25
97 References

References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/3917/16/16_references.pdf · 98 [1] Energy Information Administration, International Energy Outlook 2008, September

  • Upload
    vongoc

  • View
    219

  • Download
    1

Embed Size (px)

Citation preview

97

References

98

[1] Energy Information Administration, International Energy Outlook 2008,

September 2008 (www.eia.doe.gov/oiaf/ieo/index.html

[2] BP, ‘Statistical Review of World Energy’, June 2008.

[3] E. Bequerel, ‘Memoire sur les effets électriques produits sous l’influence

desrayons solaires’. C. R. Acad. Sci. 9 (1839) 561.

[4] Grätzel.M, ‘Photoelectrochemical cells’. Nature 414 (2001) 338.

[5] P. Peumans, A. Yakimov, S.R. Forrest, ‘Small molecular weight organic thin-film

photodetectors and solar cells’. J. Appl. Phys. 93 (2003) 3693.

[6] C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, ‘Plastic Solar Cells.’ Adv. Funct.

Mater. 11 (2001) 15.

[7] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C.

Hummelen, ‘2.5 % Efficient Organic Solar Cells’. Appl. Phys. Lett. 78 (2001) 841.

[8] A. Yakimov, S.R. Forrest, ‘High photovoltage multiple-heterojunction organic

solar cells incorporating interfacial metallic nanoclusters’. Appl. Phys. Lett. 80

(2002) 1667.

[9] S.V. Chasteen, J.O. Harter, G. Rumbles, J.C. Scott, Y. Nakazawa, M. Jones, H.H.

Horhild, H. Tillman, S.A. Carter, ‘Comparison of blended versus layered

structures for poly(p-phenylene vinylene)-based polymer photovoltaics’. J. Appl.

Phys. 99 (2006) 033709.

[10] S.M. Schulles, P. Sullivan, B.M. Sanderson, T.S. Jones, ‘The role of molecular

architecture and layer composition on the properties and performance of CuPc-C60

photovoltaic devices’. Mater. Sci. Eng. C. 25 (2005) 858.

[11] J.J. Dittmer, K. Petritsch, E.A. Marseglia, R.H. Friend, H. Rost, A.B. Holmes,

‘Photovoltaic Properties of MEH-PPV/PPEI Blend Devices’. Synth. Met. 102

(1999) 879.

[12] A.C. Arango, P.J. Brock, S.A. Carter, ‘Charge transfer in photovoltaics consisting

of interpenetrating networks of conjugated polymer and TiO2 nanoparticles’. Appl.

Phys. Lett. 74 (1999) 1698.

99

[13] W. Greens, S.E. Shaheen, B. Wessling, C.J. Brabec, J. Poortmans,N.S. Sariciftci,

‘Dependence of field-effect hole mobility of PPV-based polymer films on the

spin-casting solvent’. Org. Electron. 3 (2002) 105.

[14] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, ‘Thermally Stable, Efficient

Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network

Morphology’. Adv. Funct. Mater. 15 (2005) 1617.

[15] M. Reyes-Reyes, K. Kim, D.L. Caroll, ‘High-efficiency photovoltaic devices

based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-

phenyl-(6,6)C61 blend’. Appl. Phys. Lett. 87 (2005) 083506.

[16] G. Li, V. Shirotriya, J. Huang, Y. Yao, T. Mariarty, K. Emery, Y. Yang, ‘High-

efficiency solution processable polymer photovoltaic cells by self-organization of

polymer blends’. Nat. Mater. 4 (2005) 864.

[17] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, ‘Polymer Photovoltaic

Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor

Heterojunctions’. Science 270 (1995) 1789.

[18] S.W. Oh, H. Woo Rhee, C. Lee, Y. Chulkim, J. Kyeong Kim, J.W. Yu, The

photovoltaic effect of the p–n heterojunction organic photovoltaic device using a

nano template method’. Curr. Appl. Phys. 5 (2005) 55.

[19] P. Schilinsky, C. Waldauf, C.J. Brabec, ‘Recombination and loss analysis in

polythiophene based bulk heterojunction photodetectors’. Appl. Phys. Lett. 81

(2002) 3885.

[20] T. Martens, J.D. Haen, T. Munters, Z. Beelen, L. Goris, J. Mence, M.D.

Olieslaeger, D. Vanderzande, L. De Schepper, R. Anderiessen, ‘Disclosure of the

nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a

combination of SPM and TEM’. Synth. Met. 138 (2003) 243.

[21] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C.

Moratti, ‘A. B. Holmes, Efficient photodiodes from interpenetrating polymer

networks’. Nature (London) 376 (1995) 498.

[22] F. Padinger, R. Rittberger, N. S. Sariciftci, ‘Effects of Postproduction Treatment

on Plastic Solar Cells’. Adv. Funct. Mater. 13 (2003) 85.

100

[23] J. Nelson, ‘Organic photovoltaic films’. Curr. Opin. Solid State Mater. Sci. 6

(2002) 87.

[24] ‘Organic Solar Cell Architectures’, PhD Thesis by Dipl.Ing. Klaus Petritsch

Technischen Universitat Graz (Austria) (2000).

[25] M.R. Reyes, K. Kim, J. Dewald, R.S. Lopez, A. Avadhanula, S. Curran, D.L.

Carroll, ‘Meso-Structure Formation for Enhanced Organic Photovoltaic Cells’.

Org. Lett. 7 (2005) 5749.

[26] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, ‘High-

efficiency solution processable polymer photovoltaic cells by self-organization of

polymer blends’. Nat. Mater. 4 (2005) 864.

[27] J. Peet, Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan,

‘Efficiency enhancement in low-bandgap polymer solar cells by processing with

alkane dithiols’. Nat. Mater. 6 (2007) 497.

[28] W. Ma. C. Yang, X. Gong, K. Lee, A.J. Heeger, ‘Thermally Stable, Efficient

Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network

Morphology’. Adv. Mater. 15 (2005) 1617.

[29] M. R. Reyes, K. Kim, D.L. Carroll, ‘High-efficiency photovoltaic devices based

on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-

phenyl-(6,6)C61 blends’. Appl. Phys. Lett. 87 (2005) 083506.

[30] H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler A. Hinsch

M.C. Luxsteiner, N.S. Sariciftci, ‘Efficiency limiting morphological factors of

MDMO-PPV: PCBM plastic solar cells’. Thin Solid Films 587 (2006) 511.

[31] H. Hoppe, N.S. Sariciftci, H. Hoppe, N.S. Sariciftci, ‘Morphology of

polymer/fullerene bulk heterojunction solar cells’. J. Mater. Chem. 16 (2006) 45.

[32] E. Moons, ‘Conjugated polymer blends: linking film morphology to performance

of light emitting diodes and photodiodes’. J. Phys. Condens Matter. 14 (2002)

12235.

