48
254 REFERENCES [1]. Rao, D.S., T. Panda, and D. Subba–Rao, 1993, “Comparative analysis of calcium gluconate and sodium gluconate techniques for the production of gluconic acid Aspergillus niger,” Bioprocess Eng., 8, pp. 20307. [2]. Thurston, CF., 1994, “The structure and function of fungal laccase,” Microbiology, 140, pp. 1926. [3]. Feng, Xu., 1996, “Oxidation of Phenols, Anilines, and Benzenethiols by Fungal Laccases: Correlation between Activity and Redox Potentials as Well as Halide Inhibition,” Biochemistry, 35 (23), pp 76087614. [4]. Alcalde, M., 2007, Laccases: biological functions, molecular structure and industrial applications; In Industrialenzymes (Ed. J. Polaina and A.P. MacCabe,) Springer, Heidelberg, pp.461-476. [5]. Fortina, MG, Acquati A, Rossi P, Manichini PL, Di Gennaro C.,1996, “Production of laccase by Botrytis cinerea and fermentation studies with strain F226,” J. Ind. Microbiol., 17, pp.69-72. [6]. Minussi, RC, Pastore MG, Duran N., 2007, “Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent,” Biores. Technol., 98, pp.158-164. [7]. Bourbonnais, R. and M. G. Paice., 1990, “Oxidation of nonphenolic substrates. An expanded role for laccase in lignin biodegradation,” FEBS Lett., 267, pp.99-102. [8]. Pickard, M. A., R. Roman, R. Tinoco, and R. Vazquez-Duhalt., 1999, “Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase,” Appl. Environ. Microbiol., 65, pp. 3805-3809. [9]. Raghunathan, D and Kantha D.arunachalam., 2010, “Screening and isolation of laccase producing fungi from saw mill wastes,” Journal of Pure and Applied Microbiology, 4(2), pp. 899-902.

REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/32048/16/references.pdf · 254 REFERENCES [1]. Rao, D.S., T. Panda, and D. Subba–Rao, 1993, “Comparative analysis

Embed Size (px)

Citation preview

254

REFERENCES

[1]. Rao, D.S., T. Panda, and D. Subba–Rao, 1993, “Comparative analysis of

calcium gluconate and sodium gluconate techniques for the production of

gluconic acid Aspergillus niger,” Bioprocess Eng., 8, pp. 203–07.

[2]. Thurston, CF., 1994, “The structure and function of fungal laccase,”

Microbiology, 140, pp. 19–26.

[3]. Feng, Xu., 1996, “Oxidation of Phenols, Anilines, and Benzenethiols by

Fungal Laccases: Correlation between Activity and Redox Potentials as

Well as Halide Inhibition,” Biochemistry, 35 (23), pp 7608–7614.

[4]. Alcalde, M., 2007, Laccases: biological functions, molecular structure and

industrial applications; In Industrialenzymes (Ed. J. Polaina and A.P.

MacCabe,) Springer, Heidelberg, pp.461-476.

[5]. Fortina, MG, Acquati A, Rossi P, Manichini PL, Di Gennaro C.,1996,

“Production of laccase by Botrytis cinerea and fermentation studies with

strain F226,” J. Ind. Microbiol., 17, pp.69-72.

[6]. Minussi, RC, Pastore MG, Duran N., 2007, “Laccase induction in fungi

and laccase/N-OH mediator systems applied in paper mill effluent,”

Biores. Technol., 98, pp.158-164.

[7]. Bourbonnais, R. and M. G. Paice., 1990, “Oxidation of nonphenolic

substrates. An expanded role for laccase in lignin biodegradation,” FEBS

Lett., 267, pp.99-102.

[8]. Pickard, M. A., R. Roman, R. Tinoco, and R. Vazquez-Duhalt., 1999,

“Polycyclic aromatic hydrocarbon metabolism by white rot fungi and

oxidation by Coriolopsis gallica UAMH 8260 laccase,” Appl. Environ.

Microbiol., 65, pp. 3805-3809.

[9]. Raghunathan, D and Kantha D.arunachalam., 2010, “Screening and

isolation of laccase producing fungi from saw mill wastes,” Journal of

Pure and Applied Microbiology, 4(2), pp. 899-902.

255

[10]. Younh, D., Hah Y.C. and Kang S., 1995, “Role of laccase in lignin

degradation by white rot fungi,” FEMS Microbiology Letters, 132,

pp.183-188.

[12]. Leonowicz, A., Matuszewska A., Luterek J., Ziegenhagen D., Wojtas-

Wasilewska M., Cho N.S., Hofrichter M., and Rogalski J., 1999,

“Biodegradation of lignin by white rot fungi,” Fungal Genetics and

Biology,27, pp.175-185.

[13]. Mayer, AM, Staples RC., 2002, “Laccase: New function for an old

enzyme,” Phytochemistry, 60, pp.551-565.

[14]. Duran, N., Rosa M.A., D’Annibale A., and Gianfreda L., 2002,

“Applications of laccases and tyrosinases (phenoloxidases) immobilized

on different supports: a review,” Enzyme Microbial Technology., 31,

pp.907–931.

[15]. Gianfreda, L., and Rao MA., 2004, “Potential of extra cellular enzymes in

remediation of polluted soils: A review, Enzyme Microb. Technol., 35,

pp.339-354.

[16]. Thitinard Nitheranont, Akira Watanabe and Yosuhiko Asada., 2011,

“Extracellular laccase production by an edible Basidiomycetous

Mushroom, Grifola frondosa: purification and characterization,”

Biosci.Biotechnol. Biochem., 75(3), pp.538-543.

[17]. Eichlerova, I., Homolka, L. and Nerud, F., 2006, “Ability of industrial

dyes decolorization and ligninolytic enzymes production by different

Pleurotus species with special attention on Pleurotus calyptratus, strain

CCBAS 461,” Process Biochem., 41, pp. 941-946.

[18]. Stephen Y. Lin and Carlton W. Dence., 1992, Methods in Lignin

chemistry. Springer-Verlag, Heidelberg, Chap.1.

[19]. Willmott, N., Guthrie J, and Nelson G., 1998, “The biotechnology

approach to colour removal from textile effluent,” J. Soc. Dyers. Colour.,

114, pp.38–41.

[20]. Barr, D. and Aust S., 1994, “Mechanisms white rot fungi use to degrade

pollutants,” Environmental Science Technology, 28 (2), pp. 78-87.

[21]. Carlite, M., Watkinson S., and Gooday G., 2001, The Fungi as a major

group of organisms. In: The Fungi, Second Edition, pp.608.

256

[22]. Pointing, SB., 2001, “Feasibility of bioremediation by white-rot fungi,”

Appl. Microbio and Biotechnol., 57, pp. 20-33.

[23]. Eaton, R.A., and Hale M.D.C., 1993, Wood: decay, pests and protection.

Chapman and Hall, London, chap.3.

[24]. Verma P., and Madamwar D., 2002, “Production of lignolytic enzymes for

dye decolorization by cocultivation of white rot fungi Pleurotus ostreatus

and Phanerochaete chrysosporium under solid state fermentation,” Applied

Biochemistry and Biotechnology, 102–103, pp.109–118.

[25]. Hatakka, A., 1994, “Lignin-modifying enzymes from selected white-rot

fungi: production and role in lignin degradation,” FEMS Microbiol. Rev.,

13, pp.125–135.

[26]. Oh, K.K., Kim H.S., Cho M.H., Chai Y.G., and Jeon Y.J., 1999, “Isolation

and characterization of white rot fungi for decolorization of several

synthetic dyes,” Kor. J. Microbiol. Biotechnol., 27, pp.500–508.

[27]. Nyanhongo, G. S., Gübitz G., Sukyai P., Leitner C., Haltrich D., and

Ludwig R., 2007, “Oxidoreductases from Trametes spp. in Biotechnology:

A Wealth of Catalytic Activity,” Food Technology and Biotechnology, 45

(3), pp.250–268.

[28]. Leonowicz, A.; Cho, N. S.; Luterek, J.; Wilkolazka, A.; Wojtas-

Wasilewska, M.; Matuszewska, A.; Hofrichter, M. and Wesenberg, D.,

2001, “Fungal laccase: properties and activity on lignin,” J. Bas.

Microbiol., 41, pp.185-227.

[29]. Marques, B.C., 2005, “Aprimoramento de abordagem para modelar o

balanço de agua em biorreactores de fermentaçâo em estado sólido.

Universidade Federal do Paraná, pp.34.

[30]. Couto, R.S., and Sanroman, M.A., 2005, “Application of solid-state

fermentation to ligninolytic enzyme production,” Biochemical Engineering

Journal, 22, pp.211–219.

[31]. Singhania, R.R., Patel, K., Soccol, C.L., and Pandey, A., 2009, “Recent

advances in solid-state fermentation,” Biochemical Engineering Journal,

44, pp.13–18

[32]. Pandey, A., Soccol C.R., and Mitchell D., 2000, “New developments in

solid state fermentation: Ibioprocesses and products,” Process

Biochemistry, 35, pp.1153-1169.

257

[33]. Pandey, A., Szakacs G., Soccol C.R., Rodriguez-Leon J.A., and Soccol,

V.T., 2001, “Production, purification and properties of microbial

phytases,” Bioresource Technology, 77, pp. 203-214.

[34]. Moo-Young, M., Moreira A.R., and Tengerdy R.P., 1983, Principles of

solid sate fermentation. In: Smith JE, Berry DR, Kristiansen B, editors.

The filamentous fungi. London: Edward Arnold Publishers , pp.117–144.

[35]. Zhu, S., Yu S, and Yang, L., 2006, “Prodution, properties and application

of fungal laccase,” China Food Addit., 1, pp.116-131.

[36]. Fernandes, L., Loguercio-Leite C, Esposito E, and Reis MM., 2005,” In

vitro wood decay of Eucalyptus grandis by the basidiomycete fungus

Phellinus flavomarginatus, Int. Biodeter. Biodegr. 55, pp.187–193.

[37]. Park, C., Lee M, Lee B, Kim SW, Chase HA, Lee J, and Kim, S., 2006,

“Biodegradation and biosorption for declolrization of synthetic dyes by

Funalia trogii,” Biochem. Eng. J., 36, pp.59–65.

[38]. Silva, CMMS., Melo IS, and Oliveira PR., 2005, “Ligninolytic enzyme

production by Ganoderma spp.,” Enzyme Microb. Tech., 37, pp. 324-329.

[39]. Arora, DS., Chander M, and Gill, PK., 2002, “Involvement of lignin

peroxidase, manganese peroxidase and laccase in degradation and

selective ligninolysis of wheat straw,” Int. Biodeter. Biodegr., 50, pp.115-

120.

[40]. Plackett, R.L. and J.P. Burman., 1946, “The Design of Optimum

Multifactorial Experiments,” Biometrika, 33 (4), pp. 305-25.

[41]. Godfrey, T., and West S., 1996, Industrial Enzymology, 2nd ed.,

Macmillan Press, United Kingdom, pp.30–36.

[42]. Cao, L., van Langen L., and Sheldon, R.A., 2003, “Immobilised enzymes:

carrier-bound or carrier-free?,” Current Opinion in Biotechnology, 14,

pp.387–394.

[43]. Mateo, C., Palomo J.M., Fernandez-Lorente G., Guisan J.M., and

Fernandez-Lafuente, R., 2007, “Improvement of enzyme activity, stability

and selectivity via immobilization techniques,” Enzyme and Microbial

Technology., 40(2), pp. 1451–1463.

[44]. Tischer, W., and Wedekind, F., 1999, “Immobilized enzymes: Methods

and applications,: Topics in Current Chemistry, 200, pp.95–126.

258

[45]. Van de Velde, F., Lourenco, N. D., Pinheiro, H. M. and Bakker, and M.

Carrageenan., 2003, “A foodgrade and biocompatible support for

immobilisation techniques,” Advances Synthesis & Catalysis, 344,

pp.815-835.

[46]. Bornscheuer, U.T., 2003, Immobilizing enzymes: how to create more

suitable biocatalysts, Angewandte Chemie, International Edition 42,

pp.3336-3337.

[47]. Giamberini, M., Giardina P., Desiderio B., Marzullo L., Palmieri G., and

Sannia G., 1994, “A new enzyme immobilization procedure using copper

alginate gel: application to a fungal phenol oxidase,” Enzyme and

Microbial Technology, 16, pp.151-158.

[48]. Chiou, M.S., and Li, H.Y., 2003, “Adsorption behavior of reactive dye in

aqueous solution on chemical cross-linked chitosan beads,” Chemosphere,

50, pp.1095–1105.

[49]. Forgacs, E, Cserhati T, and Oros G., 2004, “Removal of synthetic dyes

from waste waters,” Environ. Inter., 30, pp. 953-971.

[50]. Lu, L., Zhao M, Zhang BB, Yu SY, Bian XJ, Wang W, and Wang Y.,

2007, “Purification and characterization of laccase from Pycnoporus

sanguineus and decolorization of an anthraquinone dye by the enzyme,”

Appl. Microbiol. Biotechnol., 74, pp. 1232-1239.

[51]. Naraian, R., Sahu, R.K., Kumar, S., Garg, S.K., Singh,C.S. and Kanaujia,

R.S., 2009, “Influence of different nitrogen rich supplements during

cultivation of Pleurotus florida on corn cob subs trate,” Environmentalist,

29, pp. 1-7.

[52]. Singh, A., and Naraian, R., 2007, “Influence of various nitrogen rich oil

seed cakes on submerged fermentation and laccase and peroxidase

production by Pleurotus florida,” National conference on “SAMAE-NHT

held at Kanpur, India.

[53]. Krishnan, T., and Chandra, A.K., 1982, “Effect of oil seed cakes on α-

amylase production by Bacillus licheniformis CUMC305,” Appl. Environ.

Microbiol., 44, pp.270-274.

[54]. Abu, E.A. and Ado, S.A., 2004, “Comparative studies on the effect of

organic and inorganic nitrogen supplementation of millet and sorghum

259

pomace on the production of three industrial enzymes by Aspergillus niger

SL.1, Biokemist, 16, pp.64-70.

[55]. Kuz Mina, L.A., Akhmedova, Z.E. and Davranov, K.D., 2001, “The effect

of nutrient medium composition on peroxidase biosynthes is by

basidiomycete Pleurotus ostreatus, strain UzBI-I105,” Appl .Biochem.

Microbiol., 37, pp. 292-294.

[56]. Sin, H.N., S. Yusof , N. Sheikh Abdul Hamid , and R. Abd. Rahman,

2006, “Optimization of hot water extraction for sapodilla juice using

response surface methodology,” Journal of Food Engineering, 74, pp.352–

358

[57]. Rehana Ahmed, S. Tabassum and S.M. Ifzal., 1989, “Studies on Achras

sapota l; part iii.Isolation and identification of some triterpenoids from the

leaves of Achras sapota l,” Pakistan J. Pharm- Sci., 2(2), pp. 33-35.

[58]. Chen, Q., Hang J, Shi YY, Xiao YZ, Wu J, Hong YZ, and Wang YP.,

2004, “Selective induction, purification and characterization of a laccase

isozyme from the basidiomycete Trametes sp. AH28–2,” Mycologia, 96,

pp.26–35.

