16
77 REFERENCES 1. K.S. Ryu, K.M. Kim, N.G. Park, Y.J. Park, S.H. Chang, Synthesis and electrochemical properties of V 2 O 5 intercalated with binary polymer, J. Power Sources 103 2 (2002) 305-309. 2. H.Y. Lee, J.B. Goodenough, Supercapacitor Behavior with KCl Electrolyte, J. Solid State Chem. 144 1 (1999) 220-223. 3. B.J. Lee, S.R. Sivakkumar, J.H. Kim, S.H. Jo, D.Y. Kim, Carbon nanofibre/hydrous RuO 2 nanocomposite electrodes for supercapacitors J. Power Sources 168 2 (2007) 546- 552. 4. K. Lotaa, V. Khomenkob, E. Frackowiak,Capacitance properties of poly(3,4- ethylenedioxythiophene)/carbon nanotubes, J. Phys. Chem. Solids, 296 65 (2004) 295301 5. B. Muthulakshmi, D. Kalpana, S. Pitchumani, N.G. Renganathan, Electrochemical deposition of polypyrrole for symmetric supercapacitors, J. Power Sources 158 2 (2006) 1533-1537. 6. M. Mastragostino, C. Arbizzani, F. Soavi, Conducting polymers as electrode materials in supercapacitors, Solid State Ionics 148 3-4 (2002) 493-498. 7. K.S. Ryu, Y.G. Lee, Y.S. Hong, Y.J. Park, X.Wu, K.M. Kim, M.G. Kang, N.G. Park, S.H. Chang, Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor, Electrochim. Acta 50 2-3 (2004) 843-847. 8. K.R. Prasad, N. Munichandraiah, Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes, J. Power Sources 112 2 (2002) 443-451. 9. T.C. Girija, M.V. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors, J. Power Sources 156 2 (2006) 705-711. 10. C. Arbizzani, M.C. Gallazzi, M. Mastragostino, M. Rossi, F. Soavi, Capacitance and cycling stability of poly(alkoxythiophene) derivative electrodes, Electrochem.Commun. 3 1 (2001) 16-19.

REFERENCES - shodhganga.inflibnet.ac.inshodhganga.inflibnet.ac.in/bitstream/10603/75410/15/15_reference.pdf · REFERENCES 1. K.S. Ryu, ... electrochemical supercapacitors, ... (1999)

Embed Size (px)

Citation preview

77

REFERENCES

1. K.S. Ryu, K.M. Kim, N.G. Park, Y.J. Park, S.H. Chang, Synthesis and electrochemical

properties of V2O5 intercalated with binary polymer, J. Power Sources 103 2 (2002)

305-309.

2. H.Y. Lee, J.B. Goodenough, Supercapacitor Behavior with KCl Electrolyte, J. Solid State

Chem. 144 1 (1999) 220-223.

3. B.J. Lee, S.R. Sivakkumar, J.H. Kim, S.H. Jo, D.Y. Kim, Carbon nanofibre/hydrous

RuO2 nanocomposite electrodes for supercapacitors J. Power Sources 168 2 (2007) 546-

552.

4. K. Lotaa, V. Khomenkob, E. Frackowiak,Capacitance properties of poly(3,4-

ethylenedioxythiophene)/carbon nanotubes, J. Phys. Chem. Solids, 296 65 (2004) 295–

301

5. B. Muthulakshmi, D. Kalpana, S. Pitchumani, N.G. Renganathan, Electrochemical

deposition of polypyrrole for symmetric supercapacitors, J. Power Sources 158 2 (2006)

1533-1537.

6. M. Mastragostino, C. Arbizzani, F. Soavi, Conducting polymers as electrode materials in

supercapacitors, Solid State Ionics 148 3-4 (2002) 493-498.

7. K.S. Ryu, Y.G. Lee, Y.S. Hong, Y.J. Park, X.Wu, K.M. Kim, M.G. Kang, N.G. Park,

S.H. Chang, Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox

supercapacitor, Electrochim. Acta 50 2-3 (2004) 843-847.

8. K.R. Prasad, N. Munichandraiah, Fabrication and evaluation of 450 F electrochemical

redox supercapacitors using inexpensive and high-performance, polyaniline coated,

stainless-steel electrodes, J. Power Sources 112 2 (2002) 443-451.

9. T.C. Girija, M.V. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for

electrochemical supercapacitors, J. Power Sources 156 2 (2006) 705-711.

10. C. Arbizzani, M.C. Gallazzi, M. Mastragostino, M. Rossi, F. Soavi, Capacitance and

cycling stability of poly(alkoxythiophene) derivative electrodes, Electrochem.Commun. 3

1 (2001) 16-19.