[33] J.S. Kim, P.K.H. Ho, C.E. Murphy, R.H. Friend, ‘Phase Separation in

Polyfluorene-Based Conjugated Polymer Blends: Lateral and Vertical Analysis of

Blend Spin-Cast’. Thin Films Macromolecules. 37 (2004) 2861.

101

[34] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C.

Hummelen, ‘2.5% efficient organic plastic solar cells’. Appl. Phys. Lett. 78 (2001)

841.

[35] C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, ‘Effect of

LiF/metal electrodes on the performance of plastic solar cells’. Appl. Phy. Lett. 80

(2002) 1288.

[36] G.D. Sharma, S. Sharma, M.S. Roy, ‘Electrical and photoelectrical properties of

dye sensitized allyl viologen –doped polypyrrole solar cells’. Sol. Energy Mater.

Sol. Cells. 80 (2003) 131.

[37] G.D. Sharma, S. Sharma, M.S. Roy, ‘Charge - carrier transport and

photogeneration processes in pyronine (G) (PYR) sensitized - TiO2 photovoltaic

device’. Mater. Sci. Eng. B. 110 (2004) 135.

[38] D.A. Heggie, B.L. Macdonald, I.G. Hill, ‘Evidence of mobile charged impurities

in organic heterojunction photovoltaic devices’. J. Appl. Phys. 100 (2006) 104505.

[39] J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C.

Moratti, A.B. Holmes, ‘Efficient photodiodes from interpenetrating polymer

networks’. Nature 376 (1995) 498.

[40] M.M. Koetse, J.S. Kornel, T. Hoekerd. H.F.M. Schoo, S.C. Veenstra, J.M. Kroon,

X. Yang, J. Loos, ‘Efficient polymer:polymer bulk heterojunction solar cells’.

Appl. Phys. Lett. 88 (2006) 083504.

[41] S. Westenhoff, I.A. Howard, J.M. Hodgkiss, K.R. Kirov, H.A. Bronstein, C.K.

Williams, N.C. Greenham, R.H. Friend, ‘Charge Recombination in Organic

Photovoltaic Devices with High Open-Circuit Voltages’. J. Am. Chem. Soc. 130

(2008) 13653.

[42] C.R. McNeill, J.J.M. Halls, R. Wilson, G.L. Whiting, S. Berkebile, M.G. Ramsey,

R.H. Friend, N.C. Greenham, ‘Efficient Polythiophene/Polyfluorene Copolymer

Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing

Effects’. Adv. Funct. Mater. 18 (2008) 1.

102

[43] C.H. Chang, T.K. Huang, Y.T. Lin, Y.Y. Lin, C.W. Chen, T.H. Chu, W.F. Su,

‘Improved charge separation and transport efficiency in poly(3-hexylthiophene)–

TiO2nanorod bulk heterojunction solar cells’. J.Mater. Chem. 18 (2008) 2201.

[44] C.C. Oey, A.B. Djurisic, H. Wang, K.K.Y. Man, W.K. Chen, M.H. Xie, Y.H.

Leung, A. Pandey, J.M. Nunzi, P.C. Chui, ‘Polymer-TiO2 solar cells: TiO2

interconnected network for improved cell performance’. Nanotechnology. 17

(2006) 706.

[45] S. Zhang, P.W. Cry. S.A. McDonald, G. Konstantatos, E.H. Sargent. ‘Enhanced

infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer

composites: 600-fold increase in maximum power output via control of the ligand

barrier’. Appl. Phys. Lett. 87 (2005) 233101.

[46] R. Raviranjan, S.A. Haque, J.R. Durrent, D.D.C. Bradley, J. Nelson, ‘The Effect

of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid

Polymer/TiO2 Solar Cells’. Adv Funct. Mater. 15 (2005) 609.

[47] W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, ‘Hybrid polymer solar cells based on

zinc oxide’. Adv. Mater. 16 (2004) 1009.

[48] H.J. Snaith, A.J. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Gratzel,

‘Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge

Recombination and Increased Light Capture’. Nano. Lett. 7 (2007) 3372.

[49] E. Holder, N. Tessler, A.L. Rogach, ‘Hybrid nanocomposite materials with

organic and inorganic components for opto-electronic devices’. J. Mater. Chem.

18 (2008) 1064.

[50] Q. Qiao, L. Su, J. Beck, J.T. Mcleskey, ‘Characteristics of water-soluble

polythiophene: TiO2 composite and its application in photovoltaics’. Appl. Phys.

98 (2005) 094906.

[51] J. Boucle, S. Chyla, S.P. Shafter, J.R. Durrant, D.D.C. Bradley, J. Nelson, ‘Hybrid

Solar Cells from a Blend of Poly(3-hexylthiophene) and Ligand-Capped TiO2

Nanorods’. Adv. Funct. Mater. 18 (2008) 622.

103

[52] S.C. Veenstra, W.J.H. Verhees, J.M. Kroon, M.M. Koetse, J. Sweelssen, J.J.A.M.

Bastiaansen, H.F.M. Schoo, X. Yang, A. Alexeev, J. Loos, U.S. Schubert, M.M.

Wienk, ‘Photovoltaic Properties of a Conjugated Polymer Blend of MDMO−PPV

and PCNEPV’. Chem. Mater. 16 (2004) 2503.

[53] C.R. McNel, A. Abrusci, R. Wilson, M.J. McKiernan, J.H. Burroughes, J.J.M.

Halls, N.C. Greenham, R.H. Friend, ‘Dual electron donor/electron acceptor

character of a conjugated polymer in efficient photovoltaic diodes’. Appl. Phys.

Lett. 90 (2007) 193506.

[54] D. Gebeyehu, B. Maening, J. Drechsel, K. Leo, M. Pfeiffer, ‘Bulk-heterojunction

photovoltaic devices based on donor–acceptor organic small molecule blends’.

Sol. Energy Mater. Sol. Cells. 79 (2003) 81.

[55] M. Hiramoto, H. Fujiwara, M. Yokoyama, ‘Three‐layered organic solar cell with a

photoactive interlayer of codeposited pigments’. Appl. Phys. Lett. 58 (1991) 1061.

[56] W. Geens, T. Aernouts, J. Poortmans, G. Hadziioannou, ‘Organic co-evaporated

films of a PPV-pentamer and C: model systems for donor/acceptor polymer

blends’. Thin Solid Films. 438 (2002) 403.

[57] P. Peumans, S. Uchida, S.R. Forrest, ‘Efficient bulk heterojunction photovoltaic

cells using small-molecular-weight organic thin films’. Nature. 425 (2003) 158.

[58] T.T. Tsuzuki, J. Shirota, J. Rostalski, D. Meissner, ‘Modelling of the perimeter

recombination effect in GaAs-based micro-solar cell’. Sol. Energy Mater. Sol.

Cells. 90 (2006) 1.

