphism, or virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 91: 6216-6220.

Goyal, S., and G. K. Khuller. 1992. Phosoholipid compopsition and subcellular distribution in

yeast and mycelial forms of Candida albicans. J. Med. Vet. Mycol. 30: 355-362.

Grenson, M., E. Dubois, M. Piotrowska, R. Drillien, and M. Aigle. 1974. Ammonia assimilation

in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for

the gdhA locus being a structural gene for the NADP dependent glutamate dehydrogenase. Mol.

Gen. Genet. 128: 73-85.

Grenson, M., Hou, C. and M. Crabeel, 1970. MUltiplicity of the amino acid permeases in

Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. 1. Bacteriol. 3:770-

777.

Grosschedl, R., K. Giese, and J. Pagel. 1994. HMG domain proteins: architectural elements in

the assembly of nucleoprotein structures. Trends Genet. 10:94-100.

Guhad, F. A., C. Csank, H. E. Jensen, D. Y. Thomas, M. Whiteway, and J. Hau. 1998a.

Reduced pathogenicity of a Candida albicans MAP kinase phosphatase (CPP1) mutant in the

murine mastitis model. APMIS 106: 1049-1055.

Guhad, F. A., H. E. Jensen, B. Aalbaek, C. Csank, O. Mohamed, D. Harcus, D. Y. Thomas,

M. Whiteway, and J. Hau. 1998b. Mitogen-activated protein kinase-defective Candida

albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiol. Lett.

166: 135-139.

Guo, B., C. A. Styles, Q. Feng, and G. R. Fink. 2000. A Saccharomyces gene family involved in

invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. USA 97:12158-12163.

Guptaroy, B., and A. Datta. 1986. A cyclic AMP-independent protein kinase from Candida

albicans. Biochem. J. 234: 543-546.

Guptaroy, B., and A. Datta. 1987. A calmodulin inhibitor blocks morphogenesis in Candida

albicans. FEMS Microbiol. Lett. 41:327-329

185

Page 15: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Hartig, A., J. Holly, G. Saari, and V. L. MacKay. 1986. Multiple regulation of STE2, a mating­

type-specific gene of Saccharomyces cerevisiae. Mol. Cell. BioI. 6:2106-2114.

Hazan, I, and H. Liu. 2002. Hyphal tip-associated localization of Cdc42 is F-actin dependent in

Candida albicans. Eukaryot. Cell. 1:856-864.

Hazen, K. c., J. G. Wu, and J. Masuoka. 2001. Comparison of the hydrophobic properties of

Candida albicans and Candida dubliniensis. Infect. Immun. 69:779-786.

Heale, S. M., L. I. Stateva, and S. G. Oliver. 1994. Introduction of Y ACs into intact yeast cells

by a procedure which shows low levels of recombinagenicity and co-transformation. Nucleic

Acids Res. 22:5011-5015.

Hein, c., and B. Andre. 1997. A C-terminal di-Ieucine motif and nearby sequences are required

forNH4(+)-induced inactivation and degradation of the general amino acid pennease, Gaplp, of

Saccharomyces cerevisiae. Mol. Microbiol. 24:607-616.

Helliwell, S. B., S. Losko, and C. A. Kaiser. 2001. Component of a ubiquitin ligase complex

specify polyubiquitination and intracellular trafficking of the general amino acid permease. J.

Cell. BioI. 153: 649-662.

Herrero, P., C. Martinez Campa, and F. Moreno. 1998. The hexokinase 2 protein participates in

regulatory DNA- protein complexes necessary for glucose repression of the SUC2 gene In

Saccharomyces cerevisiae. FEBS Lett. 434: 71-76.

Herscovics, A., and P. Orlean. 1993. Glycoprotein biosynthesis in yeast. FASEB J. 7:540-50.

Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid

biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 52:248-273.

Hoffmann, W. 1985. Molecular characterization of the CANllocus in Saccharomyces cerevisiae.

A transmembrane protein without N-tenninal hydrophobic signal sequence. J. BioI. Chern.

260:11831-11837.

Hohmann, S., J. Winderickx, J. H. de Winde, D. Valckx, P. Cobbaert, K. Luyten, C. de

Meirsman, J. Ramos, J. M. Thevelein. 1999. Novel alleles of yeast hexokinase PH with

distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology 145: 703-

714.

Horak, J. 1986. Amino acid transport in eucaryotic microorganisms. Biochim. Biophys. Acta. 864:

223-256.

Hoyer, L. L. 2001. The ALS gene family of Candida albicans. Trends Microbiol. 9:176-180.

Hoyer, L. L., and J. E. Hecht. 2000. The ALS6 and ALS7 genes of Candida albicans. Yeast.

16:847-855.

186

Page 16: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Hoyer, L. L., and J. E. Hecht. 2001. The ALS5 gene of Candida albicans and analysis of the

Als5p N-terminal domain. Yeast. 18:49-60.

Hoyer, L. L., L. B. Cieslinski, and M. M. McLaughlin, T. J. Torphy, A. R. Shatzman, and G.

P. Livi. 1994. A Candida albicans cyclic nucleotide phosphodiesterase: cloning and expression

in Saccharomyces cerevisiae and biochemical characterization of the recombinant enzyme.

Microbiology 140: 1533-1542.

Hube, B., D. Hess, C. A. Baker, M. Schaller, W. Schafer, and J. W. Dolan. 2001. The role and

relevance of phospholipase Dl during growth and dimorphism of Candida albicans.

Microbiology 147:879-889.

Hube, B., D. Sanglard, F. C. Odds, D. Hess, M. Monod, W. Schafer, A. J. Brown, and N. A.

Gow. 1997. Disruption of each of the secreted aspartyl proteinase genes SAP 1, SAP2, and SAP3

of Candida albicans attenuates virulence. Infect. Immun. 65:3529-3538.

Hube, B., M. Monod, D. A. Schofield, A. J. Brown, and N. A. Gow. 1994. Expression of seven

members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol.

Microbiol. 14:87-99.

Hull, C. M., and A. D. Johnson. 1999. Identification of a mating type-like locus in the asexual

pathogenic yeast Candida albicans. Science 285:1271-1275.

Hull, C. M., R. M. Raisner, and A. D. Johnson. 2000. Evidence for mating of the "asexual" yeast

Candida albicans in a mammalian host. Science 289:307-310.

Hwang, C. S., J. H. Oh, W. K. Huh, H. S. Vim and S. O. Kang. 2003. Ssn6, an important factor

of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47:1029-1043.

Ibrahim, A. S., S. G. Filler, D. Sanglard, J. E. Jr Edwards, and B. Hube. 1998. Secreted

aspartyl proteinases and interactions of Candida albicans with human endothelial cells. Infect.

Immun. 66:3003-3005.

Ikura, M. 1996. Calcium binding and conformational response In EF-hand proteins.Trends

Biochem Sci. 21: 14-17.

Imai, S., F. B. Johnson, R. A. Marciniak, M. McVey, P. U. Park, and L. Guarente. 2000. Sir2:

an NAD-dependent histone deacety1ase that connects chromatin silencing, metabolism, and

aging. Cold Spring Harb. Symp. Quant. BioI. 65:297-302.

Iraqui, I., S. Vissers, F. Bernard, J. O. DeCraene, E. Boles, A. Urrestarazu, and B. Andre.

1999. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external

amino acids and F-box protein Grrl p are required for transcriptional induction of the AGPI

gene, which encodes a broad-specificity amino acid permease. Mol. Cell. BioI. 19: 989-1001.

187

Page 17: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Ishii, N., M. Yamamoto, F Yoshihara, M. Arisawa, and Y. Aoki. 1997. Biochemical and genetic

characterization of Rbfl p, a putative transcription factor of Candida albicans. Microbiology

143: 429-435.

Iwamoto, R, and Y. Imanaga. 1991. Direct evidence of the Entner-Doudoroffpathway operating

in the metabolism ofD-glucosamine in bacteria. J. Biochem. (Tokyo). 109: 66-69.

Janbon, G., F. Sherman, and E. Rustchenko. 1998. Monosomy of a specific chromosome

determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc. Natl.

Acad. Sci. USA 95:5150-5155.

Jauniaux, J. C. and M. Grenson. 1990. GAP 1, the general ammo acid permease gene of

Saccharomyces cerevisiae. Eur. J. Biochem. 190:39-44.

Jenkinson, H. F., and M. G. Sheperd. 1987. A mutant of Candida albicans deficient in J3-N­

acetyl glucosaminidase (Chitobiase). 1. Gen. Microbiol. 133: 2097-2106.

Jenness, D. D., A. C. Burkholder, and L. H. Hartwell. 1986. Binding of alpha-factor pheromone

to Saccharomyces cerevisiae a cells: dissociation constant and number of binding sites. Mol.

Cell. BioI. 6:318-320.