78

11. D. Belanger, X. Ren, J. Davey, F. Uribe, S. Gottesfeld, Characterization and Long‐Term

Performance of Polyaniline‐Based Electrochemical Capacitors, J. Electrochem. Soc.147

8 (2000) 2923-2929.

12. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7 11 (2008)

845-854

13. D. Belanger, T. Brousse and J.W. Long, Manganese Oxides: Battery Materials Make the

Leap to Electrochemical Capacitors, The electrochemical society interface 17 1 (2008)

49-52.

14. J. Miller, A brief history of Supercapacitors, (2007) 61-78.

15. M. S. Halper, J.C. Ellenbogen, Supercapacitors: A Brief Overview, MITRE Nanosystems

Group, March 2006.

16. Conway, B. E. (1999). Electrochemical Supercapacitors: Scientific Fundamentals and

Technological Applications. New York, Kluwer-Plenum.

17. Kotz, R. and M. Carlen, Principles and applications of electrochemical capacitors,

Electrochimica Acta 45 15-16 (2000) 2483-2498.

18. Conway, B. E., Transition from supercapacitor to battery behavior in electrochemical

energy storage, J. Electrochem. Soc. 138 6 (1991) 1539- 1548.

19. Conway, B. E., V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for

energy storage by supercapacitors, J. Power Sources 66 1-2 (1991) 1-14.

20. Kim, I. H. and K. B. Kim,Ruthenium oxide thin film electrodes for supercapacitors,

Electrochemical and Solid State Letters 4 5 (2001) A62-A64.

21. Mastragostino, M., C. Arbizzani, F. Soavi, Polymer-based supercapacitors, Journal of

Power Sources 9 7-8 (2001) 812-815.

22. Ryu, K. S., K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, Symmetric redox

supercapacitor with conducting polyaniline electrodes, Journal of Power Sources 103 2

(2002) 305-309.

23. P. Simon, and Y.Gogotsi, , Materials for electrochemical capacitors. Nature Materials,

7(2008) 845-848,

24. M. S. Whittingham, R.F. Savinelli, and T. Zawodzinski, Introduction:Batteries and Fuel

Cells, Chem. Rev. ,104 10 (2004) 4243–4886,

79

25. Arbizzani, C., M. Mastragostino and, F. Soavi, New trends in electrochemical

supercapacitors, J. Power Sources 100 1-2 (2001)164-170.

26. Arbizzani, C., M. Mastragostino and L. Meneghello, Polymer-based redox

supercapacitors: A comparative study, Electrochimica Acta 41 1 (1996) 21-26.

27. Mastragostino, M., C. Arbizzani and, F. Soavi, Polymer-based supercapacitors, J. Power

Sources 9 7-8 (2001) 812-815.

28. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, and F. Béguin, Supercapacitors

based on conducting polymers/nanotubes composites, Journal of Power Sources, 153

2(2006) 413–418,

29. J. P. Zheng and P. J. Cygan, A New Charge Storage Mechanism for Electrochemical

Capacitors, Journal of the Electrochemical Society 142 1(1995) L6-L8.

30. Zheng, J. P., P. J. Cygan and T. R. Jow, Hydrous Ruthenium Oxide as an Electrode

Material for Electrochemical Capacitors, Journal of the Electrochemical Society 142 8

(1995)2699-2703.

31. W. Xing, L. Feng, Z.F. Yan and G.Q. Lu Synthesis and electrochemical properties of

mesoporous nickel oxide. Journal of Power Sources, 134 2 (2004) 324-330,

32. Jeong, Y.U. & Manthiram, A. Nanocrystalline Manganese Oxides for Electrochemical

Capacitors with Neutral Electrolytes, Journal of the Electrochemical Society. 149 11

(2002)A1419-A1422,

33. R.N. Reddy and R.G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical

capacitors. Journal of Power Sources, 124 1 (2003) 330-335,

34. R.N. Reddy and R.G. Reddy, Synthesis and electrochemical characterization of

amorphous MnO2 electrochemical capacitor electrode material. Journal of Power

Sources, 132 1-2 (2004) 315-320.

35. A.Vinu, V. Murugesan, W. Bohlmann and M. Hartmann, An optimized procedure for the

synthesis of AlSBA-15 with large Pore diameter and high aluminum content, J. Phys.

Chem. B, 108 31 (2004)11496-11505.

36. C. J. Hung, J. H. Hung, P. Lin, and T. Y. Tseng, Electrophoretic Fabrication and

Characterizations of Manganese Oxide/Carbon Nanotube Nanocomposite

Pseudocapacitors, J. Electrochem. Soc.158 8 (2011) A942-A947.

80

37. M. Mastragostino, C. Arbizzani and F. Soavi, Polymer-based supercapacitors, J. Power

Sources, 97 (2001) 812-815.