[59]. Gnanamani, A., Jayaprakashvel M, Arulmani M, and Sadulla, S., 2006,

“Effeect of inducers and culturing processes on laccase synthesis in

Phanerochaete chrysosporium NCIM 1197 and the constitutive expression

of laccase isozymes,” Enzyme Microbiol. Technol., 38, pp.1017–1021.

[60]. Malhotra, K., Sharma, P., and Capalash, N., 2004, “Copper and dyes

enhance laccase production in γ-proteobacterium JB,” Biotechnol. Lett.,

26, pp.1047-1050

[61]. Vasconcelos, A. F. D., A. M. Barbosa, R. F. H. Dekker, I. S. Scarminio,

and M. I. Rezende., 2000, “Optimization of laccase production

by Botryosphaeria sp. in the presence of veratryl alcohol by the response-

surface method,” Process Biochemistry, 35(10), pp. 1131–1138.

[62]. Baldrian, P., 2004, “Purification and characterization of laccase from the

white-rot fungus Daedalea quercina and decolorization of synthetic dyes

by the enzyme,” Applied Microbiology Biotechnology, 63, pp.560-563

[63]. Tavares, A.P.M.; Coelho, M.A.Z.; Coutinho, J.A.P. and Xavier, A.M.R.B.,

2005, “Laccase improvement in submerged cultivation, induced

260

production and kinetic modeling,” Journal of Chemical Technology and

Biotechnology, 80(6), pp.669-676.

[64]. Menon, N.H., Dhore, R.D, and Pande, S.S., 2008, “Antimicrobial

characteristics of vermi wash,” Asian Jr. of Microbiol. Biotech. Env.Sci.,

10(2), pp.257-260.

[65]. Campbell, MM., 1993, The biochemistry and molecular biology of

lignification: problems, progress and prospects In Polyphenol Phenomena,

Scalbert A, ed., INRA Press, Paris.

[66]. McCrady, Ellen., 1991, “The nature of lignin,” Alkaline Paper Advocate,

4(4), pp. 33-34 .

[67]. Howard, R.L., Abotsi E., Jansen van Rensburg E.L. and Howard S., 2003,

“Lignocellulose biotechnology: issues of bioconversion and enzyme

production,” African Journal of Biotechnology, 2 (12), pp. 602-619.

[68]. Antongiovann, M.I. and C. Sargentini, 1991, “Variability in chemical

composition of straws,” Options Méditerranéennes, 16, pp. 49-53.

[69]. Tien, M. and T.K. Kirk., 1983, “Lignin-degrading. enzymes from

himenomycete Phanerochaete chrysosporium Burds,” Sci., 221, pp. 661-

663.

[70]. Hernandez, M., M.J. Hernandez-Coronado, M.D. Montiel, J. Rodriguez

and M.E. Arias, 2001, “Analysis of alkali-lignin in a paper mill effluent

decolorised with two Streptomyces strains by gas chromatography-mass

spectrometry after cupric oxide degradation,” J. Chrom., 919, pp. 389-394.

[71]. Trojanowski, J., K. Haider and V. Sundman, 1977, “Decomposition of

14C-labelled lignin and phenols by a Nocardia sp.,” Arch. Microbiol., 114,

pp.149-153.

[72]. Kirk, T K, and R L Farrell., 1987, “Enzymatic Combustion: The Microbial

Degradation of Lignin,” Annual Review of Microbiology, 41, pp. 465-

501.

[73]. Blanchette, R. A., 1991, “Delignification by wood-decay fungi,” Annu.

Rev. Phytopathol., 29, pp.381–398.

[74]. Goodell, B., 2003, “Brown-rot fungal degradation of wood: Our evolving

view. Wood Deterioration and Preservation, 845. Washington: Amer

Chemical Soc., pp. 97- 118.

261

[75]. Goodell, B., Jellison, J., Liu, J., and Krishnamurthy, S., 2000,”Degradation

and Protection of Organic Compounds Mediated by Low Molecular

Weight Chelators,” U.S. Patent, 06046375.

[76]. Kirk, T.K., and Cullen, D., 1998, Enzymology and molecular genetics of

wood degradation by white-rot fungi. In: Young, R.A., Akhtar, M. (Eds.),

Environmentally Friendly Technologies for the Pulp and Paper Industry.

John Wiley and Sons, New York, pp. 273–308.

[77]. Akthar, M., Blanchette,R.A., and Kirk,T.k.,.1997, “Fungal delignification

and biochemical pulping of wood,” Adv. Biochem. Eng. Biotechnol., 57,

pp.159-195.

[78]. Kirk, T.K., Mozuch, M.D., and Tien, M., 1985, “Free hydroxyl radical is

not involved in an important reaction of lignin degradation by

Phanerochaete chrysosporium Burds,” Biochem. J., 226, pp.455–460.

[79]. Berryman, D., F. Houde, V. DeBlois and M. O’Shea,

2004,”Nonylphenolic compounds in drinking and surface waters

downstream of treated textile and pulp and paper effluents: a survey and

preliminary assessment of their potential effects on public health and

aquatic life,” Chemosphere, 56, pp. 247-255.

[80]. Chandra, R., A. Raj, H.J. Purohit and A. Kapley, 2007, “Characterisation

and optimization of three potential aerobic bacterial strains for Kraft lignin

degradation from pulp paper waste,” Chemosphere, 67, pp. 839-846.

[81]. Modi, D.R., H. Chandra and S.K. Garg, 1998, “Decolorization of

baggasebased paper mill effluent by the by white-rot fungus Trametes

versicolor,” Bioresour. Technol., 66, pp. 79-81.

[82]. Nagarathnamma, R., P. Bajpai and P.K. Bajpai, 1999, “Studies on

decolourization, degradation and detoxification of chlorinated lignin

compounds in Kraft bleaching effluents by Ceriporiopsis subvermispora,”

Process Biochem., 34, pp. 939-948.

[83]. Perestelo, F., A. Rodriquez, R. Perez, A. Carnicero, G. Fuente and M.A.

Falcon, 1996, “Isolation of a bacterium capable of limited degradation of

industrial and labeled natural and synthetic lignins,” World J. Microbiol.

Biotechnol., 12, pp. 111-112.

[84]. Donald L. Rockwood, Alan W. Rudie, Sally A. Ralph, J.Y. Zhu and

Jerrold E. Winandy, 2008, “Energy Product Options for Eucalyptus

262

Species Grown as Short Rotation Woody Crops,” Int. J. Mol. Sci. 9,

pp.1361-1378.

[85]. Tournier, V.; Grat, S.; Marque, C.; El Kayal, W.; Penchel, R.; de Andrade,

G.; Boudet, A.M., and Teulieres, C., 2003, “An efficient procedure to

stably introduce genes into an economically important pulp tree

(Eucalyptus grandis x Eucalyptus urophylla),” Transgenic Research, 12(4),

pp.403-411.

[86]. Eusebio, D.; Cabangon, R.; Soriano, F. and Evans, P.D., 2000,

“Manufacture of low-cost wood-cement composites in the Philippines

using plantation grown Australian species I. Eucalypts,” In Proceedings

5th Pacific Rim Biobased Composites Symposium, Canberra, Australia,

10-13 December, pp. 9.

[87]. Coutts, R.S.P., 2005, “A review of Australian research into natural fibre

cement composites,” Cement and Concrete Composites, 27(5), pp.518-

526.

[88]. Foley, W. and Lassak, E., 2004,”The potential of bioactive constituents of

Eucalyptus foliage as non-wood products from plantations,” Rural

Industries Research and Development Corporation. Publication, 154, 4;

available online: http://www.rirdc.gov.au/reports/AFT/04-154.pdf.

[89]. Nishimura, H.; Noma, Y. and Mizutani, J., 1982, “ Eucalyptus as

biomass. Novel compounds from microbial conversion of 1, 8-Cineole,”

Agricultural and Biological Chemistry, 46(10), pp.2601-2604.

[90] Barton, A., 2007, “Industrial uses of eucalyptus oil. White Paper,”

available online: http://www.oilmallee.com.au/docs/BARTON.doc.

[91]. Ogunwande, I.A.; Olawore, N.O.; Schmidt, J.M.; Setzer, W.N.; Walker,

T.M.; Silifat, J.T.;Olaleye, O.N. and Aboaba, S.A., 2005, “In vitro

cytotoxicity activities of essential oils of Eucalyptustorreliana F. v. Muell

(leaves and fruits),” Journal of Essential Oil-Bearing Plants, 8(2), pp.110-

119.

[92]. Aaction Mulch, 2007, Inc., http://www.aactionmulch.com/.

[93]. Langholtz, M.; Carter, D.; Alavalapati, J. and Rockwood, D., 2007,”The

economic feasibility of reclaiming phosphate mined lands with short-

rotation woody crops in Florida,” J. For. Econ., 12(4), pp.237-249.

263

[94]. Rockwood, D.L.; Naidu, C.V.; Carter, D.R.; Rahmani, M.; Spriggs, T.;

Lin, C.; Alker, G.A.; Isebrands, J.G. and Segrest, S.A., 2004, “Short-

rotation woody crops and phytoremediation: Opportunities for

agroforestry? In New Vistas in Agroforestry, A Compendium for the 1st

World Congress of Agroforestry, Eds.: Nair, P.K.R., Rao, M.R., Buck,

L.E., Eds.; Kluwer Academic Publishers, Dordrecht, The Netherlands.

[95]. Langholtz, M.; Carter, D.R.; Rockwood, D.L.; Alavalapati, J.R.R. and

Green, A.E.S., 2005, “Effect ofdendroremediation incentives on the

profitability of short-rotation woody cropping of Eucalyptus grandis,”

Forest Policy and Economics, 7(5), pp.806-817.

[96]. O'Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, and

Delée W., 1999, “Colour in textile effluents - sources, measurement,

discharge consents and simulation: a review,” Journal of Chemical

Technology and Biotechnology, 74, pp.1009- 1018.

[97]. Willmott N, Guthrie J, and Nelson G., 1998, “The biotechnology approach

to colour removal from textile effluent,” J. Soc. Dyers. Colour., 114,

pp.38–41.

[98]. Robinson T, McMullan G, Marchant R, and Nigam, P., 2001,

“Remediation of dyes in textile effluent: a critical review on current

treatment technologies with a proposed alternative,” Bioresour. Technol.,

77, pp.247–255.

[99]. Borchert, M., and Libra, J.A., 2001, “Decolorization of reactive dyes by

the white rot fungus Trametes versicolor in sequencing batch reactors,”

Biotechnology and Bioengineering, 75, pp.313–321.

[100]. Beydilli, M.I., Pavlostathis, S.G. and Tincher, W.C., 1998,

“Decolorization and toxicity screening of selected reactive azo dyes under

methanogenic conditions,” Water Science and Technology, 38, pp.225-

232.

[101]. Zissi, U. and Lyberatos, G., 1996, “Azo dye biodegradation under anoxic

condition,” Water Sci. Technol., 34, pp.495-500.

[102]. Scheibner K, Hofrichter M, and Fritsche, W., 1997, “Mineralization of 2-

amino-4,6-dinitrotoluene by manganese peroxidaseof the white-rot fungus

Nematoloma frowardii,” Biotechnol. Lett., 19, pp.835 – 9.

264

[103]. Glenn JK, and Gold, MH.,1983, “Decolorization of several polymeric dyes

by the lignin-degrading basidiomycete Phanerochaete chrysosporium,”

Appl. Environ. Microbiol., 45, pp.1741 – 7.

[104]. Pasti-Grigsby, M.B., Paszczynski, A., Goszczynski, S., Crawford, D.L.,

and Crawford, R.L., 1992, “Influence of aromatic substitution patterns on

azo dye degradability by Streptomyces spp. and Phanerochaete

chrysosporium” Applied and Environmental Microbiology, 58, pp.3605–

3613.

[105]. Paszczynski A, Pasti-Grisgby MB, Gosczynski S, Crawford RL and

Crawford DL.,1992, “Mineralization of sulfonated azo dyes and sulfanilic

acid by Phanerochaete chrysosporium and Streptomyces chromofuscus,”

Appl. Environ. Microbiol., 58, pp.3598 – 604.

[106]. Spadaro, J.T., and Renganathan, V., 1994, “Peroxidase-catalysed

oxidation of azo dyes: mechanism of Disperse Yellow 3 degradation,”

Archives of Biochemistry and Biophysics, 312, pp.301–307.

[107]. Glenn JK, Akileswaran L, and Gold MH., 1986, “Mn(II) oxidation is the

principal function of the extracellular Mn-peroxidase from

Phanerochaete chrysosporium,” Arch. Biochem. Biophys., 251, pp.688 –

96.

[108]. Edens W.A., Goins T., Dooley D., and Henson J.M., 1999, “Purification

and characterization of a secreted laccase of Gaeumannomyces graminis

var. tritici,” Applied Environmental Microbiology, 65, pp.3071-3074.

[109]. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T.,

Nigam, P., Banat, I.M., Marchant, R. and Smyth, W.F., 2001, “Microbial

decolourisation and degradation of textile dyes,” Appl. Microbiol.

Biotechnol., 56, pp.81 -87.

[110]. Husain Q., 2006, “Potential applications of the oxidoreductive enzymes

in decolorization and detoxification of textile and other synthetic dyes

from polluted water: A review,” Crit. Rev. Biotech., 26, pp.201-221.

[111]. Whiteley, C.G. and Lee, D.J., 2006, “Enzyme technology and biological

remediation,” Enzyme Microb. Technol., 38, pp.291-316.

[112]. Fu, Y. and Viraraghavan, T., 2001, “Fungal Decolorization of dye

wastewaters: a review,” Bioresource Technol., 79, pp. 251-262.

265

[113]. Rai, H., M. Bhattacharya, J. Singh, T.K. Bansal, P. Vats and U.C.

Banerjee, 2005, “Removal of dyes from the effluent of textile and dyestuff

manufacturing industry: A review of emerging techniques with reference

to biological treatment,” Crit. Rev. Environ. Sci. Technol., 35, pp. 219-

238.

[114]. Sani R, Banerjee V., 1999, “Decolorization of triphenylmethane dyes and

textile dye stuff by Kurthia spp.,” Enzyme Microbiol. Technol., 24, pp.

433-437.

[115]. Kasikara Pazarlioglu, N., Ozturk Urek, R., Ergun, F., 2005,

“Biodecolorization of Direct Blue 15 by Immobilized Phanerochaete

chrysosporium,” Process Biochem., 40(5), pp.1923-1929

[116]. Wong, Y. and Yu, J., 1999, “Laccase catalyzed decolorization of synthetic

dyes” Water Res., 33, pp.3512-3520.

[117]. Peralta-Zamora, P., Pereira, C.M., Tiburtius, E. R.I., Moraes, S.G., Rosa,

M.A., Minussi, R.C. and Durán N., 2003, “Decolorization of reactive dyes

by immobilized laccase,” Appl. Catalysis., 42, pp.131-144.

[118]. Wesenberg, D., Kyriakides, I. and Agathos, S.N., 2003, “White-rot fungi

and their enzymes for the treatment of industrial dye effluents,”

Biotechnol. Adv., 22, pp.161-187.

[119]. WHO , 1989, Cypermethrin Environmental Health Criteria, 82.

[120]. Jin, H., and G.R.B. Webster., 1998, “Persistence, penetration, and surface

availability of cypermethrin and its major degradation products in elm

bark,” J. Agric. Food Chem., 46, pp.2851-2857.

