47
REFERENCES Abalos, A., Vinas, M., Sabate, J., Manresa, M.A. & Solanas, A. M. (2004). Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15, 249–260. Abu, G.O. & Ogiji, P.A. (1996). Initial test of a bioremediation scheme for the cleanup of an oil polluted waterbody in a rural community in Nigeria. Bioresour. Technol. 58, 7–12. Acar, J.F & Goldstein, F. W. (1986). Disc susceptibility test. In. lorian V ed. Antibiotics in laboratory medicine. London; Williams and Wilkins. 26-63. Adamson, A.W. (1990). Physical chemistry of surfaces, John Wiley & Sons, Inc., New York. Adebusoye, S.A., Ilori, M.O., Amund, O.O., Teniola, O.D. & Olatope, S.O. (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol. 23, 1149–1159. Adenipekun, C.O. & Fasidi I.O. (2005). Bioremediation of oil-polluted soil by Lentinus subnudus a Nigerian white-rot fungus. Afr. J. Biotechnol. 4, 796-798. Aelion, C.M. & Paul M. Bradley (1991). Aerobic Biodegradation Potential of Subsurface Microorganisms from a Jet Fuel-Contaminated Aquifer. Appl. Environ. Microbiol. 57(1), 57-63-63.

REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/25735/17/17_bibliograph… · References 179 Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons:

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

REFERENCES

Abalos, A., Vinas, M., Sabate, J., Manresa, M.A. & Solanas, A. M. (2004).

Enhanced biodegradation of Casablanca crude oil by a microbial

consortium in presence of a rhamnolipid produced by Pseudomonas

aeruginosa AT10. Biodegradation 15, 249–260.

Abu, G.O. & Ogiji, P.A. (1996). Initial test of a bioremediation scheme for the

cleanup of an oil polluted waterbody in a rural community in Nigeria.

Bioresour. Technol. 58, 7–12.

Acar, J.F & Goldstein, F. W. (1986). Disc susceptibility test. In. lorian V ed.

Antibiotics in laboratory medicine. London; Williams and Wilkins. 26-63.

Adamson, A.W. (1990). Physical chemistry of surfaces, John Wiley & Sons,

Inc., New York.

Adebusoye, S.A., Ilori, M.O., Amund, O.O., Teniola, O.D. & Olatope, S.O.

(2007). Microbial degradation of petroleum hydrocarbons in a polluted

tropical stream. World J Microbiol Biotechnol. 23, 1149–1159.

Adenipekun, C.O. & Fasidi I.O. (2005). Bioremediation of oil-polluted soil by

Lentinus subnudus a Nigerian white-rot fungus. Afr. J. Biotechnol. 4,

796-798.

Aelion, C.M. & Paul M. Bradley (1991). Aerobic Biodegradation Potential of

Subsurface Microorganisms from a Jet Fuel-Contaminated Aquifer. Appl.

Environ. Microbiol. 57(1), 57-63-63.

178

Agarry, S. E., Owabor, C. N. & Yusuf R. O. (2010). Studies on

Biodegradation of Kerosene in Soil under Different Bioremediation

Strategies, Bioremediation Journal. 14, 135-141.

Agbozu, I. E. & Opuene, K. (2009). Occurrence and Diagenetic Evolution of

Perylene in the Sediments of Oginigba Creek, Southern Nigeria. Int. J.

Environ. Res. 3 (1), 117-120.

Aislabie, J., McLeod, M. & Fraser, R. (1998). Potential for biodegradation of

hydrocarbons in soil from the Ross Dependency, Antarctica. Appl

Microbiol Biotechnol 49, 210–214.

Alexander, B., Leach, S. & Ingledew, W.J. (1987). The relationship between

chemiosmotic parameters and sensitivity to anions and organic acids in

the acidophile Thiobacillus ferrooxidans. J Gen Microbiol. 133, 1171–

1179.

Alexander, M. (1999). Biodegradation and Bioremediation. 2nd edn.

Academic Press, London

Alvarez, P. J. J., Arvid, P. J., & Vogel, T. M. (1991), Biodegradation. 2: 43–51.

Amund O.O & Nwokoye, N. (1993). “Hydrocarbon potentials of yeast

isolates from a polluted Lagoon,” Journal of Scientific Research and

Development, 1, 65–68.

Arulazhagan P., Vasudevan, N. & Yeom, I. T. (2010). Biodegradation of

polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium

isolated from marine environment. Int. J. Environ. Sci. Tech., 7, 639-652.

Atlas, R. & Bragg, J. (2009). Bioremediation of marine oil spills: When and

when not-the Exxon Valdez experience. Microbial. Biotech. 2, 213-221.

Atlas, R. M. & Bartha, R. (1973a). Fate and effects of polluting petroleum in

the marine environment. Residue Rev. 49, 40-85.

References 179

Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: An

environmental prospective. Microbiol. Rev. 45.180–209.

Atlas, R. M., & Bartha, R. (1972b). Degradation and mineralization of

petroleum in seawater: Limitation by nitrogen and phosphorus.

Biotechnol. Bioeng. 14, 309–318.

Atlas, R.M. & Bartha, R. (1998). Microbial Ecology: Fundamentals and

applications 4th Edition. Benjamin Cummings publishing company Inc.

Addison Wesley Longman Inc. pp. 300-350.

Atlas, R.M. & Unterman, R. (1999). Bioremediation. In: Demain A, Davies J,

Atlas RM (eds). Manual of industrial microbiology and biotechnology,

2nd edn. Societies and Associations, 666–681.

Austin, B., Calomiris,J.J., Walker,J. D. & Colwell, R.R. (1977). Numerical

Taxonomy and Ecology of Petroleum-degrading Bacteria. Applied and

Environmental Microbiology. 34, 60-68.

Bailey, N.J.L., Jobson, A. M. & Rogers, M. A. (1973). Bacterial degradation

of crude oil: comparison of field and experimental data, Chem. Geol. Il,

203.

Banat, F.A., Prechtl, S.B. & Bischof, F. (2000). Aerobic thermophilic

treatment of sewage sludge contaminated with 4-nonylphenol.

Chemosphere. 41, 297–302.

Barathi, S. & Vasudevan, N. (2001). Utilization of petroleum hydrocarbons

by Pseudomonas fluorescence isolated from a petroleum contaminated

soil. Environ Int. 26, 413–416.

Barros, F.F.C., Alexandre Nunes Ponezi, & Gláucia Maria Pastore (2008).

Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale

180

using cassava wastewater as substrate. J Ind Microbiol Biotechno. 35,

1071–1078.

Batista, S.B., Mounteer, A.H., Amorim, F.R. & Totola, M.R. (2006). Isolation

and characterization of biosurfactant/bioemulsifier-producing bacteria

from petroleum contaminated sites. Bioresour Technol. 97, 868–75.

Bayona, J.M., Albaiges, J., Solanas, A.M., Pares, R., Garrigues, P. & Ewalt,

M. (1986). Selective aerobic degradation of methyl–substituted

polycyclic aromatic hydrocarbons in petroleum by pure microbial

cultures. Int. J. Environ. Ana. Chem. 23, 289–303.

Beal, R. & Betts, W.B. (2000). Role of rhamnolipid biosurfactants in the

uptake and mineralization of hexdecane by hydrocarbon. J. Appl.

Microbiol.89, 158-168.

Bento, F.M., Fla´vio, A.O., Camargo, A., Benedict, C., Okeke, B., William, T.

& Frankenberger (2005). Comparative bioremediation of soils

contaminated with diesel oil by natural attenuation, biostimulation and

bioaugmentation. Bioresource Technology. 96, 1049–1055

Bergey`s Manual of Systematic Bacteriology, James, T. and Staley, I., Eds.,

(1989) Baltimore: Williams and Wilkins, vol. 3.

Bicca, F.C., Fleck, L.C. & Zachio, M.A. (1999). Production of biosurfactant

by hydrocarbon degrading Rhodococcus ruber and Rhodococcus

erythropolis. Rev. Microbiol, 30- 3.

Blackburn, J.W. & Hafker, W. R. (1993). The impact of biochemistry,

bioavilability, and bioactivity on the selection of bioremediation

technologies. TIB Tech. 11, 328-333.

References 181

Bodour, A. A. & Maier, R.M. (2002). Biosurfactants: types, screening methods,

and applications. In: Bitton G (ed) Encyclopedia of environmental

microbiology. Hoboken, New Jersey: John Wiley and Sons Inc, 750–770

Bodour, A. A., Barajas, C.G., Jiorle, B.V., Malcomson, M.E., Paul, A.K. &

Somogyi, A. (2004). Structure and characterization of flavolipids, a novel

class of biosurfactants produced by Flavobacterium sp. strain MTN11.

Appl Environ Microb. 70, 114–20.

Bognolo, G. (1999). Biosurfactants as emulsifying agents for hydrocarbons.

Colloid Surf A 152, 41–52.

Boopathy R. (2000). Formation of aniline as a transient metabolite during

the metabolism of tetryl by a sulfate-reducing bacterial consortium. Curr

Microbiol. 40, 190–193.

Bordas, F., Lafrance, P. & Villemur, R. (2005). Conditions for effective removal

of pyrene from an artificially contaminated soil using Pseudomonas

aeruginosa 57SJ rhamnolipids. Environ Pollut. 138, 69–76.

Bossert, I. & Bartha, R. (1984). The fate of petroleum in soil ecosystem, in:

Atlas, R.M. (Ed.), Petroleum Microbiology. Macmillan Co., New York,

435–476.

Bouchez-Naitali, M., Rakatozafy, H., Marchal, R., Leveau, J.Y. &

Vandecasteele, J.P. (1999). Diversity of bacterial strains degrading

hexadecane in relation to the mode of substrate uptake, J. Appl.

Microbiol. 86, 421–428.

Bourquin, A. (1996). The current focus on soil sedimentation. Paper

presented on Novel Approaches to Remediation, May 13–14, Arlington,

VA, USA.

182

Bouwer, E., Durant, N., Wilson, L., Zhang, W. & Cunningham, A. (1994).

Degradation of xenobiotic compounds in situ: capabilities and limits.

FEMS Microbiol. Rev. 15, 307-317

Boyette, C.D. Walker, H.L. & Abbas, H.K. (2002). Biological control of

kudzu (Pueraria lobata); with an isolate of Myrothecium verrucaria.

Biocontrol Sci Technol. 12, 75–82.

Braddock, J.F. & McCarthy, K.A. (1996). Hydrologic and microbiological

factors affecting persistence and migration of petroleum hydrocarbons

spilled in a continuous-permafrost region. Environ Sci Technol. 30,

2626–2633.

Braddock, J.F., Ruth, M.L., Walworth, J.L. & McCarthy, K.A. (1997).