38. S. F. Chin, S. C. Pang and M. A. Anderson, Self-assembled manganese dioxide

nanowires as electrode materials for electrochemical capacitors, Mater. Lett. 64 24 (2010)

2670-2672.

39. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Zhao, J. M. Kim, G. D. Stucky, H. J. Shin and

R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous

materials, Nature 408 (2000) 449-453.

40. C. S. Alam, K. Anand, T. Ariga, Mori and A. Vinu, Unusual Magnetic Properties of

Size-Controlled Iron Oxide Nanoparticles Grown in a Nanoporous Matrix with Tunable

Pores† Angew. Chem. Int. Ed. 48 40 (2009) 7358-7361.

41. A.Vinu, P. Srinivasu, M. Miyahara and K. Ariga, Preparation and Catalytic Performances

of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content,

J. Phys. Chem. B. 110 2 (2006) 801-806.

42. A.Vinu, D. K. Sawant, K. Z. Hossain, K. Ariga, S. B. Halligudi and M. Hartmann, Direct

Synthesis of Well-Ordered and Unusually Reactive FeSBA-15 Mesoporous Molecular

Sieves, Chem. Mater. 17 21 (2005) 5339-5345.

43. Y. I. Jang, B. Haung, F. C. Chou, R. D. Sadoway and Y. M. Chiang, Magnetic

characterization of λ-MnO2 and Li2Mn2O4 prepared by electrochemical cycling

of LiMn2O4, J. Appl. Phys. 87 10 (2000)7382.

44. S. C. Pang, M. A. Anderson and T. W. Chapman, Novel Electrode Materials for

Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of

Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide, J. Electrochem. Soc., 147

2(2000), 444-450.

45. H. Xia, Y. Wang, J. Lin, L. Li, Hydrothermal synthesis of MnO2/CNT nanocomposite

with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors,

Nanoscale Res. Lett. 7 (2012) 33-37.

81

46. Y. Li, J. Wang, Y. Zhang, M.N. Banis, J. Liu, D. Geng, R. Li and X. Sunm, Facile

controlled synthesis and growth mechanisms of flower-like and tubular

MnO2 nanostructures by microwave-assisted hydrothermal method, J. Colloid Interface

Sci. 369 1 (2012) 123-128.

47. Q. Feng, H. Kanoh and K. Ooi , Manganese oxide porous crystals. J. Mater. Chem. 9

(1999) 319-333

48. Y. F. Shen, R. P. Zerger, R. N. DeGuzman, S. L. Suib, L. McCurdy, D. I. Potter and

C.L.O'Young, Manganese Oxide Octahedral Molecular Sieves: Preparation,

Characterization, and Application, Science. 23 5107 (1993) 511-515.

49. H. Cao and S. L. Suib, Highly efficient heterogeneous photooxidation of 2-propanol to

acetone with amorphous manganese oxide catalysts. J. Am. Chem.Soc. 116 12

(1994)5334-5342

50. M. Tsuj and M. Abe, Manganese (IV) Oxide and some Chromatographic Applications.

Bull. Chem. Soc. Jpn. 58 4 (1985) 1109-1114.

51. X. Wang and Y. Li, Selected-Control Hydrothermal Synthesis of α and β MnO2 Single

Crystal Nanowires, J. Am. Chem.Soc. 124 12 (2002) 2880–2881

52. C. S. Johnson, M. F. Mansuetto, M. M. Thackeray, Y. Shao‐Horn and S. A. Hackney,

Stabilized Alpha‐ MnO2 Electrodes for Rechargeable 3 V Lithium Batteries, J.

Electrochem. Soc. 144 7(1997) 2279-2283

53. M. H. Rossouw, D. C. Liles, M. M. Thackeray, W. I. F. David and S. Hull, Alpha

manganese dioxide for lithium batteries: A structural and electrochemical study. Mater.

Res. Bull., Vol.27 (1992) 221-230.

54. S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, and S. L. Suib, A review of

porous manganese oxide materials. Chemistry of Materials. 10 10 (1998) 2619-2628

55. S. Devaraj, and N. Munichandraiah, Effect of Crystallographic Structure of MnO2 on Its

Electrochemical Capacitance Properties. J. Phys. Chem. C.112 11 (2008) 4406-4417

56. D.Portehault , S. Cassaignon ,E. Baudrin and J. Jolivet, Driven Growth of Manganese

Oxide Hollow Cones through Self-Assembly of Nanorods in Water, Cryst Growth Des 9

6 (2009) 2562–2565

82

57. L. I. Hill and A. Verbaere, On the structural defects in synthetic γ MnO2, J. Solid State

Chem., 177 12 (2004) 4706–4723.

58. P. M. D. Wolff, Interpretation of some γMnO2 diffraction patterns, Acta crystallogr. 12

(1959)341−345.