[121]. Vijverberg, H.P.M., and J. van den Bercken., 1990, “Neurotoxicological

effects and the mode of action of pyrethroid insecticides,” Critical

Reviews in Toxicology. 21(2), pp.105-126.

[122]. Siegfried, B.D., 1993, “Comparative toxicity of pyrethroid insecticides to

terrestrial and aquatic insects” Environmental Toxicology and Chemistry,

12, pp.1683-1689.

[123]. S. Jilani and M. Altaf Khan., 2006, “Biodegradation of Cypermethrin by

Pseudomonas in a batch activated sludge process” Int. J. Environ. Sci.

Tech., 3 (4), pp. 371-380.

266

[124]. Q. S. Lin; S.H. Chen; M. Y. Hu; M. R. Ul Haq; L. Yang and H. Li., 2011,

“Biodegradation of cypermethrin by a newly isolated actinomycetes HU-

S-01 from wastewater sludge,” Int. J. Environ. Sci. Tech., 8 (1), pp.45-56.

[125]. A. G. Murugesan, T. Jeyasanthi and S. Maheswari., 2010, “Isolation and

characterization of cypermethrin utilizing bacteria from Brinjal cultivated

soil,” African Journal of Microbiology Research, 4(1), pp. 010-013.

[126]. Leontievsky A., Myasoedova N., Pozdnyakova N., and Golovleva, L.,

1997, “Yellow laccase of Panus tigrinus oxidizes non-phenolic substrates

without electron-transfer mediators,” FEBS Lett., 413(3), pp.446-448.

[127]. Kiiskinen, L.L. and Saloheimo, M., 2004, “Molecular cloning and

expression in Saccharomyces cerevisiae of a laccase gene from the

ascomycete Melanocarpus albomyces,” Appl. Environ. Microbiol., 70,

pp.137–144

[128]. W.G. Levine, 1965, Laccase, a review, In: The biochemistry of copper,

Academic Press Inc., New York, pp.371-385.

[129]. Huttermann, A., Mai, C., and Kharazipour, A., 2001, “Modification of

lignin for the production of new compounded materials”, Applied

Microbiology and Biotechnology, 55, pp. 387–394.

[130]. O´Malley D., Whetten R., Bao W., Chen C., and Sederoff R., 1993, “The

role of laccase in lignifications,” Plant J., 4, pp. 751-757.

[131]. Ranocha P., McDougall G., Hawkins S., Sterjiades R., Borderies G., and

Stewart D., 1999, ‘Laccase Down-Regulation Causes Alterations in

Phenolic Metabolism and Cell Wall Structure in Poplar,” Eur. J. Biochem.,

259, pp. 485-495.

[132]. Wosilait, W. D., Nason, A., and Terrell, A. J., 1954, “Pyridine nucleotide-

quinone reductase. II. Role in electron transport,” Jour. Biol. Chem., 206,

pp.271- 282.

[133]. Gregory RP, Bendall DS., 1966, “The purification and some properties of

the polyphenol oxidase from tea (Camellia sinensis L.),” Biochem

J., 101(3), pp.569–581.

[134]. Dean, J. F. D., and KE. L. Eriksson., 1994, “Laccase and the deposition of

lignin in vascular plants,” Holzforschung, 48, pp.21–33.

[135]. Assavanig, B. Amornkitticharoen, N. Ekpaisal, V. Meevootisom, and T.

W. Flegel., 1992, “Isolation, characterization and function of laccase from

267

Trichoderma sp.,” Applied Microbiology and Biotechnology, 38(2), pp.

198–202.

[136]. Rodríguez Couto S, and Toca Herrera JL., 2006, “ Industrial and

biotechnological applications of laccases: a review,” Biotechnol. Adv.,

24(5), pp.500-13.

[137]. G. D. Thakker, C. S. Evans, and K. K. Rao., 1992, “Purification and

characterization of laccase from Monocillium indicum Saxena,” Applied

Microbiology and Biotechnology, 37(3), pp. 321–323.

[138]. Bourbeau P, McGough DA, Fraser H, Shah N, and Rinaldi, MG., 1992,

“Fatal disseminated infection caused by Myceliophthora thermophila, a

new agent of mycosis; case history and laboratory characteristics,” J.Clin.

Microbiol., 30, pp.3019-3023.

[139]. Farina C, Gamba A., Tambini R., Benguin H., and Trouillet, J., 1998,

“Fatal aortic Myceliophthora thermophila infection in a patient affected by

cystic medial necrosis,” Med. Mycol., 36, pp.113-118.

[140]. Olempska Beer, 2004, “Laccase from Myceliophthora thermophila

expressed in Aspergillus oryzae,” Chemical and Technical Assessment

(Cta), Chemical and Technical Assessment, 61st JECFA. FAO.

[141]. Mikiashvil i, N., Elisashvili , V.; Wasser, S. and Nevo, E., 2005, “Carbon

and nitrogen sources influences the lignolytic enzyme activity of

Trametes versicolor,” Biotechnology Letters, 27, pp. 955-959.

[142]. Galhaup C, Wagner H, Hinterstoisser B, and Haltrich, D., 2002,

“Increased production of laccase by the wood-degrading basidiomycete

Trametes pubescens,” Enzyme Microbial Technol., 30, pp. 529-536

[143]. Rodríguez Couto S., Rosales E., and Sanromán M.A., 2006,

“Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed

reactors,” Chemosphere, 62, pp.1558-1563.

[144]. Dong J., Zhang Y., Zhang R., Huang W., and Zhang Y., 2005, ‘Influence

of culture conditions on laccase production and isozyme patterns in the

white-rot fungus Trametes gallica,” J. Basic. Microb., 45, pp. 190– 198.

[145]. Gulden G, Stensrud O, Shalchian-Tabrizi K, and Kauserud H, 2005,

“Galerina Earle: A polyphyletic genus in the consortium of dark-spored

agarics,” Mycologia, 97, pp. 823-837

268

[146]. Diamantidis G, Effosse A, Potier P, and Bally R., 2000, “Purification and

characterization of the first bacterial laccase in the rhizospheric bacterium

Azospirillum lipoferum,” Soil Biol. Biochem., 32, pp. 919-927.

[147]. Martins, L. O., C. M. Soares, M. M. Pereira, M. Teixeira, T. Costa, G. H.

Jones, and A. O. Henriques., 2002, “Molecular and biochemical

characterization of a highly stable bacterial laccase that occurs as a

structural component of the Bacillus subtilis endospore coat,” J. Biol.

Chem., 277, pp.18849-18859.

[148]. Suzuki, T., K. Endo, M. Ito, H. Tsujibo, K. Miyamoto, and Y. Inamori.,

2003, “A thermostable laccase from Streptomyces lavendulae REN-7:

purification, characterization, nucleotide sequence, and expression,”

Biosci. Biotechnol. Biochem., 67, pp.2167-2175.

[149]. M. E. Arias, M. Arenas, J. Rodr íguez, J. Soliveri, A. S. Ball, and M.

Hernández., 2003, “Kraftpulp biobleaching and mediated oxidation of a

nonphenolic substrate by laccase from Streptomyces cyaneus CECT

3335,” Applied and Environmental Microbiology, 69(4), pp. 1953–1958.

[150]. N. Jimenez-Juarez, R. Roman-Miranda, A. Baeza, A. Sánchez-Amat, R.

Vazquez-Duhalt, and B. Valderrama, 2005, “Alkali and halide-resistant

catalysis by the multipotent oxidase from Marinomonas mediterranea,”

Journal of Biotechnology, 117(1), pp. 73–82.

[151]. Alexandre G. and Bally R., 1999, “Emergence of laccase-positive variant

of Azospirillum lipoferum occurs via a two-step phenotypic switching

process,” FEMS Microbiol. Lett., 174, pp.371–378.

[152]. Endo K. Hosono K., Beppu T. and Ueda K., 2002, “A novel

extracytoplasmatic phenol oxidase of Streptomyces: its possible

involvement in the onset of morphogenesis,” Microbiology, 148, pp.

1767–1776.

[153]. Givaudan A., Effosse A., Faure D., Potier P., Bouillant M.L. and Bally R.,

1993, “Polyphenol oxidase in Azospirillum lipoferum isolated from rice

rhizosphere: evidence for laccase activity in non-motile strains of

Azospirillum lipoferum,” FEMS Microbiol. Lett., 108, pp. 205–210.

[154]. Hullo M.F., Moszer I., Danchin A. and Martín Verstraete I., 2001, “CotA

of Bacillus subtilis is a copper-dependent laccase,” J. Bacteriol., 183,

pp.5426–5430.

269

[155]. Sánchez-Amat A., Lucas-Elío P., Fernández E., García-Borrón J.C. and

Solano F., 2001, “Molecular cloning and functional characterization of a

unique multipotent polyphenol oxidase from Marinomonas

mediterranea,” Biochim. Biophys. Acta., 1547, pp. 104–116.

[156]. Solano F., Lucas-Elío P., López-Serrano D., Fernández E. and Sánchez-

Amat A., 2001, “Dimethoxyphenol oxidase activity of different microbial

blue multicopper proteins,” FEMS Microbiol. Lett., 204, pp. 175–181.

[157]. Shi, J.: CN1844572 A (2006).

[158]. Dwivedi UN, Singh P, Pandey VP, and Kumar A, 2011, “Structure-

function relationship among bacterial, fungal and plant laccases,” J. Mol.

Catal. B: Enzym., 68, pp. 117-128.

[159]. D.S. Yaver, R.M. Berka, S.H. Brown and F. Xu., 2001, The

presymposium on recent advances in lignin biodegradation and

biosynthesis, Vikki Biocentre, University of Helsinki, Finland, 3-4 June,

pp.40.

[160]. Eggert, C., U. Temp, and K. L. Eriksson., 1996, “The ligninolytic system

of the white rot fungus Pyncoporus cinnabarinus: purification and

characterization of the laccase,” Appl. Environ. Microbiol., 62, pp.1151–

1158.

[161]. Zhiyu Liu, Dongxu Zhang, Zhaozhe Hua, Jianghua Li, Guocheng Du, and

Jian Chen., 2009, “Improvement of laccase production and its properties

by lowering ion implantations,” Bioprocess Biosyt. Eng., 31, 291- 4.

[162]. P. Keyser, T.K. Kirk and J.G. Zeikus., 1978, “Ligninolytic enzyme system

of Phanaerochaete chrysosporium: synthesized in the absence of lignin in

response to nitrogen starvation,” Journal of Bacteriology, 135, pp.790-797.

[163]. Stajic, M., L. Persky, D. Friesem, Y. Hadar, S. P. Wasser, E. Nevo and J.

Vukojevic., 2006, “Effect of different carbon and nitrogen sources on

laccase and peroxidases production by selected Pleurotus species,”

Enzyme Microbiol. Technol., 38, pp.65–73.

[164]. Leonowicz A., Matuszewska A., Luterek J., Ziegenhagen D., Wojtas-

Wasilewska M., Cho N.S., Hofrichter M., and Rogalski J., 1999,

“Biodegradation of lignin by white rot fungi,” Fungal Genetics and

Biology, 27, pp.175-185.

270

[165]. In-Young L., Kyung-Hee J., Choong-Hwan L. and Young-Hoon P., 1999,

“Enhanced production of laccase in Trametes vesicolor by the addition of

ethanol,” Biotechnology Letters., 21, pp. 965–968.

[166]. Kuwahara, M., Glenn, K., Morgan, M.A and Gold, M.H., 1984, “Sepa

r a t ion and characterization of two extracellular H202-dependent

oxidases from ligninolytic cultures of Phanerochaete chrysosporium,”

FEBS Lett., 169, pp.247-250.

[167]. Riva S, 2006, “Laccases: blue enzyme for green chemistry,” Trends

Biotechnol., 24, pp.219-226.

[168]. Palmieri, G., P. Giardina, C. Bianco, A. Scaloni, A. Capasso, and G.

Sannia., 1997, “A novel white laccase from Pleurotus ostreatus,” J. Biol.

Chem., 272, pp.31301-31307.

[169]. Faure D., Bouillant M., and Bally R., 1994, “Isolation of Azospirnllum

lipoferum 4T TnS Mutants Affected in Melanization and Laccase

Activity,” Appl. Environ. Microb., 60, pp. 3413-3415.

[170]. Held C, Kandelbauer A, Schroeder M, Cavaco-Paulo A, and Guebitz GM,

2005, “Biotransformation of phenolics with laccase containing bacterial

spores,” Environ. Chem. Lett., 3, pp.74-77.

[171]. Sharma, P., Goel, R., andx Capalash, N., 2007, “Bacterial laccases,”

World J. Microbiol. Biotechnol., 23, pp. 823-832.

[172]. Durão P., Bento I., Fernandes A., Melo E., Lindley P., and Martins, L.,

2006, “Perturbations of the T1 copper site in the CotA laccase from

Bacillus subtilis: structural, biochemical, enzymatic and stability studies,”

J. Biol. Inorg. Chem., 11, pp. 514-526.

[177]. Dawkar, V.V., U.U. Jadhav, M.U. Jadhav, A.N. Kagalkar and S.P.

Govindwar, 2010, “Decolorization and detoxification of sulphonated azo

dye Red HE7B by Bacillus sp. VUS,” World J. Microbiol. Biotechnol., 26,

pp. 909-916.

[178]. Jadhav JP, Kalyani DC, Telke AA., Phugare SS, and Govindwar SP, 2010,

“Evaluation of the efficacy of a bacterial consortium for the removal of

color, reduction of heavy metals, and toxicity from textile dye effluent,”

Bioresour. Technol., 101, pp.165-173.

[179]. K. Li, F. Xu, and K.E. L. Eriksson, 1999, “Comparison of fungal laccases

and redox mediators in oxidation of a nonphenolic lignin model

271

compound,” Applied and Environmental Microbiology, 65(6), pp. 2654–

2660.

[180]. Pickard, M. A. and Hashimoto, A., 1982, “Isoenzymes of

chloroperoxidase from Caldariomyces fumago,” Canadian Journal of

Microbiology, 28, pp.1382-1 388.

[181]. Call, H.P. and Mücke, I., 1997, “ History, overview and applications of

mediated lignolytic systems, especially laccase-mediator-systems

(Lignozym®-process),” Journal of Biotechnology, 53(2-3), pp. 163-202.

[182]. S.V. Shleev, O.V. Morozova, O.V. Nikitina, E.S. Gorshina, T.V.

Rusinova, V.A. Serezhenkov, D.S. Burbaev,I.G. Gazaryan and A.I.

Yaropolov, 2004, “Comparison of physico-chemical characteristics of four

laccases from different basidiomycetes,” Biochimie., 86, pp. 693–703.

[183]. K. Piontek, M. Antorini, and T. Choinowski., 2002, “Crystal structure of a

laccase from the fungus Trametes versicolor at 1.90-Å resolution

containing a full complement of coppers,” Journal of Biological

Chemistry, 277(40), pp. 37663–37669.

[184]. Claus, H., 2004, “Laccases: structure, reactions, distribution,” Micron.,

35(1-2), pp. 93-6.

[185]. Kunamneni A, Ghazi I, Camarero S, Ballesteros A, Plou F, and Alcalde

M., 2008, “Decolorization of synthetic dyes by laccase immobilized on

epoxy-activated carriers,” Process Biochem., 43(2), pp. 169–173.