Enhancement and inhibition of microbial activity in hydrocarbon-

contaminated arctic soils: implications for nutrient amended

bioremediation. Environ Sci Technol. 31, 2078– 2084.

Bragg, J. R., Prince, R. C., Harner, E. J. & Atlas, R. M. (1994). Effectiveness

of bioremediation for the Exxon-Valdez oil-spill. Nature. 368, 413–418.

Bruheim, P., Bredholt, H. & Eimhjellen. K. (1999). Effects of surfactant

mixtures, including Corexit 9527, on bacterial oxidation of acetate and

alkanes in crude oil. Appl. Environ. Microbiol. 65, 1658–1661.

Busscher, H.J., Van de Belt-Gritter, B. & Van der, Mei H.C. (1995).

Implications of microbial adhesion to hydrocarbons for evaluating cell

surface hydrophobicity; 1. zeta potentials of hydrocarbon droplets.

Colloids Surf B Biointerfaces. 5, 111–116.

Calvo, C. Toledo, F.L. & Gonzalez-Lopez, J. (2004). Surfactant activity of a

naphthalene degrading Bacillus pumilus strain isolated from oil sludge. J

Biotechnol. 109, 255–62.

References 183

Cameotra, S.S. & Makkar, R.S. (2004). Recent applications of biosurfactant

as biological and immunological molecules. Curr Opin Microbiol. 7,

262–266.

Capelli, S.M., Busalmen, J.P. & Sanchez, S.R. (2001). Hydrocarbon

bioremediation of a mineral-base contaminated waste from crude oil

extraction by indigenous bacteria. Int. Biodet. Biod. 47, 233–238.

Casellas, M., Grifoll, M., Sebate, J. & Solanas, A.M. (1998). Isolation and

characterization of a fluorenone-degrading bacterial strain and its role in

synergistic degradation of fluorene by a consortium. Can J Microbiol. 44,

734–742.

Cassidy, M.B., Lee, H. & Trevors, J.T. (1996). Environmental applications of

immobilized microbial cells: a review. J Ind Microbiol. 16, 79–101.

Cerniglia, C.E. (1992). Biodegradation of polycyclic aromatic hydrocarbons.

Biodegradaion 3, 351-368.

Cha´vez-Go´mez, B., Quintero, R., Esparza-Garcı´a, F., Mesta-Howard,

A.M., Zavala Dı´az de la Serna, F.J., Herna´ndez-Rodrı´guez, C.H.,

Guille´n, T.& Poggi-Varaldo, H.M. (2003). Removal of phenanthrene

from soil by bacterial co-cultures of bacteria and fungi pregrown on

sugarcane bagasse pith. Bioresource Technology .89, 177–183.

Chaıneau, C.H., Rougeux, G.C., Yepremian, C. & Oudot, J. (2005). Effects

of nutrient concentration on the biodegradation of crude oil associated

microbial populations in the soil. Soil Biol Biochem 37, 1490–1497.

Chang, J.I. & Lin, C.C. (2006). "A study of storage tank accidents." Journal

of Loss Prevention. 19, 51-59.

Chang, Y.J., Peacock, A.D., Long, P.E., Stephen, J.R., McKinley, J.P.,

Macnaughton, S.J., Hussain, A., Saxton, A.M. & White, D.C. (2001).

184

Diversity and characterization of sulfate-reducing bacteria in groundwater

at a uranium mill tailings site. Appl Environ Microbiol 67, 3149–3160.

Characklis, W. G. & Marshall, K. C. (1990). Biofilms: A basis for an

interdisciplinary approach. In W. G. Characklis & K. C Mrarshall (Eds),

Biofilms. Newyork: Wiley.

Chau, N.T.T., Pham Hu Quang, Pham Thi Ngoc Lan, Masaru Matsumoto &

Ikuo Miyajima (2011). Identification and Characterization of

Pseudomonas sp. P9 Antagonistic to Pathogenic Vibrio spp. Isolated

from Shrimp Culture Pond in Thua Thien Hue–Viet Nam J. Fac. Agr.,

Kyushu Univ. 56 , 23–31.

Chen, C.I. & Taylor, R.T. (1995). Thermophilic biodegradation of BTEX by

two Thermus species. Biotechnol Bioeng. 48, 614–624.

Chen, C.I. &Taylor, R.T. (1997). Batch and fed-batch bioreactor cultivations

of a Thermus species with thermophilic BTEX-degrading activity. Appl

Microbiol Biotechnol 47, 726–733.

Choi, H.M. & Chung, K.H. Growth of Kerosene-Biodegrading

Microorganisms in the Presence of α-Amino Acid. Bulletin of

Environmental Contamination and Toxicology 63, 782-788.

Chu, W. & Chan, K.H. (2003). The mechanism of the surfactant-aided soil

washing system for hydrophobic and partial hydrophobic organics. Sci.

Total Environ. 307, 83-92.

Colores, G. M., Macur, R. E., Ward, D. M. & Inskeep. W. P. (2000).

Molecular analysis of surfactant-driven microbial population shifts in

hydrocarbon contaminated soil. Appl. Environ. Microbiol. 66, 2959–2964.

Connon, R., Rachel, E., Dewhurt, Mark Crane & Amanda Callaghan. (2003).

Heam peroxidase activity in Daphnia magna: A biomarker for sub-lethal

References 185

toxicity assessments of kerosene contaminated ground water.

Ecotoxicology. 12, 387-395

Cooper & Goldenberg, (1987). Surface active agents from two Bacillus sp.

Appl. Environ. Microbiol. 53, 224-229

Coppotelli, B.M., Ibarrolaza, A., Dias, R.L., Del Panno, M.T., Berthe-Corti, L.

& Morelli, I.S. (2010). Study of the degradation activity and the strategies

to promote the bioavailability of phenanthrene by Sphingomonas

paucimobilis strain 20006FA. Microbial Ecology. 59, 266-276.

Coral, G. & Karagöz, S. (2005). Isolation and characterization of

phenanthrene degrading bacteria from a petroleum refinery soil. Ann

Microbiol. 55, 255-259.

Costa, S.G., Nitschke, M., Haddad, R., Wberlin, M.N. & Contiero, J. (2006).

Production of Pseudomonas aeruginosa LBI rhamnolipids following

growth on Brazilian native oils. Process Biochem, 41, 483–490.

Cunliffe, M. & Kertesz, M.A. (2006). Effect of Sphingobium yanoikuyae B1

inoculation on bacterial community dynamics and polycyclic aromatic

hydrocarbon degradation in aged and freshly PAH-contaminated soils.

Environ Pollut. 144, 228–237.

Cunningham, C.J., Ivshina, V.I., Kuyukina, M.S. & Philp, J.C. (2004).

Bioremediation of diesel-contaminated soil by microorganisms immobilized

in poly vinyl alcohol. Int Biodeterior Biodegrad. 54, 167–74.

D’Annibale, A., Rosetto, F., Leonardi, V., Federici, F. & Petruccioli, M.

(2006). Role of autochthonous filamentous fungi in bioremediation of a

soil historically contaminated with aromatic hydrocarbons. Appl Environ

Microbiol. 72, 28–36.

186

Das, K. & Mukherjee, A.K. (2007a). Differential utilization of pyrene as the

sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa

strains: role of biosurfactants in enhancing bioavailability. J. of Appl.

Microbiology. 102, 195-203.

Das, K. & Mukherjee, A.K. (2007b). Crude petroleum oil biodegradation

efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains

isolated from a petroleum–oil contaminated soil from North- East India.

Bioresour Technol. 98, 1339-1345.

Das, K. & Mukherjee, A.K., (2005). Characterization of biochemical

properties and biological activities of biosurfactants produced by

Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from

hydrocarbon-contaminated soil samples. Appl. Microbiol. Biotechnol. 69,

192–199.

Das, P., Mukherjee, S. & Sen, R. (2008a). Antimicrobial potential of a

lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl

Microbiol. 104, 1675–1684.

Das, P., Mukherjee, S. & Sen, R. (2008b). Genetic regulation of the

biosynthesis of microbial surfactant: an overview. Biotechnol Genet Eng

Rev 25, 165–186

Das, P., Mukherjee, S., Sivapathasekeran, C. &Sen, R. (2010). Microbial

surfactants of marine origin: potentials and prospects. Adv Exp Med Biol.

672, 88–101.

Das,K. & Mukherjee A.K. (2006). Crude petroleum-oil biodegradation

efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains

isolated from a petroleum-oil contaminated soil from North-East India.

Bioresource Technology

References 187

Davis, J.S. & Westlake, D.W.S. (1978). Crude oil utilization by fungi.

Canadian Journal of Microbiology. 25, 146–156.

De Beer, D. & Stoodley, P. (1995). Relation between the structure of an

aerobic biofilm and mass transport phenomena. Water Sci Technol. 32,

11–18.

Dean-Ross, D., Moody, J. & Cerniglia, C.E. (2002). Utilization of mixtures of

polycyclic aromatic hydrocarbons by bacteria isolated from contaminated

sediment. FEMS Microbiol. Ecol., 41, 1-7.

Del’Arco. J.P. & De Franca, F.P. (1999). Biodegradation of crude oil in

sandy sediment. Int. Biodet. Biod. 44, 87–92.

Delille D. (2000). Field observations on the variability of crude oil impact in

indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal

sediments. Mar Environ Res. 49, 403–417.

Delille, D., Emilien Pelletier, Arturo Rodriguez-Blanco & Jean-Francois

Ghiglione.(2000). Effects of nutrient and temperature on degradation of

petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol.

19, 237–241.

Desai, J.D. & Banat, I.M. (1997). Microbial production of surfactants and

their commercial potential. Microbiol Mol Biol Rev 61, 47–64.

Devinny, J. & Chang, S.H. (2000). Bioaugmentation for soil bioremediation.

In: Wise, D.L., Trantolo, D.J. (Eds.), Bioremediation of Contaminated

Soils. Marcel Dekker, New York, pp. 465–488.

Deziel, E., L´epine, F., Milot, S. & Villemur, R. (2000). Mass spectrometry

monitoring of rhamnolipids from a growing cultures of Pseudomonas

aeruginosa strain 57RP. Biochim. Biophys. Acta. 1485, 145–152.

188

Deziel, E., Paquette, G., Villemur, R., Lepine, F. & Bisaillon, J.G. (1996).

Biosurfactant production by a soil Pseudomonas strain growing on

polycyclic aromatic hydrocarbons. Appl Environ Microbiol. 62, 1908–

1912.

Diaz, M.P., Boyd, K.G., Grigson, S.J.W. & Burgess, J.G. (2002).

Biodegradation of crude oil across a wide range of salinities by an

extremely halotolerant bacterial consortium MPD-M, immobilized onto

polypropylene fibers. Biotechnology and Bioengineering 79, 145–153.