59. R. Ma, Y. Bando, L. Zhang, and T. Sasaki, Layered MnO2 Nanobelts: Hydrothermal

Synthesis and the Electrochemical Measurements, Adv. Mater. 16 11 (2004) 918–922.

60. M. Xu, W. Jia, S. Bao, Z.Su, B.Dong, Novel mesoporous MnO2 for high-rate

electrochemical capacitive energy storage, Electrochimica Acta, 55 18 (2010) 5117–

5122.

61. D. Bélanger, T. Brousse, and J. W. Long, Manganese dioxides: Battery materials make

the leap to electrochemical capacitors. The Electrochemical Society Interface Spring, 17

1(2008) 49-52.

62. S. Trasatti, Physical electrochemistry of ceramic oxides. Electrochim. Acta 36 2 (1991)

225-241.

63. M B.Brzezinka, E. Dutkiewicz, J.Stuczynska, Electrochemical characteristics of

manganese dioxide in non-aqueous electrolyte solutions, J. Electroanal.Chem, 135 (1982)

103-109.

64. D. Wang, L.M. Liu, S.J. Zhao, B.H.Li, H. Liu, X.F. Lang, β-MnO2 as a cathode material

for lithium ion batteries from first principles calculations, Phys. Chem. Chem. Phys, 15

(2013) 9075—9083.

65. H.Xia, M. Lai, L.Lu, Nanoflaky MnO2/carbon nanotube nanocomposites as anode

materials for lithium-ion batteries, J. Mater. Chem, 20 (2010) 6896-6902.

66. C. Xu, H. Du, B. Li, F. Kang, and Y. Zeng, Supercapacitive studies on amorphous MnO2

in mild solutions. Journal of Power Sources. 184 (2008) 691-694.

83

67. P.J. Hall, M. Mirzaeian, S. I. Fletcher F.B. Sillars, A. J. R. Rennie, G. O. Shitta-

Bey, G.Wilson, A.Cruden and R. Carter, Energy storage in electrochemical capacitors:

designing functional materials to improve performance, Energy. Environ. Sci. 3 9 (2010)

1238–1251.

68. C. Xu, H. Du, B. Li, F. Kang, and Y. Zeng, Asymmetric Activated Carbon-Manganese

Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations,

J.Electrochem. Soc. 156 6 (2009) A435-A441.

69. K. Lee, J.Lee

and N.Wu, Electrochemical characterizations on MnO2 supercapacitors

with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer

electrolytes, Electrochimica Acta. 54 26 (2009) 6148-6153.

70. T. Nagatomo, Ichikawa and O. Omato, All-Plastic Batteries with Polyacetylene

Electrodes. J.Electrochem. Soc. 134 2 (1987)305-308.

71. D. Peramunage, D.M. Pasquariello and K.M. Abraham, Polyacrylonitrile-Based

Electrolytes with Ternary Solvent Mixtures as Plasticizers, Journal of The

Electrochemical Society 142 6 (1995) 1789-1798.

72. K.T. Lee, and N.L. Wu, Manganese oxide electrochemical capacitor with potassium poly

(acrylate) hydrogel electrolyte, Journal of Power Sources, 179 1 (2008) 430–434.

73. J. E. Post, Manganese oxide minerals: Crystal structures and economic and

environmental significance, Proc. Natl Acad. Sci. USA 96 7 (1999)3447–3454.

74. Tao Gao, H. Fjellvåg and P. Norby, Structural and morphological evolution of β-

MnO2 nanorods during hydrothermal synthesis, Nanotechnology. 20 5 (2009) 1.

75. S. R. Hwang and H. Teng, Capacitance Enhancement of Carbon Fabric Electrodes in

Electrochemical Capacitors through Electrodeposition with Copper, J. Electrochem. Soc.

149 5(2002) A591-A596.

76. X. Lang, A. Hirata, T. Fujita and M. Chen, Nanoporous metal/oxide hybrid electrodes for

electrochemical supercapacitors. Nat. Nanotechnol., 2011, 6, 232.

84

77. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak, Nanoporous

metal/oxide hybrid electrodes for electrochemical supercapacitors, Chem. Phys. Lett. 6 4

(2011)232-236.

78. K. P. S. Prasad, D. S. Dhawale, T. Sivakumar, S. S. Aldeyab, J. S. M. Zaidi, K. Ariga and

A. Vinu, Fabrication and textural characterization of nanoporous carbon electrodes

embedded with CuO nanoparticles for supercapacitors, Sci. Technol. Adv. Mater., 12 4

(2011) 044602-044611.

79. A.Vinu, V. Murugesan, O. Tangermann and M. Hartmann, Adsorption of Cytochrome c

on Mesoporous Molecular Sieves:  Influence of pH, Pore Diameter, and Aluminum

Incorporation,Chem. Mater. 16 16(2004)3056-3065.