[186]. Terrazas Enrique, 2005, Fungal Redox Enzymes Involved in the Oxidation

of Organic Pollutants. Biotechnology (LTH), Lund University. ISBN: 91-

89627-43-1. ISRN: LUTKDH/TKBT--05/1096—SE.

[187]. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., and

Sannia, G., 2010, “ Laccases: a never-ending story,” Cell. Mol. Life Sci.,

67, pp.369–385

[188]. Andréasson L.E., Brändén R. and Reinhammar, B., 1976, “Kinetic studies

of Rhus vernicifera laccase. Evidence for multi-electron transfer and an

oxygen intermediate in the reoxidation reaction,” Biochimica et

Biophysica Acta, 438, pp. 370-379.

[189]. Youn, H. D., K. J. Kim, J. S. Maeng, Y. H. Han, I. B. Jeong, G. Jeong, S.

O. Kang, and Y. C. Hah., 1995, “Single electron transfer by an

272

extracellular laccase from the white rot fungus Pleurotus ostreatus,”

Microbiology, 141, pp.393– 398.

[190]. Bertrand T., Jolivalt C., Briozzo P., Caminade E., Joly N., Madzak C., and

Mougin C., 2002, “Crystal structure of a four-copper laccase complexed

with an arylamine: Insights into substrate recognition and correlation with

kinetics.,” Biochemistry, 41, pp. 7325–7333.

[191]. Piontek K, Antorini M, and Choinowski, T., 2002, “Crystal structure of a

laccase from the fungus Trametes versicolor at 1.90-Å resolution

containing a full complement of coppers,” Journal of Biological

Chemistry, 277, pp. 37663-37669.

[192]. Antorini M, Herpoel-Gimbert I, Choinowski T, Sigoillot JC, Asther M,

Winterhalter K, and Piontek K., 2002. “Purification, crystallisation and X-

ray diffraction study of fully functional laccases from two ligninolytic

fungi,” Biochemistry and Biophysics Acta, 1594 (1), pp. 109–114.

[193]. Hakulinen N., Kiiskinen L.L., Kruus K., Saloheimo M., Paananen A.,

Koivula A., and Rouvinen J., 2002, “ Crystal structure of a laccase from

Melanocarpus albomyces with an intact trinuclear copper site,” Nature

Structural and Molecular Biology, 9, pp.601–605.

[194]. Garavaglia S., Cambria M.T., Miglio M., Ragusa S., Lacobazzi V.,

Palmieri F., D’Ambrosio C., Scaloni A., and Rizzi M., 2004, “The

structure of Rigidoporus lignosus laccase containing a full complement of

copper ions reveals an asymmetrical arrangement for the T3 copper pair,”

Journal of Molecular Biology, 342, pp. 1519-1531.

[195]. Ducros V., Brzozowski A.M., Wilson K.S., Brown S.H., Ostergaard P.,

Schneider P., Yaver D.S., Pedersen A.H., and Davies G.J., 1998, “Crystal

structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2

angstrom resolution,” Nature Structural & Molecular Biology, 5, pp.310–

316.

[196]. Enguita F.J., Martins L.O., Henriques A.O., and Carrondo, M.A., 2003,

“Crystal structure of a bacterial endospore coat component – a laccase

with enhanced thermostability properties,” Journal of Biological

Chemistry, 278 , pp.19416–19425.

[197]. Enguita F.J., Marcal D., Martins L.O., Grenha R., Henriques A.O.,

Lindley P.F., and CarrondoM.A., 2004, “Substrate and dioxygen binding

273

to the endospore coat laccase from Bacillus subtilis,” Journal of

Biological Chemistry, 279, pp.23472–23476.

[198]. M. Heinzkill, L. Bech, T. Halkier, P. Schneider, and T. Anke, 1998,

“Characterization of laccases and peroxidases from wood-rotting fungi

(family Coprinaceae),” Applied and Environmental Microbiology, 64(5),

pp. 1601–1606.

[199]. F. Xu., 1997, “Effects of Redox Potential and Hydroxide Inhibition on the

pH Activity Profile of Fungal Laccases,”Journal of Biological Chemistry,

272(20), pp. 924 –928.

[200]. A. M. Farnet, S. Criquet, S. Tagger, G. Gil, and J. Le Petit, 2000,

“Purification, partial characterization, and reactivity with aromatic

compounds of two laccases from Marasmius quercophilus strain 17,”

Canadian Journal of Microbiology, 46(3), pp. 189–194.

[201]. Ruiz, A.I., Malavé, A.J., Felby, C. and Grielbenow, K., 2000, “ Improved

activity and stability of an immobilized recombinant laccase in organic

solvents,” Biotechnol. Lett., 22, pp. 229-233.

[202]. Palmieri G., Giadina P., Desiderio B., Marzullo L., Giamberini M., and

Sannia G., 1994, “A new enzyme immobilization procedure using copper

alginate gel: Application to a fungal phenol oxidase,” Enzyme

Microbiology and Technology, 16(2), pp.151-158.

[203]. G. S. Nyanhongo, J. Gomes, G. Gübitz, R. Zvauya, J. S. Read, and W.

Steiner,1998, “Production of laccase by a newly isolated strain of

Trametes modesta,” Bioresource Technology, 84(3), pp. 259–263.

[204]. Han M., Choi H. and Song H., 2004, “Degradation of phenanthrene by

Trametes versicolor and its laccase,” Journal of Microbiology, 42 (2), pp.

94-98.

[205]. J. M. Bollag and A. Leonowicz, 1984, “Comparative studies of

extracellular fungal laccases,” Applied and Environmental Microbiology,

48(4), pp. 849–854.

[206]. M. Luisa, F.C., Goncalves and W. Steiner, 1996, Use of laccase for

bleaching of pulps and treatment of effluents. In Enzymes For Pulp and

Paper Processing (Ed. T.W. Jeffries and IL. Viikari, American Chemical

Society,Washington, USA,, pp. 197-206.

274

[207]. A.M.V. Garzillo, M.C. Colao, , C. Caruso, C. Caporale, D. Celletti and V.

Buonocore, 1998, “Laccase from the white-rot fungus Trametes trogii,”

Applied Microbiology and Biotechnology , 49, pp.545-551.

[208]. Archibald, F.S., Bourbonnais, R., Jurasek, L., Paice, M.G. and Reid, I.D.,

1997, “Kraft pulp bleaching and delignification by Trametes versicolor,”

J. Biotechnol., 53, pp. 215-236.

[209]. Galhaup, C and D. Haltrich, 2001, “Enhanced formation of laccase activity

by the white-rot fungus Trametes pubescens in the presence of copper,”

Applied Microbiology and Biotechnology, 56(1-2), pp. 225–232.

[210]. I. Robene-Soustrade and B. Lung-Escarmant, 1997, “Laccase isoenzyme

patterns of European Armillaria species from culture filtrates and infected

woody plant tissues,” European Journal of Forest Pathology, 27(2), pp.

105–114.

[211]. R. Bourbonnais, M. Paice, I. Reid, P. Lanthier and M. Yaguchi, 1995,

“Lignin Oxidation by Laccase Isozymes from Trametes versicolor and

Role of the Mediator 2,29-Azinobis(3-Ethylbenzthiazoline-6-Sulfonate) in

Kraft Lignin Depolymerization,” Applied and Environmental

Microbiology, 61(5), pp. 1876–1880.

[212]. M. C. Monteiro and M. E. A. De Carvalho, 1998, “Pulp bleaching using

laccase from Trametes versacolor under high temperature and alkaline

conditions,” Applied Biochemistry and Biotechnology, 70–72(1), pp. 983–

993.

[213]. V. Faraco, P. Giardina, G. Palmieri, and G. Sannia, 2002, “Metal-activated

laccase promoters,” Progress in Biotechnology, 21(6), pp. 105–111.

[214]. D. Schlosser, R. Grey, and W. Fritsche, 1997, “Patterns of ligninolytic

enzymes in Trametes versicolor. Distribution of extra- and intracellular

enzyme activities during cultivation on glucose, wheat straw and beech

wood,” Applied Microbiology and Biotechnology, 47(4), pp. 412– 418.

[215]. S. C. Froehner and K. E. Eriksson, 1974, “Purification and properties of

Neurospora crassa laccase,” Journal of Bacteriology,120(1), pp. 458–465.

[216]. Pandey A., Selvakumar P., Soccol C.R., and Nigam, P., 1999, “Solid state

fermentation for the production of industrial enzymes,” Current Sciences

India, 77, pp.149–162.

275

[217]. Viniegra-González G., Favela-Torres E., Noe Aguilar C., de Jesús

Romero-Gómez J., Díaz-Godínez G.,and Augur C., 2003, “Advantages of

fungal enzyme production in solid state over liquid fermentation systems,”

Biochemical Engineering Journal, 13, pp. 157–167.

[218]. Castilho L.R., Polato C.M.S., Baruque E.A., Sant’Anna Jr. G.L., and

Freire D.M.G., 2000, “Economic analysis of lipase production by

Penicillium restrictum in solid-state and submerged fermentations,”

Biochemical Engineering Journal, 4, pp.239-247.

[219]. Pandey A., Selvakumar P., Soccol C.R., and Nigam, P., 1999, “Solid state

fermentation for the production of industrial enzymes,” Current Sciences

India, 77, pp.149–162.

[220]. Ardon, O., Kerem, Z. and Hadar, Y., 1996, “Enhancement of the laccase

activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by

cotton stalk extract,” Journal of Biotechnology, 51, pp.201-207.

[221]. Kahraman, S.S. and Gurdal, I.G., 2002, “Effect of synthetic and natural

culture media on laccase production by white rot fungi,” Bioresource

Technology, 82, pp.215-217.

[222]. Souza, C., Zilly, A. and Peralta, R., 2002, “Production of laccase as the

sole phenoloxidase bya Brazilian strain of Pleurotus pulmonarius in solid

state fermentation,” Journal of Basic Microbiology, 42, pp.83-90

[223]. Couto, S.R., Maria, G., Miriam, L. and Sanroman, M.A., 2002, “Screening

of supports and inducers for laccase production by Trametes versicolor in

semi-solid-state conditions,” Process Biochemistry, 38, pp. 249-255.

[224]. Risna, R.A. and Suhirman, 2002, “Ligninolytic enzyme production by

Polyporeceae from Lombok, Indonesia,” Fungal Diversity, 9, pp. 123-134.

[225]. Collins PJ, and Dobson, ADW., 1997, “Regulation of laccase gene

transcription in Trametes versicolor,” Appl. Environ. Microbiol., 63,

pp.3444–3450.

[226]. Arora, D.S. and Rampal, M.C., 2000, “Wheat straw degradation by some

white rot fungi and there related enzymes,” Proceeding of 41st Annual

Conference of Association of Microbiologists of India, pp.158-62.

[227]. Daljit S. Arora Dr., and Poonam Rampal, 2002, “Laccase production by

some Phlebia species,” Journal of Basic Microbiology, 42(5), pp. 295–

301.

276

[228]. Mansur M., Suarez T., Fernández-Larrea J.B., Brizuela M.A., and

González A.E., 1997, “Identification of a laccase gene family in the new

lignin-degrading basidiomycete CECT 20197,” Appl. Environ. Microbiol.,

63, pp. 2637–2646.

[229]. N. Mikiashvili, S. Wasser, E. Nevo, D. Chichua and V. Elisashvili, 2004,

“Lignocellulolytic enzyme activities of medicinally important

basidiomycetes from different ecological niches,” Int. J. Med. Mushr., 6,

pp. 63-71.

[230]. Bettin, F., Montanari, Q., Calloni, R., Gaio, T. A., Silveira, M. M. and

Dillon, A. J. P., 2009, “Production of laccases in submerged process by

Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen

sources, antifoams and ween 80,” Journal of Industrial Microbiology and

Biotechnology, 36, pp. 1-9.

[231]. Ravankar, M.S. and Lele, S.S., 2006, “Enhanced production of laccase

using a new isolate of white-rot fungus WR-1,” Process Biochemistry, 41,

pp.581-58.

[232]. Elisashvili, V., Kachlishvili, E., and Penninckx, M., 2008, “Effect of

growth substrate, method of fermentation, and nitrogen source on

lignocellulose-degrading enzymes production by white-rot

basidiomycetes,” J. Ind. Microbiol. Biotechnol., 35, pp.1531–1538

[233]. Moldes D, Lorenzo M, and Sanroman, MA., 2004, “Different proportions

of laccase isoenzymes produced by submerged cultures of Trametes

versicolor frown on lignocellulosic waste,” Biotechnol. Lett., 26, pp.327-

330.

[234]. Lee JS, Lim MO, Cho KY, Cho JH, Chang SY, and Nam, DH., 2006,

“Identification of medicinal mushroom species based on nuclear large

subunit rDNA sequences,” J. Microbiol., 44, pp. 29-34.

[235]. Monteiro, M. C., and M. E. A. De Carvalho, 1998, “Pulp bleaching using

laccase from Trametes versacolor under high temperature and alkaline

conditions,” Applied Biochemistry and Biotechnology, 70–72, pp. 983-88.

[236]. Buswell, J. A., Y. Cai, and S. T. Chang, 1995, “Effect of nutrient nitrogen

and manganese on manganese peroxidase and laccase production by

Lentinula (Lentinus) edodes,” FEMS Microbiology Letters,128(1), pp. 81–

88.

277

[237]. Elishashvili, V., H. Parfar, E. Kachlishvili, D. Chichua, M. Bakradze and

N. Kokhreidze, 2011, Advances in Food Science 23, pp.117.

[238]. D’Souza, D.T., Tiwari, R., Sah, A.K. and Raghukumar, C., 2006,

“Enhanced production of laccase by a marine fungus during treatment of

colored effluents and synthetic dyes,” Enzyme Microb. Technol., 38,

pp.504-511.

[239]. Prasad, K.K., S. Venkata Mohan, R. Sreenivas Rao, P. Ranjan Bikas, and

P.N. Sarma., 2005, “Laccase production by Pleurotus ostreatus 1804:

Optimization of submerged culture conditions by Taguchi DOE

methodology,” Biochem. Eng. J., 24, pp.17-26.

[240]. Elisashvili, V.; Penninckx, M.; Kachlishvili, E.; Tsiklauri, N.; Metreveli,

E.; Kharziani, T.; Kvesitadze, G., 2008, “Lentinus edodes and Pleurotus

species lignocellulolytic enzymes activity in submerged and solid-state

fermentation of lignocellulosic wastes of different composition,”

Bioresouce Technology, 99, pp.457-462.

[241]. Buswell, J.A. and E. Odier, 1987, “Lignin biodegradation,” Crit. Rev.

Biotechnol., 6, pp. 1-60.

[242]. Buswell JA, Cai Y, and Chang S., 1995, “Effect of nutrient nitrogen and

manganese on manganese peroxidase and laccase production by

Lentinela (Lentinus) edodes,” FEMS Microbiol. Lett., 128, pp. 81-88

[243]. Lee IY, Jung KH, Lee CH, Park YH., 1999, “Enhanced production of

laccase in Trametes versicolor by the addition of ethanol,” Biotechnol.

Lett., 21, pp.965–8.

[244]. Bollag J.M., and Leonowicz A., 1984, “Comparative studies of

extracellular fungal laccases,” Appl. Environ. Microbiol,, 48, pp. 849–854.