Johnson, A. D. 1995. Molecular mechanisms of cell-type determination in budding yeast. Curr

Opin Genet Dev. 5:552-558.

Jones, T., N. A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B. B. Magee, G. Newport, Y.

R Thorstenson, N. Agabian, P. T. Magee, R W. Davis, and S. Scherer. 2004. The diploid

genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:7329-7334.

Jung, W. H., and L. I. Stateva. 2003. The cAMP phosphodiesterase encoded by CaPDE2 is

required for hyphal development in Candida albicans. Microbiology 149:2961-2976.

Kadosh, D., and A. D. Johnson. 200l. Rfg1, a protein related to the Saccharomyces cerevisiae

hypoxic regulator Roxl, controls filamentous growth and virulence in Candida albicans. Mol.

Cell. BioI. 21:2496-2505.

Kaiser, c., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics. Cold Spring Harbor

Laboratory Press, Cold Spring Harbor, N. Y.

Kaminishi, H., H. Miyaguchi, T. Tamaki, N. Suenaga, M. Hisamatsu, I. Mihashi, H.

Matsumoto, H. Maeda, and Y. Hagihara. 1995. Degradation of humoral host defense by

Candida albicans proteinase. Infect. Immun. 63:984-988.

Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and A. D. Johnson. 1992. Ssn6-Tupl is a

general repressor of transcription in yeast. Cell 68: 709-719.

Keller, P. N., and T. M. Hohn. 1997. Metabolic Pathway Gene Clusters in Filamentous Fungi

Fungal. Genet. BioI. 21: 17-29

188

Page 18: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Khalaf, R. A., and R. S. Zitomer. 2001. The DNA binding protein Rfgl is a repressor of

filamentation in Candida albicans. Genetics 157:1503-1512.

Kissinger, C. R., H. E. Parge, D. R. Knighton, C. T. Lewis, L. A. Pelletier, A. Tempczyk, V. J.

Kalish, K. D.Tucker, R. E. Showalter, E. W. Moomaw, L. N. Gastinel, N. Habuka, X.

Chen, F. Maldonado, J. E. Barker, R. Bacquet, and J. E. Villafranca. 1995. Crystal

structures of human ca1cineurin and the human FKBPI2-FK506-calcineurin complex. Nature

378: 641--644.

K1ar, A. J., T. Srikantha, and D. R. Soli. 2001. A histone deacetylation inhibitor and mutant

promote colony-type switching of the human pathogen Candida albicans. Genetics 158:919-

924.

K1asson, H., G. R. Fink, and P. O. Ljungdahl. 1999. Ssyl p and Ptr3p are plasma membrane

components of a yeast system that senses extracellular amino acids. Mol. Cell. BioI. 19: 5405-

5416.

Klotz, S. A., D. J. Drutz, and Zajic J. E. 1985. Factors governing adherence of Candida species

to plastic surfaces. Infect. Immun. 50: 97-101.

Kohler, J. R., and Fink, G. R. 1996. Candida albicans strains heterozygous and homozygous for

mutations in mitogen-activated protein kinase signaling components have defects in hyphal

development. Proc. Natl. Acad. Sci. USA 93: 13223-13228.

Kolotila, M. P., and R. D. Diamond. 1990. Effects ofneutrophils and in vitro oxidants on survival

and phenotypic switching of Candida albicans WO-l. Infect. Immun. 58: 1174-1179.

Komachi, K., and A. D. Johnson. 1997. Residues in the WD repeats of Tup 1 required for

interaction with alpha2. Mol. Cell. BioI. 17: 6023-6028.

Kretschmar, M., A. Felk, P. Staib, M. Schaller, D. Hess, M. Callapina, J. Morschhauser, W.

Schafer, H. C. Korting, H. Hof, B. Hube, and T. Nichterlein. 2002. Individual acid aspartic

proteinases (Saps) 1-6 of Candida albicans are not essential for invasion and colonization of the

gastrointestinal tract in mice. Microb. Pathog. 32:61-70.

Kronstad, J. W., and C. Staben. 1997. Mating type In filamentous fungi. Annu. Rev.

Genet.31 :245-276.

Kronstad, J., A. D. De Maria, D. Funnell, R. D. Laidlaw, N. Lee, M. M. de Sa, and M.

Ramesh. 1998. Signaling via cAMP in fungi: interconnections with mitogen-activated protein

kinase pathways. Arch. Microbiol. 170:395-404.

Kiibler, E., H. U. Mosch, S. Rupp, and M. P. Lisanti. 1997. Gpa2p, a G-protein alpha-subunit,

regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP­

dependent mechanism. J. BioI. Chem. 272: 20321-20323.

189

Page 19: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Kumar, M. J., M. S. Jamaluddin, K. Natarajan, D. Kaur, and A. Datta. 2000. The inducible N­

acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N­

acetylglucosamine-inducible factors interact at the promoter of NAGl. Proc. Natl. Acad. Sci.

USA. 97: 14218-14223.

Kurtz, M. B., M. W. Cortelyou, S. M. Miller, M. Lai, and D. R. Kirsch. 1987. Development of

autonomously replicating plasmids for Candida albicans. Mol Cell BioI. 7:209-217.

Kvaal, C. A., T. Srikantha, and D. R. Soli. 1997. Misexpression of the white-phase-specific gene

WHll in the opaque phase of Candida albicans affects switching and virulence. Infect. Immun.

65:4468-4475.

Kvaal, c., S. A. Lachke, T. Srikantha, K. Daniels, J. McCoy, and D. R. Soli. 1999.

Misexpression of the opaque-phase-specific gene PEP 1 (SAP l) in the white phase of Candida

albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun.

67:6652-6662.

Kyte, J. and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a

protein. 1. Mol. BioI. 157: 105-132.

Lachke, S. A., S. R. Lockhart, K. J. Daniels, and D. R. Soli. 2003. Skin facilitates Candida

albicans mating. Infect. Immun. 71:4970-4976.

Lamb, T. M., and A. P. Mitchell. 2003. The transcription factor RimlOlp governs ion tolerance

and cell differentiation by direct repression of the regulatory genes NRG land SMP 1 in

Saccharomyces cerevisiae. Mol. Cell. BioI. 23:677-686.

Lambert, M., S. Blanchin-Roland, F. Le Louedec, A. Lepingle, and C. Gaillardin.

1997.Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in

the yeast Yarrowia lipolytica: identification of a RIMlOlIpacC homolog. Mol. Cell. BioI.

17:3966-3976.

Lan, C. Y., G. Newport, L. A. Murillo, T. Jones, S. Scherer, R. W. Davis, and N. Agabian.

2002. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc.

Natl. Acad. Sci. USA 99:14907-14912.

Lane, S., C. Birse, S. Zhou, R. Matson, and H. Liu. 2001a. DNA array studies demonstrate

convergent regulation of virulence factors by Cphl, Cph2, and Efgl in Candida albicans. J.

BioI. Chern. 276: 48988-48996.

Lane, S., S. Zhou, T. Pan, Q. Dai, and H. Liu. 2001b. The basic helix-loop-helix transcription

factor Cph2 regulates hyphal development in Candida albicans partly via TECl. Mol Cell BioI.

21 :6418-6428.

190

Page 20: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Langford, C. J., F. J. Klinz, C. Donath, and D. Gallwitz. 1984. Point mutations identifY the

conserved, intron-contained TACT AAC box as an essential splicing signal sequence in yeast.

Cell 36:645-53.

Lasko, P. F. and M. C. Brandriss. 1981. Proline transport in Saccharomyces cerevisiae. J.

Bacteriol. 148:241-247.

Laurenson, P., and J. Rine. 1992. Silencers, silencing, and heritable transcriptional states.

Microbiol. Rev. 56:543-560.

Le Jeune, I. R., M. Shepherd, G. Van Heeke, M. D. Houslay, and I. P. Hall. 2002. Cyclic

AMP-dependent transcriptional up-regulation of phosphodiesterase 4D5 in human airway

smooth muscle cells. Identification and characterization of a novel PDE4D5 promoter. J. BioI.

Chern. 277:35980-35989.

Leberer, E., D. Harcus, D. Dignard, L. Johnson, S. Ushinsky, D. Y. Thomas, and K.

Schroppel. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP

kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol.

Microbiol. 42:673-687.

Leberer, E., D. Harcus, I. D. Broadbent, K. L. Clark, D. Dignard, K. Ziegelbauer, A.

Schmidt, N. A. Gow, A. J. Brown and D. Y. Thomas. 1996. Signal transduction through

homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the

pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA. 93:13217-13222.

Leberer, E., K. Ziegelbauer, A. Schmidt, D. Harcus, D. Dignard, J. Ash, L. Johnson and D. Y.

Thomas. 1997. Virulence and hypha I formation of Candida albicans require the Ste20p-like

protein kinase CaCla4p. Curf. BioI. 7:539-546.