80. X. Wang and Y. Li, Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single

Crystal Nanowires, J. Am. Chem. Soc., 124 12(2002) 2880-2881.

81. Y. Yang, L. Xiao, Y. Zhao and F. Wang, Hydrothermal Synthesis and Electrochemical

Characterization of α-MnO2 Nanorods as Cathode Material for Lithium Batteries, Int. J.

Electrochem. Sci. 3(2008) 67-74.

82. A.Debart, A. J. Paterson, J. Bao and P. G. Bruce, α-MnO2 Nanowires: A Catalyst for the

O2 Electrode in Rechargeable Lithium Batteries, Angew. Chem., Int. Ed. 47 24

(2008)4521-4524.

83. L. Montanaro, Y. Jorand, G. Fantozzi and A. Negro, Ceramic foams by powder

processing, J. Eur. Ceram. Soc. 18 9 (1998)1339-1350.

84. D. Randolph and M. A. Larson, Theory of Particulate Processes, Academic Press, New

York, 1986.

85. C. Hu and T. W. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared

by anodic deposition, Electrochem. Commun. 4 2 (2002) 105-109.

86. J. Jiang and A. Kucernak, Electrochemical supercapacitor material based on manganese

oxide: preparation and characterization, Electrochim. Acta. 47 15 (2002)2381-2386.

87. Y. U. Jeong and A. Manthiram, Nanocrystalline Manganese Oxides for Electrochemical

Capacitors with Neutral Electrolytes, J. Electrochem. Soc. 149 11 (2002) A1419-A1422.

85

88. G. G. Kumar and S. Sampath, Electrochemical characterization of

poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-

state zinc batteries, Solid State Ionics. 160 3 (2003)289-294.

89. W. E. Mustain and J. Prakash. A Model for the Electroreduction of Molecular Oxygen,

Electrochem. Soc. 154 (2007) A668.

90. Ch. Lin, J. A. Ritter and B. N. Popov, Characterization of Sol Gel Derived Cobalt Oxide

Xerogels as Electrochemical Capacitors, J. Electrochem. Soc. 145 12 (1998) 4097-4103.

91. S. Cheng, D. Yan, J. T. Chen, R. F. Zhuo, J. J. Feng, H. J. Li, H. T. Feng and P. X. Yan,

Soft-Template Synthesis and Characterization of ZnO2 and ZnO Hollow Spheres, J. Phys.

Chem. C 113 31 (2009) 13630-13635.

92. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu and R. Holze, Electrochemical

Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for

Asymmetric Supercapacitors, J. Phys. Chem. C 113 31 (2009)14020-14027.

93. G. R. Li, Z. P. Feng, Y. N. Ou, D. Wu, R. Fu and Y. X. Tong, Mesoporous MnO2/Carbon

Aerogel Composites as Promising Electrode Materials for High-Performance

Supercapacitors, Langmuir 26 4 (2010) 2209-2213.

94. V. Subramanian, H. Zhu and B. Wei, Nanostructured MnO2: Hydrothermal synthesis and

electrochemical properties as a supercapacitor electrode material, J. Power Sources. 159 1

(2006) 361-364.

95. M. Toupin, T. Brousse and D. Belanger, Charge Storage Mechanism of MnO2 Electrode

Used in Aqueous Electrochemical Capacitor, Chem. Mater. 16 (2004) 3184-3190.

96. R. Jiang, T. Huang, J. Liu, J. Zhuang and A. Yu, A novel method to prepare

nanostructured manganese dioxide and its electrochemical properties as a supercapacitor

electrode, Electrochim. Acta. 54 11 (2009) 3047-3052.

97. V. Srinivasan and J. W. Weidner, Studies on the Capacitance of Nickel Oxide Films:

Effect of Heating Temperature and Electrolyte Concentration, J. Electrochem. Soc. 147 3

(2000) 880-885.

86

98. hang, G. Y. Lia, L. Yan, L. Z. Wang, A. Q. Zhang, Y. H. Song, and B. Huang,

Electrochemical investigation of MnO2 electrode material for supercapacitors, Int. J.

Hydrogen Energy 36 18 (2011) 11760-11766.

99. A. M. Engstrom, Vanadium Oxide Electrochemical Capacitors: An Investigation into

Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell

Performance and Graphene Oxide Composite Electrodes, Dissertations, University of

California, Berkeley, 2013.

100. A. L. Mohana Reddy, M. M. Shaijumon, S. R. Gowda and P. M. Ajayan,

Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power

Supercapacitor Applications, J. Phys. Chem. C, 114 1(2010)658-663.

101. C. Yuan, X. Zhang, L. Su, B. Gao and L. Shen, Facile synthesis and self-assembly of

hierarchical porous NiO nano/micro spherical superstructures for high performance

supercapacitors, J. Mater. Chem. 19(2009) 5772-5777.