[245]. A.M.R.B. Xavier, D.V. Evtuguin, R.M.P. Ferreira and F.L. Amado, 2001,

Laccase production for lignin oxidative activity. Proceedings of the 8th

International Conference on Biotechnology in the Pulp and Paper Industry,

4-8 June, Helsinki, Finland.

[246]. Marbach, I., Harel, E. and Mayer, A.M., 1985, “Pectin, a second product

for laccase production by Botrytis cinerea,” Phytochemistry, 24(11),

pp.2559-2561.

278

[247]. Farnet, A.M., S. Tagger, and J. Le Petit., 1999, “Effects of copper and

aromatic inducers on the laccases of the white-rot fungus Marasmius

quercophilus. C. R.,” Acad. Sci. Ser. III Life Sci., 322, pp.499–503.

[248]. Dekker R.F.H., and Barbosa A.M., 2001, “The effects of aeration and

veratryl alcohol on the production of two laccases by the ascomycete

Botryosphaeria sp.,” Enzyme and Microbial Technology, 28, pp. 81–88.

[249]. A. M. Barbosa, R. F. H. Dekker, and G. E. St. Hardy,1996, “Veratryl

alcohol as an inducer of laccase by an ascomycete, botryosphaeria sp.,

when screened on the polymeric dye poly R-478,” Letters in Applied

Microbiology,23(2), pp. 93–96.

[250]. C. Eggert, U. Temp, J. F. D. Dean, and K. E. L. Eriksson, 1996, “A fungal

metabolite mediates degradation of non-phenolic lignin structures and

synthetic lignin by laccase,” FEBS Letters, 391(1-2), pp. 144–148.

[251]. Eggert C., Temp U., and Eriksson K.E., 1996, “The ligninolytic system of

the white rot fungus Pycnoporus cinnabarinus: purification and

characterization of the laccase,” Appl. Environ. Microbiol., 62, pp.1151–

1158.

[252]. Skorobogatko O.V., Stepanova E.V., Gavrilova V.P., and Yaropolov A.I.,

1996, “Effects of inducers on the synthesis of extracellular laccase by

Coriolus hirsutus, a basidial fungus,” Prikl. Biokhim. Mikrobiol., 32,

pp.545–548.

[253]. Koroljova Skorobogatko O.V., Stepanova E.V., Gavrilova V.P., Morozova

O.V., Lubimova N.V., Dzchafarova A.N., Jaropolov A.I. and Makower A.,

1998, “Purification and characterization of the constitutive form of laccase

from the basidiomycete Coriolus hirsutus and effect of inducers on laccase

synthesis,” Biotechnol. Appl. Biochem., 28, pp.47–54.

[254]. Rescigno A., Sollai F., Curreli N., Rinaldi A., and Sanjust E., 1993, “An

extracellular laccase from Pleurotus sajor-caju,” Ital. J. Biochem., 42,

pp.227A–228A.

[255]. Farnet A.M., Criquet S., Cigna M., Gil G., and Ferré E., 2004,

“Purification of a laccase from Marasmius quercophilus induced with

ferulic acid: reactivity towards natural and xenobiotic aromatic

compounds,” Enzyme and Microbial Technology, 34, pp. 549–554.

279

[256]. I. Y. Lee, K. H. Jung, C. H. Lee, and Y. H. Park, 1999, “Enhanced

production of laccase in Trametes vesicolor by the addition of ethanol,”

Biotechnology Letters, 21(11), pp. 965–968.

[257]. Alves A.M.C.R., Record E., Lomascolo A., Scholtmeijer K., Asther M.,

Wessels J.G.H. and Wösten H.A.B., 2004, “Highly efficient production of

laccase by the basidiomycete Pycnoporus cinnabarinus,” Applied and

Environmental Microbiology, 70(11), pp. 6379–6384.

[258]. S.X.F. Lu, C.L. Jones and G.T. Lonergan, 1996, “Correlation between

fungal morphology and laccase expression under the influence of

cellobiose induction,” Proceedings of the 10th International Biotechnology

symposium and 9th International Symposium on yeasts; Sydney,

Australia, Poster session 1.

[259]. J.F. Osma, V. Saravia, J.L.T. Herrera and S.R. Couto, 2007, “Mandarin

peelings: the best carbon source to produce laccase by static cultures of

Trametes Pubescences,” Chemosphere, 67, pp.1677.

[260]. Xing, Z.T., J. H. Cheng and Q. Tan., 2006, “Effect of nutritional

parameters on laccase production by the culinary and medicinal

mushroom,” Grifola frondosa. World J. Microbiol. Biotechnol., 22,

pp.1215-1221

[261]. Marques De Souza, C.G., Tychanowicz, G.K., De Souza, D.F. and Peralta,

R.M., 2004,“Production of laccase gene family from Basidiomycete I-62

(CECT20197),” Appl. Environ. Microbiol., 64, pp.771-774.

[262]. De la Rubia, T., Lucas, M., Martínez, J., 2008, “Controversial role of

fungal laccases in decreasing the antibacterial effect of olive mill waste-

waters,” Bioresour Technol., 99, pp.1018–1025.

[263]. Xiang Lu and Shaojun Ding, 2010, “Effect of Cu2+, Mn2+ and aromatic

compounds on the production of laccase isoforms by Coprinus comatus,”

Mycoscience, 51(1), pp.68-74 .

[264]. Dhawan, S. and Kuhad, R.C., 2002, “Effect of amino acids and vitamins

on laccase production by the bird’s nest fungus Cyathus bulleri,” Biores.

Technol., 84, pp.35-38.

[265]. Dhawan, S., Lal, R., Hanspal, M. and Kuhad, R.C., 2005, “Effect of

antibiotics on growth and laccase production from Cyathus bulleri and

Pycnoporus cinnabarinus,” Biores. Technol., 96, pp.1415-1418.

280

[266]. Palmieri G., Giardina P., Bianco C., Fontanella B. and Sannia G., 2000,

“Copper Induction of laccase isoenzymes in the ligninolytic fungus

Pleurotus ostreatus,” Applied and Environmental Microbiology, 66(3), pp.

920–924.

[267]. Dominguez A, Gomez J, Lorenzo M and Sanroman A., 2007, “Enhanced

production of laccase activity by Trametes versicolor immobilized into

alginate beads by the addition of different inducers,” World Journal of

Microbiology and Biotechnology, 23, pp.367-373.

[268]. P. Tong, Y. Hong, Y. Xiao, M. Zhang, X. Tu, and T. Cui, 2007, “High

production of laccase by a new basidiomycete,” Biotechnology Letters,

29(2), pp. 295–301.

[269]. Rosales E., Rodríguez Couto S. and Sanromán A., 2002, “New uses of

food waste: application to laccase production by Trametes hirsutae,”

Biotechnology Letters, 24, pp.701–704.

[270]. Winquist, E., Moilanena, U., Mettäläb, A., Leisolaa, M., Hatakka, A.,

2008, “Production of ligninmodifying enzymes on industrial waste

material by solid-state cultivation of fungi,” BiochemicalEngineering

Journal, 42, pp.128-132.

[271]. Osma, J.F., Herrera, J.L.T, and Couto, S.R., 2007, “Banana skin: A novel

waste for laccase production by Trametes pubescens under solid-state

conditions Application to synthetic dye decolouration,” Dyes and

Pigments, 75, pp.32-37.

[272]. Rodríguez Couto S., and Sanromán MA., 2005, “Application of solid-state

fermentation to ligninolytic enzyme production,” Biochemical Engineering

Journal, 22, pp.211-219.

[273]. Font X., Caminal G., Gabarrell X., Romero S., and Vicent M.T., 2003,

“Black liquor detoxification by laccase of Trametes versicolor pellets,”

Journal of Chemical Technology & Biotechnology, 78, pp.548–554.

[274]. Tavares A.P.M., Coelho M.A.Z., Agapito M.S.M., Coutinho J.A.P., and

Xavier A.M.R.B., 2006, “Optimization and modeling of laccase

production by Trametes versicolor in a bioreactor using statistical

experimental design,” Applied Biochemistry and Biotechnology, 134,

pp.233–48.

281

[275]. Box GEP, Hunter JS., 1957, “Multifactor experimental design 27 for

exploring the response surfaces,” Ann. Math. Stat., 28, pp. 195-242.

[275]. Rodríguez Couto S., López E., and Sanromán M.A., 2006, “Utilisation of

grape seeds for laccase production in solid-state fermentors,” Journal of

Food Engineering, 74, pp.263–267.

[276]. Gómez, J., Pazos, M., Couto, S.R., and Sanromán, R.A., 2005, “Chestnut

shell and barley bran as potential substrates for laccase production by

Coriolopsis rigida under solid-state conditions,” Journal of Food

Engineering, 68, pp.315–319.

[277]. Annuar, M.S.M, Sammantha, S., Murthy, and Sabanatham, V., 2010,

“Laccase production from oil palm industry solid waste: Statistical

optimization of selected process parameters,” Eng. Life Sci.,10, pp.40–48.

[277]. Khuri AI. and Cornell JA., 1987, Response surfaces Design and analysis.

Marcel Dekker, Inc., New York.

[278]. Rivela I., Rodríguez Couto S., Sanromán A., 2000, “Extracellular

ligninolytic enzymes production by Phanerochaete chrysosporium in a

new solid-state bioreactor,” Biotechnology Letters, 22, pp.1443-1447.

[279]. Rodríguez Couto S, and Toca Herrera JL., 2006, “Industrial and

biotechnological applications of laccases: a review,” Biotechnol. Adv.,

24(5), pp.500-13.

[280]. Dominguez A., Rivela I., Rodríguez Couto S., and Sanromán M.A., 2001,

“Design of a new rotating drum bioreactor for ligninolytic enzyme

production by Phanerochaete chrysosporium grown on an inert support,”

Process Biochemistry, 37, pp.549–554.

[281]. Böhmer U, Suhardi SH, and Bley T., 2006, “Decolorizing reactive textile

dyes with white-rot fungi by temporary immersion cultivation,”

Engineering Life Science, 6, pp.417–20.

[282]. Rodríguez Couto S., Moldes D., Liébanas A., and Sanromán Á., 2003,

“Investigation of several bioreactor configurations for laccase production

by Trametes versicolor operating in solid-state conditions,” Biochemical

Engineering Journal, 15, pp.21–26.

[283]. Rodriguez Couto, S., A. Roudriguez, R.R.M. Paterson, N. Limba and

J.A.Teixeira, 2006, “Laccase activities from the fungus Trametes hirsuta

282

using an air lift bioreactor,” The Society for Applied Microbiology, Letters

in Applied Microbiology, 42, pp. 612-616.

[284]. Rosales E., Rodríguez Couto S., and Sanromán M.Á., 2007, “Increased

laccase production by Trametes hirsuta grown on crushed orange

peelings,” Enzyme Microbial Technology, 40, pp.1286–1290.

[285]. Revankar MS, and Lele SS , 2006, “Enhanced production of laccase using

a new isolate of white rot fungus WR-1,” Proc. Biochem., 41, pp. 581-

588.

[286]. G Annaduari, and T Sivakumar., 2000, “Photocatalytic decolorization of

Congo red over ZnO powder using Box–Behnken design of experiments,”

Bioprocess Engg., 23, pp.167-173.

[287]. Liu BL, Tzeng YM., 1998, “Optimization of growth medium for

production of spores from Bacillus thuringiensis using response surface

methodology,” Bioprocess Eng, 18, pp.413–8.

[288]. Elibol M., 2001, “Optimization of medium composition for actinorhodin

production by Streptomyces coelicolor A3(2) with response surface,”

Process Biochem,36, pp.1119–24.

[289]. William H. Flurkey., 2003, Laccase. Chapter 40, 519-531 John R.

Whitaker, Alphons G. J. Voragen and Dominic W. S. Wong.(Ed).Hand

book of food enzymology.

[290]. Yaver, D., F. Xu, E. Golightly, K. Brown, S. Brown, M. Rey, P.

Schneider, T. Halkier, K. Mondorf, and H. Dalboge, 1996, “Purification,

characterization, molecular cloning, and expression of two laccase genes

from the white rot basidiomycete Trametes villosa,” Appl. Environ.

Microbiol., 62, pp.834-841.

[291]. Driouich, A., AC Laine, B Vian, and L Faye., 1992, "Characterization and

localization of laccase forms in stem and cell cultures of sycamore,” Plant

J., 2, pp.13–24.

[292]. Laemmli UK , 1970, “Cleavage of structural proteins during the assembly

of the head of bacteriopage T4,” Nature, 227, pp.680-685.

[293]. CR Perry, SE Matcham, DA Wood, and CF Thurston., 1993, “The

structure of laccase protein and its synthesis by the commercial mushroom

Agaricus bisporus,” J. Gen. Microbiol., 139, pp.171–178.

283

[294]. A Leontievsky, N Myasoedova, N Pozdynyakova, and L Golovleva.,

1997, “Yellow laccase of Panus tigrinus oxidizes non-phenolic substrates

without electron-transfer mediators,” FEBS Lett., 413, pp.446–448.

[296]. Moon-Jeong Han, Hyoung-Tae Choi and Hong-Gyu Song, 2005,

“Purification and Characterization of Laccase from the White Rot Fungus

Trametes versicolor,” The Journal of Microbiology, 43(6). pp.555-560.

[297]. H´ela Zouari-Mechichi , Tahar Mechichi , Abdelhafidh Dhouib , Sami

Sayadi ,Angel T. Martınez and Maria Jesus Martınez, 2006, “Laccase

purification and characterization from Trametes trogii isolated in Tunisia:

decolorization of textile dyes by the purified enzyme,” Enzyme and

Microbial Technology, 39, pp.141–148.

[298]. Pezet R., 1998, “Purification and characterization of a 32 KDa laccase-

like stilbene oxidase produced by Botrytis cinerea Pers.:Fr.,” FEMS

Microbiology Letters, 167, pp.203–208.

[299]. Eliane Abou-Mansour, Josée Polier, Roger Pezet and Raphael Tabacchi,

2009, “Purification and partial characterisation of a 60 KDa laccase from

Fomitiporia mediterranea,” Phytopathol. Mediterr., 48, pp.447–453.

[300]. Rosana C. Minussi, Márcio A. Miranda, José A. Silva, Carmen V.

Ferreira, Hiroshi Aoyama, Sérgio Marangoni, Domenico Rotilio, Gláucia

M. Pastore and Nelson Durán, 2007, “Purification, characterization and

application of laccase from Trametes versicolor for colour and phenolic

removal of olive mill wastewater in the presence of 1-

hydroxybenzatriazole,” African Journal of Biotechnology,6 (10), pp. 1248-

1254.

[301]. Jhadav A., Vamsi K.K., Khairnar Y., Boraste A., Gupta N., Trivedi S.,

Patil P., Gupta G., Gupta M., Mujapara A.K., Joshi B., and Mishra D.,

2009,”Optimization of production and partial purification of laccase by

Phanerochaete chrysosporium using submerged fermentation,”

International Journal of Microbiology Research, 1(2), pp-09-12

[302]. Pedro M. Coll, Jose M. Fernandez-Abalos, Julio R. Villanueva, Ramon

Santamaria, and Pilar Perez, 1993, “Purification and Characterization of a

Phenoloxidase (Laccase) from the Lignin-Degrading Basidiomycete PM1

(CECT 2971),” Applied And Environmental Microbiology, 59(8). pp.