Legrain, c., S. Vissers, E. Dubois, M. Legrain and J. M. Wiame. 1982. Regulation of glutamine

synthetase from Saccharomyces cerevisiae by repression, inactivation and proteolysis. Eur. J.

Biochem.123:611-{)16.

Leidich, S. D., A. S. Ibrahim, Y. Fu, A. Koul, C. Jessup, J. Vitullo, W. Fonzi, F. Mirbod, S.

Nakashima, Y. Nozawa, and M. A. Ghannoum. 1998. Cloning and disruption of CaPLB I a

phospholipase B gene involved in the pathogenicity of Candida albicans. J. BioI. Chern. 273:

26078-26086.

Leng, P., P. E. Sudbery, and A. J. Brown. 2000. Rad6p represses yeast-hypha morphogenesis in

the human fungal pathogen Candida albicans. Mol. Microbiol. 35: 1264-1275.

Leng, P., P. R. Lee, H. Wu, and A. J. Brown. 2001. Efgl, a morphogenetic regulator in Candida

albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183:4090-4093.

191

Page 21: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Lengeler, K. B., R C. Davidson, C. D'souza, T. Harashima, W. C. Shen, P. Wang, X. Pan, M.

Waugh, and J. Heitman. 2000. Signal transduction cascades regulating fungal development

and virulence. Microbiol. Mol. BioI. Rev. 64: 746-785.

Leuker, C. E., A. M. Hahn, and J. F. Ernst. 1992. Beta-Galactosidase of Kluyveromyces lactis

(Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis. Mol. Gen. Genet.

235: 235-241.

Li, T., M. R Stark, A. D. Johnson, and C. Wolberger. 1995. Crystal structure of the

MATallMAT alpha 2 homeodomain heterodimer bound to DNA. Science 270:262-269.

Li, W., and A. P. Mitchell. 1997. Proteolytic activation of Rim 1 p, a positive regulator of yeast

sporulation and invasive growth. Genetics 145:63-73.

Limjindaporn, T., A. K. Roy, and W. F. Fonzi 2003. Nitrogen metabolism and virulence of

Candida albicans requires the GATA-type transcriptional activator encoded by GATl. Mol.

Microbiol. 50: 993-1004

Liu, H., J. Kohler, and G. R Fink. 1994. Suppression of hyphal formation in Candida albicans

by mutation of a STEl2 homolog. Science 266: 1723-1726.

Lo, H. J, J. R Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, and G. R Fink. 1997.

Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939-949.

Lockhart, S. R, C. Pujol, K. J. Daniels, M. G. Miller, A. D. Johnson, M. A. Pfaller, and D. R

Soli. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type.

Genetics. 162:737-745.

Lockhart, S. R, K. J. Daniels, R Zhao, D. Wessels, and D. R Soli. 2003a. Cell Biology of

Mating in Candida albicans. Eukaryot. Cell 2:49-61.

Lockhart, S. R., M. Nguyen, T. Srikantha, and D. R Soli. 1998. A MADS box protein

consensus binding site is necessary and sufficient for activation of the opaque-phase-specific

gene OP4 of Candida albicans. J. Bacteriol. 180:6607-6616.

Lockhart, S. R, R Zhao, K. J. Daniels, and D. R Soli. 2003b. Alpha-pheromone-induced

"shmooing" and gene regulation require White-opaque switching during Candida albicans

mating. Eukaryot. Cell 2:847-855.

Lodish, H.F. 1988. Multi-spanning membrane proteins: how accurate are the models? Trends

Biochem. Sci. 13: 332-334.

Loeb, J. D., Sepulveda-Becerra, M., Hazan, I., and H. Liu. 1999. A G 1 cycJin is necessary for

maintenance of filamentous growth in Candida albicans. Mol. Cell. BioI. 19:4019-4027.

Loo, S., and J. Rine. 1994. Silencers and domains of generalized repression. Science. 264: 1768-

1771.

192

Page 22: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Lorenz, M. c., and J. Heitman, 1998. The MEP2 ammonium penn ease regulates pseudohyphal

differentiation in Saccharomyces cerevisiae. EMBO J. 17: 1236-1247.

Lorenz, M. c., and J. Heitman. 1997. Yeast pseudohyphal growth is regulated by GPA2, a G

protein [alpha] homolog. EMBO 1. 16: 7008-7018.

Macdonald, F., and F. C. Odds. 1980. Purified Candida albicans proteinase in the serological

diagnosis of systemic candidosis. JAMA 243:2409-2411.

Madhani, H. D and G. R. Fink. 1997. Combinatorial control required for the specificity of yeast

MAPK signaling. Science 275: 1314-1317.

Magalhaes, B. P., R. Wayne, R. A. Humber, E. J. Shields, and D.W. Roberts. 1991. Calcium­

regulated apressorium formation of the entomopathogenic fungus Zoophthora radicans.

Protoplasma 160, 77-88.

Magasanik, B. 2003. Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot. Cell 2:827-

829.

Magasanik, B., and C. A. Kaiser. 2002. Nitrogen regulation in Saccharomyces cerevisiae. Gene

290: 1-18

Magee, B. B. and P. T. Magee. 2000. Induction of mating in Candida albicans by construction of

MTLa and MTLalpha strains. Science 289:310-313.

Mai, B., S. Miles and L. L. Breeden. 2002. Characterization of the ECB binding complex

responsible for the MIG (I)-specific transcription ofCLN3 and SWI4. Mol. Cell. BioI. 22:430-

441.

Malathi, K., K. Ganesan and A. Datta. 1994. Identification of a putative transcription factor in

Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12

mutants. J. BioI. Chern. 269: 22945-22951.

Manning, M. and T. G. Mitchell. 1980. Morphogenesis of Candida albicans and cytoplasmic

proteins associated with differences in morphology, strain, or temperature. 1. Bacteriol. 144:258-

273.

Marzluf, G. A. 1997a. Molecular genetics of sulfur assimilation in filamentous fungi and yeast.

Annu Rev Microbiol. 51:73-96.

Marzluf, G. A. 1997b. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol.

BioI. Rev. 61:17-32.

Mattia, E., G. Carruba, L. Angiolella, and A. Cassone, 1982. Induction of genn tube fonnation

by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germination response. J.

Bacteriol. 152:555-562.

193

Page 23: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Mayser, P, S. Laabs, K. U. Heuer, and K. Grunder. 1996. Detection of extracellular

phospholipase activity in Candida albicans and Rhodotorula rubra. Mycopathologia 135: 149-

155.

McCusker, J. H. and J. E. Haber. 1990. Mutation in Saccharomyces cerevisiae which confer

Resistance to several amino acid analogues. Mol. Cell. BioI. 10: 2941-2949.

McMillan, J. N., R. A. Sia., and D. J. Lew. 1998. A morphogenesis checkpoint monitors the actin

cytoskeleton in yeast. J. Cell. BioI. 142:1487-1499.

McNabb, D. S., Y. Xing, and L. Guarente. 1995. Cloning of yeast HAPS: a novel subunit of a

heterotrimeric complex required for CCAAT binding. Genes Dev. 9:47-58.

Mendoza, A., M. J. Serramia, L. Capa, and J. F. Garcia-Bustos. 1999. Translation elongation

factor 2 is encoded by a single essential gene in Candida albicans. Gene 229, 183-19l.

Michel, S., S. Ushinsky, B. Klebl, E. Leberer, D. Thomas, M. Whiteway, and J.

Morschhauser. 2002. Generation of conditional lethal Candida albicans mutants by inducible

deletion of essential genes. Mol. Microbiol. 46:269-280.

Miller S.M., and Magasanik, B. 1991. Role of the complex upstream region of the GDH2 gene in

nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae.

Mol. Cell. BioI. 12:6229-6247.

Miller, K. Y. Wu, J., and Miller, B.L. 1992. StuA is required for cell pattern formation In

Aspergillus. Genes Dev. 6: 1770-1782

Miller, M. G., and A. D. Johnson. 2002. White-opaque switching in Candida albicans is

controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell

110:293-302.

Miller, S. M. and B. Magasanik 1990 Role of NAD-linked glutamate dehydrogenase in nitrogen

metabolism in Saccharomyces cerevisiae. J. Bacteriol. 172:4927-4935.

Minehart, P. L., and B. Magasanik. 1992., Sequence of the GLN 1 gene of Saccharomyces

cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J.

Bacteriol. 174:1828-1836.

Mingot, J. M., J. Tilburn, E. Diez, E Bignell, M. Orejas, D. A. Widdick, S. Sarkar, C. V.

Brown, M. X. Caddick, E. A. Espeso, H. N. Jr Arst, and M. A. Penalva. 1999. Specificity

determinants of proteolytic processing of Aspergillus PacC transcription factor are remote from

the processing site, and processing occurs in yeast if pH signalling is bypassed. Mol. Cell. BioI.

19: 1390-1400.