Díaz, M.P., Grigson, S. J., Peppiatt, C. J. & Burgess, J. G. (2000) . Isolation

and characterization of novel hydrocarbon-degrading euryhaline

consortia from crude oil and mangrove sediments.by Marine

biotechnology. 2, 522-532.

Dibble, J. T. & Bartha, R. (1979). Effects of environmental parameters on

the biodegradation of oil sludge, Appl. Environ. Microbiol. 37, 729.

Douglas, G.S., McCarthy, D.T., Dahlen, D.T., Seavey, J.A., Steinhauer,

W.G., Prince, R.C. & Elmendorf, D.L. (1992). The use of hydrocarbon

analyses for environmental assessment and remediation. In P.T.

Kostecki and E.J. Calabrese, (eds.) Contaminated Soils: Diesel Fuel

Contamination. 1-21.

Dror, Z., Gerstl, C., Braester, H., Rubin & Yaron, B. (2000). In situ effect of

soil amendments on the dynamics of kerosene attenuation. Land

Contamination & Reclamation, 8, 349-356.

Duarte da Cunha, C. & Leite, S. G. F.(2000). Gasoline biodegradation in

different soil microcosms. Braz. J. Microbiol. 31, 45–49.

Dzul-Puc, J.D. Esparza-Garcia, F. Barajas-Aceves M &. Rodriguez-Vazquez

R (2005). Benzo[a]pyrene removal from soil by Phanerochaete

References 189

chrysosporium grown on sugarcane bagasse and pine sawdust.

Chemosphere. 58, 1–7.

Eaton, R. W., Selifonova, O. V. & Gedney, R. M. (1998). Isopropyl benzene

catabolic pathway in Pseudomonas putida RE204: nucleotide sequence

analysis of the ipb operon neighboring DNA from pRE4. Biodegradation.

9, 119–132.

Eboigbodin, K.J., Newton, J.R.A., Routh A.F. &. Biggs, C.A. (2005). Role of

nonadsorbing polymers in bacterial aggregation. Langmuir. 21, 12315–

12319.

Ecological Effects Test Guidelines OPPTS 850.4200 (1996).Seed

Germination/ Root Elongation Toxicity Test. United States

Environmental Protection Agency; Prevention, Pesticides and Toxic

Substances (7101), EPA 712–C–96–154.

Edel, H.G. & Meyer-Murlowsky, T. (2000). Groundwater remediation using

biofilm reactors, ZÜBLING Umwelttechnick GmbH. Stuttgart:

Albstadtweg.

Ekpenyong, M.G. Antai, S.P. &. Essien J. P. (2007). Quantitative and

Qualitative Assessment of Hydrocarbon-Degrading Bacteria and Fungi in

Qua Iboe Estuary, Nigeria. Research Journal of Microbiology, 2, 415-425.

Erhan, E., Yer, E., Akay, G., Keskinler, B. & Keskinler, D. ( 2004). Phenol

degradation in a fixed-bed bioreactor using micro-cellular polymer-

immobilized Pseudomonas syringae. J Chem Technol Biotechnol. 79(2),

195– 206.

Etchegaray A. Carolina, de Castro Bueno, Itamar Soares de Melo, Siu Mui

Tsai, Marli de Fátima Fiore, Maria Estela Silva-Stenico, Luiz Alberto

Beraldo de Moraes, & Omar Teschke (2008). Effect of a highly

190

concentrated lipopeptide extract of Bacillus subtilis fungal and bacterial

cells. Arch Microbiol. 190, 611–622.

Fagbote, E. O. & Olanipekun, E. O. (2010). Levels of polycyclic aromatic

hydrocarbons and polychlorinated biphenyls in sediment of bitumen

deposit impacted area. Int. J. Environ. Sci. Tech. 7, 561-570.

Farrington, J.W., Tripp, B.W., Teal, J.M., Mille, G., Tjessem, K., Davis, A.C.,

Livramento, J.B., Hayward N.A. & Frew N.M. (1982). Biogeochemistry of

aromatic hydrocarbons in the benthos of microcosms. Toxicology and

Environmental Chemistry. 5, 331-346.

Fayed, N.M. & Overton, A. (1995). A unique biodegradation pattern of the oil

soiled during the 1991 Gulf war. Mar Pollut Bull. 30, 239–246.

Ferguson, S.H., Franzman, P.D., Reveill, A.T., Snape, L. & Rayner, L.

(2003). The effects of nitrogen and water on mineralization of

hydrocarbon in diesel-contaminated terrestrial Antarctic soil, cold region.

Sci Technol 37,197–212.

Ferna´ndez-Sa´nchez, J.M., Rodrı´guez-Va´zquez, R., Ruiz-Aguilar, G. &

Alvarez, P.J.J. (2001). PCB biodegradation in aged contaminated soil:

interactions between exogenous Phanerochaete chrysosporium and

indigenous microorganisms. Journal of Environmental Science and

Health. 36, 1145–1162.

Flores Alberto Y., Limón-, Rommel, Chacón-Salinas, Gerardo Ramos &

Stephen E. Ullrich (2004). Mast Cells Mediate the Immune Suppression

Induced by Dermal Exposure to JP-8 Jet Fuel. Toxicological sciences.

112,144-152.

Foght, J. M. & Westlake, D. W.S. (1996). Transportation and spontaneous

deletion mutants of plasmid-borne genes encoding polycyclic aromatic

References 191

hydrocarbon degradation by a strain of Pseudomonas fluorescens. .

Biodegradation. 7, 353–366.

Foght, J., Semple, K., Gauthier, C., Westlake, D.S., Blenkinsopp, S., Sergy,

G., Wang, Z. & Fingas, M. (1999). Effect of nitrogen source on

biodegradation of crude oil by a defined bacterial consortium incubated

under cold, marine conditions. Environ Technol 20, 839–849

Genouw, G., de Naeyer, F., van Meenan, P., van de Werf, J., de Nijs, W. &

Verstraete, W. (1994). Degradation of oil sludge by land farming- a case

study at the Ghent Harbour. Biodegradation. 5, 37-46.

Gentili, A.R., Cubitto, M.A., Ferrero, M. & Rodriguez, M.S. (2006).

Bioremediation of crude oil polluted seawater by a hydrocarbon

degrading bacterial strain immobilized on chitin and chitosan flakes. Int.

Biodeter Biodegr.57, 222-228.

Gentry, T.J., Josephson, K.L. & Pepper, I.L. (2004a). Functional establishment

of introduced chlorobenzoate degraders following bioaugmentation with

newly activated soil. Biodegradation. 15, 67–75.

Gentry, T.J., Rensing, C. & Pepper, I.L. (2004b). New approaches for

bioaugmentation as a remediation technology. Crit Rev Environ Sci

Technol. 34, 447–494.

Gerdes,,B., Brinkmeyer, R., Dieckmann, G. & Helmke, E. (2005). Influence

of crude oil on changes of bacterial communities in Artic ice. FEMS

Microb Ecol 53, 129-139.

Ghazali, F.M., Rahman, R.N.Z.A., Salleh, A. B. & Basri, M. (2004)

Biodegradation of hydrocarbons in soil by microbial consortium. Int

Biodeterioration. Biodegradation. 54, 61–67.

192

Gomes, N., Kosheleva, I., Abraham, W. & Smalla, K. (2005). Effects of the

inoculant strain Pseudomonas putida KT2442 (pNF142) and

naphthalene contamination on the soil bacterial community. FEMS

Microbiol Ecol. 54, 21–33.

Gouda, M.K., Omar, S.H., Chekroud, Z.A. & Nour Eldin, H.M. (2007).

Bioremediation of kerosene I: A case study in liquid medium.

Chemosphere, 69, 1807-1814.

Gouda, M.K., Sanaa, H. Omar, Hemdan, M., Nour Eldin & Zohra, A.

Chekroud (2008). Bioremediation of kerosene II: a case study in

contaminated clay (Laboratory and field: scale microcosms) World J

Microbiol Biotechnol 24, 1451–1460.

Grathwohl, P. & Maier, U. (2002). Natural Attenuation of Volatile Hydrocarbons

in Unsaturated Soil Zone. Agricultural Sciences, 7(2), 9-15.

Grishchenkov, V.G., Townsend, R.T., Mcdonald, T.J., Autenrieth, R.L.,

Bonner, J.S. & Boronin, A.M. (2000). Degradation of petroleum

hydrocarbons by facultative anaerobic bacteria under aerobic and

anaerobic conditions. Process Biochem. 35, 889–96.

Hadhrami, H., Lappin-Scott, M. & Fisher, P. J. (1997). Studies on the

biodegradation of three groups of pure n-alkanes in the presence of

molasses and mineral fertilizer by Pseudomonas aeruginosa. Marine

Pollut. Bull. 11, 969–974.

Haghighat, S., Akhavan Sepahy, A., Mazaheri Assadi, M.& Pasdar, H.

(2008). Ability of indigenous Bacillus licheniformis and Bacillus subtilis in

microbial enhanced oil recovery. Int. J. Environ. Sci. Tech. 5, 385-390.

References 193

Hamamura, W., Olson, S.H. Ward, D.M. & Inskeep, W.P. (2006). Microbial

population dynamics associated with crude-oil biodegradation in diverse

soils. Appl Environ Microbiol 72, 6316–6324.

Harayama, S. (1997). Polycyclic aromatic hydrocarbon bioremediation

design. Curr. Opin. Biotechnol. 8, 268-273.

Harayama, S., Kasai, Y. & Hara, A. (2004). Microbial communities in oil-

contaminated seawater. Curr. Opin. Biotech. 15, 205-214.

Head, I. M., Jones, D. M. & Röling, W. F. M. (2006). Marine microorganisms

make a meal of oil. Nat. Rev. Microbiol. 4, 173-182.

Hermansson, M. & Zita, A. (1997). Effects of bacterial cell surface structures

and hydrophobicity on attachment to activated sludge flocs. Appl Environ

Microbiol. 63, 1168–1170

Hommel, R. K. (1990). Formation and physiological role of biosurfactants

produced by hydrocarbon-utilizing microorganisms. Biodegradation

1,107– 110.

Hong, J.H., Jaisoo Kim, Ok Kyoung Choi, Kyung-Suk Cho & Hee Wook Ryu.

(2005). Characterization of a diesel-degrading bacterium, Pseudomonas

aeruginosa IU5, isolated from oil-contaminated soil in Korea. World Journal

of Microbiology & Biotechnology 21, 381–384.

Horowitz, A., Sexstone, A. & Atlas R.M (1978). Hydrocarbons and Microbial

Activities in Sediment of an Arctic Lake One Year after Contamination

with Leaded Gasoline Arctic 31, 180-191.