[59] J.J. Dittmer, E.A. Marseglia, R.H. Friend, ‘Electron Trapping in Dye/Polymer

Blend Photovoltaic Cells’. Adv. Mater. 12 (2000) 1270.

[60] L.S. Mende, A. Fechtenkotter, K. Mullen, E. Moons, R.H. Friend, J.D.

Mackenzie, ‘Self-Organized Discotic Liquid Crystals for High-Efficiency Organic

Photovoltaics’. Science. 293 (2001) 1119

[61] C. Yang, A.J. Heeger, ‘Morphology of composites of semiconducting polymers

mixed with C60’. Synth. Met. 83 (1996) 85.

[62] F. Padinger, R. Rittberger, N.S. Sariciftci, ‘Effects of Postproduction Treatment

on Plastic Solar Cells’. Adv. Funct. Mater. 13 (2003) 85.

104

[63] I. Parker, ‘Carrier tunneling and device characteristics in polymer light‐emitting

diodes’. J. Appl. Phys. 75 (1994) 1656.

[64] J. Moser. Monatsh. ‘Dye-sensitization of Becquerel's photo-electrochemical cell’.

Chem. 8. (1887) 373.

[65] H. Rigollot, C. R. Acad. A. ‘Guldberg, Sur les équations différentielles ordinaires

qui possèdent un système fondamental d'intégrales, (French) [On the differential

equations admitting a fundamental system of integrals]’. C. Sci. Paris, 116 (1893)

813.

[66] H. Gerischer, H. Tributsch. Berich. Buns. Gesell. 72 (1968) 437.

[67] H. Gerischer, H. R. Schoppel and B. Pettinge. ‘Luminescence and Structural

Properties of Thiogallate Phosphors Ce+3 and Eu+2-Activated Phosphors. Part I’.

J. Electrochem. Soc. 119 (1972) 230.

[68] H. Tributsch and H. Gerischer. Berich. Buns. Gesell. 73 (1969) 251.

[69] R. Memming. Faraday Discuss. (1974) 261.

[70] R. Memming, F. Schroppel. Chem. Phys. Lett. 62 (1979) 207.

[71] R. Memming, F. Schroppel , U. Bringmann. J. Electroanal. Chem. 100 (1979)

307.

[72] H. Tsubomura, M. Matsumura, Y. Noyamaura, T. Amamyiya, ‘Dye sensitised

zinc oxide: aqueous electrolyte: platinum photocell’. Nature. 261 (1976) 402.

[73] W. D. K. Clark, N. Sutin, ‘Spectral sensitization of n-type titanium dioxide

electrodes by polypyridineruthenium(II) complexes’. J. Am. Chem. Soc. 99 (1977)

4676.

[74] S. Anderson, E. C. Constable, M. P. Dare-Edwards, J. B. Goodenough, A.

Hamnett, K. R. Seddon, R. D. Wright, ‘Chemical modification of a titanium (IV)

oxide electrode to give stable dye sensitisation without a supersensitiser’. Nature

280 (1979) 571.

[75] H. Gerischer, ‘Electroanal’. Chem. Interfac. Electrochem. 58 (1975) 263.

[76] H. Gerischer,. ‘High resolution scintillation spectra obtained with nanosecond

pulses of 3 MeV electrones’. Photochem. Photobiol 16 (1972) 243.

105

[77] R. Memming, Single-strand breakes induced in DNA by Vacuum-Ultra violet

Radiation Photochem. Photobiol. 16 (1972) 325.

[78] A. Fujishima, T. Watanabe, O. Tatsuoki, K. Honda, ‘Spectral sensitization of

photo-electrochemical reactions of cadmium sulfide single crystal electrode’.

Chem. Lett. 4 (1975) 13.

[79] T. S. Jayadevaiah, ‘Semiconductor‐electrolyte interface devices for solar energy

conversion’. Appl. Phys. Lett. 25 (1974) 399.

[80] A. Hamnett, M. P. Dare-Edwards, R. D. Wright, K. R. Seddon, J. B. Goodenough,

‘Photosensitization of titanium (IV) oxide with tris(2,2'-bipyridine)ruthenium(II)

chloride. Surface states of titanium(IV) oxide’. J.Phys. Chem., 83 (1979) 3280.

[81] M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon, R. D. Wright,

‘Faraday Discuss’. Chem. Soc. 70 (1980) 285.

[82] D. Shi, N. Pootrakulchote, R. Li, J. Guo, Y. Wang, S. M. Zakeeruddin, M.

Grätzel, P. Wang, ‘Thermospray: A Method for Producing High Quality

Semiconductor Nanocrystals’. Phys. Chem. C. 112 (2008) 17047.

[83] Q. Yu, S. Liu, M. Zhang, N. Cai, Y. wang, P. Wang, ‘An Extremely High Molar

Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells: The

Effects of π-Conjugation Extension’. J. Phys. Chem. C 113 (2009) 14559.

[84] B. O'Regan , M. Grätzel. Nature 353 (1991) 737.

[85] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller,P. Liska,

N. Vlachopoulos, M. Grätzel, ‘Conversion of light to electricity by cis-X2bis(2,2'-

bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-,

Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes’. J. Am.

Chem. Soc. 115 (1993) 6382.

[86] M. K. Nazeeruddin, P. Pechy, M. Grätzel, Chem. Commun. (1997) 1075.

[87] B. A. Gregg, ‘Excitonic Solar Cells’. J. Phys. Chem. B 107 (2003) 4688.

[88] L. M. Peter, ‘Tunable Luminescence Properties of CaIn2O4:Eu3+ Phosphors’. J.

Phys. Chem. C 111 (2007) 16601.

[89] B. A. Gregg, M. C. Hanna, J. Appl. Phys. 93 (2003) 3605.

106

[90] K. Onken, PhD. Thesis, University of Kassel, Germany, 2007

[91] C. Noumissing-Sao, K. Onken, T.P.I. Saragi, J. Salbeck, DPG-Spring Meeting,

2007, 808

[92] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M.

Grätzel, J. Am. Ceram. Soc. 80 (1997) 3157.

[93] B. Burfendt, T. Hannappel, W. Storck, F. Willig, ‘Measurement of Temperature-

Independent Femtosecond Interfacial Electron Transfer from an Anchored

Molecular Electron Donor to a Semiconductor as Acceptor, J. Phys. Chem. 100

(1996) 16463.

[94] T. Hannappel, B. Burfendt, W. Storck, F. Willig, ‘Measurement of Ultrafast

Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules

into Empty Electronic States in a Colloidal Anatase TiO2 Film’. J. Phys. Chem. B.

101 (1997) 6799.

[95] J. R. Durrant, Y. Tachibana, I. Mercer, et al. Z Phys. Chemie-Int. ‘The excitation

wavelength and solvent dependence of the kinetics of electron injection in

Ru(dcbpy)2(NCS)2 sensitised nanocrystalline TiO2 films’. J. Res. Phys.