194

Page 24: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Mio, T., T. Yamada-Okabe, M. Arisawa, and H. Yamada-Okabe. 1999. Saccharomyces

cerevisiae GNA1, an essential gene encoding a novel acetyl transferase involved in UDP-N­

acetylglucosamine synthesis. 1. BioI. Chern. 274: 424-429.

Mitchell, A. P. 1985. The GLN] locus of Saccharomyces cerevisiae encodes glutamine synthetase.

Genetics 111: 243-258.

Mitchell, A. P. and B. Magasanik. 1983. Purification and properties of glutamine synthetase from

Saccharomyces cerevisiae. J. BioI. Chern. 258: 119-124.

Mitchell, A. P. and B. Magasanik. 1984. Regulation of glutamine-repressible gene products by

the GLN3 function in Saccharomyces cerevisiae. Mol. Cell. BioI. 4: 2758-2766.

Monod, M., and Z. M. Borg-von, 2002. Secreted aspartic proteases as virulence factors of

Candida species. BioI. Chern. 383: 1087-1 093.

Monod, M., B. Hube, D. Hess, and D. Sanglard, 1998. Differential regulation of SAP8 and SAP9,

which encode two new members of the secreted aspartic proteinase family in Candida albicans.

Microbiology 144:2731-2737.

Monod, M., G. Togni, B. Hube, and D. Sanglard. 1994. Multiplicity of genes encoding secreted

aspartic proteinases in Candida species. Mol. Microbiol. 13:357-368.

Morrow, B., H. Ramsey, and D. R. Soli. 1994. Regulation of phase-specific genes in the more

general switching system of Candida albicans strain 3153. A. 1. Med. Vet. Mycol. 32:287-294.

Morrow, B., J. Anderson, J. Wilson, and D. R. Soli. 1989. Bidirectional stimulation of the white­

opaque transition of Candida albicans by ultraviolet irradiation. J. Gen. Microbiol. 135:1201-

1208.

Morrow, B., T. Srikantha, and D. R. Soli. 1992. Transcription of the gene for a pepsinogen,

PEP], is regulated by white-opaque switching in Candida albicans. Mol. Cell. BioI. 12:2997-

3005.

Morrow, B., T. Srikantha, J. Anderson, and D. R. Soil. 1993. Coordinate regulation of two

opaque-phase-specific genes during white-opaque switching in Candida albicans. Infect.

Immun.61:1823-1828.

Morschhauser, J., R. Virkola, T. K. Korhonen, and J. Hacker. 1997. Degradation of human

subendothelial extracellular matrix by proteinase-secreting Candida albicans. FEMS Microbiol.

Lett. 153:349-355.

Morschhauser, J., S. Michel, J. Hacker. 1998. Expression of a chromosomally integrated, single­

copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol. Gen.

Genet. 257, 412-420.

195

Page 25: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Mosch, H. U., and G. R. Fink. 1997. Dissection of filamentous growth by transposon mutagenesis

in Saccharomyces cerevisiae. Genetics 145: 671-684.

Muhlschlegel, F. A., and W. A. Fonzi. 1997. PHR2 of Candida albicans encodes a functional

homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression.

Mol. Cell. BioI. 17: 5960-5967.

Mukherjee, P. K, J. Chandra, D. M. Kuhn, and M. A. Ghannoum. 2003. Differential

expression of Candida albicans phospholipase B (PLB1) under various environmental and

physiological conditions. Microbiology 149:261-267.

Mukherjee, P. K, K R. Seshan, S. D. Leidich, J. Chandra, G. T. Cole, and M. A. Ghannoum.

2001. Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo.

Microbiology 147:2585-2597.

Mukhija, S., and B. Erni. 1996. Purification by Ni2+ affinity chromatography, and functional

reconstitution of the transporter for N-acetylglucosamine of Escherichia coli. 1. BioI. Chem.

271: 14819-14824.

Murad, A. M, P. Leng, M. Straffon, J. Wishart, S Macaskill, D. MacCallum, N. Schnell, D.

Talibi, D. Marechal, F. Tekaia, C. d'Enfert, C. Gaillardin, F. C. Odds, and A. J. Brown.

2001 a. NRG 1 represses yeast-hypha morphogenesis and hypha-specific gene expression in

Candida albicans. EMBO 1.20:4742-4752.

Murad, A. M., C. d'Enfert, C. Gaillardin, H. Tournu, F. Tekaia, D. Talibi, D. Marechal, V

Marchais, J. Cottin, and A. J. Brown. 2001 b. Transcript profiling in Candida albicans reveals

new cellular functions for the transcriptional repressors CaTupl, CaMigl and CaNrgl. Mol.

Microbiol. 42:981-993.

Muthukumar, G. and K W. Nickerson 1984. Ca(II)-calmodulin regulation offungal dimorphism

in Ceratocystis ulmi. 1. Bacteriol. 159:390-392.

Nagahashi, S., T. Mio, N. Ono, T. Yamada-Okabe, M. Arisawa, H. Bussey, and H. Yamada­

Okabe. 1998. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase

homologues, from the pathogenic fungus Candida albicans. Microbiology 144: 425-432.

Nairn, A. c., and H. C. Palfrey. 1987. Identification of the major Mr 100,000 substrate for

calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. 1. BioI.

Chem. 262: 17299-17303

Natarajan, K 1990. Gene Expression in Yeast: Studies on Glucosamine-6-Phosphate Deaminase

Gene of Candida albicans. Thesis.

196

Page 26: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Natarajan, K., and A. Datta. 1993. Molecular cloning and analysis of the NAG 1 cDNA coding

for Glucosamine-6-phosphate deaminase from Candida albicans. J. BioI. Chern. 268: 9206-

9214.

Natarajan, K., M. R. Meyer, B. M. Jackson, D. Slade, C. Roberts, A. G. Hinnebusch, and M.

J. Marton. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene

expression during amino acid starvation in yeast. Mol. Cell. BioI. 21:4347-4368.

Natarajan, K., Rai, Y. P., and A. Datta. 1984. Induction of N-acetyl-D-glucosamine catabolic

enzymes and germinative response in Candida albicans. Biochem. Int. 9:735-744.

Navarro-Garcia, F., M. Sanchez, J. Pia, and C. Nombela. 1995. Functional characterization of

the MKC 1 gene of Candida albicans, which encodes a mitogen-activated protein kinase

homolog related to cell integrity. Mol. Cell. BioI. 15: 2197-2206.

Navarro-Garcia, F., R. Alonso-Monge, H. Rico, J. Pia, R. Sentandreu, and C. Nombela. 1998.

A role for the MAP kinase gene MKCl in cell wall construction and morphological transitions

in Candida albicans. Microbiology 144: 411-424.

Negrete-Urtasun, S., S. H. Denison, and H. N. Jr Arst. 1997. Characterization of the pH signal

transduction pathway gene pal A of Aspergillus nidulans and identification of possible homologs.

J Bacteriol. 179:1832-1835.

Nehlin, J. 0., M. Carlberg, and H. Ronne. 1992. Yeast SKOI gene encodes a bZIP protein that

binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res. 20:5271-

5278.

Nelissen, B., R. De Wachter, and A. Goffeau. 1997. Classification of all putative permeases and

other membrane plurispanners of the major facilitator superfamily encoded by the complete

genome of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21: 113-134.

Newport, G., and N. Agabian. 1997. KEX2 influences Candida albieans proteinase secretion and

hyphal formation. J. BioI. Chern. 272:28954-28961.

Ni, J., X. Chen, T. Yang, and J. Y. Chen. 2001. Construction of Candida albieans Two-hybrid

Library and Screening for Proteins Interacting with Crkl. Sheng Wu Hua Xue Yu Sheng Wu

Wu Li Xue Bao (Shanghai) 33: 198-204.

Ni, J., Y. Gao, H. Liu, and J. Chen. 2004. Candida albieans Cdc37 interacts with the Crkl kinase

and is required for Crkl production. FEBS Lett. 561:223-230.

Niewerth, M., and H. C. Korting. 2001. Phospholipases of Candida albieans. Mycoses 44:361-

367.

Niimi, K., M. Niimi, M. G. Shepherd, and R. D. Cannon. 1997. Regulation of N­

acetylglucosaminidase production in Candida albieans. Arch. Microbiol. 168: 464-472.

197

Page 27: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Niimi, M., A. Kamiyama, M. Tokunaga, and H. Nakayama. 1987. Evidence for a glucose effect

on N-acetylglucosamine catabolism in Candida albicans.Can. J. Microbiol. 33:345-347.

Nikawa, J., P. Sass, and M. Wigler. 1987. Cloning and characterization of the low-affinity cyclic

AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. BioI. 7:3629-3636.

Norman, c., and R. Treisman. 1988. Analysis of serum response element function in vitro. Cold

Spring Harb. Symp. Quant. BioI. 53:719-726.

Nuoffer, C., Jeno, P., A. Conzelmann, and H. Riezman 1991. Determinants for

glycophospholipid anchoring of the Saccharomyces cerevisiae GAS] protein to the plasma

membrane. Mol. Cell. BioI. 11:27-37.