2607-2613.

284

[303]. Li, Miao, Guoqing Zhang, Hexiang Wang, and Tzibun Ng., 2010,

“Purification and Characterization of a Laccase from the Edible Wild

Mushroom Tricholoma mongolicum,” J. Microbiol. Biotechnol., 20(7),

pp.1069–1076

[304]. Beeckmans S, 1999, “Chromatographic methods to study protein-protein

interactions,” Methods, 19, pp. 278-305.

[305]. Wilson K, and Walker, J, 2005, Principles and Techniques of

Biochemistry and Molecular Biology, Sixth Edition, Cambridge

University Press, pp 783.

[306]. Ferdinandi Patrick, Godliving Mtui, Anthony Manoni Mshandete, Gunnar

Johansson and Amelia Kivaisi, 2009, “Purification and characterization of

a laccase from the basidiomycete Funalia trogii (Berk.) isolated in

Tanzania,” African Journal of Biochemistry Research, 3 (5), pp. 250-258.

[307]. Guisan JM, Melo FV, and Ballesteros A., 1981, “Determination of

intrinsic properties of immobilized enzymes,” Appl. Biochem. Biotech., 6,

pp.25-36

[308]. Taylor, R.F., 1991, Protein immobilization: Fundamental and applications

(Marcel Dekker Inc., New York, USA,.

[309]. Krajewska, B., 2004, “Application of chitin- and chitosan-based materials

for enzyme immobilizations: a review,” Enzyme and Microbial

Technology, 35(2-3), pp. 126–139.

[310]. Hartmeier, W., 1988, Immobilized biocatalysts: An introduction (Springer-

Verlag, Berlin, Heidelberg, Germany.

[311]. Zanin G.M., Moraes F.F., and Enzimas inmovilizadas. In: Sais S., Pierto

R.C.L.R. 2004. Enzimas como agentes biotecnológicos. Ribeirâo Preto:

Legis Summa, 412p. Chap. 4.

[312]. Rogalski J., Jozwik E., Hataka A., and Leonowicz A., 1995,

“Immobilization of laccase from Phlebia radiata on controlled porosity

glass,” Journal of Molecular Catalysis A: Chemical, 95 , pp.99-108.

[313]. Grecchio C., Ruggiero P., and Pizzigallo M., 1995, “Polyphenoloxidases

immobilized in organic gels: Properties and applications in the

detoxification of aromatic compounds,” Biotechnology and

Bioengineering, 48(6), pp.585-591.

285

[314]. Brenna O, and Bianchi E., 1994, “Immobilized laccase for phenolic

removal in must and wine,” Biotechnology Letters, 16, pp.35–40.

[315]. José Hilton Bernardino de Araújo, Vinicius Oliveira Uemura, Flavio Faria

de Moraes, Aneli de Melo Barbosa and Gisella Maria Zanin, 2005, “A

Comparative Study on Fungal Laccases Immobilized on Chitosan,”

Brazilian Archives Of Biology and Technology, 48( Special): pp. 1-6.

[316]. Reku´c A, Kruczkiewicz P, Jastrzembska B, Liesiene J, Peczy´nska-Czoch

W, and Bryjak J., 2008, “Laccase immobilization on the tailored cellulose-

based granocel carriers,” Int. J. Biol. Macromol., 42(2), pp. 208–215.

[317]. Reku´c A, Jastrzembska B, Liesiene J, and Bryjak J., 2009, “Comparative

studies on immobilized laccase behaviour in packed-bed and batch

reactors,” J Mol Catal B: Enzym., 57(1-4), pp. 216–223.

[318]. Kandelbauer A, Maute O, Kessler RW, Erlacher A, and Gubitz GM.,

2004, “Study of dye decolorization in an immobilized laccase enzyme-

reactor using online spectroscopy,” Biotechnol. Bioeng. 87(4), pp. 552–

563.

[319]. Zille A, Tzanov T, G¨ubitz GM, and Cavaco-Paulo A., 2003,

“Immobilized laccase for decolourization of reactive black 5 dyeing

effluent,” Biotechnol Lett., 25(17), pp. 1473–1477.

[320]. Zhu Y, Kaskel S, Shi J, Wage T, and van Pee K., 2007, “Immobilization

of Trametes versicolor Laccase on Magnetically Separable Mesoporous

Silica Spheres,” Chem. Mater., 19(26), pp. 6408–6413.

[321]. Bryjak J, Kruczkiewicz P, Reku´c A, and Peczy´nska-CzochW., 2007,

“Laccase immobilization on copolymer of butyl acrylate and ethylene

glycol dimethacrylate,” Biochem. Eng. J., 35(3), pp.325–332.

[322]. Arica MY, Altintas B, and Bayramoglu G., 2009, “Immobilization of

laccase onto spacer-arm attached non-porous poly(gma/egdma) beads:

application for textile dye degradation,” Bioresour. Technol., 100(2), pp.

665–669.

[323]. Mosbach R, Koch-Schmidt AC, and Mosbach K., 1976, Immobilized

enzymes, Methods in Enzymology, vol. 44, ch. Immobilization of

enzymes to various acrylic copolymers. Elsevier, 44(6), pp. 53–65.

[324]. Wang Ping, Fan Xuerong, Cui Li, Wang Qiang, and Zhou Aihui., 2008,

“Decolorization of reactive dyes by laccase immobilized in

286

alginate/gelatin blent with PEG,” Journal of Environmental Sciences, 20,

pp.1519–1522.

[325]. Milstein, O., B. Nicklas and A. Huttermann, 1989, “Oxidation of aromatic

compounds in organic solvents with laccase from Trametes versicolor,”

Appl. Microbiol. Biotechnol., 31, pp. 70–74

[326]. Adinarayana Kunamneni, Iraj Ghazi, Susana Camarero, Antonio

Ballesteros, Francisco J. Plou and Miguel Alcalde, 1999, “Decolorization

of synthetic dyes by laccase immobilized on epoxy-activated carriers,”

Process Biochemistry, 43(2), pp. 169–178.

[327]. Rodriguez, E., Pickard, M.A. and Rafael, V.D., 1999, “Industrial dye

decolorization by laccase from ligninolytic fungi,” Current Microbiol., 38,

pp.27-32.

[328]. Reddy, C.A., 1995, “The potential of white-rot fungi in the treatment of

pollutants,” Curr. Opin. Biotechnol., 6, pp.320-328.

[329]. Kaushik P, and Malik A, 2009, “Fungal dye decolourization: Recent

advances and future potential,” Environ. Inter., 35, pp. 127-141.

[331]. Zille, A., Górnacka, B., Rehorek, A. and Cavaco-Paulo, A., 2005,

“Degradation of azo dyes by Trametes villosa laccase over long peroids of

oxidative conditions,” Appl. Environ. Microbiol., 71, pp.6711-6718.

[332]. Chivukula M, and Renganathan V, 1995, “Phenolic azo dye oxidation by

laccase from Pyricularia oryzae,” Appl. Environ. Microbiol., 61, pp.4374-

4377.

[333]. Murugesan K., Nam I., Kim Y., and Chang Y., 2007, “ Decolorization of

reactive dyes by a thermostable laccase produced by Ganoderma

lucidum in solid state culture,” Enzyme and Microbial Technology, 40,

pp.1662-1672.

[334]. Casas, N.; Blanquez, P.; Gabarrell, X.; Vicent, T.; Caminal, G. and Sarra,

M., 2007, “Degradation of orange G by laccase: Fungal versus enzymatic

process,” Environmental Technology, 28, pp.1103-1110.

[335]. Novotny, C., Svobodova, K., Kasinath, A. and Erbanova, P., 2004,

“Biodegradation of synthetic lacteus under various growth conditions,”

Int. Biodeter. Biodegrad., 54, pp. 215-223.

[336]. Novotny, C., Svobodova K., Erbanova, P., Cajthamla, T., Kasinatha, A.,

Lang, E. and Sasek, V., 2004, “Ligninolytic fungi in bioremediation:

287

extracellular enzyme production and degradation rate,” Soil Biol.

Biochem., 36, pp.1545–1551.

[337]. Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, and Gübitz

G , 2000, “Decolorization and detoxification of textile dyes with a laccase

from Trametes hirsute,” Appl. Environ. Microbiol., 66, pp. 3357–3362.

[338]. Svobodová, K., Majcherczyk, A., Novotný, C. and Kües, U., 2008,

“Implication of myceliumassociated laccase from Irpex lacteus in the

decolorization of synthetic dyes,” Bioresour. Technol., 99, pp.463-471.

[339]. Forney, L. J., Reddy, C.A. and Pankratz, H.S., 1982, “Ultrastructural

localization of hydrogen peroxide production in ligninolytic cultures of

Phanerochaete chrysosporium,” Appl. Environ. Microbiol., 44, pp. 732-

736.

[340]. Garcia, S., Latge, J.P., Prevost, M.C. and Leisola M., 1987, “Wood

degradationby white-rot fungi:cytochemical studies using lignin

peroxidase-immunoglobulin-gold complexes,” Appl. Environ. Microbiol.,

56, pp.1666-1671.

[341]. Kurek, B. and Odier, E., 1990, “Influence of lignin peroxidase

concentrations and localization in lignin biodegradation,” Appl. Microbiol.

Biotechnol., 34, pp.264-269.

[342]. Kokol, V., Doliška, A., Eichlerová, I., Baldrian P. and Nerud, F., 2007,

“Decolorization of textile dyes by whole cultures of Ischnoderma

resinosum and by purified laccase and Mn peroxidase,” Enzyme Microb.

Technol., 40, pp.1673-1677.

[343]. Šušla, M., Novotný, C. and Svobodová, K., 2007, “The implication of

Dichomitus squalens laccase isoenzymes in dye decolorization by

immobilized fungal cultures,” Bioresour. Technol., 98, pp.2109-2115.

[344]. Pozdnyakova, N.N., Rodakiewicz-Nowak, J., Turkovskaya, O.V. and

Haber, J., 2006, “Oxidative degradation of polyaromatic hydrocarbons

catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of

synthetic mediators,” Enzyme Microb. Technol., 39, pp.1242- 1249.

[345]. Marmagne, O. and Coste, C., 1996, “Color removal from textile plant

effluents,” Ame. Dyestuff. Rep., 4, pp.15-21.

[346]. Baborova, P., Moder, M., Baldrian, P., Cajthamlova, K.and Cajthaml, T.,

2006, “Purification of a new manganese peroxidase of the white-rot fungus

288

Irpex lacteus and degradation of polycyclic aromatic hydrocarbons by the

enzyme,” Res. Microbiol., 157, pp.248-253.

[347]. Sack, U., Hofrichter, M. and Fritsche, W., 1997, “Degradation of

polycyclic aromatic hydrocarbons by manganese peroxidase of

Nematoloma frowardii,” FEMS Microbiol. Lett., 152, pp.227-234.

[348]. Moen, M.A. and Hammel, K.E., 1994, “Lipid peroxidation by the

manganese peroxidase of Phanerochaete chrysosporium is the basis for

phenanthrene oxidation by the intact fungus,” Appl. Environ. Microbiol.,

60, pp.1956-1961.

[349]. Collins, P.J., Kotterman, M.J.J., Field, J.A. and Dobson, A.D.W., 1996,

“Oxidation of anthracene and benzo(a)pyrene by laccase from Trametes

versicolor,” Appl. Environ. Microbiol., 62, pp.4563-4567.

[350]. Ohmomo, S., Kaneko, Y., Sirianuntapiboon, S., Somchai, P.,

Atthasampunna, P., and Nakamura, I., 1987, “Decolorization of molasses

waste water by a thermophilic strain, Aspergillus fumigatus G2-6,” Agric.

Biol. Chem., 51, pp.3339-3346.

[351]. Shin, M., Nguyen, T. and Ramsay, J., 2002, “Evaluation of support

materials for the surface immobilization and decolorization of Amaranth

by Trametes versicolor,” Appl. Microbiol. Biotechnol., 60, pp.218-223.

[352]. Zhang, F-M., Knapp, J.S. and Tapley, K.N., 1999, “Development of

bioreactor systems for decolorization of Orange II using white rot fungus,”

Enzyme Microbial.Technol., 24, pp.48- 53.

[353]. Wu, J., Xiao, Y-Z. and Yu, H-Q., 2005, “Degradation of lignin in pulp

mill wastewaters by white rot fungi on biofilm,” Bioresour. Technol., 96,

pp.1357-1363.

[354]. Aggelis, G., Ehaliotis, C., Nerud, F., Stoychev, I., Lyberotes, G., and

Zervakis, G.I., 2002, “Evaluation of white-rot fungi for detoxification and

decolorization of effluents from the green olive debittering process,” Appl.

Microbiol. Biotechnol. 59, pp.353-360.

[355]. Driessel, B.V. and Christov, L., 2001, “Decolorization of bleach plant

effluent by mucoralean and white-rot fungi in a rotating biological

contactor reactor,” J. Biosci. Bioeng., 92, pp.271-276.

[356]. Kearney P. and Wauchope R., 1998, Disposal options based on properties

of pesticides in soil and water. In: Kearney P. and Roberts T. (Eds.)

289

Pesticide remediation in soils and water. Wiley Series in Agrochemicals

and Plant Protection.

[357]. Gan, J. and W.C. Koskinen., 1998, Pesticide fate and behaviour in soil at

elevated concentrations. p. 59-84. In P.C. Kearney (ed.) Pesticide

Remediation in Soils and Water. John Wiley & Sons, Chichester, England.

[358]. Sasek, 2003, Why mycoremediations have not yet come to practice. In

Sasek V. et al. (Eds.) In: The utilization of bioremediation to reduce soil

contamination: Problems and solutions, pp. 247-276. Kluwer Academis

Publishers.

[359]. Reddy C. and Mathew Z., 2001, Bioremediation potential of white rot

fungi. In. Gadd G. (Eds.) Fungi in bioremediation. Cambridge University

Press. Cambridge, U.K.

[360]. Maloney S., 2001, Pesticide degradation. In Gadd G. (Ed.) Fungi in

bioremediation. Cambridge University Press. Cambridge, U.K

[361]. Demir G., 2004, “Degradation of toluene and benzene by Trametes

versicolor,” Journal of Environmental Biology, 25 (1), pp.19-25.

[362]. Levin, L. A. and Viale A. Forchiassin, 2003, “Degradation of organic

pollutants by the white rot basidiomycete Trametes trogii,” International

Biodeterioration and Biodegradation, 52, pp.1-5.

[363]. Mansur, M. M. E. Arias J. L. Copa-Patino M. Flärdh and A. E. González,

2003, “The white-rot fungus Pleurotus ostreatus secretes laccase isozymes

with different substrate specificities,” Mycologia, 95(6), pp. 1013-20.

[364]. Verdin, A. A. LH. And Sahraoui R. Durand, 2004, “Degradation of

benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes,”

International Biodeterioration and Biodegradation, 53, pp. 65-70

[365]. Cajthaml, T. M. Möder P. Kacer V. and Šašek P. Popp, 2002, “Study of

fungal degradation products of polycyclic aromatic hydrocarbons using

gas chromatography with ion trap mass spectrometry detection,” Journal

of Chromatography A , 974, pp. 213-22

[366]. Grant R.J., Daniell T.J. and Betts W.B., 2002, “Isolation and identification

of synthetic pyrethroid-degrading bacteria,” Journal of Applied

Microbiology, 92, pp.534-540.