ChemChem Phys. 212 (1999) 93.

[96] J. B. Asbury, E. Hao, Y. Wang, Y. Wang, T. Lian, ‘Bridge Length-Dependent

Ultrafast Electron Transfer from Re Polypyridyl Complexes to Nanocrystalline

TiO2 Thin Films Studied by Femtosecond Infrared Spectroscopy’. J. Phys. Chem.

B 104 (2000) 11957.

[97] B. T. Langdon, V. J. MacKenzie, D. J. Asunskis, D. F. Kelley, ‘Electron Injection

Dynamics of RuII(4,4‘-dicarboxy-2,2‘-bipyridine)2cis(NCS)2 Adsorbed on MoS2

Nanoclusters’. J. Phys. Chem. B 103 (1999) 11176.

[98] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 77 (1998) 347.

[99] H. Gerischer, Surf. Sci. 18 (1969) 97

[100] R. A. Marcus, J. Chem. Phys. 24 (1956), 966.

[101] R. A. Marcus, Ann. Rev. Phys. Chem. 15 (1964) 155.

107

[102] A. Hagfeldt, M. Grätzel, ‘Light-Induced Redox Reactions in Nanocrystalline

Systems’. Chem. Rev. 95 (1995) 49.

[103] http://www.scribd.com/doc/10043326/handbook-of-photovoltaic-science-and-

engeneering15.

[104] Y. Tachibana J. E. Moser, M. Grätzel, D. R. Klug, J. R. Durrant, ‘Picosecond

Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium

Dioxide Films’. J. Phys. Chem. 100 (1996) 20056.

[105] A. Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, S.E. Lindquist, S. Sodergren,

‘Electron Transport in the Nanostructured TiO2−Electrolyte System Studied with

Time-Resolved Photocurrents’. J.Phys. Chem. B 101 (1997) 2514.

[106] S. Nakade, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, ‘Effects of Lithium

Ion Density on Electron Transport in Nanoporous TiO2 Electrodes’. J. Phys.

Chem. B 105 (2001) 9150.

[107] N.W. Duffy, L.M. Peter, K.G.U. Wijayantha, ‘Characterisation of electron

transport and back reaction in dye-sensitised nanocrystalline solar cells by small

amplitude laser pulse excitation’. Electrochem. Commun. 2 (2000) 262.

[108] J. van de Lagemaat, A. J. Frank, ‘Nonthermalized Electron Transport in Dye-

Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk

Modeling Studies’. J. Phys. Chem. B 105 (2001) 11194.

[109] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, ‘Transport-

Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2

Solar Cells’. J. Phys. Chem. B 107 (2003) 11307.

[110] J. Nelson, R. E. Chandler, Random walk models of charge transfer and transport

in dye sensitized systems Coord. Chem. Rev. 248 (2004) 1181.

[111] R. Katoh, A. Furube, A.V. Barzykin, H. Arakawa, M. Tachiya, ‘Kinetics and

mechanism of electron injection and charge recombination in dye-sensitized

nanocrystalline semiconductors’. Coord. Chem. Rev. 248 (2004) 1195.

[112] A. Blumen, G. Zumofen, J. Klafter, ‘Target annihilation by random walkers’.

Phys. Rev. B 30 (1984) 5379.

108

[113] S.Y. Huang, G. Schlichthörl, A.J. Nozik, M. Grätzel, A.J. Frank, ‘Charge

Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells’. J. Phys.

Chem. B. 101 (1997) 2576.

[114] S. A. Haque, Y. Tachibana, D. R. Klug, J. R. Durrant, ‘Charge recombination

kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally

applied bias’. J. Phys. Chem. B. 102 (1998) 1745.

[115] J. Nelson, ‘Continuous-time random-walk model of electron transport in

nanocrystalline TiO2 electrodes’. Phys. Rev. B. 59 (1999) 15374.

[116] J. Nelson, S. A. Haque, D. R. Klug, J. R. Durrant, ‘Trap-limited recombination in

dye-sensitized nanocrystalline metal oxide electrodes’. Phys. Rev. B. 6320 (2001)

205321.

[117] G. M. Hasselmann, G. J. Meyer, ‘Diffusion Limited Interfacial Electron Transfer

with Large Apparent Driving Forces’. J. Phys. Chem. B. 103 (1999) 7671.

[118] J. Van de Lagemaat, N. G. Park, A. J. Frank, ‘Influence of Electrical Potential

Distribution, Charge Transport, and Recombination on the Photopotential and

Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar

Cells: A Study by Electrical Impedance and Optical Modulation Techniques’. J.

Phys. Chem. B. 104 (2000) 2044.

[119] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, ‘Electron Injection and

Recombination in Ru(dcbpy)2(NCS)2 Sensitized Nanostructured ZnO’. J. Phys.

Chem. B. 105 (2001) 5585.

[120] A. V. Barzykin, M. Tachiya, ‘Mechanism of Charge Recombination in Dye-

Sensitized Nanocrystalline Semiconductors: Random Flight Model’. J. Phys.

Chem. B. 106 (2002) 4356.

[121] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, L. M. Peter, ‘Charge Transport and

Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using

Intensity-Modulated Photovoltage and Photocurrent Spectroscopy’. J. Phys.

Chem. B. 107 (2003) 7536.

[122] S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, J. R. Durrant,

‘Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized

Nanocrystalline Titanium Dioxide Films’. J. Phys. Chem. B 104 (2000) 538.

109

[123] J. N. Clifford, G. Yahioglu, L. R. Milgrom, J. R. Durrant, ‘Molecular control of

recombination dynamics in dye sensitised nanocrystalline TiO2 films’. Chem.

Commun. 12 (2000) 1260.

[124] J. N. Clifford, E. Polares, M. K. Nazeerudin, M. Grätzel, J. Nelson, X. Li, N.

Long, J. R. Durrant, ‘Molecular Control of Recombination Dynamics in Dye-

Sensitized Nanocrystalline TiO2 Films: Free Energy vs Distance Dependence’. J.

Am. Chem. Soc. 126 (2004) 5225.

[125] S. Handa, H. Wietasch, M. Thelakkat, J. R. Durrant, S. A. Haque, ‘Reducing

charge recombination losses in solid state dye sensitized solar cells: the use of

donor–acceptor sensitizer dyes’. Chem. Commun. 17 (2007) 1725.

[126] P. Wang, S. M. Zakeeruddin, J. E. Zakeeruddin, T. Sekiguchi, M. Grätzel, ‘A

stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium

sensitizer and polymer gel electrolyte’. Nat. Mater. 402 (2003) 88.

[127] V. K. ThorsØlle, B. Wenger, J. Teuscher, C. Bauer, J. E. Moser, ‘Dynamics of

Photoinduced Interfacial Electron Transfer and Charge Transport in Dye-

Sensitized Mesoscopic Semiconductors’. Chimia, 61 (2007) 631.