Hoyle, B.L., Scow, K.M., Fogg, G.E. & Darby, J.L. (1995). Effect of Carbon :

Nitrogen Ratio on Kinetics of phenol Biodegradation by Acinetobacter

johnsonii in saturated sand. Biodegradation. 6, 283-293.

194

Huntjens, J.L.M., Potter, H.D. & Barendrecht, J. (1986). The degradation of

oil in soil .In J.W. Assink and W.J. van de Brink (eds.) Contaminated soil.

Marinus Nijhoff, Dordrecht, Netherlands.

Hutchins, R.S., Sewell, G.W., Kovacs, D.A. & Smith, G.A. (1991).

Biodegradation of aromatic hydrocarbon by acquifer microorganisms

under denitrifying conditions. Environ Sci Technol 25, 68-76.

Ilori, M.O., Amobi, C.J. & Odocha, A.C. (2005). Factors affecting

biosurfactant production by oil degrading Aeromonas spp. isolated from

a tropical environment. Chemosphere. 61, 985–992.

Iqbal, S., Khalid, Z.M. & Malik, K.A. (1995). Enhanced biodegradation and

emulsification of crude oil and hyper production of biosurfactants by a

gamma-ray induced mutant of Pseudomonas aeruginosa. Letters in

Applied Microbiology 21, 176–179.

Irwin RJ, Van Mouwerik, M., Stevens, L., Seese M.D. & Basham, W. (1997).

Environmental contaminants encyclopaedia. Kerosene entry. National

Park Service, Water Resources Division, Water Operating Branch. 1201

Oakridge Drive, Suite 250 Fort Collins, Colorado 80525.

Jerabkova, H., Blanka Karlova & Josef Nahik. (1999). Biofilm of

Pseudomonas C12B on glass support as catalytic agent for continuous

SDS removal. International biodeterioration and biodegradation. 44,

233-241.

Joannis-Cassan, C., Delia, M. & Riba, J. P. (2005). Limitation phenomena

induced by biofilm formation during hydrocarbon degradation. Journal of

Chemical Technology and Biotechnology. (Oxford, Oxfordshire), 80, 99–106.

Jobson, A., Cook, F. D. & Westlake, D. W. S. (1972). Microbial utilization of

crude oil. Appl. Microhiol., 23, 1082.

References 195

Jones, J. G., Knight, M. & Byrom, J. A. (1970). Effect of gross pollution by

kerosene hydrocarbons on the microflora of a moorland soil. Nature

(London). 227, 1166.

Jorgensen, K. S., Puustinem, J. & Suortti, A. M., (2000). Bioremediation of

petroleum hydrocarboncontaminated soil by composting in biopiles.

Environ. Int. 107, 245-254.

Kalme, S., Ganesh Parshetti, Sushma Gomare & Sanjay Govindwar (2008).

Diesel and Kerosene Degradation by Pseudomonas desmolyticum

NCIM 2112 and Nocardia hydrocarbonoxydans NCIM 2386. Curr

Microbiol. 56, 581–586.

Kamiya, N., Inoue, M., Goto, M., Nakamura, N. & Naruta, Y. (2000).

Catalytic and structural properties of surfactant-horse radish peroxidase

complex in organic media. Biotechnol Prog. 16, 52–58.

Kanga, S.A., Bonner. J.S., Page, C.A., Mills, M.A. & Autenrieth, R.L. (1997).

Solubilization of naphthalene and methyl substituted naphthalenes from

crude oil using biosurfactants. Environ Sci Technol. 31, 556-561.

Kapley A, Purohit H.J., Chhatre, S., Shanker, R., Chakrabarti, T., & Khanna,

P. (1999). Osmotolerance and hydrocarbon degradation by a genetically

modified microbial consortium. Bioresour Technol 67, 241–245.

Karpagam S. & Lalithakumari D. (1999). Plasmid-mediated degradation of

o- and p-phthalate by Pseudomonas fluorescens. World Journal of

Microbiology & Biotechnology 15, 565-569.

Karpenko, E.V., Vil’danova-Martsishin, R.I., Shcheglova, N. S., Pirog, T.P.

& Voloshina, I.N. (2006).The Prospects of Using Bacteria of the Genus

Rhodococcus and Microbial Surfactants for the Degradation of Oil

Pollutants. Applied Biochemistry and Microbiology, 42, 156–159.

196

Kästner, M., Breuer-Jamali, M. & Mahro, B. (1998). Impact of inoculation

protocols, salinity and pH on the degradation of polycyclic aromatic

hydrocarbons (PAHS) and survival of PAHdegrading bacteria introduced

into soil. Appl Environ Mirobiol. 64, 359–362

Kearns, D.B. & Losick, R. (2003), Swarming motility in undomesticated

Bacillus subtilis. Mol Microbiol. 49, 581–590.

Kelly, I. & Cerniglia, C.E. (1991). The metabolism of phenanthrene by a

species of Mycobacterium. J Ind Microbiol. 7, 19–26.

Kerry, E. (1993). Bioremediation of experimental petroleum spills on mineral

soils in the Vesfold Hills, Antarctica. Polar Biol 13, 163–170.

Kim, H., Jeon, J., Lee, H., Park, Y., Seo, W., Oh, H., Katsuragi, T., Tani, Y.

& Yoon, B. (2002). Extracellular production of a glycolipid biosurfactant,

mannosylerythritol lipid, from Candida Antarctica, Biotechnol. Lett. 24,

225-22.

Kim, J.Y. (2008). Biodegradation of kerosene by Pseudomonas aeruginosa

K14. The Korean Journal of Microbiology. 44, 156-163.

Kim, P.I., Bai, I., Bai, D., Chae, H., Chung, S., Kim, Y., Park. R. & Chi, Y.T.

(2004). Purification and characterization of a lipopeptide produced by

Bacillus thuringiensis CMB26. J Appl Microbiol. 97, 942– 949

Kim, S.J., Solan, J.H., Sim, D.S., Kwon, K.K. & Kim, T.H. (1998). The effects

of bioremediation on the oil degradation in oil polluted environments. In:

Kim SJ, Solan JH, Sim DS, Kwon KK, Kim TH (eds) New developments

in marine biotechnology. Plencem Press, New York, pp 181–188.

Kiyohara, H., Nago. K. & Yana. K. (1982). Rapid screen for bacteria

degrading water-insoluble, solid hydrocarbons on agar plates. Appl

Environ Microbiol. 43, 454–457.

References 197

Ko, S. H. & Lebeault, J. M. (1999). Effect of a mixed culture on co-oxidation

during the degradation of saturated hydrocarbon mixture. J. Appl.

Microbiol. 87, 72–79.

Kok, M. & Oldenhuis, R. (1989). The Pseudomonas oleovorans alkane

hydroxylase gene. J Biol Chem 264, 5435–5441.

Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P. & Ziessowm, D.

(1998). Separation and characterization of surfactin isoforms produced

by Bacillus subtilis OKB 105. J. Collloid Interface Sci. 204, 1-8.

Kowalska, M., Bodzek, M. & Bohdziewicz, J. (1998). Biodegradation of

phenols and cyanides using membranes with immobilized microorganisms.

Process Biochem. 33 (2), 189–97.

Krahl, J., Seidel, H., Jeberien, H.E., Rückert, M. ·& Bahadir, M. (1998). Pilot

study: PAH fingerprints of aircraft exhaust in comparison with diesel

engine exhaust Fresenius J Anal Chem 360, 693–696.

Krepsky, N., Da Silva, F.S., Fontana, L.F. & Crapez, M.A.C. (2007).

Alternative methodology for isolation of biosurfactant producing bacteria.

Braz. J. Biol. 67, 117-124.

Kuhn, A., Balleh, H. J. & Witting, R. (1998). Seasosanal variation of the

distribution of Polycyclic aromatic hydrocarbons in Polar leaves

Frescenius Environ Bull. 7, 164-169.

Kumar, M., Vladimir Leo´n, Angela De Sisto, Materano, Olaf, A.& Ilzins, Luis

Luis (2008). Biosurfactant production and hydrocarbon-degradation by

halotolerant and thermotolerant Pseudomonas sp. World J Microbiol

Biotechnol. 24, 1047–1057.

198

Kushner, D.J. (1978). Life in high salt and solute concentrations. In: Kushner

DJ (ed) Microbial life in extreme environments. Academic Press,

London, pp 317–368.

Kuyukina., M.S., Ivshina, I.B., Makarov, S.O., Litvinenko, L.V., Cunningham,

C.J. & Philp, J.C. (2005). Effect of biosurfactants on crude oil desorption

and mobilization in a soil system. Environ Int. 31,155–61.

Ladousse, A. & Tramier, B. (1991). Results of 12 years of research in spilled

oil bioremediation: INIPOL EAP 22. Proceedings of 1991 International

Oil Spill Conference. 577-581. American Petroleum Institute Pub. No.

4529, Washington DC, USA.

Lal, B. & Khanna, S. (1996). Degradation of crude oil by Acinetobacter

calcoaceticus and Alcaligenes odorans. J. Appl. Bacteriol. 81, 355-362.

Lang, S. & Philp, J. C. (1998). Surface-active lipids in Rhodococci. Antonie

Leeuwenhoek. 74, 59–70.

Leahy,J. G. & Colwell, R. R. (1990). Microbial degradation of hydrocarbons

in the environment. Microbiol. Rev. 54, 305–315.

Lee, K. & Levy, E.M. (1989). Biodegradation of petroleum in the marine

environment and its enhancement. In J.O. Nriagu and J.S.S.

Lakshminarayana, eds. Aquatic Toxicology and Water Quality

Management, Vol. 22, pp. 217-243. John Wiley & Sons, Inc., NY.

Lee, K. H. & Byeon, S. H. (2010). The biological monitoring of urinary

1hydroxypyrene by PAH exposure among smokers. Int. J. Environ. Res.

4, 439-442.

Levinson, W.E., Stormo, K.E., Tao, H. L. & Crawford, R.L. (1994).

Hazardous waste cleanup and treatment with encapsulated or entrapped

References 199

microorgansims. Biological Degradation and Bioremediation of Toxic

Chemicals. London: Chapman and Hall, 455–469.

Lewis, D.L., Kollig, H.P. & Hodson, R.E. (1986). Nutrient limitation and

adaptation of microbial populations to chemical transformations. Applied

and Environment Microbiology. 51, 598-603.

Leys, N.M., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E.M. & Springael,

D. (2004). Occurrence and phylogenetic diversity of Sphingomonas

strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl

Environ Microbiol. 70, 1944–1955.

Li, Y. M., Haddad, N. I. A. & Yang, S. Z. (2008) Variants of lipopeptides

produced by Bacillus licheniformis HSN221 in different medium

components evaluated by a rapid method ESI-MS. Int J Pept Res Ther.

14, 229-235.