Odds, F. C. 1988. Candida & Candidosis: A review & Bibliography, 2nd edn. Balliere Tindall,

United Kingdom.

Odds, F. C. 1994. Pathogenesis of Candida infections. J. Am. Acad. Dermatol. 31: S2-5.

Oh, K. B., H. Miyazawa, T. Naito, and H. Matsuoka. 2001. Purification and characterization of

an autoregulatory substance capable of regulating the morphological transition in Candida

albicans. Proc. Natl. Acad. Sci. USA. 98:4664-4668.

Okayama, H., M. Kawaichi, M. Brownstein, F. Lee, T. Yokota, and K. Arai. 1987. High­

efficiency cloning of full-length cDNA: construction and screening of cDNA expression

libraries for mammalian cells. Methods Enzymol. 154: 3-28.

O'Rourke, S. M., and I. Herskowitz. 1998. The Hogl MAPK prevents cross talk between the

HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev. 12:

2874-2886.

Pan, X., and J. Heitman. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal

differentiation in Saccharomyces cerevisiae. Mol. Cell. BioI. 19: 4874-4887.

Paranjape, V., B. G. Roy, and A. Datta. 1990. Involvement of calcium, calmodulin and protein

phosphorylation in morphogenesis of Candida albicans. J. Gen. Microbiol. 136:2149-2154.

Paravicini, G., A. Mendoza, B. Antonsson, M. Cooper, C. Losberger, and M. A. Payton.

1996. The Candida albicans P KC] gene encodes a protein kinase C homolog necessary for

cellular integrity but not dimorphism. Yeast 12:741-756.

Penalva, M. A., and H. N. Jr Arst. 2002. Regulation of gene expression by ambient pH in

filamentous fungi and yeasts. Microbiol. Mol. BioI. Rev. 66:426-446.

Perez-Martin, J., J. A. Uria, and A. D. Johnson. 1999. Phenotypic switching In Candida

albicans is controlled by a SJR2 gene. EMBO J. 18:2580-2592.

Pichova, I., L. Pavlickova, J. Dostal, E. Dolejsi, O. Hruskova-Heidingsfeldova, J. Weber, T.

Ruml, and M. Soucek. 2001. Secreted aspartic proteases of Candida albicans, Candida

198

Page 28: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

tropicalis, Candida parapsilosis and Candida lusitaniae. Inhibition with peptidomimetic

inhibitors. Eur. 1. Biochem. 268:2669-2677.

Pickart, C. M. 1997. Targeting of substrates to the 26S proteasome. FASEB 1.11: 1055-1066

Pia, J., R. M. Perez-Diaz, F. Navarro-Garcia, M. Sanchez, and C. NombeIa. 1995 Cloning of

the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph

using an improved double-ARS shuttle vector. Gene 165: 115-120

Plumbridge, J., and A. Kolb. 1993. DNA loop formation between Nag repressor molecules bound

to its two operator sites is necessary for repression of the nag regulon of Escherichia coli in

vivo. Mol Microbiol. 10:973-81.

Plumbridge, J., and E. Vimr. 1999. Convergent pathways for utilization of the amino sugars N­

acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. 1.

Bacteriol. 181: 47-54.

Pomes, R., C. Gil, and C. Nombela. 1985. Genetic analysis of Candida albicans morphological

mutants. 1. Gen. Microbiol. 131:2107-2113.

Porta, A., A. M. Ramon, and W. A. Fonzi. 1999. RR1, a homolog of Aspergillus nidulans palF,

controls pH-dependent gene expression and filamentation in Candida albicans. 1. Bacteriol.

181:7516-7523.

Rai, R., F. S. Genbauffe, R. A. Sumrada and T. G. Cooper. 1989. Identification of sequences

responsible for transcriptional activation of the allantoate permease gene in Saccharomyces

cerevisiae. Mol. Cell. BioI. 9: 602-608.

Rai, Y. P., and A. Datta. 1982. Induction of N-acetylglucosamine-6-phosphate deacetylase in

yeast. Indian. 1. Biochem. Biophys. 19:285-287.

Ramage, G., K VandeWalle, J. L. Lopez-Ribot, and B. L. Wickes. 2002. The filamentation

pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and

development in Candida albicans. FEMS Microbiol. Lett. 214:95-100.

Ramon, A. M., A. Porta, and W. A. Fonzi. 1999. Effect of environmental pH on morphological

development of Candida albicans is mediated via the PacC-related transcription factor encoded

by PRR2. 1. Bacteriol. 181:7524-7530.

Ramon, A. M., W. A. Fonzi. 2003. Diverged binding specificity of Rim101p, the Candida

albicans ortholog of Pace. Eukaryot. Cell 2:718-728.

Ramsey, H., B. Morrow, and D. R. Soli. 1994. An increase in switching frequency correlates with

an increase in recombination of the ribosomal chromosomes of Candida albicans strain 3153A.

Microbiology 140: 1525-1531.

199

Page 29: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Redpath, N. T. 1992. High-resolution one-dimensional polyacrylamide gel isoelectric focusing of

various forms of elongation factor-2. Anal. Biochem. 202:340-343.

Riggle, P. J., K. A. Andrutis, X. Chen, S. R. Tzipori, and C. A. Kumamoto. 1999. Invasive

lesions containing filamentous forms produced by a Candida albicans mutant that is defective in

filamentous growth in culture. Infect. Immun. 67: 3649-3652.

Rikkerink, E.H., B. B. Magee, and P. T. Magee. 1988. Opaque-white phenotype transition: a

programmed morphological transition in Candida albicans. J. Bacteriol. 170:895-899.

Roberg, K. J., N. Rowley, and C.A. Kaiser. 1997. Physiological regulation of membrane protein

sorting late in the secreting pathway of Saccharomyces cerevisiae. J. Cell. BioI. 137:1469-1482.

Roberts, R., H. U. Moseh, and G. R. Fink. 1997. 14-3-3 proteins are essential for RAS/MAPK

cascade signaling during pseudohyphal development in Saccharomyces cerevisiae. Cell 89:

1055-1065.

Robertson, L. S. and G. R. Fink. 1998. The three yeast A kinases have specific signaling

functions in pseudohyphal growth. Proc. Natl. Acad. Sci. USA 95:13783-13787.

Rocha, C. R., K. Sehroppel, D. Hareus, A. Marcil, D. Dignard, B. N. Taylor, D. Y. Thomas,

M. Whiteway, and E. Leberer. 2001. Signaling through adenylyl cyclase is essential for hyphal

growth and virulence in the pathogenic fungus Candida albicans. Mol. BioI. Cell. 12: 3631-

3643.

Rosenbluh, A., M. Mevareeh, Y. Koltin, and J. A. Gorman. 1985. Isolation of genes from

Candida albicans by complementation in Saccharomyces cerevisiae. Mol. Gen. Genet.

200:500-502.

Rottmann, M., S. Dieter, H. Brunner, and S. Rupp. 2003. A screen in Saccharomyces cerevisiae

identified CaMCMl, an essential gene in Candida albicans crucial for morphogenesis. Mol.

Microbiol. 47:943-959.

Rowen, D.W., N. Esiobu, and B. Magasanik 1997. Role of GATA factor Nil2p in nitrogen

regulation of gene expression in Saccharomyces cerevisiae. J. BacterioI179:3761-3766.

Rubin-Bejerano, I., I. Fraser, P. Grisafi, and G. R. Fink. 2003. Phagocytosis by neutrophils

induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans.

Proc. Natl. Acad. Sci. USA. 100:11007-11012.

Ruehel, R. 1986. Cleavage of immunoglobulins by pathogenic yeasts of the genus Candida.

Microbiol. Sci. 3:316-319.

Ruehel, R., F. Zimmermann, B. Boning-Stutzer, and U. Helmehen. 1991. Candidiasis

visualised by proteinase-directed immunofluorescence. Virchows. Arch. A Pathol. Anat.

Histopathol. 419: 199-202.

200

Page 30: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Ruoslahti, E., and M. D. Pierschbacher. 1987. New perspectives in cell adhesion: ROD and

integrins. Science 238: 491-497.

Rustchenko-Bulgac, E. P., F. Sherman, and J. B. Hicks. 1990. Chromosomal rearrangements

associated with morphological mutants provide a means for genetic variation of Candida

albicans. J. Bacteriol. 172:1276-1283.

Ryazanov, A. G., B. B. Rudkin, and A. S. Spirin. 1991. Regulation of protein synthesis at the

elongation stage. New insights into the control of gene expression in eukaryotes. FEBS Lett.

285,170-175.

Ryazanov, A. G., E. A. Shestakova, and P. G. Natapov. 1988. Phosphorylation of elongation

factor 2 by EF-2 kinase affects rate of translation. Nature 334: 170-173.