[128] Z. Zhang, ‘Enhancing the open-circuit voltage of dye-sensitized solar cells:

coadsorbents and alternative redox couples’. PhD Thesis, EPFL, (2008).

[129] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer,

M. Grätzel, ‘Solid-state dye-sensitized mesoporous TiO2 solar cells with high

photon-to-electron conversion efficiencies’ Nature. 395 (1998) 583.

[130] U. Bach, Y. Tachibana, J.-E. Moser, S. A. Haque, J. R. Durrant, M. Grätzel, D. R.

Klug, Charge separation in solid-state dye-sensitized heterojunction solar cells. J.

Am. Chem. Soc. 121 (1999) 7445.

[131] J. E. Moser, ‘Solar cells: Later rather than sooner’. Nature Mater. 4(2005) 723

[132] P. Bonhôte, E. Gogniat, S. Tingry, C. Barbe, N. Vlachopoulos, F. Lenzmann,

P.Comte, M. Grätzel, ‘Efficient Lateral Electron Transport inside a Monolayer of

Aromatic Amines Anchored on Nanocrystalline Metal Oxide Films’. J. Phys.

Chem. B. 102 (1998) 1498.

110

[133] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel,

‘Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells’.

J. Am. Chem. Soc. 127 (2005) 14945.

[134] M. Grätzel, ‘Conversion of sunlight to electric power by nanocrystalline dye-

sensitized solar cells’. J. Photochem. Photobiol. A. 164 (2004) 3.

[135] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, ‘Stable ≥

8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of

low volatility’. Appl. Phys. Letts 86 (2005) 123508.

[136] D. Kuang, C. Klein, S. Ito, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin,

M. Grätzel, ‘High molar extinction coefficient ion-coordinating ruthenium

sensitizer for efficient and stable mesoscopic dye-sensitized solar cells’. Adv.

Func. Mater. 17 (2007) 154.

[137] P. Wasserscheid, T. Welton, ‘Ionic Liquids in Synthesis’. Wiley: Weinheim,

Germany, (2002).

[138] R. D. Dogers, K. R. Seddon, Science 302 (2003) 792.

[139] J. Dupont, R. F. de Souza, P. A. Z. Suarez, ‘Ionic Liquid (Molten Salt) Phase

Organometallic Catalysis’. Chem. Rev. 102 (2002) 3667.

[140] W. Xu, C. A. Angell, Science. 302 (2003) 422.

[141] D. B. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, M. Grätzel, ‘Stable Mesoscopic

Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte’.

J. Am. Chem. Soc. 128 (2006) 7732.

[142] W. Kubo, K. Murakoshi, T. Kitamura, Y. Wada, K. Hanabusa, H. Shirai, S.

Yanagida, ‘Fabrication of Quasi-solid-state Dye-sensitized TiO2 Solar Cells

Using Low Molecular Weight Gelatros’. Chem. Lett. 27 (1998) 1241.

[143] W. Kubo, S. Kambe, S. Nakade, Kitamura, T. K. Hanabusa, Y. Wada, S.

Yanagida. ‘Photocurrent-Determining Processes in Quasi-Solid-State Dye-

Sensitized Solar Cells Using Ionic Gel Electrolytes’. J.Phys. Chem. B 107 (2003)

4374.

111

[144] P. Wang, S. M. Zakeeruddin, I. Exnar, M. Grätzel, ‘High efficiency dye-sensitized

nanocrystalline solar cells based on ionic liquid polymer gel electrolyte’. Chem.

Commun. 24 (2002) 2972.

[145] F. Cao, G. Oskam, P. C. Searson, A Solid State, Dye Sensitized

Photoelectrochemical Cell’. J. Phys. Chem. 99 (1995) 17071.

[146] P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, ‘Gelation of Ionic

Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-

Sensitized Solar Cells’. J. Am. Chem. Soc. 125 (2003) 1166.

[147] A. F. Nogueira, J. R. Durrant, M. A. De Paoli, ‘Dye-Sensitized Nanocrystalline

Solar Cells Employing a Polymer Electrolyte’. Adv. Mater. 13 (2001) 826.

[148] C. Longo, A. F. Nogueira, M. De Paoli, H. Cachet, ‘Solid-State and Flexible Dye-

Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance

Spectroscopy’ J. Phys. Chem. B. 106 (2002) 5925.

[149] P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane, M. Grätzel

M, ‘Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State

Dye-Sensitized Solar Cell’. J. Am. Chem. Soc. 126 (2004) 13590.

[150] J. Desilvestro, M. Grätzel, L. Kaven, J. Moser, ‘Highly efficient sensitization of

titanium dioxide’. J. Am. Chem. Soc. 107 (1985) 2988.

[151] B. O’Regan, F. Lenzmann, ‘Charge Transport and Recombination in a Nanoscale

Interpenetrating Network of n-Type and p-Type Semiconductors: Transient

Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells’.

J. Phys. Chem. B. 108 (2004) 4342.

[152] B. O’Regan, F. Lenzmann, R. Muis, J. Wienke, ‘A Solid-State Dye-Sensitized

Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN: Analysis of

Pore Filling and IV Characteristics’. Chem. Mater. 14 (2002) 5023.

[153] B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel, ‘Electrodeposited

Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized

Photovoltaics’. Adv. Mater. 12 (2000) 1263.

112

[154] T. Taguchi, X. T. Zhang, I. Sutanto, K. Tokuhiro, T. N. Rao, H. Watanabe, T.

Nakamori, M. Uragami, A. Fujishima, ‘Improving the performance of solid-state

dye-sensitized solar cell using MgO-coated TiO2 nanoporous film’. Chem. Comm.

19 (2003) 2480.

[155] A. Konno, T. Kitagawa, H. Kida, G. R. A. Kumara, K. Tennakone, ‘The effect of

particle size and conductivity of CuI layer on the performance of solid-state dye-

sensitized photovoltaic cells’. Cuur. Appl. Phys. 5 (2005) 149.

[156] G. R. A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara, K. Tennakone, ‘Dye-

Sensitized Solid-State Solar Cells: Use of Crystal Growth Inhibitors for

Deposition of the Hole Collector’. Chem. Mater. 14 (2002) 954.

[157] H. Snaith, S. M. Zakeeruddin, Q. Wang, P. Pechy, M. Grätzel, ‘Dye-Sensitized

Solar Cells Incorporating a “Liquid” Hole-Transporting Material’ Nano Lett. 6

(2006) 2000.

[158] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, ‘Solid-state organic/inorganic hybrid

solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes’

Thin Solid Film. 403 (2002) 271.

[159] S. Tan, J. Zhai, M. Wan, Q. Meng, Y. Li, L. Jiang, D. Zhu, ‘Influence of Small

Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State

Dye-Sensitized Solar Cells’. J. Phys. Chem. B. 108 (2004) 18693.