102. J. W. Lang, L. B. Kong, W. J. Wu, Y. C. Luo and L. Kang, Facile approach to prepare

loose-packed NiO nano-flakes materials for supercapacitors, Chem.Commun. 35

(2008)4213-4218.

103. S. K. Meher, P. Justin and G. R. Rao, Pine-cone morphology and pseudocapacitive

behavior of nanoporous nickel oxide, Electrochim. Acta. 55 28 (2010) 8388-8396.

104. S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, Graphene

Oxide−MnO2 Nanocomposites for Supercapacitors, ACS Nano. 4 5 (2010)2822-2830.

105. G. D. Sulka, V. Moshchalkov, G. Borghs and J. P. Celis, Electrochemical impedance

spectroscopic study of barrier layer thinning in nanostructured aluminium, J. Appl.

Electrochem. 37 7 (2007)789-797.

106. J. Chen, N. Xia, T. Zhou, S. Tan, F. Jiang and D. Yuan, Mesoporous Carbon Spheres:

Synthesis, Characterization and Supercapacitance, Int. J. Electrochem. Sci. 4(2009)

1063-1073.

87

107. Z.-S. Wu,W. Ren, D.W. Wang, F. Li, B. Liu and H. M. Cheng, High-Energy

MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors, ACS

Nano. 4 10 (2010) 5835-5842.

108. B. G. Choi, M. H. Yang, W. H. Hong, J. W. Choi and Y. S. Huh, 3D Macroporous

Graphene Frameworks for Supercapacitors with High Energy and Power Densities, ACS

Nano. 6 5 (2012)4020-4028.

109. L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J.

Chen, C. Hu, Y. Tong, J. Zhou and Z. L. Wang, Flexible Solid-State Supercapacitors

Based on Carbon Nanoparticles/MnO2 Nanorods Hybrid Structure, ACS Nano. 6

1(2011) 656-661.

110. P.-C. Chen, G. Shen, Y. Shi, H. Chen and C. Zhou, Preparation and Characterization of

Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide

Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes, ACS Nano. 4

8 (2010) 4403-4411.

111. J.-H. Kim, K. H. Lee, L. J. Overzet and G. S. Lee, Synthesis and Electrochemical

Properties of Spin-Capable Carbon Nanotube Sheet/MnOx Composites for High-

Performance Energy Storage Devices, Nano Lett. 11 7(2011) 2611-2617.

112. E. Frackowiak and F. Beguin, Electrochemical Storage of Energy in Carbon Nanotubes

and Nanostructured Carbons, Carbon. 40 10(2002) 1775-1787

113. G.R. Li, Z.P. Feng, Y.N. Ou, D. Wu, R. Fu, Y.X. Tong, Mesoporous MnO2/Carbon

Aerogel Composites as Promising Electrode Materials for High-Performance

Supercapacitors, Langmuir, 26 4(2010), 2209–2213.

114. C.Q. Bian, A.S. Yu, H.Q. Wu, Fibriform Polyaniline/Nano-TiO2 Composite as an

Electrode Material for Aqueous Redox Supercapacitors, Electrochem Commun. 11

2(2009) 266-269.

115. F. Fusalba, P. Gouerec, D. Villers, D. Belanger, Electrochemical Characterization of

Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for

Electrochemical Supercapacitors J. Electrochem. Soc. 148 1(2001) A1-A6.

88

116. M. Toupin, T. Brousse, D. Bélanger, Charge Storage Mechanism of MnO2 Electrode

Used in Aqueous Electrochemical Capacitor Chem Mater, 16 16(2004) 3184-3190.

117. C.Z. Yuan, B. Gao, L.H. Su, X.G. Zhang, Interface synthesis of mesoporous MnO2 and

its electrochemical capacitive behaviors, J Colloid Interface Sci. 2 322 (2008) 545-550.

118. L. Cao, F. Xu, Y.Y. Liang, H.L. Li, Preparation of the Novel Nanocomposite Co(OH)2/

Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density,

Adv Mater. 20 16 (2004) 1853-1857.

119. F. Beguin, K. Szostak, G. Lota, E. Frackowiak, A Self-Supporting Electrode for

Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile

Blends, Adv Mater. 17 19(2005) 2380-2384.

120. Y.Hou, Y. W.Cheng, T. Hobson, J. Liu, Design and Synthesis of Hierarchical MnO2

Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High

Performance Electrochemical Electrodes, Nano Lett. 7 10 (2010) 2727-2733.

121. L. H. Bao, J. F. Zang, X. D. Li, Flexible Zn2SnO4/MnO2 Core/Shell

Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor

Electrodes, Nano Lett. 11 3(2011) 1215-1220.