Rytka, J. 1975. Positive selection of general amino acid permease mutants of Saccharomyces

cerevisiae. J. Bacteriol. 121:562-570.

Sabie, F. T. and G. M. Gadd, 1992. Effect of nucleosides and nucleotides and the relationship

between cellular adenosine 3':5'-cyclic monophosphate (cyclic AMP) and germ tube formation

in Candida albicans. Mycopathologia 119: 147-156.

Sabie, F. T. and G. M. Gadd. 1989. Involvement of a Ca2+-calmodulin interaction in the yeast­

mycelial (Y-M) transition of Candida albicans. Mycopathologia 108:47-54.

Saenz, D. A., M. S. Chianelli, C. A. Stella, J. R. Mattoon, and E. H. Ramos. 1997. RAS2/PKA

pathway activity is involved in the nitrogen regulation of L-leucine uptake in Saccharomyces

cerevisiae. Int. J. Biochem. Cell. BioI. 29:505-512.

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd

ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.

Sanchez-Martinez, c., and J. Perez-Martin. 2002. Gpa2, a G-protein alpha subunit required for

hyphal development in Candida albicans. Eukaryot. Cell 1:865-874.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating

inhibitors. Proc Natl Acad Sci USA. 74:5463-5467.

Sanglard, D., F. Ischer, O. Marchetti, J. Entenza, and J. Bille. 2003. Calcineurin A of Candida

albicans: involvement in antifungal tolerance, cell morphogenesis and virulence.Mol Microbiol.

48:959-976.

Sanglard, D., Hube, B., Monod, M., F. C. Odds, and N. A. Gow. 1997. A triple deletion of the

secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes

attenuated virulence. Infect. Immun. 65:3539-3546.

Santos, M. A., V. M. Perreau and M. F. Tuite. 1996. Transfer RNA structural change is a key

element in the reassignment of the CUG codon in Candida albicans. EMBO J 15: 5060-5068.

201

Page 31: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Saporito, S. M., and P. S. Sypherd. 1991. The isolation and characterization of a calmodulin­

encoding gene (CMDl) from the dimorphic fungus Candida albicans. Gene 106:43-49.

Saporito-Irwin, S. M., C. E. Birse, P. S. Sypherd, and W. A. Fonzi. 1995. PHRl, a pH-regulated

gene of Candida albicans, is required for morphogenesis. Mol. Cell. BioI. 15:601-613.

Sass, P., J. Field, J. Nikawa, T. Toda, and M. Wigler~ 1986. Cloning and characterization of the

high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U S

A 83:9303-9307.

Schaller, M., C. Schackert, H. C. Korting, E. Januschke and B. Hube. 2000. Invasion of

Candida albicans correlates with expression of secreted aspartic proteinases during experimental

infection of human epidermis. 1. Invest. DennatoI.114:712-717.

Schaller, M., H. C. Korting, W. Schafer, J. Bastert, W. Chen and B. Hube. 1999. Secreted

aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral

candidosis. Mol. Microbiol. 34: 169-180.

Schaller, M., M. Bein, H. C. Korting, S. Baur, G. Hamm, M. Monod, S. Beinhauer, and B.

Hube. 2003. The secreted aspartyl proteinases Sapl and Sap2 cause tissue damage in an in vitro

model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun.

71:3227-3234.

Scherer, S. and P. T. Magee. 1990. Genetics of Candida albicans. Microbiol Rev 54: 226-241.

Schmidt, A., T. Beck, A. Koller, J. Kunz and M. N. Hall. 1998. The TOR nutrient signalling

pathway phosphorylates NPRl and inhibits turnover of the tryptophan permease. EMBO 1.

17:6924-6931.

Schroppel, K, K Sprosser, M. Whiteway, D. Y. Thomas, M. Rollinghoff, and C. Csank. 2000.

Repression of hyphal proteinase expression by the mitogen-activated protein (MAP) kinase

phosphatase Cpplp of Candida albicans is independent of the MAP kinase Ceklp. Infect.

Immun.68:7159-7161.

Schultz, J., and M. Carlson. 1987. Molecular analysis of SSN6, a gene functionally related to the

SNFI protein kinase of Saccharomyces cerevisiae. Mol. Cell. BioI. 7:3637-3645.

Schweizer, A., S. Rupp, B. N. Taylor, M. Rollinghoff and K Schroppel. 2000. The TEA/ATTS

transcription factor CaTeclp regulates hyphal development and virulence in Candida albicans.

Mol. Microbiol. 38:435-445.

Scott, M. P., J. W. Tamkun, and G. W. Hartzell. 1989. The structure and function of the

homeodomain. Biochim. Biophys. Acta. 989:25-48.

202

Page 32: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Sengupta, M., and A. Datta. 2003. Two membrane proteins located in the Nag regulon of

Candida albieans confer multi drug resistance. Biochem. Biophys. Res. Commun. 301: 1099-

1108.

Sentandreu, M., M. V. Elorza, R. Sentandreu, and W. A. Fonzi. 1998. Cloning and

characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albieans. 1.

Bacteriol. 180: 282-289.

Sharkey, L. L., M. D. McNemar, S. M. Saporito-Irwin, P. S. Sypherd, and W. A. Fonzi. 1999.

HWP 1 functions in the morphological development of Candida albieans downstream of EFG 1,

TUP 1, and RBF 1. 1. Bacteriol. 181:5273-5279

Sheen, J., L. Zhou, and J. C. Jang. 1999. Sugars as signaling molecules. Curr. Opin. Plant. BioI.

2: 410-418.

Shepherd, M. G., and P. A. Sullivan. 1983. Candida albieans germ-tube formaiton with

immobilized GlcNAc. FEMS Microbiol. Lett. 17:167-170.

Shepherd, M. G., Y. Y. Chiew, S. P. Ram, and P. A. Sullivan. 1980. Germ tube induction in

Candida albieans. Canadian 1. Microbiol. 26:21-26.

Sherlock, G., A. M. Bahman, A. Mahal, J. C. Shieh, M. Ferreira, and J. Rosamond. 1994.

Molecular cloning and analysis of CDC28 and cyclin homologues from the human fungal

pathogen Candida albieans. Mol. Gen. Genet. 245: 716-723.

Sia, R. A., H. A. Herald, and D. J. Lew 1996. Cdc28 tyrosine phosphorylation and the

morphogenesis checkpoint in budding yeast. Mol. BioI. Cell 7: 1657-1666.

Simao, R. C. G. and S. L. Gomes. 2001. Structure, expression, and functional analysis ofthe gene

coding for calmodulin in the chytridiomycete Blastocladiella emersonii. J. Bacteriol. 183:2280-

2288.

Simonitti, N., V. Strippoli, and A. Cassone. 1974. Yeast mycelial conversion induced by N­

acetyl-D-glucosamine in Candida albieans. Nature 252: 555-562.

Singh, B. R., and Datta A. 1978. Glucose repression of the inducible catabolic pathway for N­

acetylglucosamine in yeast. Biochem. Biophys. Res. Commun. 84:58-64.

Singh, B., and Datta A. 1979a. Induction of N-acetylglucosamine-catabolic pathway In

spheroplasts of Candida albieans. Biochem. J. 178: 427-431.

Singh, B., and Datta A. 1979b. Regulation of N-acetylglucosamine uptake in yeast. Biochim.

Biophys. Acta. 557: 248-258.

Singh, B., M. Biswas, A. Datta. 1980. Inducible N-acetyglucosamine-binding protein in yeasts. J

Bacteriol. 144: 1-6.

203

Page 33: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

Reterences

Singh, P., K Ganesan, K Malathi, D. Ghosh, and A. Datta. 1994. ACPR, a STE12 homologue

from Candida albicans, is a strong inducer of pseudohyphae in Saccharomyces cerevisiae

haploids and diploids. Biochem. Biophys. Res. Commun. 205:1079-1085.

Singh, P., S. Ghosh and A. Datta. 2001. Attenuation of virulence and changes in morphology in

Candida albicans by disruption of the N-acetylglucosamine catabolic pathway. Infect. Immun.

69: 7898-7903.

Singh, P., S. Ghosh, and A. Datta. 1997. A novel MAP-kinase kinase from Candida albicans.

Gene 190: 99-104.

Slutsky, B., J. Buffo, and D. R Soli. 1985. High-frequency switching of colony morphology in

Candida albicans. Science 230:666-669.

Smith R L., and A. D. Johnson. 2000. Turning genes off by Ssn6-Tup 1: a conserved system of

transcriptional repression in eukaryotes. Trends Biochem. Sci. 25:325-330.

Sobel, J. D. 1998. Vulvovaginitis. When Candida becomes a problem. Dermatol. Clin. 16:763-

768.

Sohn, K, C. Urban, H. Brunner, and S. Rupp. 2003. EFGl is a major regulator of cell wall

dynamics in Candida albicans as revealed by DNA microarrays. Mol. Microbiol. 47:89-102.