[160] L. Schmidt-Mende, J. E. Kroeze, J. R. Durrant, M. K. Nazeeruddin, M. Grätzel,

‘Effect of Hydrocarbon Chain Length of Amphiphilic Ruthenium Dyes on Solid-

State Dye-Sensitized Photovoltaics’. Nano Lett. 5 (2005) 1315.

[161] A. Kay, M. Grätzel, ‘Low cost photovoltaic modules based on dye sensitized

nanocrystalline titanium dioxide and carbon powder’. Sol. Energy Mater. Sol.

Cells. 44 (1996) 99.

[162] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, A.

Hagfeld, ‘A New Method for Manufacturing Nanostructured Electrodes on Plastic

Substrates, Nano Lett. 1 (2001) 97.

113

[163] K. Imoto, K. Takatashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata,

‘High-performance carbon counter electrode for dye-sensitized solar cells’.

Sol.Energy Mater. Sol. Cells. 79 (2003) 459.

[164] Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, ‘Application of Poly(3,4-

ethylenedioxythiophene) to Counter Electrode in Dye-Sensitized Solar Cells’.

Chem. Lett. 31 (2002) 1060.

[165] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, ‘I−/I3− redox reaction

behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized

solar cells’. J. Photochem. Photobiol. A. 164 (2004) 153.

[166] U. Bach, ‘Solid-state dye-sensitized mesoporous TiO2 solar cells’. Ph.D. Thesis,

EPFL, (2000).

[167] J. Krüger, ‘Interface engineering in solid-state dye-sensitized solar cells’. PhD.

Thesis, EPFL, (2003).

[168] M. Probst, R. Haight, ‘Diffusion of metals into organic films’ Appl. Phys. Lett. 70

(1997) 1420.

[169] R. Willecke, F. Faupel, ‘Diffusion of gold and silver in bisphenol

trimethylcyclohexanen polycarbonate’. J. Polym. Sci. Part B. 35 (1997) 1043.

[170] R. Willecke, F. Faupel. ‘Diffusion of Gold and Silver in Bisphenol A

Polycarbonate’. Macromol. 30 (1997) 567.

[171] A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, ‘Morphology

and Thermal Stability of Metal Contacts on Crystalline Organic Thin Films’. Adv.

Mater. 14 (2002) 961.

[172] M. Pope and C. E. Swenberg, ‘Electronic Processes in Organic Crystals and

Polymers’, Oxford University Press 2nd ed., New York, 1999.

[173] C. H. Lee, G. Yu, D. Moses, K. Pakbaz, C. Zhang, N. S. Sariciftci, A. J. Heeger

and F. Wudl, ‘Sensitization of the photoconductivity of conducting polymers by

C60: Potoinduced electron transfer’. Phys. Rev. B, 48. (1993). 15425.

[174] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, ‘Photoinduced electron

transfer from a conducting polymer to buckminsterfullerene’. Science, 258 (1992)

1474.

114

[175] Dyakonov, G. Zoriniants, M. Scharber, C. J. Brabec, R. A. J. Janssen, J. C.

Hummelen and N. S. Sariciftci, ‘Photoinduced charge carriers in conjugated

polymer-fullerene composites studied with light-induced electron-spin resonance’

Phys. Rev. B. 59 (1999) 8019.

[176] L. Smilowitz, N. S. Sariciftci, R. Wu, C. Gettinger, A. J. Heeger and F. Wudl,

‘Photoexcitation spectroscopy of conducting-polymer-C60 composites:

Photoinduced electron transfer’. Phys. Rev. B, 47 (1993) 835.

[177] B. Kraabel, D. McBranch, N. S. Sariciftci, D. Moses and A. J. Heeger, ‘Ultrafast

spectroscopic studies of photoinduced electron transfer from semiconducting

polymer to C60’. Phys. Rev. B. 50 (1994) 1854.

[178] X. Wei, Z. V. Vardeny, N. S. Sariciftci and A. J. Heeger, ‘Absorption-detected

magnetic-resonance studies of photoexcitations in conjugated-polymer/C60

composites’. Phys. Rev. B. 53 (1996) 2187.

[179] C. Waldauf, P. Schilinsky, J. Hauch and C. J. Brabec, ‘Material and device

concepts for organic photovoltaics: Towards competitive efficiencies’. Thin Solid

Films. 503 (2004) 451-452.

[180] Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande and J. C. Hummelen,

Effect of temperature and illumination on the electrical characteristics of polymer-

fullerene bulk-heterojunction solar cells’. Adv. Func. Mater. 14 (2004) 38.

[181] F. Padinger, R.S. Rittberger, and N.S. Sariciftci, ‘Effects of post-production

treatment on plastic solar cell’. Adv. Funct. Mater.13 (2003) 85.

[182] 1S. Ferrere, A. Zaban, B.A.Gregg, J. Phys. Chem. B 101 (1997) 4490.

[183] F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, Y. Gao, ‘A photoelectron

spectroscopy study on the indium tin oxide treatment by acids and bases’. Appl.

Phys. Lett. 74 (1999) 880.

[184] C. Yan, M. Zharnikov, A. Gölzhäuser, M. Grunze, ‘Preparation and

Characterization of Self-Assembled Monolayers on Indium Tin Oxide’. Langmuir. 16

(2000) 6208.

115

[185] S. Besbes, A. Ltaief, K. Reybier, L. Ponsonnet, N. Jaffrezic, J. Davenas, H. Ben

Ouada, ‘Injection modifications by ITO functionalization with a self-assembled

monolayer in OLEDs’. Synth. Met. 138 (2003) 197.

[186] Ruda, H. MSE457 course notes, (2004).

[187] K. L. Chopra, I. Kaur, “Thin Film Device Applications”, (Published by: Plenum

Press, New York) Chapter 1 (1983) 14 – 18.

[188] R. V. Stuart, “Vacuum Technology, Thin Films and Sputtering”, (Published by:

Academic Press, London) Chapter 3 (1983) 65 – 89.

[189] K. Kalyanasundaram, M. Gratzel, ‘Applications of functionalized transition metal

complexes in photonic and optoelectronic devices’. Coord. Chem. Rev. 177

(1998) 347.

[190] F. Brouers, A. Ramsamugh, V.V. Dixit, ‘Standard free energies of formation of

rare earth sesquisulphides’. J. Mater. Sci. 22 (1987) 2759.

[191] R.H.M. Van de Leur, C.A.P. Zevenhovan, ‘Characterisation of the granular

materials corundum and mullite by impedance spectroscopy’. J. Mater. Sci. 26

(1991) 4086.

[192] R.W.Berry, P.M.Hall and M.T.Harris Ed. “Thin Film Technology” (NY) Van

Nostrand Reinhold Co. (1968).