Liang, S.K., Wang, X.L., Lu, J.R. & Zhang, Q.Q. (2005). Structure

characterization and physicochemical properties of rhamnolipids

produced by Pseudomonas O-2-2. Fine Chem. 22, 499–502.

Limbert & Betts, W.B. (1996). Influence of substrate chemistry and

microbial metabolic diversity on the bioremediation of xenobiotic

contamination. Genetic Engineer and Biotechnologist. 16, 159–180.

Lin J.E. & Wang, H.Y. (1991). Use of co-immobilised biological systems to

degrade toxic organic compounds. Biotechnol. Bioeng. 38, 273–279.

Lin, S.C.H. (1996). Biosurfactants: recent advances. J Chem Technol

Biotechnol 66, 109–120.

Lindstorm, J.E., Prince, R.C., Clark, J.C., Grossman, E.J., Yeager, T.R.,

Braddok, J.F. & Brown, E.J. (1991). Microbial populations and

hydrocarbon biodegradation potentials in fertilized shoreline sediments

200

affected by the Exxon Valdez oil spill. Applied and Environmental

Microbiology. 57, 2514-2522.

Liu, Y., Yang, S.F., Li, Y., Xu, H., Qin, L. & Tay, J.H. (2004). The influence

of cell and substratum surface hydrophobicities on microbial attachment.

J Biotechnol 110,251–256.

Liu, Y.J., Zhang, A.N. & Wang, X.C. (2009). Biodegradation of phenol by

using free and immobilized cells of Acinetobacter sp. XA05 and

Sphingomonas sp. FG03. Biochem. Eng. J. 44, 187-192.

Lloyd-Jones G & Trudgill P.W. (1989). The degradation of alicyclic

hydrocarbons by a microbial consortium. Int. Biodeterioration 25, 197-

206.

Logan, B.E. & Rittmann, B.E. (1998). Finding solutions for tough

environmental problems. Environ. Sci. Technol. 502A–507A.

Looney, B. B. & Falta. R. W. (2000). The vadose zone, what is it, why it

matters, and how it works. Vadose zone, science and technology, vol. 1.

In B. B. Looney and R. W. Falta (ed.), Battelle Press, Columbus p. 3-59

M´arquez-Rocha, F.J., Vanessa, Z., Hern´andez-Rodr´ıguez & Rafael

V´azquez-Duhalt (2000). Biodegradation of soil-adsorbed polycyclic

aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus.

Biotechnology Letters. 22, 469–472,

Mahmood, S.K. & Rama Rao, P. (1993). Microbial abundance and

degradation of polycyclic aromatic hydrocarbons in soil. Bulletin of

Environmental Contamination and Toxicology. 50, 486-491.

Maier, R.M. & Soberon-Chavez, G. (2000). Pseudomonas aeruginosa

rhamnolipids: biosynthesis and potential applications. Appl Microbiol

Biotechnol. 54, 625.

References 201

Malina, G. &. Grotenhuis, J. T. C. (2000). The Role of Biodegradation

During Bioventing of Soil Contaminated with Jet Fuel. Applied

Biochemistry and Biotechnology. 88, 59-77.

Maneerat S, & Phetrong, K. (2007). Isolation of biosurfactant producing

marine bacteria and characteristics of selected biosurfactant.

Songklanakarin J Sci Technol. 29, 781–791.

Margesin, R. & Schinner, F. (1997). Bioremediation of diesel-oil-

contaminated alpine soils at low temperatures. Appl Microbiol Biotechnol

47, 462–468.

Margesin, R. & Schinner, F. (2001). Potential of halotolerant and halophilic

microorganisms for biotechnology. Extremophiles 5, 73– 83

Margesin, R. & Schinner, F. (2001a). Biodegradation and bioremediation of

hydrocarbons in extreme environments. Appl Microbiol Biotechnol. 56,

650–663.

Mariano, A. P., Kataoka, A. G., Angelis, D. F., & Bonotto, D. M. (2007).

Laboratory study on the bioremediation of diesel oil contaminated soil

from a petrol station. Braz. J. Microbiol. 38:346–353.

Marquez-Rocha, F.J., Vanessa H.R. & Teresa, M.L. (2001). Biodegradation

of diesel oil in soil by a microbial consortium. Water Air Soil Pollut. 128,

313-320.

Marshall, K.C. (1991). The importance of studying microbial cell surfactants.

In: Mozes N (ed) Microbial cell surface analysis, 1st edn. Wiley-VCH

Publishers, New York.

Massol-Deya, A., Weller, R., Ri´os-herna´ndez, L., Zhou, J.Z., Hickey, R. F.

& Tiedje J. M. (1997). Succession and Convergence of Biofilm

202

Communities in Fixed-Film Reactors Treating Aromatic Hydrocarbons in

Groundwater. Applied and environmental microbiology. 270–276.

McInerney, M.J., Javaheri, M. & Nagle, D.P. (1990). Properties of

biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind

Microbiol. 5, 95–102.

Mehrasbi,,M. R., Haghighi, B., Shariat, M., Nasari, S. & Naddafi, K. (2003).

Biodegradation of petroleum hydrocarbons in soil. Iranian J. Publ.

Health. 32, 28–32.

Mercedes, M., Mari, N., Theo, H.M., Smits Jan, B. & Rojo, F. (2001).The

alkane hydroxylase gene of Burkholderia cepacia rr10 is under

catabolite repression control. J Bacteriol 183, 4202–4209.

Mohamed, J. A., Huang, W., Nallapareddy, S. R., Teng, F. & Murray, B. E.

(2004). Influence of origin of isolates, especially endocarditis isolates,

and various genes on biofilm formation by Enterococcus faecalis. Infect

Immun. 72, 3658–3663.

Mohn, W.W. & Stewart, G.R. (2000). Limiting factors for hydrocarbon

biodegradation at low temperature in Arctic soils. Soil Biol Biochem 32,

1161–1172.

Moller, J., Winther, P., Lund, B., Kirkebjerg, K. & Westermann, P. (1996).

Bioventing of diesel oil-contaminated soil: comparison of degradation

rates in soil based on actual oil concentration and on repirometric data.

J. Ind. Microbiol. 16, 110–116.

Moneke, A. & Nwangwu, C. (2011). Studies on the bioutilization of some

petroleum hydrocarbons by single and mixed cultures of some bacterial

species. African Journal of Microbiology Research. 5, 1457-1466.

References 203

Monteiro S.A., Guilherme, L., Sassaki, b., Lauro M. de Souza. Joel A.

Meira., Janete M. de Ara´ujo., David A. Mitchell. Luiz P. Ramosa. &

Nadia Krieger. (2007). Molecular and structural characterization of the

biosurfactant produced by Pseudomonas aeruginosa DAUPE 614

Chemistry and Physics of Lipids. 147, 1–13.

Morgan, P. & Watkinson, R.J. (1989). Hydrocarbon degradation in soils and

methods for soil Biotreatment. Critical Reviews in Biotechnology. 8,

305–328.

Mryyan, B. & Battikhi, M.N. (2005). Biodegradation of total organic carbons

(TOC) in Jordanian petroleum sludge. J Hazard Mater. 120, 127–134.

Mukherjee, S., Das, P. & Sen, R. (2006). Towards commercial production of

microbial surfactants. Trends Biotechnol. 24, 509–515.

Mukherji, S., Jagadevan, S., Mohapatra, G. & Vijay, A. (2004).

Biodegradation of diesel oil by an Arabian Sea sediment culture isolated

from the vicinity of an oil field. Bioresource Technol. 95, 281–286.

Müller, R., Antranikian, G., Maloney, S. & Sharp, R. (1998). Thermophilic

degradation of environmental pollutants. In: Antranikian G (ed)

Biotechnology of extremophiles. (Advances in Biochemical

Engineering/Bio-technology, vol 61) Springer, Berlin Heidelberg New

York, pp 155–169.

Mulligan, C.N. (2005). Environmental applications for biosurfactants.

Environ Pollut. 133, 183–198.

Muncnerova, D. & Augustin, J. (1994). Fungal metabolism and detoxification

of polyaromatic hydrocarbons: A review. Bioresource Technology. 48,

97-106.

204

Nedwall, D.B. (1999). Effect of low temperature on microbial growth:

lowered affinity for substrates limits growth at low temperature. FEMS

Microbiol Ecol. 30, 101-111.

Neff, J.M. (1987). Biological effects of drilling fluids, drill cuttings and

produced waters, Long-Term Environmental Effects of Offshore Oil and

Gas Development, Elsevier Applied Science Publishers Ltd, London.

Neff, J.M., Sour T.C. & Maciolek, N. (1989). Fate and Effects of Produced

Water Discharges in Nearshore Marine Waters, American Petroleum

Institute, Washington, DC p. 300.

Niehaus, F., Bertoldo, C., Kähler, M. & Antranikian, G. (1999).

Extremophiles as a source of novel enzymes for industrial application.

Appl Microbiol Biotechnol 51, 711–729.

Nitschke, M. & Pastore, G.M. (2006). Production and properties of a

surfactant obtained from Bacillus subtilis grown on cassava wastewater.

Bioresour Technol. 97, 336–341.

Nitschke, M., Costa, S.G., Haddad, R., Goncalves, L.A., Eberlin M.N. &

Contiero, J. (2005). Oil wastes as unconventional substrates for

rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.

Biotechnol Prog. 21, 1562–1566.

Nocentini, M., Penilli, D. & Fava, F. (2000). Bioremediation of soil

contaminated by hydrocarbon mixtures: the residual concentration

problem. Chemosphere 41, 1115–1123.

Noordman, W.H. & Janssen, D.B. (2002). Rhamnolipid stimulates uptake of

hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ

Microbiol. 68, 4502–4508.

References 205

Norris, R. D. (1994). Handbook of Bioremediation. (Norris, R. D., et al.,

eds.), CRC, Lewis, Boca Raton, FL, pp. 17–37.

Nwachukwu, S.C.U. (2001). Bioremediation of sterile agricultural soils

polluted with crude petroleum by application of the soil bacterium,

Pseudomonas putida, with inorganic nutrient supplementations. Curr

Microbiol .42, 231-236.

Nwuche, C. O. & Ugoji, E. O. (2008). Effects of heavy metal pollution on the

soil microbial activity. Int. J. Environ. Sci. Tech. 5, 409-414.

Oboh, B.O., Matthew, O. Ilori, Joseph, O. Akinyemi & Sunday, A.

Adebusoye (2006). Hydrocarbon Degrading Potentials of Bacteria

Isolated from a Nigerian Bitumen (Tarsand) Deposit. Nature and

Science. 4, 51-57.

Obuekwe, C.O. & Al-Muttawa, E.M. (2001). Self-immobilized bacterial

cultures with potential for application as ready-to-use seeds for

petroleum bioremediation. Biotechnol Lett. 23, 1025–1032.