290

[367]. Paingankar M., Jain M. and Deobagkar D., 2005, “Biodegradation of

allethrin, a pyrethroid insecticide, by an Acidomonas sp.,” Biotechnology

Letters, 27, pp.1909-1913.

[368]. Saikia N. and Gopal M., 2004, “Biodegradation of b-Cyfluthrin by Fungi,”

J. Agric. Food Chem., 52, pp.1220-1223

[369]. Liang W. Q., Wang Z. Y., Li H., Wu P. C., Hu J. M, Li N. L., Cao X., and

Liu Y. H., 2005, “Purification and Characterization of a Novel Pyrethroid

Hydrolase from Aspergillus niger ZD11,” J. Agric. Food Chem., 53 (19),

pp.7415–7420.

[370]. Munezoh Takahash, 1975, “Removal of Lignin from Partially Delignified

Softwoods by Soft Rot- and White Rot Fungi, Wood Research No. 61.

[371]. Lawson, L.R. ,and Still, C.N., 1957, “The biological decomposition of

lignin – a literature survey,” Tappi J. 40:56A-80A.

[372]. Benny Chefetz, Yona Chen and Yitzhak Hadar, 1998, “Purification and

Characterization of laccase from Chaetomium thermophilium and Its Role

in Humification,” Appl. Environ. Microbiol., 64(9), pp.3175-3179.

[373]. Plackett, R.L and J.P. Burman, 1946, “The Design of Optimum

Multifactorial Experiments,” Biometrika 33 (4), pp. 305-25.

[374]. A. L Khuri, J A and Cornell, 1993, Response surface: design and

analysis. New York: Marcel Dekker,AQSA Quality press

[376]. Akhnazarova S and Kafarov V., 1982, Experiment optimization in

chemistry and chemical engineering, Mir publications, Moscow.

[378]. George Box, and Donald Behnken, 1960, “Some new three level designs

for the study of quantitative variables,” Technometrics, 2, pp.455–47.

[379]. Couto SR, Sanroman MA, and Gubitz GM., 2005, “Influence of 18 redox

mediators and metal ions on synthetic acid dye decolorization by crude

laccase from Trametes hirsute,” Chemosphere, 58, pp.417-422.

[380]. Minussi RC, Moraes SG, Pastore GM, and Duran N., 2001,

“Biodecolourization screening of synthetic dyes by four white-rot fungi in

a solid medium: possible role of siderophores,” Lett Appl Microbiol., 33,

pp. 21-25.

[381]. Bradford, M.M., 1976, “Rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye

binding", Anal. Biochem., 72, pp. 248–254.

291

[382]. Kirsten Brinkmann, Lothar Blaschke and Andrea Polle, 2002,

“Comparison of different methods for lignindetermination as a basis for

calibration of near-infrared reflectance spectroscopy and implications of

lignoproteins,” Journal of Chemical Ecology, 28(12), pp.2483-2501.

[383]. Castillo M. D., Stenstrom J. and Ander P., 1994, “Determination of

Manganese Peroxidase Activity with 3-Methyl-2-benzothiazolinone

Hydrazone and 3-(Dimethylamino) benzoic Acid,” Analytical

Biochemistry, 218(2), pp. 399-404.

[384]. R. S. Dhundhel and M. K. Rai, 2011, “A Newly Sensitive Method for the

Determination of Cypermethrin in Various Samples,” Asian Journal of

Biochemical and Pharmaceutical Research, 1(3), pp.381-390.

[387]. http:// www.wikipedia.com

[388]. Szklarz, G.D., Antibus, R.K., Sinsabaugh, R.L. and Linkins, A.E., 1989,

“Production of phenol oxidases and peroxidases by wood rotting fungi,”

Mycologia, 81, pp.234–240.

[389]. Pela´ez, F., Martı´nez, M.J. and Martı´nez, A.T.,1995, Screening of 68

species of basidiomycetes for enzymes involved in lignin degradation,”

Mycological Research, 99, pp.37–42.

[390]. Luterek, J., Gianfreda, L., Wojtas-Wasilewska, M., Rogalski, J., Jaszek,

M., Malarczyk, E., Dawidowicz, A., Finks-Boots, M., 1997, “Screening of

the wood-rotting fungi for laccase production: induction by ferulic acid,

partial purification, and immobilization of laccase from the high laccase-

producing strain, Cerrena unicolor,” Acta Microbiologica Polonica, 46,

pp.297–311.

[391]. Bourbonnais, Robert; Leech, Dónal; Paice, and Michael G., 1998,

“Electrochemical analysis of the interactions of laccase mediators with

lignin model compounds,” Biochimica et Biophysica Acta (BBA) -

General Subjects, 1379 (3), pp. 381–390.

[391]. Pointing S.B., 1999, “Qualitative methods for the determination of

lignocellulolytic enzyme production by tropical fungi,” Fungal Diversity,

2, pp. 17-33.

[392]. Kwang-Soo Shin, Ill-Kyoon Oh, and Chang-Jin Kim., 1997,”Production

and Purification of Remazol Brilliant Blue R Decolorizing Peroxidase

292

from the Culture Filtrate of Pleurotus ostreatus,” Applied and

Environmental Microbiology, 63(5), pp. 1744–1748.

[393]. John M.Harkin and John R.Obst, 1973, “Syringaldazine, an effective

reagent for detecting laccase and peroxidase in fungi,” Experientia, 29(4),

pp.381-508.

[394]. Nishida, T., Yoshinori, K., Mimura, A. and Takahara, Y., 1988, “Lignin

biodegradation by wood-rotting fungi I. Screening of lignindegrading

fungi,” Mokuzai Gakkaishi, 34, pp.530–536.

[395]. De Jong, E., de Vries, F.P., Field, J.A., van der Zwan, R.P. and de Bont,

J.A.M., 1992, “Isolation and screening of basidiomycetes with high

peroxidative activity,” Mycological Research, 12, pp.1098–1104.

[396]. D. Moldes, P.P. Gallego, S. Rodríguez Couto and A. Sanromán, 2003,

“Grape seeds: the best lignocellulosic waste to produce laccase by solid

state cultures of Trametes hirsute,” Biotechnology Letters, 25, pp.491-495.

[396]. Barbosa, A.M., Dekker, R.F.H. and St Hardy, G.E., 1996, “Veratryl

alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp.,

when screened on the polymeric dye Poly R-478,” Letters in Applied

Microbiology, 23, pp.93–96.

[397]. D’Souza TM, Merritt CS, and Reddy CA., 1999, “Lignin-modifying

enzymes of the white rot basidiomycete Ganoderma lucidum,” Appl.

Environ. Microbiol., 65, pp.5307–5313

[398]. Raghukumar, C., D’Souza, T.M., Thorn, R.G. and Reddy, C.A.,1999,

“Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated

from a coastal marine environment,” Applied and Environmental

Microbiology, 65, pp.2103–2111.

[399]. Gold, M.H., Glenn, J.K. and Alic, M.,1988, “Use of polymeric dyes in

lignin biodegradation assays,” Methods in Enzymology, 161, pp.74–78.

[400]. Airong Li, Yue Zhu, Liang Xu, Wenqing Zhu and Xingjun Tian., 2008,

“Comparative study on the determination of assay forlaccase of Trametes

sp. ,” African Journal of Biochemistry Research, 2 (8), pp. 181-183.

[401]. Y. Z. Xiao, Q. Chen, J. Hang, Y. Y. Shi, J. Wu, Y. Z. Hong and Y. P.

Wang, 2004, “Selective induction, purification and characterization of a

laccase isozyme from the basidiomycete Trametes sp. AH28-2,”

Mycologia, 96(1), pp. 26–35.

293

[402]. Alina Manole, D. Herea, H. Chiriac, and V. Melnig, 2008, “Laccase

Activity Determination,” Analele Ştiinţifice Ale Universităţii “Al. I. Cuza”

IAS. 11-16.

[403]. Marièlle Bar, 2001, Kinetics and Physico-Chemical Properties of White-

Rot Fungal Laccases. Masters degree thesis, Faculty of Natural and

Agricultural Science,Department of Microbiology and

Biochemistry,University of the Free State,Bloemfontein.

[404]. T Wang, W Li, H W Wan, P J Zhou, and S S Qu, 2000, “Assay for

Laccase activity by microcalorimetry: laccase was extracted from china

lacquer of Rhus vernicifera,” Journal of Biochemical and Biophysical

Methods, 45(1), pp.57-63.

[405]. Cordi L, Minussi RC, and Duran N., 2006, “Laccase induction by copper

in Trametes versicolor and Trametes villosa: Semi-purification,

immobilization and effluent treatment,” Letter Appl. Microbiol., 6 (10),

pp. 1255-1259.

[406]. Vares T, Hatakka A., 1997, “Lignin-degrading activity and ligninolytic

enzymes of different white-rot fungi: effects of manganese and malonate,”

Can. J. Bot., 75, pp.61–71.

[407]. Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, and Gübitz GM.,

2001, “Indigo degradation with purified laccases from Trametes hirsuta

and Sclerotium rolfsii,” J. Biotechnol., 89, pp. 131–139.

[407]. Dittmer JK, Patel NJ, Dhawale SW, and Dhawale SS., 1997, “Production

of multiple laccase isoforms by Phanerochaete chrysosporium grown

under nutrient sufficiency,” FEMS Microbiol. Lett., 149, pp.65–70.

[408]. M.A.M. Abo-State, B. Reyad, M. Ali, O. Gomaa and E.A. Youssif, 2011,

“Comparing Decolorization of Dye by White Rot Fungi, Free Enzyme and

Immobilized Enzyme,” World Applied Sciences Journal, 14 (10), pp.

1469-1486.

[409]. Viswanath,B., M.S.Chandra, K.P.Kumar and B.Rajasekara Reddy, 2008,

“Production and purification of laccase from Stereum ostrea and its ability

to decolourize textile dyes,” Dyn. Biochem. Process Biotechnol. Mol.

Biol., 2, pp.19-25.

[410]. C. Srinivasan, T. M. D’souza, K. Boominathan, and C. A. Reddy, 1995,

“Demonstration of Laccase in the White Rot Basidiomycete

294

Phanerochaete chrysosporium BKM-F1767,” Applied and Environmental

Microbiology, 61(12), pp. 4274–4277.

[411]. Paulraj Kanmani, P. Karuppasamy, C. Pothiraj and Venkatesan Arul,

2009, “Studies on lignocellulose biodegradation of coir waste in solid state

fermentation using Phanerocheate chrysosporium and Rhizopus

stolonifer,” African Journal of Biotechnology, 8(24), pp. 6880-6887.

[412]. A. A. Safari Sinegani, G. Emtiazi and S. Hajrasuliha, 2006, “Comparative

Studies of Extracellular Fungal Laccases under Different Conditions,” J.

Agric. Sci. Technol, 9, pp. 69-76.

[413]. Joy.K.Dittmer, Nirav.j.Patel, Shrikrishna W.Dhawale and Shree

S.Dhawale, 1997, “Production of multiple laccase isoforms by

Phanerochaete chrysosporium grown under nutrient sufficiency,” FEEMS

Microbiology Letters., 149, pp. 65-70.

[414]. Sirida Youngchim, Rachael Morris-Jones, Roderick J. Hay and Andrew J.

Hamilton, 2004, “Production of melanin by Aspergillus fumigatus. Journal

of Medical Microbiology. 53, pp. 175–181.

[415]. Jie-Jie Hao, Xing-Jun Tian, Fu-Qiang Song, Xing-Bing He, Zhi-Jun Zhang

and Peng Zhang, 2005, “Involvement of Lignocellulolytic Enzymes in the

Decomposition of Leaf Litter in a Subtropical Forest,” The Journal of

eukaryotic microbiology, 53(3), pp.193-198.

[416]. V. Vivekanand, Pallavi Dwivedi, Nidhi Pareek, and Rajesh P. Singh,

2011, “Banana Peel: A Potential Substrate for Laccase Production by

Aspergillus fumigatus VkJ2.4.5 in Solid-State Fermentation,” Applied

Biochemistry and Biotechnology, 165 (1), pp. 204-220.

[417]. S. Sadhasivam, S. Savitha, K. Swaminathan and Feng-Huei Lin, 2008,

“Production, purification and characterization of mid-redox potential

laccase from a newly isolated Trichoderma harzianum WL1,” Process

Biochemistry, 43, pp.736–742.

[418]. Ramsay LM, Sayer JA, and Gadd GM., 1999, Stress responses of fungal

colonies towards toxic metals. In: Gow NAR, Robson GD, Gadd GM, Eds.

The fungal colony. Cambridge: Cambridge University Press. p 179–200

[419]. Vaidyanathan Vinoth Kumar, Selvaraj Dinesh Kirupha, Premkumar

Periyaraman and Subramanian Sivanesan, 2011, “Screening and induction

of laccase activity in fungal species and its application in dye

295

decolorization,” African Journal of Microbiology Research, 5(11), pp.

1261-1267.

[420]. Sathiya Moorthi Perumal, Deecaraman Munuswamy, Periyar Selvam

Sellamuthu, Murugesan Kandasamy, and Kalaichelvan P. T., 2007,

“Biosorption of textile dyes and effluents by Pleurotus florida and

Trametes hirsuta with evaluation of their laccase activity,” Iranian Journal

of Biotechnology, 5(2), pp.114-118.

[421]. Xavier Font, Gloria Caminal, Xavier Gabarrell, Silvia Romero and M

Teresa Vicent, 2003, “Black liquor detoxification by laccase of Trametes

versicolor pellets,” J. Chem. Technol. Biotechnol., 78, pp.548–554.

[422]. Moti Rebhun,Solomon P. Wasser and Yitzhak Hadar, 2005, “Use of Agro-

Industrial Waste for Production of Laccase and Manganese Peroxidase

from White-Rot Basidiomycetes,” International Journal of Medicinal

Mushrooms, 7(3), pp.459-460.

[423]. Arcand R.L., and Archibald, F.S., 1991, “Direct dechlorination of

chlorophenolic compounds by laccases from Trametes (Coriolus)

versicolor,” Enzyme and Microbial. Technology, 13(3), pp. 194–203.

[424]. Limura Y., Hartikainen P., and Tatsumi K., 1996, “Dechlorination of

tetrachloroguaiacol by laccase of white rot basidomycete Coriolus

versicolor,” Applied Microbiology and Biotechnology, 45, pp. 434–439.

[425]. Taspinar, A. and Kolankaya, N., 1998, “Optimization of enzymatic

chlorine removal from Kraft pulp,” Bull. Environ. Contam. Toxicol.,

61(1), pp.15-21.

[426]. Churapa Teerapatsakul, Naoki Abe , Christopher Bucke,Ngampong

Kongkathip, Saeree Jareonkitmongkol and Lerluck Chitradon., 2007,

“Novel laccases of Ganoderma sp. KU-Alk4, regulated by different

glucose concentration in alkaline media,” World J. Microbiol. Biotechnol.,

23, pp.1559–1567.

[427]. Cuoto, S. R. and J. L. T. Herrera, 2006, “Industrial and biotechnological

applications of laccases: A review,” Biotechnol. Adv., 24, pp.500-513.