[193] S.M.Sze, ‘Phys. of Semiconductor devices’ 2nd Ed. John Wiley and Sons (NY)

(1981).

[194] E.S.Yang, ‘Fundamentals of Semiconductor Devices’, McGraw Hill Inc.(NY)

(1978) 107.

[195] R.I.Frank and J.G. Simmons, ‘Space‐Charge Effects on Emission‐Limited Current

Flow in Insulators’. J. Appl. Phys. 38 (1967) 832.

[196] F. Yakuphanoglu, ‘Heat treatment effect on the single oscillator parameters and

optical band gap of an organic thin film’. Opt. Mater. 29 (2006) 253.

116

[197] D. Muhlbacher, A. Cravino, H. Neugebauer, N.S. Sariciftci, ‘Comparison of the

electrochemical and optical bandgap of low-bandgap polymers’. Synth. Met. 137

(2003) 1361.

[198] M.S. Liu, X. Jiang, S. Liu, P. Herguth, A.K.Y. Jen, ‘Effect of Cyano Substituents

on Electron Affinity and Electron-Transporting Properties of Conjugated

Polymers’. Macromolecules. 35 (2002) 3532.

[199] S.R.Morrison, ‘Electrochem at Semiconductor and Oxidised metal electrodes,

Plenum’ New York. (1960).

[200] A.J.Twarowski and A.C Albrecht, ‘Depletion layer studies in organic films: Low

frequency capacitance measurements in polycrystalline tetracene’. J. Chem.Phys.

70 (1979) 2255.

[201] F.H.Rhoderick, ‘Metal semiconductor contacts’. Clarenden Press, Oxford (1978).

[202] W.A.Naun and G.A.Chamberlain, ‘Photovoltaic properties of iodine‐doped

magnesium tetraphenylporphyrin sandwich cells. II. Properties of illuminated

cells’. J.Appl.Phys. 69 (1991) 4324.

[203] G.D.Sharma, S.K.Gupta and M.S.Roy, ‘Electrical and photoelectrical properties

of chromotrope 2R Thinfilm devices, Using different electrodes’. J.Phy. Chem.

Solids. 58 (1997) 195.

[204] T.G.Abdel-Malik, ‘Direct current conductivity and thermally stimulated current of

beta--nickel phthalocyanine films using gold and aluminium electrodes’.

Internat.J.Electronics. 72 (1992) 409.

[205] Simmons J.G., ‘Conduction in thin dielectric films’. J.Phys. D. 4 (1971) 613.

[206] B.A. Gregg, ‘Excitonic Solar Cells’. J. Phys. Chem. B. 107 (2003) 4688.

[207] Brouers F., Ramsamugh A and Dixit V V, J. Mater. Sci. 22 (1987) 2759.

[208] Zetsche A,Kremer F, Jung W and Schluze H, ‘Dielectric study on the miscibility

of binary polymer blends’. Polymer. 31 (1990) 1883.

[209] Wepenaar K E D and Schoonman, J. Solid State Ionics. 2 (1991) 253.

117

[210] Jonscher A K, J Mater. Sci. 13 (1978) 553.

[211] J.Ros Macdonald, “Impedance Spectroscopy”, John Wiley & Sons, New York,

(1987).

[212] R H M Van De Leur, ‘A critical consideration on the interpretation of impedance

plots’. J. Phys. D: Appl. Phys. 24 (1991) 1430.

[213] J.L. Bredas, R. Silbey, D.S. Boudreux, R.R. Chance, ‘Chain-length dependence of

electronic and electrochemical properties of conjugated systems: polyacetylene,

polyphenylene, polythiophene, and polypyrrole’. J. Am. Chem. Soc. 105 (1983)

6555.

[214] K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, P. M. Sirimanne, K. G.

U. Wijayantha ‘Efficient photosensitization of nanocrystalline TiO2 films by

tannins and related phenolic substances’. Journal of Photochemistry and

Photobiology A: Chemistry. 94 (1996) 217.

[215] Huizhi Zhou, Liqiong Wu, Qingqing Miao, Gang Xin, Tingli Ma. ‘Dye-sensitized

solar cell using natural dyes as sensitizers’. Presented at Nanoelectronics

Conference (INEC), 2010 3rd International. (2010). 10.1109/INEC.2010.5424470

pp.775 – 776.

[216] En Mei Jin, Kyung-Hee Park, Bo Jin, Je-Jung Yun, Hal-Bon Gu

‘Photosensitization of nanoporous TiO2 films with natural dye’. Physica Scripta.

T139 (2010).

[217] J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance. ‘Chain-length dependence

of electronic and electrochemical properties of conjugated systems: polyacetylene,

polyphenylene, polythiophene, and polypro’. J. Am. Chem. Soc. 105 (1983) 6555.

[218] Zhong-Sheng Wang, Takeshi Yamaguchi, Hideki Sugihara, Hironori Arakawa

‘Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell

through Protonation of TiO2 Films’. Langmuir.21 (2005) 4272.

[219] Zhong-Sheng Wang, Fu-You Li, Chun-HuiHuang. ‘Photocurrent Enhancement of

Hemicyanine Dyes Containing RSO3- Group through Treating TiO2 Films with

Hydrochloric Acid’. J. Phys. Chem. B. 105 (2001) 9210.

118

[220] Jang-Yul Kim, Tohru Sekino, Shun-Ichiro Tanaka ‘Influence of the size-

controlled TiO2 nanotubes fabricated by low- temperature chemical synthesis on

the dye-sensitized solar cell properties’. Journal of Materials Science. 46 (2010)

1749.

[221] T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi. ‘Impedance Analysis of

Internal Resistance Affecting the Photoelectrochemical Performance of Dye-

Sensitized Solar Cells’. J. Electrochem. Soc. 152 (2005) E68.

[222] M. Gratzel. ‘Dye-sensitized solar cells’. J. Photochem. Photobiol. C 4 (2003) 145.

[223] T. Yohannes, O. Inganas. ‘Photoelectrochemical studies of the junction between

poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte’. Sol. Energy

Sol. Cells. 51 (1998) 193.

[224] L. Bay, K.West, B.W. Jenssen, T. Jacobsen. ‘Electrochemical reaction rates in a

dye-sensitised solar cell—the iodide/tri-iodide redox system’. Sol. Energy Mater.

Sol Cells. 90 (2006) 341.

[225] G. Haywang, F. Jonnes. ‘Poly(alkylenedioxythiophene)s—new, very stable

conducting polymers’. Adv. Mater. 4 (1992) 116.

[226] J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo. ‘Enhancement of electrical conductivity of

poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of

solvents’. Synth. Met. 126 (2002) 311.

[227] J. Quyang, Q. Xu, C.W. Chu, Y. Yang, G. Li, J. Shinas. ‘On the mechanism of

conductivity enhancement in poly (3, 4-ethylenedioxythiophene):poly(styrene

sulfonate) film through solvent treatment’. Polymer. 45 (2004) 8443.