Odu, C. T. I., Esuruoso, O. F., Nwoboshi L.C. & Ogunwale, J. A. (1985).

Environmental Study of the Nig. Agip Oil Company, Operational Area.

Soil and Fresh Water Vegetation. Union Graft publs. Milan PP. 22 – 25.

OECD guidelines for testing of chemicals. Adopted by the council on17th

July 1992.Fish, acute toxicity tests.

Ojomu, T.V., Bello O.O., Sonibare J.A.& Solomon B.O. (2005). Evaluation of

microbial systems for bioremediation of petroleum refinery effluent in

Nigeria. Afr. J. Biotechnol. 4, 31-35.

Okafor, E. & Opuene, K. (2007). Preliminary assessment of trace metals

and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ.

Sci. Tech. 4 , 233-240.

206

Okerentugba P.O. &. Ezeronye O.U. (2003). Petroleum degrading potentials

of single and mixed microbial cultures isolated from rivers and refinery

effluent in Nigeria. African Journal of Biotechnology. 2, 288-292.

Okpokwasili, G.C. & James, W.A. (1995). Microbial contamination of

kerosene, gasoline, and crude oil and their spoilage potentials. Material

u Organismen 29, 147-156.

Okpokwasili, G.C. & Odokuma, L.O. (1990). Effect of salinity on

biodegradation of oil spill dispersants. Waste Manag. 10,141– 146.

Okuda, T., Alcantara-Garduno, M.E., Suzuki, M., Matsui, C., Kose, T.,

Nishijima, W. & Okada, M. (2007). Enhancement of biodegradation of oil

adsorbed on fine soils in a bioslurry reactor. Chemosphere. 081, 6- 12.

Olivera, N.L., Commendatore, M.G., Delgado, O. & Esteves, J.L. (2003).

Microbial characterization and hydrocarbon biodegradation potential of

natural bilge waste microflora. J Ind Microbiol Biotechnol. 30, 542–548.

Onysko, K.A., Budman, H.M. & Robinson, C.W. (2000). Effect of

temperature on the inhibition kinetics of phenol biodegradation by

Pseudomonas putida Q5. Biotechnol Bioeng 70, 291–299.

Östberg, T. L., Jonsson, A. P. & Lundstrom. U. S. (2006). Accelerated

biodegradation of n-alkanes in aqueous solution by the addition of

fermented whey. Int. Biodeter. Biodegrad. 57, 190-194.

Östberg, T. L., Jonsson, A. P. & Lundstrom. U. S. (2007). Enhanced

degradation of n-hexadecane in diesel fuel contaminated soil by the

addition of fermented whey. Soil Sed. Cont. 16, 221-232.

Osuji, L. C. & Ezebuiro, P. E. (2006). Hydrocarbon contamination of a

typical mangrove floor in Niger Delta, Nigeria. Int. J. Environ. Sci. Tech.

3 (3), 313-320.

References 207

Pala, D. M., de Carvalho, D. D., Pinto, J. C., & Sant’Anna Jr., G. L. (2006).

A suitable model to describe bioremediation of a petroleum-

contaminated soil. International Biodeterioration & Biodegradation. 58(3–

4), 254–260.

Pandey, A., Socool, C.A., Nigam, P. and Socool, V.T. (2000).

Biotechnological potential of agro-industrial residues I: sugarcane

bagasse. Bioresource Technology 74, 69–80.

Park, H.S., Lim, S.J., Chang, Y. K., Livingston, A. G. & Kim. H.S. (1999).

Degradation of chloronitrobenzenes by a co culture of Pseudomonas

putida and a Rhodococcus sp. Appl. Environ. Microbiol. 65, 1083–1091.

Park, K.S., Sims, R.C., Dupont, R.R., Doucette, W.J. & Matthews, J.E.

(1990). Fate of PAH compounds in two soil types: influence of

volatilization, abiotic loss and biological activity. Environ. Toxicol. Chem.

9, 187-195.

Pathak, H. & Bhatnagar, K. (2011). Alcaligenes-The 4T Engine Oil

Degrader. J Bioremed Biodegrad.. 2, 2-4.

Pekdemir, T. Copur M. & Urum, K. (2005). Emulsification of crude oil–water

systems using biosurfactants. Process Saf Environ Prot. 83, 38–46.

Perfumo, A., Banat, I.M., Canganella, F. & Marchant, R. (2006). Rhamnolipid

production by a novel thermophilic hydrocarbon-degrading Pseudomonas

aeruginosa AP02-1. Appl Microbiol Biotechnol. 72, 132–138.

Perugini. M., Visciano, P., Giammarino, A., Manera, M., Nardo, W. D. &

Amorena, M. (2007). Polycyclic aromatic hydrocarbons in marine

organisms from the Adriatic Sea Italy. Chemosphere. 66 (10), 1904-1910.

Pieper, D.H., & Reineke, W. (2000). Engineering bacteria for

bioremediation, Curr. Opin. Biotechnol. 11, 262–270.

208

Pijanowska A., Kaczorek, E., Chrzanowski. L. & Olszanowski, A. (2007).

Cell hydrophobicity of Pseudomonas spp. and Bacillus spp. bacteria and

hydrocarbon biodegradation in the presence of Quillaya saponin. World

J Microbiol Biotechnol. 23, 677–682

Pillis, L.J. & Davis, L.T. (1985). Microorganism capable of degrading

phenolics. Patent US4556638, December 3

Plohl, K., Leskovsek, H. & Briceij, M. (2002). Biological degradation of motor

oil in water. Acta Chim. Slov. 49, 279–289.

Pochon, J. & Tradieux, P. (1962) Techniques d’analyse en microbiologie du

sol St.Mande (Scienc), France Edition de la Tourelle.

Powell, S.M., Wai, K. Ma & Steven, D. Siciliano (2009). Isolation of

denitrifying bacteria from hydrocarbon-contaminated Antarctic soil.

Polar Biology. 30, 69-74.

Prabhu, Y. & Phale, P.S. (2003). Biodegradation of phenenthrene by

Pseudomonas sp. Strain PP2: novel metabolic pathway, role of

biosurfactant and cell surface hydrophobicity in hydrocarbon

assimilation. Appl Microbiol Biotechnol. 61, 342–351.

Price, N.P.J., Ray, K.J., Vermillion, K. & Kuo, T.S. (2009). MALDI-TOF mass

spectrometry of naturally occurring monorhamnolipids and

dirhamnolipids. Carbohyd Res. 344, 204–209.

Prince, R.C., Bare, R.E., Garrett, R.M., Grossman, M.J., Haith, C.E. & Keim,

L.G. (2003). Bioremediation of stranded oil on an arctic shoreline. Spill

Sci Technol Bullet 8,303–312.

References 209

Pritchard, P.H. (1992). Use of inoculation in bioremediation. Current Opinion

in Biotechnology, 3, 232-243.

Priyadarsan, D.R., Seema Purushothaman, Siddhartha Krishnan, Kiran,

M.C., Deepak, D. & Jojo, T,D.(2007). Strengthening Communities and

Institutions for Sustainable Management of Vembanad Backwaters,

Kerala. Proceedings of Taal 2007: The 12th World Lake Conference:

1158-1163.

Quan, X.C., Shi, H.C., Zhang, Y.M., Wang, J.L. & Qian, Y. (2003).

Biodegradation of in an airlift honeycomb-like ceramic reactor. Process

Biochem. 38, 1545–51.

Radwan, S.S., Sorkhoh, N.A., El-Nemr, I.M. & El-Desouky, A.F. (1997). A

feasibility study on seeding as a bioremediation practice for the oily

Kuwaiti desert. Journal of Applied Microbiology, 83, 353-358.

Rahman K.S.M., Banat I.M., Thahira J., Thayumanavan T., Lakshmanaperumalsamy

P. (2002). Bioremediation of gasoline contaminated soil by a bacterial

consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant.

Bioresour Technol. 81, 25–32.

Rahman, K.S.M., Rahman, T.J., Kourkoutas, Y., Petsas, I., Marchant, R. &

Banat, I.M. (2003). Enhanced bioremediation of n-alkane in petroleum

sludge using bacterial consortium amended with rhamnolipid and

micronutrients. Bioresour Technol. 90,159–168.

Rambeloarisoa, E., Rontani, J.F., Giusti, G., Duvnjak, Z. & Bertrand, J.C.,

(1984). Degradation of crude oil by a mixed population of bacteria

isolated from sea-surface foams. Marine Biology. 83, 69–81.

210

Ratkowsky, D. A., June olley, McMeekin, T. A. & Ball, A. ( 1982).

Relationship Between Temperature and Growth Rate of Bacterial

Cultures. Journal of Bacteriology, 1-5.

Rayle, M.F. & Mulino, M.M. (1992). Produced water impacts in Louisiana

coastal waters, Plenum Press, New York, NY

Raymond, R.L., Audson, J.O. & Jamison, V.W. (1976). Oil degradation in

soil. Appl Environ Microbiol. 31, 522–535

Raza, Z. A., Khan, M. S. & Khalid, Z. M. (2007). Evaluation of distant

carbon sources in biosurfactant production by a gamma ray-induced

Pseudomonas putida mutant. Proc. Biochem. 42, 686–692.

Raza, Z. A., Khan, M. S., Khalid, Z. M. & Rahman. A. (2006). Production of

biosurfactant using different hydrocarbons by Pseudomonas aeruginosa

EBN-8 mutant. Z. Natur for sch. 61, 87–94.

Rhodes, A.N. & Hendricks, C.W. (1990). A continuous-flow method for

measuring effects of chemicals on soil nitrification. Toxicity Assess. 5,

77–78.

Richard, J.Y. & Vogel, T.M., (1999). Characterization of a soil bacterial

consortium capable of degrading diesel fuel. Int. Biodet. Biod. 44, 93–100.

Richardson, J.F. & Peacock, D.G. (Eds.) (2003). Chemical and biochemical

reactors and process control. Chemical engineering, vol. 3, 3rd ed.

London: Butterworth-Heinemann.

Rijs, V., Miethe, D. & Moder, M. (1996). Fresenius J. Anal. Chem. 356 (6),

378–384.

References 211

Roberto Ambrosolio, Laura Petruzelli, Jose Luis Minati & Franco Ajmone

Marsan, , (2005). Chemosphere, 60, 1231−1236.

Rodrigues, L.R., Teixeira, J.A., Mei, H.C. & Oliveira, R. (2006). Isolation and

partial characterization of a biosurfactant produced by Streptococcus

thermophilus A. Colloid Surf B. 53, 105–12.

Rodríguez-Vázquez R., Cruz-Córdoba T., Fernández- Sánchez J.M.,

Roldán-Carrillo T., Mendoza-Cantú, A., Saucedo-Castañeda, G. &

Tomasini-Campocosio, A. (1999). Use of sugarcane bagasse pith as

solid substrate for Phanerochaete chrysosporium growth. Folia

Microbiol. 44, 213-218.