Soli, D. R 1992. High-frequency switching in Candida albicans. Clin. Microbiol. Rev. 5: 183-203.

Soli, D. R 1997. Gene regulation during high-frequency switching in Candida albicans.

Microbiology 143:279-288.

Soli, D. R, B. Morrow, and T. Srikantha. 1993. High-frequency phenotypic switching In

Candida albicans. Trends Genet. 9:61-65.

SoIl, D. R, C. J. Langtimm, J. McDowell, J. Hicks, and R Galask. 1987. High-frequency

switching in Candida strains isolated from vaginitis patients. J. Clin. Microbiol. 25:1611-1622.

SoIl, D. R, J. Anderson, and M. Bergen. 1991. The developmental biology of the white-opaque

transition in Candida albicans. In The Molecular Biology of Candida albicans, pp. 20-45.

Edited by R. Prasad. Berlin: Springer.

SoIl, D. R, S. R Lockhart and R Zhao. 2003. Relationship between switching and mating in

Candida albicans. Eukaryot. Cell 2:390-397.

Sonneborn, A., B. Tebarth, and J. F. Ernst. 1999a. Control of white-opaque phenotypic

switching in Candida albicans by the Efglp morphogenetic regulator. Infect. Immun. 67: 4655-

4660.

Sonneborn, A., D. P. Bockmuhl, and J. F Ernst. 1999b. Chlamydospore formation in Candida

albicans requires the Efg 1 p morphogenetic regulator. Infect. Immun. 67: 5514-5517.

204

Page 34: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

Reterences

Sonneborn, A., D. P. Bockmuhl, M. Gerads, K. Kurpanek, D. Sanglard, and J. F. Ernst. 2000.

Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol. Microbiol.

35: 386-396.

Sophianopoulou, V. and G. Diallinas. 1995. Amino acid transporters of lower eukaryotes:

regulation, structure and topogenesis. FEMS Microbiol. Rev. 16:53-75.

Spellman, P.T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown,

D. Botstein, and B. Futcher. 1998. Comprehensive identification of cell cycle-regulated genes

of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. BioI. Cell. 9:3273-

3297.

Spreghini, E, D. A. Davis, R. Subaran, M. Kim, and A. P. Mitchell. 2003. Roles of Candida

albicans Dfg5p and Dcw 1 p cell surface proteins in growth and hypha formation. Eukaryot Cell

2:746-755.

Springael, J. Y., and B. Andre. 1998. Nitrogen regulated ubiquitination of the Gap 1 permease of

Saccharomyces cerevisiae. Mol. BioI. Cell 9: 1253-1263.

Srikantha, T., A. Chandrasekhar, and D. R. SolI. 1995. Functional analysis of the promoter of

the phase-specific WH11 gene of Candida albicans. Mol. Cell. BioI. 15:1797-1805.

Srikantha, T., A. KJapach, W. W. Lorenz, L. K. Tsai, L. A. Laughlin, J. A. Gorman, and D.

R. SolI. 1996. The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent

reporter for differential gene expression in Candida albicans. 1. Bacteriol. 178: 121-129.

Srikantha, T., and D. R. SolI. 1993. A white-specific gene in the white-opaque switching system

of Candida albicans. Gene 131:53-60.

Srikantha, T., L. K. Tsai, and D. R. SolI. 1997. The WHII gene of Candida albicans is regulated

in two distinct developmental programs through the same transcription activation sequences. 1.

Bacteriol. 179:3837-3844.

Srikantha, T., L. K. Tsai, K. Daniels, and D. R. Soli. 2000. EFG 1 null mutants of Candida

albicans switch but cannot express the complete phenotype of white-phase budding cells. J.

Bacteriol. 182:1580-1591.

Srikantha, T., L. Tsai, K. Daniels, A. J. KJar, and D. R. Soli. 2001. The histone deacetylase

genes HDAI and RPD3 play distinct roles in regulation of high-frequency phenotypic switching

in Candida albicans. J. Bacteriol. 183:4614-4625.

Srikantha, T., L. Tsai, K. Daniels, L. Enger, K. Highley, and D. R. SolI. 1998. The two­

component hybrid kinase regulator CaNIKl of Candida albicans. Microbiology 144:2715-2729.

205

Page 35: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Staab, J. F., C. A. Ferrer, and P. Sundstrom. 1996. Developmental expression of a tandemly

repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans.

J. BioI. Chern. 271:6298-6305.

Staab, J. F., S. D. Bradway, P. L. Fidel, and P. Sundstrom. 1999. Adhesive and mammalian

transglutaminase substrate properties of Candida albicans Hwp 1. Science 283: 1535-1538.

Staib, F. 1965. Serum-proteins as nitrogen source for yeast like fungi. Sabouraudia. 4: 187-193.

Staib, P., M. Kretschmar, T. Nichterlein, H. Hof, and J. Morschhauser. 2000. Differential

activation of a Candida albicans virulence gene family during infection. Proc. Natl. Acad. Sci.

USA.97:6102-6107.

Staib, P., M. Kretschmar, T. Nichterlein, H. Hof, and J. Morschhauser. 2002. Host versus in

vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence

gene. Mol. Microbiol. 44:1351-1366.

Stanbrough, M., and B. Magasanik. 1995. Transcriptional and posttranslational regulation of the

general amino acid permease of Saccharomyces cerevisiae. 1. Bacteriol. 177:94-102.

Stanbrough, M., D. W. Rowen, and B. Magasanik. 1995. Role of the GATA factors Gln3p and

Nill p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Nat!.

Acad. Sci. USA 92:9450-9454.

Stoldt, V. R., A. Sonneborn, C. E. Leuker, and J. F. Ernst. 1997. Efgl p, an essential regulator

of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of

bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16: 1982-1991.

Stone, R. L., V. Matarese, B. B. Magee, P. T. Magee, and D. A. Bernlohr. 1990. Cloning,

sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is

negatively regulated by glucose and positively by lipids. Gene 96: 171-176.

Su, S. S., and A. P. Mitchell. 1993. Molecular characterization of the yeast meiotic regulatory

gene RIM]. Nucleic Acids Res. 21:3789-3797.

Suarez, T., and M. A. Penalva. 1996. Characterization of a Penicillium chrysogenum gene

encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter

of the penicillin biosynthetic cluster. Mol. Microbiol. 20:529-540.

Sullivan, P. A., and M. G. Shepherd. 1982. Gratuitous induction by N-acetylmannosamine of

germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans. J.

Bacteriol. 151:1118-1122.

Sundstrom, P. 1999. Adhesins in Candida albicans. CUIT Opin Microbiol. 2:353-357.

206

Page 36: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Sundstrom, P., E. Balish, and C. M. Allen. 2002. Essential role of the Candida albicans

transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in

immunodeficient mice. J. Infect. Dis. 185:521-530.

Tanaka, J. and G. R. Fink. 1985. The histidine permease gene (HIPI) of Saccharomyces

cerevisiae. Gene 38:205-214.

Teakle, G. R., and P. M. Gilmartin. 1998. Two forms of type IV zinc-finger motif and their

kingdom-specific distribution between the flora, fauna and fungi. Trends Biochem. Sci. 23: I 00-

102.

Tebarth, B., T. Doedt, S. Krishnamurthy, M. Weide, F. Monterola, A. Dominguez, and J. F.

Ernst. 2003. Adaptation of the Efgl p morphogenetic pathway in Candida albicans by negative

autoregulation and PKA-dependent repression of the EFGI gene. J. Mol. BioI. 329:949-962.

Theiss, S., G. A. Kohler, M. Kretschmar, T. Nichterlein, and J. Hacker. 2002. New molecular

methods to study gene functions in Candida infections. Mycoses 45:345-50.

Tilburn, J., S. Sarkar, D. A. Widdick, E. A. Espeso, M. Orejas, J. Mungroo, M. A. Penalva,

and H. N. Jr Arst. 1995. The Aspergillus PacC zinc finger transcription factor mediates

regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO 1. 14:779-790.

Toda, T., S. Cameron, P. Sass, M. Zoller, and M. Wigler. 1987a. Three different genes in

Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase.

Cell 50:277-287.

Toda, T., S. Cameron, P. Sass, M. Zoller, J. D. Scott, B. McMullen, M. Hurwitz, E. G. Krebs,

and M. Wigler. 1987b. Cloning and characterization of BCYI, a locus encoding a regulatory

subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell.

BioI. 7:1371-1377.

Togni, G., D. Sanglard, M. Quadroni, S. I. Foundling, and M. Monod. 1996. Acid proteinase

secreted by Candida tropicalis: functional analysis of preproregion cleavages in Candida

tropicalis and Saccharomyces cerevisiae. Microbiology 142:493-503.

Togni, G., D. Sanglard, R. Falchetto, and M. Monod. 1991. Isolation and nucleotide sequence of

the extracellular acid protease gene (ACP) from the yeast Candida tropical is. FEBS Lett.