[428]. Saravanakumar, K., R. Saranya, Sankaranarayana Arathi and V.

Kaviyarasan, 2010, “Statistical Designs And Response Surface Technique

For The Optimization Of Extra Cellular Laccase Enzyme Production By

296

Using Pleurotus Sp.,” Recent Research in Science and Technology, 2(3),

pp. 104-111.

[429]. Mester, T.A. and Field, A.J., 1997, “Optimization of manganese

peroxidase production by the white-rot fungus Bjerkandera sp. strain

BOS55,” FEMS Microbiology Letters, 155, pp. 161–168.

[430]. Kapich, A.N., Prior, B.A., Botha, A., Galkin, S., Lundell, T. and Hatakka,

A., 2004, “Effect of lignocellulose-containing substrate on production of

ligninolytic peroxidases in submerged cultures of Phanerochaete

chrysosporium ME-446,” Enzyme and Microbial Technology, 34, pp.187–

195.

[431]. Tekere, M., Zvauya, R. and Read, J.S., 2001, “Ligninolytic enzyme

production in selected sub-tropical white-rot fungi under different culture

conditions,” Journal of Basic Microbiology, 41, pp.115–129.

[432]. Xun Sun, Renhuai Zhang and Yizheng Zhang, 2004, “Production of

lignocellulolytic enzymes by Trametes gallica and detection of

polysaccharide hydrolase and laccase activities in polyacrylamide gels,”

Journal of Basic Microbiology, 44(3), pp. 220–231.

[433]. Kachlishvili E, Penninckx MJ, Tsiklauri N, and Elisashvili V., 2008,

“Effect of nitrogen source on lignocellulolytic enzyme production by

white-rot basidiomycetes under solid-state cultivation,” World J,

Microbiol. Biotechnol., 22 (4), pp.391–397.

[434]. Kirk, T. K., and Farrell, R. L., 1987, “Ligninolysis by a Purified Lignin

Peroxidase,” Annu. Reu. Microbiol., 41, pp.465-505.

[435]. Higuchi, T., 1990, “Lignin biochemistry: Biosynthesis and

biodegradation,” Wood Sci. Technol., 24, pp. 23-63.

[436]. Cullen, D., 1997, “Recent advances on the molecular genetics of

ligninolytic fungi,” Journal of Biotechnology, 53(2), pp. 273-289.

[437]. Saravanakumar, K., and V. Kaviyarasan, 2010, “Response Surface

methodological approach to optimize the Nutritional parameters for

extracellular Laccase production by Lentinus sp.,” J. Bio. sci. Res., 1(1),

pp. 40-51.

[438]. Monteiro, M.C. and De Carvalho, M.E.A., 1998, “Pulp bleaching using

laccase from Trametes versicolor under high temperature and alkaline

conditions,” Appl. Biochem. Biotechnol., 70-72, pp. 983-993.

297

[439]. Heinzkill, M., Bech, L., Halkier, T., Schneider. P. and Anke, T., 1998,

“Characterization of laccase and peroxidase from wood-rotting fungi (

Family Coprinaceae),” Appl. Environ. Microbiol., 64(5), pp. 1601-1606.

[440]. Oluseyi Damilola Adejoye and Isola O. Fasidi., 2010, “Effect of Cultural

Conditions On Biomass and Laccase Production In Submerged Medium

By Schizophyllum Commune (Fries), A Nigerian Edible Mushroom,”

EJEAFChe., 9 (3), pp.600-609.

[441]. Gbolagade J, Sobowale A, and Adejoye D., 2006,”Optimization of sub-

merged culture conditions biomass production in Pleurotus florida (Mont)

Singer, a Nigerian fungus,” Afr. J. Biotech., 5 (16), pp.1464-1469.

[442]. Zadrazil F, Gonser A, and Lang E., 1999, “Influence of incubation

temperature on the secretion of extracellular ligninolytic enzymes of

Pleurotus sp and Dichomitus squalens into soil,” Proceedings of the

Conference on Enzymes in the Environment: Activity, Ecology and

Applicants. 12-16 July. Granada, Spain.

[444]. Johnsy, G., and V. Kaviyarasan, 2011, “Nutrient Composition on the Effect

of Extracellular Peroxidase Production by Lentinus kauffmanii - under

Submerged Culture Condition,” International Journal of Chem.Tech.

Research, 3(3), pp 1563-1570.

[445]. Arora DS and Gill PK., 2000, “Laccase production by some white rot

fungi under different nutritional conditions,” Bioresource Technol., 73, pp.

283-285.

[446]. Fahraeus G and Reinhammar B., 1967, “Large scale production and

purification of laccase from cultures of the fungus Polyporus and some

properties of Laccase A,” Acta Chemica Scandinavica, 21, pp. 2367-2378.

[447]. Pointing SB, Jones EBG, and Vrijmoed LLP, 2000, “Optimization of

laccase production by Pycnoporus sanguineus in submerged liquid

culture,” Mycologia, 92, pp. 139-144.

[448]. El-zayat SA, 2008, “Preliminary studies on laccase production by

Chaetomium globosum and endophytic fungus in Glinus lotoides,”

AmericanEurasian J.Agric. and Environ. Sci., 3(1), pp. 86-90.

[449]. Robert F.H. Dekker, Aneli M. Barbosa, Ellen C. Giese, Saulo D.S. Godoy

and Luiz G. Covizzi, 2007, “ Influence of nutrients on enhancing laccase

298

production by Botryosphaeria rhodin MAMB-05,” International

microbiology, 10, pp.177-185

[450]. Dekker RF, Barbosa AM, Giese EC, Godoy SD, and Covizzi LG., 2007,

“Influence of nutrients on enhancing laccase production by Botryosphaeria

rhodina MAMB-05,” International Microbiology, 10, pp.177-85

[451]. Eda Benli, Serap Gedikli, Pınar Aytar, Gökhan Güngörmedi and Ahmet

Çabuk, 2011, “Dehalogenation and detoxification of 2,4-dichlorophenol

with induced laccase,” IUFS J. Biol., 2011, 70(2), pp.25-30.

[452]. Eleni Gomes, Ana Paula Aguiar; Caio César Carvalho; Maricy Raquel B.

Bonfá; Roberto da Silva and Mauricio Boscolo, 2009, “Ligninases

production by basidiomycetes strains on lignocellulosicagricultural

residues and their application in the decolorization of synthetic dye,”

Brazilian Journal of Microbiology, 40, pp.31-39.

[453]. Datta J R, and R Bannerjee, 2004, “Optimization of cultutre parameters for

extracellular protease production from a newly isolated Pseudomonas sp.

Using response-to-surface methodology and neural networks

models,”Process Biochemistry ,39, pp.293-2198.

[454]. Dey, G., Mitra, A. and Banerjee Maiti, B. R., 2001, “Enhanced production

of amylase by optimization of nutritional constituents using response

surface methodology,” Biochemistry of Engineering Journal, 7, pp. 227-

231.

[455]. Khuri, A L, and J A Cornell, 1993, Response surface: design and analysis.

New York: Marcel Dekker, AQSA Quality press.

[456]. Lee, S.L. and W.C. Chen, 1997, “Optimization of medium composition for

the production of glucosyltransferase by Aspergillus niger with response

surface methology,” Enzyme Microb. Technol., 21, pp.436–440.

[457]. A.Y.M. Ma, and B. Ooraikul, 1986, “Optimization of Enzymatic

Hydrolysis of Canola Meal with Response Surface Methodology,” Journal

of Food Processing and Preservation,10(2), pp.99–113.

[458]. Rosi, L. Costamagna, M. Bertuccioli, S. Clement, and G. Cruciani, 1987,

Wine fermentation by immobilized yeast: an optimization study, in: M.

Martens, G.A. Dalen Jr., H. Russwurm (Eds.), Flavor Science and

Technology, John Wiley and Sons, New York. 239.

299

[459]. Sonia KG, Chadha, and H.S. Saini, 2005, “Sorghum straw for xylanase hyperproduction by Thermomyces lanuginosus (D2W) under solid-state fermentation,” Bioresour.Technol., 96, pp.1561–1569.

[460]. Box GEP and Wilson KB., 1951, “On the experimental attainment of optimum conditions,” J.Roy.Stat.Soc ., 13, pp.1-45.

[461]. Cochran WG and Cox GM, 1957, Experimental designs, 2nd edn. John wiley and sons, New York. 346-354.

[462]. Murthy, R. M. V., Karanth, N. G., and Raghava Rao, K. S. M. S., 1993, “Biochemical engineering aspects of solid-state fermentation,”Advances in Applied Microbiology, 38, pp.99–147.

[463]. Garzillo, A., M. Colao, C. Caruso, C. Caporale, D. Celletti, and V. Buonocore, 1998, “Laccase from the white-rot fungus Trametes trogii,” Appl. Microbiol. Biotechnol., 49, pp.545-551.

[464]. Shin, K.S. and Y.J. Lee, 2000, “Purification and chracterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus,” Arch. Biochem. Biophys., 384, pp.109-115.

[465]. Périé, F., G. Reddy, N. Blackburn, and M. Gold, 1998, “Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens,” Arch. Biochem. Biophys., 353, pp.349-355.

[466]. Fukushima, Y. and T. Kirk, 1995, “Laccase component of the Ceriporiopsis subvermispora lignin-degrading system,” Appl. Environ. Microbiol., 61, pp.872-876.

[467]. Muñoz, C., F. Guillén, A. Martínez, and M. Martínez, 1997, “Laccase isoenzymes of Pleurotus eryngii: Characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation,” Appl. Environ. Microbiol., 63, pp.2166-2174.

[468]. Jung, H., F. Xu, and K. Li. 2002, “Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7,” Enzyme Microb. Technol., 30, pp.161-168.

[469]. Levin L and Forchiassin F., 2001, “Ligninolytic enzymes of the white rot basidiomycete Trametes trogii,” Acta Biotechnol., 21, pp.179–186.

[470]. Deepak Pant, Anoop Singh, Yamini Satyawali and R. K. Gupta, 2008, “Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, Phanerochaete chrysosporium,” Journal of Environmental Biology, 29(1), pp. 79-84.

[471]. Ghasemi, F.; Tabandeh, F.; Bambai, B., and Sambasiva Rao, K.R.S., 2010, “Decolorization of different azo dyes by Phanerochaete chrysosporium RP78 under optimal condition,” Int. J. Environ. Sci. Tech., 7 (3), pp.457-464.

[472]. Blanca E. Barragan, Carlos Costa and M. Carmen Marquez, 2007, “Biodegradation of azo dyes by bacteria inoculated on solid media,” Dyes and Pigments, 75, pp.73- 81.

[473]. Sofia Nosheen, Rakhshanda Nawaz, Muhammad Arshad and Amer Jamil, 2008, “Accelerated Biodecolorization of Reactive Dyes with Added

300

Nitrogen and Carbon Sources, International Journal of Agriculture and Biology, 12, pp.426–430.

[474]. Michael M. Tauber,Georg M. Guebitz and Astrid Rehorek, 1997, “Degradation of Azo Dyes by Laccase and Ultrasound Treatment,” Applied and Environmental Microbiology, 71(5), pp. 2600–2607.

[475]. Otjen L., Blanchette R., Effland M., and Leatham G., 1987, “Assesment of 30 white-rot basidiomycetes for selective lignin degradation,” Holzforschung, 41, pp.343-349.

[476]. Higuchi,T, 1985, Biosynthesis and biodegradation of wood components, T. Higuchi ed, Academic Press,San Diego, pp.557-578.

[477]. Eriksson, R.A. Blanchette and P. Ander, 1990, Microbial and enzymatic degradation of wood and wood components, Springer series in wood science, Springer-Verlag, New York, pp.225-397.

[478]. Dodson, P.J., C.S. Evans, P..J. Harvey and J.M. Palmer, 1987, “Isolation of an extracellular Mn-dependent enzyme mineralizing melanoidins from the white rot fungus Trametes versicolor,” FEMS Microbiol. Lett., 42, pp.17-22.

[479]. M.L. Niku-Paavola, E. Karhunen, P. Salola and V. Raunio, 1988, “Ligninolytic enzymes of the white-rot fungus Phlebia radiate,” Biochem. j., 254, pp. 877-884.

[480]. Blanchette R.A., Burnes T.A., Eerdmans M.M., and Akhtar M., 1992, “Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes,” Holzforschung, 46, pp.106-115.

[481]. Asit Datta, Alan Bettermann and T. Kent Kirk, 1991, “Identification of a Specific Manganese Peroxidase among Ligninolytic Enzymes Secreted by Phanerochaete chrysosporium during Wood Decay,” Applied and Environmental Microbiology, 57(5), pp.1453-1460.

[482]. Fatma Gassara, Satinder K. Brar, R.D. Tyagi M. Verma and R.Y. Surampalli, 2010, “Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium,” Biochemical Engineering Journal, 49(3), pp.388-394.

[483]. Moturi, B and Singara charya, M. A., 2009, “Decolourisation of crystal violet and malachite green by Fungi,” Science World Journal, 4 (4), pp.24-28.

[484]. Alberto Domınguez, Susana Rodriguez Couto and M Angeles Sanroman, 2005, “Dye decolorization by Trametes hirsutae immobilized into alginate beads,” World Journal of Microbiology and Biotechnology, 21, pp.405–409.

[485]. Shanmugam, S, P. Rajasekaran, and Joseph V. Thanikal, 2009, “Synthetic dye decolourization, textile dye and paper industrial effluent treatment using white rot fungi Lentines edodes,” Desalination and Water Treatment, 4, pp. 143–147.

301

[486]. Hao JJ, Tian XJ, Song FQ, He XB, Zhang ZJ, and Zhang P., 2006, “Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest,” J. Eukaryot. Microbiol., 53(3), pp.193-8.

[487]. Qifeng Yang, Huaiyu Zhan, Shuangfei Wang, Shiyu Fu and Kecheng Li, 2007, “Biomodification of Eucalyptus CTMP,” Bioresources, 2(4), pp.682-692.

[488]. Dharm Dutt, A P Garg, C H Tyagi and A H upadhyay, 2007, “Bio-delignification of lignocarbohydrates residues of Cymbopogon martini with Phanerochaete chrysosporium,” Journal of Scientific and Industrial Research, 66(1), pp. 483-489.

[488]. Narkhede K.P. and Vidhale NN., 2005, “Biopulping studies using an effluent isolate Curvularia lunata LW6,” Indian journal of Biotechnology, 5(suppl). pp. 385-388.

[490]. Seubert W, 1960, “Determination of isoprenoid compounds by microorganisms. Isolation and characterization of an isoprenoid degrading bacterium Pseudomonas citronellolis, new species,” J. Bacteriol., 79, pp.426–434.

[491]. Preeti N. Tallur, Veena B. Megadi and Harichandra Z. Ninnekar, 2008, “Biodegradation of Cypermethrin by Micrococcus sp. strain CPN-1,” Biodegradation, 19, pp.77–82.

[492]. D. Malik, M. Singh and P. Bhatia, 2010, “Biodegradation of Cypermethrin by a Pseudomonas Strain Cyp19 and its use in Bioremediation of contaminated soil,” The Internet Journal of Microbiology, 6(2), pp.1-6.

[493]. Baldrin, P, 2006, “Fungal laccases - occurrence and properties,” FEMS Microbiol. Rev., 30(2), pp.215-42.