[228] Y. Satio,W. Kube, T. Kitamura, Y.Wade, S. Yanagida. ‘I−/I3− redox reaction

behavior on poly(3,4-thylenedioxythiophene)counter electrode in dye-sensitized

solar cells’ J. Photochem. Photobiol. A Chem. 164 (2004) 153.

119

[229] Won Jae Lee, Easwaramoorthi Ramasamy, Dong Yoon Lee and Jae Sung Song.

‘Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube

counter electrodes’. ACS Appl. Mater. Interfaces 1 (2009) 1145.

[230] P. Vincent, A. Brioude, C. Journet, S. Rabaste, S.T. Purcell, J. Le Brusq and J.C.

Plenet. ‘Inclusion of carbon nanotubes in a TiO2 sol–gel matrix’. J. Non

Crystalline Solids 311 (2002) 130.

[231] Q. Huang and L. Gao, ‘Immobilization of rutile TiO2 on multiwalled carbon

nanotubes’. J. Mater. Chem 13 (2003) 1517.

[232] H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle and R.H. Friend. ‘Composites

of carbon nanotubes and conjugated polymers for photovoltaic devices’. Adv.

Mater 11 (1999) 1281.

[233] H. Usui, H. Matsui, N. Tanabe and S. Yanagida. ‘Improved dye-sensitized solar

cells using ionic nanocomposite gel electrolytes’. J. Photochem. Photobiol. A:

Chem. 164 (2004) 97.

[234] N.G. Park, J. van de Lagemaat and A.J. Frank. ‘Comparison of dye-sensitized

rutile- and anatase-based TiO2 solar cells’. J. Phys. Chem. B. 104 (2000) 8989.

[235] N.G. Park, G. Schlichtho¨ rl, J. van de Lagemaat, H.M. Cheong, A. Mascarenhas

and A.J. Frank, ‘Dye-sensitized TiO2 solar cells: structural and

photoelectrochemical characterization of nanocrystalline electrodes formed from

the hydrolysis of TiCl4’. J. Phys. Chem. B 103 (1999) 3308.

[236] K.-J. Kim, K.D. Benkstein, J. van de Lagemaat and A.J. Frank. ‘Characteristics of

low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed

TiCl4 solutions’. Chem. Mater. 14 (2002) 1042.

[237] C. Ste´ phan, T.P. Nguyen, B. Lahr, W. Blau, S. Lefrant and O. Chauvet,

‘Agglomerate-free BaTiO3 Particles by Salt-Assisted Spray Pyrolysis’. J. Mater.

Res. 17 (2002) 396.

[238] Z. Liu, Z. Shen, T. Zhu, S. Hou, L. Ying, Z. Shi and Z. Gu. ‘Organizing single-

walled carbon nanotubes on gold using a wet chemical self-assembling

technique’. Langmuir 16 (2000) 3569.

120

[239] X. Nan, Z. Gu and Z. Liu. ‘Immobilizing shortened single-walled carbon

nanotubes (SWNTs) on gold using a surface condensation method’. J. Colloid

Interface Sci. 245 (2002) 311.

[240] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T.

Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez- Macias, D.T. Colbert and

R.E. Smalley. ‘Fullerene pipes’. Science 280 (1998) 1253.

[241] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada and H. Honda. ‘Chemical

treatment of carbon nanotubes’. Carbon 34 (1996) 279.

[242] H. Hiura, T.W. Ebbesen and K. Tanigaki. ‘Opening and purification of carbon

nanotubes in high yields’. Adv. Mater. 7 (1995) 275.

[243] T. Saito, K. Matsushige and K. Tanaka. ‘Chemical treatment and modification of

multi-walled carbon nanotubes’. Physica B 323 (2002) 280.

[244] M.S. Roy, P. Balraju , Manish Kumar , G.D. Sharma. ‘Dye-sensitized solar cell

based on Rose Bengal dye and nanocrystalline TiO2’. Sol. Energy Mater. Sol.

Cells. 92 (2008) 909.

[245] M.S.P. Shaffer, X. Fan and A.H. Windle. ‘Dispersion and packing of carbon

nanotubes’. Carbon 36 (1998) 1603.

[246] K. Schwartsburg and F. Willig. ‘lnfluence of trap filling on photocurrent transients

poly crystalline TiO2’. Appl. Phys. Lett .58 (1991) 2520.

[247] X. Qian, D. Qin, Q. Song, Y. Bai, T. Li, X. Tang, E. Wang and S. Dong, ‘Surface

photovoltage spectra and photoelectrochemical properties of semiconductor-

sensitized nanostructured TiO2 electrodes’. Thin Solid Films. 385 (2001) 152.

[248] Z. Zhang, ‘Enhancing the open-circuit voltage of dye-sensitized solar cells:

coadsorbents and alternative redox couples’. PhD Thesis, EPFL,(2008 .

[249] S. Hao, J. Wu, Y. Huang, ‘Natural dyes as photosensitizers for dye-sensitized

solar cell’. J. Lin, Sol. Energy. 80 (2006) 209.

[250] T. Frank, J. Clin. Frank T. et Al., ‘Pharmacokinetics of Anthocyanidins-3-

Glycosides following consumption of Hibiscus’ Pharmacol. 45 (2005) 203.

121

[251] N. Terahara, N. Saito, T. Honda, K. Tokis, Y. Osajima, ‘Further structural

elucidation of the anthocyanin, deacylternatin, from Clitoria ternatea’

Phytochemistry. 29 (1990) 3686.

[252] J.G. Chen, H.Y. Wei, K.C. Ho, ‘Using modified poly (3, 4-ethylene

dioxythiophene): Poly (styrene sulfonate) film as a counter electrode in dye-

sensitized solar cells’. Sol. Ener. Mat. & Sol. Cells. 91 (2007) 1472.

[253] X.Wu, L. Wang, F. Luo, B. Ma, C. Zhan, and Y. Qiu, ‘BaCO3 Modification of

TiO2 Electrodes in Quasi-Solid-State Dye-Sensitized Solar Cells: Performance

Improvement and Possible Mechanism’. J. Phys. Chem. C, 111 (2007) 8075.

[254] C.Y. Xu, P.X. Zhang and L. Yan, ‘Blue shift of Raman peak from coated TiO2

nanoparticles’. Journal of Raman Spectroscopy. 32 (2001) 862.

[255] J. Bisquert, ‘Impedance Spectroscopy of Nanostructured Dye-Sensitized and

Organic Bulk Heterojunction Solar Cells’ J. Phys. Chem. B 106 (2002) 325.

[256] A. Pitarch, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, ‘Ion transport and

trapping in intercalation materials: EIS parameters interpretation’. Phys. Chem.

Chem. Phys. 6 (2004) 2983.