122. W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y.Cui, H. N. Alshareef, High-Performance

Nanostructured Supercapacitors on a Sponge, Nano Lett. 11 12(2011) 5165-5172.

123. S. K. Padmanabhan, A. Balakrishnan, M.C. Chu, T. N. Kim, S.J. Cho, Micro-indentation

fracture behavior of human enamel, Dent.Mater. 1 26 (2010) 100-104.

124. T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L.Wei, P. K. Kuo, R. L. Thomas, R. W.

Pryor, Thermal diffusivity of isotopically enriched 12C diamond, Phys. Rev. B 42

2(1989) 1104–1111.

125. X.F. Yang, J.H. Yang, K. Zaghib, M. L. Trudeau, J. Y. Ying, Synthesis of phase-pure

Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes, Nano

Energy 12 (2015) 305–313.

126. D.N.Futaba, K.Hata, T. Yamada, T. Hiraoka, Y.Hayamizu, Y.Kakudate, O.Tanaike,

H.Hatori, M.Yumura and S. Iijima, Shape-engineerable and highly densely packed

89

single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat

Mater. 5 (2006) 987-994.

127. E.Frackowiak and F.Beguin, Carbon materials for the electrochemical storage of energy

in capacitors, Carbon. 39 6 (2001) 937-950.

128. Y.Wang, Z.Q.Shi, Y.Huang, Y.F.Ma, C.Y.Wang, M.M.Chen, and Y.S.Chen,

Supercapacitor Devices Based on Graphene Materials, J Phys Chem C. 30

113(2009)13103—13107.

129. M.D. Stoller, S.J.Park, Y.W. Zhu, J.H.An and R.S. Ruoff, Graphene-Based

Ultracapacitors, Nano Lett., 8(2008) 3498-3502.

130. D.W.Wang, F.Li, J.P.Zhao, W.C.Ren, Z.G.Chen, J.Tan, Z.S.Wu, I.Gentle, G.Q.Lu and

H.M.Cheng, Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic

Electropolymerization for High-Performance Flexible Electrode, ACS Nano., 3

7(2009)1745-1752.

131. E.Frackowiak, V.Khomenko, K.Jurewicz, K.Lota and F.Beguin, Supercapacitors based

on conducting polymers/nanotubes composites, J Power Sources. 153 2(2006) 413-418.

132. V.Khomenko, E.Frackowiak and F.Beguin, Determination of the specific capacitance of

conducting polymer/nanotubes composite electrodes using different cell configurations,

Electrochim Acta. 50 12(2005)2499-2506.

133. J.H.Park, J.M.Ko, O.O.Park and D.W.Kim, Capacitance properties of

graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole

on graphite fiber, J. Power Sources. 105 1(2002)20-25

134. S.C.Pang, B.H.Wee and S.F.Chin,The Capacitive Behaviors of Manganese Dioxide

Thin-Film Electrochemical Capacitor Prototypes International Journal of

Electrochemistry. 397685 (2011)1-10.

135. G.Yu, L.Hu, N.Liu, H.Wang, M.Vosgueritchian, Y.Yang, Y.Cui and Z.Bao, Enhancing

the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by

Conductive Wrapping, Nano Lett. 11 10(2011) 4438-4442.

136. M.Ghaemi, Z.Biglari and L.Binder, Effect of bath temperature on electrochemical

properties of the anodically deposited manganese dioxide, J Power Sources.,102

2(2001)29-34.

90

137. V.Subramanian, H.W.Zhu, R.Vajtai, P.M.Ajayan and B.Q. Wei, Hydrothermal

Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures, J Phys Chem B.

109 43(2005)20207-20214.

138. M.Sugantha, P.A.Ramakrishnan, A.M.Hermann, C.P.Warmsingh and D.S. Ginley,

Nanostructured MnO2 for Li batteries, Int J Hydrogen Energ. 28 6( 2003) 597-600.

139. Z.S.Wu, W.Ren, D.W.Wang, F.Li, B.Liu and H.M. Cheng, High-Energy MnO2

Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors, ACS Nano ,

4 10(2010)5835-5842.

140. Q.Cheng, J.Tang, J.Ma, H.Zhang , N.Shinya and L.C. Qin, Graphene and nanostructured

MnO2 composite electrodes for supercapacitors, Carbon., 48 9(2011)2917-2925.

141. X.Zhao, L.Zhang, S.Murali, M.D.Stoller, Q.Zhang, Y. Zhu and R.S.Ruoff, Incorporation

of Manganese Dioxide within Ultraporous Activated Graphene for High-Performance

Electrochemical Capacitors ACS Nano, 6 6(2012)5404-5412.

142. J.Shen, A.Liu, Y.Tu, H.Wang, R.Jiang, J.Ouyang and Y.Chen, Asymmetric deposition

of manganese oxide in single walled carbon nanotube films as electrodes for flexible high

frequency response electrochemical capacitors, Electrochim Acta. 78 1(2012)122-132.