286: 181-185.

Tomlin, G. c., G. E. Hamilton, D. C. Gardner, R. M. Walmsley, L. I. Stateva, and S. G.

Oliver. 2000. Suppression of sorbitol dependence in a strain bearing a mutation in the

SRB IIPSAINIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression

suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall

biogenesis. Microbiology 146 :2133-2146.

207

Page 37: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Torosantucci, A., L. Angiolella, C. Filesi, and A. Cassone. 1984. Protein synthesis and amino

acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida

albicans. J. Gen. Microbiol. 130: 3285-3293.

Tripathi, G., C. Wiltshire, S. Macaskill, H. Tournu, S. Budge, and A. J. Brown. 2002. Gcn4

co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida

albicans. EMBO J. 21:5448-5456.

Tsong, A. E., M. G. Miller, R. M. Raisner, and A. D. Johnson. 2003. Evolution of a

combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389-399.

Tsuchimori, N., L. L. Sharkey, W. A. Fonzi, S. W. French, J. E. Jr Edwards, and S. G. Filler.

2000. Reduced virulence of HWP I-deficient mutants of Candida albicans and their interactions

with host cells. Infect. Immun. 68: 1997-2002.

Turgeon, B. G. 1998. Application of mating type gene technology to problems in fungal biology.

Annu. Rev. Phytopathol. 36: 115-137.

Uhl, M. A., and A. D. Johnson. 2001. Development of Streptococcus thermophilus lacZ as a

reporter gene for Candida albicans. Microbiology 147: 1189-1195.

Umeyama, T, Y. Nagai, M. Niimi, Y. Uehara. 2002. Construction of FLAG tagging vectors for

Candida albicans. Yeast. 19:611-618.

Ushinsky, S. c., D. Harcus, J. Ash, D. Dignard, A. Marcil, J. Morchhauser, D. Y. Thomas, M.

Whiteway, and E. Leberer. 2002. CDC42 is required for polarized growth in human pathogen

Candida albicans. Eukaryot. Cell 1 :95-1 04.

Vandenbol, M., J. C. Jauniaux, and M. Grenson. 1990, The Saccharomyces cerevisiae NPRI

gene required for the activity of ammonia-sensitive amino acid perm eases encodes a protein

kinase homologue. Mol. Gen. Genet. 222:393-399.

Vazquez-Torres, A., and E. Balish. 1997. Macrophages in resistance to candidiasis. Microbiol

Mol BioI. Rev. 61:170-192.

Vissers, S., Andre, B., F. Muyldermans and M. Grenson. 1990. Isolation and characterization of

mutants that produce the allantoin-degrading enzymes constitutively in Saccharomyces

cerevisiae. Eur. J. Biochem. 187: 611--616.

Vogler, A. P., and J. W. Lengeler. 1989. Analysis of the nag regulon from Escherichia coli K12

and Klebsiella pneumoniae and of its regulation. Mol. Gen. Genet. 219: 97-105.

Von-Zepelin, B. M., S. Beggah, K. Boggian, D. Sanglard, and M. Monod. 1998. The expression

of the secreted aspartyl proteinases SAP4 to SAP6, from Candida albicans in murine

macrophages. Mol. Microbiol. 28: 543-554.

208

Page 38: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

Reterences

Walther, A., and J. Wendland. 2003. An improved transformation protocol for the human fungal

pathogen Candida albicans. Curr Genet. 42:339-343.

Ward, M. P., C. J. Gimeno, G. R Fink, and S. Garrett. 1996. SOK2 may regulate cyclic AMP

dependent protein kinase-stimulated growth and pseudohyphal development by repressing

transcription. Mol. Cell. BioI. 15: 6854-6863.

Warwar, V. and M. B. Dickman. 1996. Effects of calcium and calmodulin on spore germination

and appressorium development in Colletotrichum trifolii. Appl. Environ. Microbiol. 621: 74-

79.

Watts, H. J., F. S. Cheah, B. Hube, D. Sanglard, and N. A. Gow. 1998. Altered adherence in

strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes.

FEMS Microbiol. Lett. 159:129-135.

Watzele, G., and W. Tanner. 1989. Cloning of the glutamine:fructose-6-phosphate

amidotransferase gene from yeast. Pheromonal regulation of its transcription. J. BioI. Chern.

264:8753-8758.

Whelan, W. L., and P. T. Magee. 1981. Natural heterozygosity in Candida albicans. J Bacteriol.

145:896-903.

White, T. c., and N. Agabian. 1995. Candida albicans secreted aspartyl proteinases: isoenzyme

pattern is determined by cell type, and levels are determined by environmental factors. J.

Bacteriol. 177:5215-5221.

White, T. c., S. H. Miyasaki, and N. Agabian. 1993. Three distinct secreted aspartyl proteinases

in Candida albicans. 1. Bacteriol. 175:6126-6133.

Whiteway, M., D. Dignard, and D. Y. Thomas. 1992. Dominant negative selection of

heterologous genes: isolation of Candida albicans genes that interefere with Saccharomyces

cerevisiae mating factor-induced cell cycle arrest. Proc. Natl. Acad. Sci. USA 89: 9410-9414.

Wiame, J. M., M. Grenson and H. N. Arst, Jr. 1985. Nitrogen catabolite repression in yeasts and

filamentous fungi. Adv. Microbiol. Physiol. 26: 1-88.

Wickes, B. L, M. E. Mayorga, U. Edman, and J. C. Edman. 1996. Dimorphism and haploid

fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc. Nat!. Acad.

Sci. USA. 93:7327-7331.

Wightman, R, S. Bates, P. Amornrrattanapan, and P. Sudbery. 2004. In Candida albicans, the

Nim 1 kinases Gin4 and Hsil negatively regulate pseudohypha formation and Gin4 also controls

septin organization. J. Cell. BioI. 164:581-591.

Wilson, R B., D. Davis, and A. P. Mitchell. 1999. Rapid hypothesis testing with Candida

albicans through gene disruption with short homology regions. J. Bacteriol. 181:1868-1874.

209

Page 39: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/16896/11/11_references.pdfReferences Ahrens, J. c., L. Daneo-Moore, and H. R Buckley. 1983. Differential protein synthesis

References

Wilson, R. B., G. Renault, M. Jacquet and K. Tatchell. 1993. The pde2 gene of Saccharomyces

cerevisiae is allelic to rcal and encodes a phosphodiesterase which protects the cell from

extracellular cAMP. FEBS Lett. 325:191-195.

Workman, J. L., and R. E. Kingston. 1998. Alteration of nucleosome structure as a mechanism

of transcriptional regulation. Annu. Rev. Biochem. 67:545-579.

Wu, J., and B. L. Miller. 1997. Aspergillus asexual reproduction and sexual reproduction are

differentially affected by transcriptional and translational mechanisms regulating stunted gene

expression. Mol. Cell. BioI. 17:6191-20l.

Yamada-Okabe, T., and Yamada-Okabe, H. 2002. Characterization of the CaNAG3, CaNAG4,

and CaNAG6 genes of the pathogenic fungus Candida albicans: possible involvement of these

genes in the susceptibilities of cytotoxic agents. FEMS Microbiol. Lett. 212: 15-2l.

Yamada-Okabe, T., T. Mio, N. Ono, Y. Kashima, M. Matsui, M. Arisawa, and H. Yamada­

Okabe. 1999. Roles of three histidine kinase genes in hyphal development and virulence of the

pathogenic fungus Candida albicans. J. Bacteriol181: 7243-7247.

Yamada-Okabe, T., Y. Sakamori, T. Mio, and H. Yamada-Okabe. 200l. Identification and

characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine­

phosphate deacetylase in the pathogenic fungus, Candida albicans. Eur. J. Biochem. 268: 2498-

2505.

Yamano, N., N. Oura, J. Wang, and S. Fujishima. 1997. Cloning and sequencing of the genes

for N-acetylglucosamine use that construct divergent operons (nagE-nagAC) from Vibrio

cholerae non-Ol. Biosci Biotechnol Biochem. 61:1349-1353.

Yesland, K., and W. A. Fonzi. 2000. Allele-specific gene targeting in Candida albicans results

from heterology between alleles. Microbiology 146:2097-2104.

Yoshida, M., S. Horinouchi, and T. Beppu. 1995. Trichostatin A and trapoxin: novel chemical

probes for the role of histone acetylation in chromatin structure and function. Bioessays. 17:423-

430.

Zhang, N., A. L. Harrex, B. R. Holland, L. E. Fenton, R. D. Cannon, and J. Schmid. 2003.

Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable

contingency locus. Genome Res. 13:2005-2017.

Zhao, X., C. Pujol, D. R. Soli, and L. L. Hoyer. 2003. Allelic variation in the contiguous loci

encoding Candida albicans ALS5, ALSI and ALS9. Microbiology 149:2947-2960.