Roling, W. F. M., Milner, M. G., Jones, D. M., Lee, K., Daniel, F., Swannell,

R. J. P. & Head, I. M. (2002). Robust hydrocarbon degradation and

dynamics of bacterial communities during nutrient-enhanced oil spill

bioremediation. Appl. Environ. Microbiol. 68, 5537–5548.

Roling, W.F.M., Milner, M.G., Jones, D.M., Fratepietro, F., Swannell, R.P.J.,

Daniel, F., & Head, I.M. (2004). Bacterial community dynamics and

hydrocarbon degradation during a field—Scale evaluation of

bioremediation on a mudflat beach contaminated with buried oil. Appl

Environ Microbiol. 70, 2603–2613.

Romera, D., Ad, V., Rakotoaly, R.H., Dufour, S.E., Veening, J.W., Arrebola,

E., Cazorla, F.M., Kuipers, O.P., Paquot, M. & Garcia, A.P. (2007). The

iturin and fengycin family of lipopeptide are key factor in antagonism of

Bacillus subtilis towards Podosphaera fusca. Mol Plant Microbe Interact.

20, 430–440.

Ron, E.Z. & Roenberg, E. (2002). Biosurfactants and oil bioremediation.

Current Opin Biotechnol. 13, 249–252.

212

Rosenberg, E. (1993). Exploiting microbial growth on hydrocarbon: New

markets. Trends Biotechnol. 11, 419–424.

Rosenberg, M. (1984). Bacterial adherence to hydrocarbons: a useful

technique for studying cell surface hydrophobicity. FEMS Microbiol Lett.

22, 289–295.

Rosenberg, M., Gutnick, D. & Rosenberg, E. (1980). Adherence of bacteria

to hydrocarbons: a simple method for measuring cell-surface

hydrophobicity. FEMS Microbiol Lett 9, 29–33.

Ruberto, L., Vazquez, S.C. & Mac Cormarck, W.P. (2003). Effectiveness of

the natural bacteria flora, biostimulation and bioaugmentation on the

bioremediation of a hydrocarbon contaminated Antarctic soil. Inter

Biodeter Biodegrad. 52, 115–125.

Rubin, H., Braxein, A., Daniels, H. & Rouve, G. (1994). Migration of Oil and

Petroleum Pollutants in Soils and Groundwater. In: Zoller U (ed),

Groundwater Contamination and Control. 355–375.

Sambrook, J. & Russell, D.W. (2001). Molecular cloning: a laboratory

manual, 3rd edn, vol 1. Cold Spring Harbor Laboratory Press, Cold

Spring Harbor, N. Y., pp 1.31–1.42. ISBN 0-87969-577-3.

Saratale, G.D., Bhosale, S.K., Kalme, S.D. & Govindwar, S.P. (2007).

Biodegradation of kerosene in Aspergillus ochraceus (NCIM-1146), J

Basic Microbiol. 47, 400–405.

Seklemova, E., Pavlova, A. & Kovacheva, K., (2001). Biostimulation based

bioremediation of diesel fuel: field demonstration. Biodegradation. 12,

311–316.

References 213

Sen, R. & Swaminathan, T. (2005). Characterization of concentration and

purification parameters and operating conditions for the small-scale

recovery of surfactin. Process Biochem. 40, 2953–2958.

Senn, W.A. & Johnson, P.H. (1985). Interpretation of Gas Chromatography

Data as a Tool in Subsurface Hydrocarbon Investigations, Petroleum

Hydrocarbons and Organic Chemicals in Groundwater-Prevention,

Detection, and Restoration.

Setti, L., Pifferi, P.G. & Lanzarini, G. (1995a). Dibenzothiophene

biodegradation by a Pseudomonas sp. in model solutions. Process

Biochem. 30, 721-728.

Setti, L., Pifferi, P.G. & Lanzarini, G. (1995b).Surface tension as a limiting factor

for aerobic n-alkane degradation. J.Chem.Tech.Biotechnol. 64, 41-48.

Setti, L.,Mazzieri, S. & Pifferi, P.G. (1999) Enhanced oil degradation of

heavy oil in an aqueous system by a Pseudomonas sp. in the presence

of natural and synthetic sorbents. Bioresour Technol. 67, 191-199.

Shabir, G., Afzal, M., Anwar, F., Tahseen, R. & Khalid, Z. M. (2008).

Biodegradation of kerosene in soil by a mixed bacterial culture under

different nutrient conditions. Int. J. Biodeter. Biodegrad. 61,161–166.

Siemann, M. & Wagner, F. (1993). Prospects and limits for the production of

biosurfactants using immobilized biocatalysts. Surfactant Sci Ser. 48,

99–133

Singer, A.C., Vander Gast, C.J. & Thompson,I.P.. (2005). Perspectives and

vision for strain selection in bioaugmentation. 23, 74–7.

214

Singh, P. & Cameotra, S.S. (2004). Potential applications of microbial

surfactants in biomedical sciences. Trends Biotechnol. 22, 142–6.

Sober´on-Chavez, G., L´epine, F. & D´eziel, E., (2005). Production of

rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol.

68, 718–725.

Solanas, A.M., Pare´s, R., Bayona, J.M. & Albaiges, J. (1984). Degradation

of aromatic petroleum hydrocarbons by pure microbial cultures.

Chemosphere. 13, 593–601.

Solano-Serena, F., Marchal, R., Casaregola, S., Vasnier, C., Lebeault, J. M.

&. Vandecasteele, J. P (2000). A mycobacterium strain with extended

capacities for degradation of gasoline hydrocarbons. Appl. Environ.

Microbiol. 66, 2392–2399.

Song, H., Wang, X. & Bartha R. (1990). Bioremediation potential of

terrestrial fuel spills. Appl. Environ.Microbiol., 56, 652–656.

Sorkhoh, N.A., Al-Hasan, R., Radwan, S. & Höpner, T. (1992). Selfcleaning

of the Gulf. Nature 359, 109.

Spitzer, T. (2007).Capillary GC of Indicator Compounds of Degradation of

Polycyclic Aromatic Hydrocarbons in Airborne Particulate Matter.

Chromatography. 28, 67-71.

Stapleton, R. D., Ripp, S., Jimenez, L., Cheol-Koh, S., Fleming, J. T.,

Gregory, I. R. & Sayler, G. S. (1998). Nucleic acid analytical approaches

in bioremediation: site assessment and characterization. J Microbiol

Methods 32, 165-178.

References 215

Steven, S., (1991). Selection of nutrients to enhance biodegradation for

remediation of oil spilled on Beaches. In: Proc. 1991 Oil Spill Conf.

Amer. Petr. Inst., Washington DC.

Stringfellow, W. T. & Alvararez-Cohen, L. (1999). Evaluating the relationship

between the sorption of PAHs to bacterial biomass and biodegradation.

Water Res. 33, 2535–2544.

Sugiura, K., Ishihara, M. & Shimauchi, T. (1997). Physicochemical

properties and biodegradability of crude oil. Environ. Sci. Technol. 31,

45–51.

Sun, L., Lu, Z., Bie, X., Lu, F. & Yang, S. (2006). Isolation and

characterization of a co-producer of fengycins and surfactins, endophytic

Bacillus amyloliquefaceins ES-2, from Scutellaria baicalensis georgi.

World J Microbiol Biotechnol, 22, 1259–1266.

Supakaa, N., Pairoh Pinphanichakarna, Kobchai Pattaragulwanita, Suthep

Thaniyavarna, Toshio Omorib, & Kanchana Juntongjina (2001). Isolation

and Characterization of a Phenanthrene- Degrading Sphingomonas sp.

Strain P2 and Its Ability to Degrade Fluoranthene and Pyrene via

Cometabolism. ScienceAsia. 27, 21-28.

Swannell, R. P. J., Mitchell, D., Lethbridge, G., Jones, D., Heath, D., Hagley,

M., Jones, M., Petch, S., Milne, R., Croxford, R.& Lee, K. (1999). A field

demonstration of the efficacy of bioremediation to treat oiled shorelines

following the Sea Empress incident. Environ. Technol. 20, 863–873.

Tabatabaee, A., Assadi, M.M., Noohi, A. A. & Sajadian, V. A. (2005).

Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian

JEnviron Health Sci Eng 2, 6–12.

216

Tahseen, R. (2002). Development of gamma ray mutant of an efficient oil

degrading bacteria for the enhanced biodegradation of petroleum in

contaminated soil. M.Phil. Thesis, Quid-i-Azam University, Islamabad,

Pakistan

Tao, X.Q., Lu, G.N., Liu, J.P., Li, T. & Yang, L.N. (2009). Rapid degradation

of phenanthrene by using Sphingomonas sp. GY2B immobilized in

calcium alginate gel beads. Int. J. Environ. Res. Public Health. 6, 2470-

2480.

Tellez, G.T. & Nirmalakhandan, N. (1995). Evaluation of biokinetic

coefficients in degradation of oil field produced water under varying salt

concentrations. Water Res. 29, 1711–8.

Tellez, G.T., Nirmalakhandan, N. & Jorge L. Gardea-Torresdey (2005).

Comparison of purge and trap GC/MS and spectrophotometry for

monitoring petroleum hydrocarbon degradation in oilfield produced

waters. Advances in Environmental Research. 81, 12-18.

Thavasi, R., Subramanyam Nambaru V. R. M., Jayalakshmi, S., Balasubramanian,

T. & Ibrahim M. Banat (2009). Biosurfactant Production by Azotobacter

chroococcum Isolated from the Marine Environment. Mar Biotechnol.

11,551–556.

Ting, Y.P., Hu, H.L. & Tan, H.M. (1999). Bioremediation of petroleum

hydrocarbons in soil microcosms. Resour Environ Biotechnol. 2, 197–

218.

Tonkova, V. E. & Gesheva, V. (2005). Glycolipids produced by Antartic

Nocardioides sp. during growth on n-paraffin. Process Biochem 40,

2387–2391.

References 217

Trejo T.X. & Edyvean R. (2009). Kerosene biodegradation by

Pseudomonas fluorescens and Bacillus subtilis. Proceedings of 2nd

European Conference on Natural Attenuation, Soil and Groundwater

Risk Management. DECHEMA-Society for Chemical Engineering and

Biotechnology-. Frankfurt am Main, Germany. May 18-20.

Trevors, J.T. (1986). Plasmid curing in bacteria. FEMS Microbiology

Reviews. 32, 149-157.

Trzesicka-Mlynarz, D. & Ward, O.P. (1995). Degradation of polycyclic

aromatic hydrocarbons (PAHs) by a mixed culture and its component

pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41,

470–476.