143. J.K.Chang, C.T.Lin and W.T. Tsai, Manganese oxide/carbon composite electrodes for

electrochemical capacitors, Electrochem Commun. 6 7(2004)666-671.

144. M.M.Shaijumon, F. S. Ou, L .J. Ci and P. M. Ajayan, Synthesis of hybrid nanowire

arrays and their application as high power supercapacitor electrodes, Chem Commun., 20

20 (2008) 2373- 2375.

145. D. Zhang, L. Zhang, C. Fang, R. Gao, Y. Qian, L. Shi and J. Zhang, MnOx–

CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for

selective catalytic reduction of NO with NH3, RSC Adv. 3 3(2013)8811-8819.

146. D.Zhang, L.Zhang, L.Shi, C. Fang, H.Li, R.Gao, L. Huang and J.Zhang, V, n situ

supported MnOx–CeOx on carbon nanotubes for the low-temperature selective catalytic

reduction of NO with NH3 Nanoscale, 5 1(2013)1127-1136.

147. C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L. Shi, R. Gao and

J. Zhang, Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky

91

MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route,

Nanoscale, 5 1(2013)9199-9207

148. D. Zhang, X. Wen, L. Shi, T. Yan and J. Zhang, Enhanced capacitive deionization

performance of graphene/carbon nanotube composites, J. Mater. Chem., 22(2012)

14696-14704.

149. D. Zhang, X. Wen, L. Shi, T. Yan and J. Zhang, Enhanced capacitive deionization of

graphene/mesoporous carbon composites, Nanoscale. 4 1(2012)5440-5446.

150. M. Kumar, Y. Ando, Single-wall and multi-wall carbon nanotubes from camphor—a

botanical hydrocarbon, Diamond and Related Materials 12 (2003) 1845–1850.

151. Ramya , Krishnan, J.John, B. Manoj, Raman Spectroscopy Investigation of Camphor

Soot: Spectral Analysis and Structural Information, Int. J. Electrochem. Sci., 8 (2013)

9421 – 9428.

152. A.N. Fadzilah, K. Dayana,M. Rusop, Fabrication and Characterization of Camphor-

based Amorphous Carbon Thin Films, Procedia Engineering 56 (2013) 743–749.

153. A.C.Ferrari and J.Robertson, Resonant Raman spectroscopy of disordered, amorphous,

and diamondlike carbon, Phys Rev B., 64 (2001), 075414-075420.

154. A.C.Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and

amorphous carbon, Phys. Rev. B., 61(2000) 14095-.14107.

155. J. W.Suk, S.Murali, J.An and R. S. Ruoff, Mechanical measurements of ultra-thin

amorphous carbon membranes using scanning atomic force microscopy, Carbon., 50

6(2012)2220-2226.

156. R.Haerle, E.Riedo, A.Pasquarello and A.Baldereschi, sp2/sp3 hybridization ratio in

amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and

first-principles calculation, Phys Rev B., 65(2001) 045101-045107.

157. J.Wang, J.Polleux, J.Lim and B.Dunn, Pseudocapacitive Contributions to

Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles, J. Phys. Chem. C., 111

40(2007), 14925-14931.

158. M.Sathiya, A. S.Prakash, K.Ramesha, J.M.Tarascon and A. K. Shukla, V2O5-Anchored

Carbon Nanotubes for Enhanced Electrochemical Energy Storage J. Am. Chem. Soc.,

133 40(2011)16291-16299.

92

159. H.Lindstrom, S.Sodergren, A.Solbrand, H.Rensmo, J.Hjelm, A.Hagfedt and S-E.

Lindquist, Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films, J.

Phys. Chem. B., 101 39(1997)7710-7722.

160. H. J.In, S. Kumar, Y. S .Horn and G. Barbastathis, Origami fabrication of

nanostructured, three-dimensional devices: Electrochemical capacitors with carbon

electrodes, Appl. Phys. Lett., 88(2006)083104-083110.

WEBPAGE REFERENCES

*1. Electrochemical Double Layer Capacitors (Supercapacitors), M. Aslani, 2012,

Stanford University, Submitted as coursework for PH240.

*2. http://www.slideshare.net/ResearchIndia/super-capacitor-buses-in-shanghai-5156990,

http://www.ilyascranes.com/ilyas16.html, http://www.reisenews-online.de/pics/lufthansa-

a380-beim-landeanflug/

*3. M.w. Xu, S.J. Bao, Nanostructured MnO2 for Electrochemical Capacitor, Laboratory

of New Energy Material Chemistry, College of Chemistry & Chemical Engineering,

Xinjiang Normal University, Institute of Applied Chemistry, Xinjiang University