Ueno, A., Hasanuzzaman, M., Yumoto, I. & Okuyama, H. (2006). Verification of

degradation of n-alkane in diesel oil by Pseudomonas aeruginosa strain

WatG in soil microcosms. Curr microbial. 52, 182–185.

Ueno, Y., Hirashima, N., Inoh, Y., Furuno, T. & Nakanishi, M. (2007).

Characterization of biosurfactant-containing liposomes and their efficiency

for gene transfection. Biol. Pharm. Bull. 30, 169-172.

Uri Zoller & Alla Reznik (2006). In-Situ Surfactant/Surfactant-Nutrient Mix-

Enhanced Bioremediation of NAPL (Fuel)-Contaminated Sandy Soil

Aquifers. Environ Sci Pollut Res. 13, 392 – 397.

Vallejo, B., Izquierdo, A., Blasco, R., Perez del Campo, P. &Luque de

Castro, D. (2001).Bioremediation of an area contaminated by fuel spill.

J.Environ Monit 3, 274-280.

Van Beilen, J. B., Wubbolts, M. G. & Witholt, B. (1994). Genetics of alkane

oxidation by Pseudomonas oleovaorans. Biodegradation. 5, 161–174.

218

Van Hamme J.D. & Owen P. Ward (2001). Physical and Metabolic

Interactions of Pseudomonas sp. Strain JA5-B45 and Rhodococcus sp.

Strain F9-D79 during Growth on Crude Oil and Effect of a Chemical

Surfactant on them. Applied and environmental microbiology, 4874–

4879.

Van Hamme, J. D., J. A. Odumeru, & O. P. Ward. (2000). Community

dynamics of a mixed-bacterial culture growing on petroleum

hydrocarbons in batch culture. Can. J. Microbiol. 46, 441–450.

Van Hamme, J.D. & Owen, P.W. (2003). Recent advances in petroleum

microbiology. Microbiol Mol Biol. Rev 67, 503–549.

Van Loosdrecht, M.C., Lyklema, J., Norde W, Schraa, G.& Zehnder, A.J.B.

(1987). The role of bacterial cell wall hydrophobicity in adhesion. Appl

Environ Microbiol 53, 1893–1897.

Vandermeer, K.D., Daugulis, A.J., (2007). Enhanced degradation of a

mixture of polycyclic aromatic hydrocarbons by a defined microbial

consortium in a two phase partitioning bioreactor. Biodegradation 18,

211–221.

Vandevivere, P. & Kirchman D.L. (1993). Attachment Stimulates

Exopolysaccharide Synthesis by a Bacterium. Appl. Environ. Microbiol.

59, 3280-3286.

Vater, J., Kablitz, W.C., Franke, P., Mehta, N. & Cameotra, S.S. (2002).

Matrix-assisted laser desorption ionization- time of flight mass

spectrometry of lipopeptide biosurfactant in whole cells and culture

filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl

Environ Microbiol 68, 6210-6219.

References 219

Venkateswaran, K. & Harayama, S. (1995). Sequential enrichment of

microbial populations exhibiting enhanced biodegradation of crude oil.

Canadian Journal of Microbiology. 41, 767–775.

Vennila R. & Kannan V. (2011). Bioremediation of petroleum refinery

effluent by Planococcus halophilus African Journal of Biotechnology. 10,

8829-8833.

Venosa, A. D., Suidan, M. T.,. Wrenn, B. A., Strohmeier, K. L., Haines, J. R.,

Eberhart, B. L., King, D. & Holder, E. (1996). Bioremediation of an

experimental oil spill on the shoreline of Delaware Bay. Environ. Sci.

Technol. 30, 1764–1775.

Venus, J., Beitz, H. & Spyra, W. (2000). Microbial regeneration of the

adsorbents for the cleaning of triazine-contaminated ground water.

Chemical Engineering & Technology. 23, 26–29.

Verma, S., Renu Bhargava, & Vikas Pruthi (2006). Oily sludge degradation

by bacteria from Ankleshwar, India. International biodeterioration and

degradation. 57, 207-213.

Verschuren, K. (1997). Handbook of Environmental data on Organic

chemicals. Van Nostrand Reinhold company. New York.

Vesterlund, S.,Paltta, J.,Karp,M. & Ouwehand, A.C. (2005). Measurement of

bacterial adhesion-in vitro evaluation of different methods.

J.Int.Microb.Meth. 60, 225-233.

Vinas, M., Grifoll, M., Sabate,´ J. & Solanas, A. M. (2002). Biodegradation of

a crude oil by three microbial consortia of different origins and metabolic

capabilities. J. Ind. Microbiol. Biotechnol. 28, 252–260.

220

Vogel, T.M. (1996). Bioaugmentation as a soil bioremediation approach.

Curr Opin Biotechnol. 7, 311-6.

Walworth, J., Andrew Pond, Ian Snape, John Rayner, Susan Ferguson &

Paul Harvey (1997). Fine tuning soil nitrogen to maximize petroleum

bioremediation. Bioremediation. 2, 251-258.

Walworth, J., Pond, A., Snape,I., Rayner,J., Ferguson, S. & Harvey, P.

(2007). Nitrogen requirements for maximizing petroleum bioremediation

in a sub Antartic soil. Cold Regions Science and Technology. 48, 84-91.

Wang, X., Gong, Z.Q., Li, P.J., Zhang, L.H. & Hu, X.M. (2008). Degradation

of pyrene and benzo(a)pyrene in contaminated soil by immobilized fungi.

Environ. Eng. Sci. 25, 677-684.

Wang, Z., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., Sigouin, L.,

Foght, J., Semple, K. & Westlake, D.W.S. (1998). Comparison of oil

composition changes due to biodegradation and physical weathering in

different oils. Journal of Chromatography. 809, 89-107.

Webb, C., Black, G. M. & Atkinson, B. (1986). Process engineering aspects of

immobilized cell systems. Institution of Chemical Engineers, Oxford, 320

Wei, Y.H., Chou, C.L. & Chang, J.S. (2005). Rhamnolipid production by

indigenous Pseudomonas aeruginosa J4 originating from petrochemical

wastewater. Biochem Eng J. 27, 146–54.

Wemedo, S.A., Obire, O. & Dogubo, D.A., (2002). Myco-flora of a kerosene-

polluted soil in Nigeria. J. Appl. Sci. Environ. Manag. 6, 14–77.

Whyte, L. G., Hawari, J., Zhou, E., Boubonniere, L., Inniss, W. E. & Greer,

C. W. (1998). Biodegradation of variable–chain-length alkanes at low

References 221

temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ.

Microbiol. 64, 2578–2584.

Widada, J., Nojiri, H., Kasuga, K., Yoshida, T., Habe, H. & Omori. T. (2002).

Molecular detection and diversity of polycyclic aromatic hydrocarbon-

degrading bacteria isolated from geographically diverse sites. Appl.

Microbiol. Biotechnol. 58, 202-209.

Wilson, C.S. & Jones, K.C. (1993). Bioremediation of soil contaminated with

polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut. 81,

229–249.

Wilson, N.G. & Bradley, G. (1996). Enhanced degradation of petroleum

(slovene diesel) in an aquenous system by immobilized Pseudomonas

fluorescens. J. Appl. Bacteriol. 80, 99–104.

Winkelmann, K., Venus, J. & Spyra, W. (2003). Untersuchung eines kerosin-

Grundwasserschadens unter dem Aspekt “Natural Attenuation”

natürliche (mikrobiologische) Selbstreinigung. Forum der Forschung,

Heft, 8(15), 107–111.

Wong, J.W.C., Lai, K.M., Wan, C.K., Ma, K. K. & Fang, M. (2001). Isolation

and Optimization of PAH-degrading bacteria from contaminated soil for

PAHs bioremediation. Water,Air and Soil Pollution. 139, 1-13.

Wongsa, P., Tanaka, M., Ucno, A., Hasanuzzaman, M., Yumoto, I. &

Okuyama H. (2004). Isolation and characterization of novel starins of

Pseudomonas aeruginosa and Serratia marcescens possessing high

effiency to degrade gasoline, kerosene, diesel oil and lubricating oil.

Current Microbiology 49, 415-422.

222

Xu, J.G. & Johnson, R.L. (1995). Root growth, microbial activity and

phosphatase activity in oil-contaminated, remediated and uncontaminated

soils planted to barley and field pea. Plant and Soil. 173, 3-10.

Ye, Z.F. & Ni, J.R. (2002). Performance comparison between the

immobilized and the dissociated microorganisms in wastewater

treatment. J Basic Sci Eng. 10, 325–32.

Yerushalmi, L., Rochleau, S., Cimpoi, R., Sarrazin, M., Sunarah, G.,

Peisajovich, A., Leclair, G. & Guiot. S. (2003). Enhanced biodegradation of

petroleum hydrocarbons in contaminated soil. Bioremediat J. 7, 37–51.

Yin, H., Jing Qiang., Yan Jia., Jinshao Ye., Hui Peng., Huaming Qin., Na

Zhang. & Baoyan He. (2009). Characteristics of biosurfactant produced

by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater

Process Biochemistry. 44, 302–308.

Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N. &He,, B.

(2009). Characteristics of biosurfactant produced by Pseudomonas

aeruginosa S6 isolated from oil-containing wastewater. Process

Biochem. 44, 302-308.

Youssef, N.H., Dunacn, K.E., Nagle, D.P., Savage, K.N., Knapp, R.M. &

McInerney, M.J. (2004). Comparison of methods to detect biosurfactant

production by diverse microorganism. J Microbiol Methods. 56, 339–347.

Yu, S.H., Ke, L., Wong Y.S. & Tam, N.F.Y. (2005). Degradation of polycyclic

aromatic hydrocarbons by a bacterial consortium enriched from

mangrove sediments. Environ. Int. 31, 149-154.

References 223

Zaidi, B. R., Stucki, G. & Alexander. M. (1988). Low chemical concentration

and pH as factors limiting the success of inoculation to enhance

biodegradation. Environ. Toxicol. Chem. 7,143–151.

Zhang, K., Xu, Y.Y., Hua, X.F., Han, H.L., Wang, J.N., Wang, J., Liu, Y.M. &

Liu, Z. (2008). An intensified degradation of phenanthrene with

macroporous alginate-lignin beads immobilized Phanerochaete

chrysosporium. Biochem. Eng. J. 41, 251-257.

Zhang, Y. & Miller, R.M. (1994). Effect of a Pseudomonas rhamnolipid

biosurfactant on cell hydrophobicity and biodegradation of octadecane.

Appl Environ Microbiol. 60, 2101–2106.

Zhao, X., Wang, Y. & Ye, Z. (2006). Oil field wastewater treatment in

biological aerated filter by immobilized microorganisms. Process

Biochem 41, 1475–1483.