115
Reference Governor 1

Reference Governor - LIRMM

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Reference Governor

1

โ€ข Reference governor is an add-on safety supervisor for the

existing/legacy controllers

โ€ข Monitors and modifies commands if necessary to ensure

constraints are satisfied

Nominal closed-loop system with

an existing/legacy controller

2

Reference Governor

๐‘ก โ‹… ๐‘‡๐‘ 

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

3

Reference Governor

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

4

Reference Governor

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

5

y(t)

Reference Governor

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

6

v(t+๐‘˜)=

y(t)

Reference Governor

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

7

v(t+๐‘˜)=

y(t)

v(t)

Reference Governor

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

8

v(t+๐‘˜)=

y(t)

v(t)

Reference Governor

EXPERIMENTS Plant: Inverted Pendulum

Control Law: Linear Quadratic Regulator

LQR๐‘ข

๐‘ฅ

๐‘ฃ

๐‘Ÿ

๐‘Ÿ

๐‘ฃ ๐‘ฃ

9Slides from 2014 IEEE CDC Workshop by E. Garone, S. Di Cairano, and I.V. Kolmanovsky

EXPERIMENTS Plant: Inverted Pendulum

Control Law: Linear Quadratic Regulator

๐‘Ÿ

LQR๐‘ข

๐‘ฅ

RG

๐‘Ÿ๐‘ฃ

๐‘ฃ

10Slides from 2014 IEEE CDC Workshop by E. Garone, S. Di Cairano, and I.V. Kolmanovsky

subject to

Maximize ๐œ…(๐‘ก)

๐‘ฃ(๐‘ก)๐‘ฅ(๐‘ก)

โˆˆ ๐‘ƒ โŠ† ๐‘‚โˆž

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐œ… ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 ,

0 โ‰ค ๐œ…(๐‘ก) โ‰ค 1

11

Scalar Reference Governor

โ€ข ๐‘‚โˆž is the set of safe pairs of initial states, ๐‘ฅ 0 , and

constant commands, ๐‘ฃ ๐‘ก โ‰ก ๐‘ฃ, which do not cause

subsequent constraint violation

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ, ๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ โˆˆ ๐‘Œ โ‡’

๐‘‚โˆž = แˆผ ๐‘ฃ, ๐‘ฅ(0) : ๐ถ๐ด๐‘ก๐‘ฅ(0) + ๐ถ ๐ผ โˆ’ ๐ด๐‘ก ๐ผ โˆ’ ๐ด โˆ’1๐ต๐‘ฃ + ๐ท๐‘ฃ โˆˆ ๐‘Œ,๐‘ก = 0,1,โ‹ฏ ,โˆž }

โ€ข Example: For asymptotically stable observable linear system:

12

Safe Set

13

โ€ข Finitely determined inner approximation is obtained by

slightly tightening the โ€œsteady-stateโ€ constraints

เทจ๐‘‚โˆž = แˆผ ๐‘ฃ, ๐‘ฅ 0 : (๐ถ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท)๐‘ฃ โˆˆ 1 โˆ’ ํœ€ ๐‘Œ, ๐ถ๐ด๐‘ก๐‘ฅ 0 + ๐ถ ๐ผ โˆ’ ๐ด๐‘ก ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท๐‘ฃ โˆˆ ๐‘Œ,๐‘ก = 0,1,โ‹ฏ , ๐‘กโˆ—} โŠ‚ ๐‘‚โˆž

Implementation based on subsets

14

โ€ข If the constraint set is polyhedral, then เทจ๐‘‚โˆž is polyhedral

Safe Sets

๐‘Œ = ๐‘ฆ:๐ป๐‘ฆ โ‰ค โ„Ž โ‡’

เทจ๐‘‚โˆž = ๐‘ฃ, ๐‘ฅ 0 :

๐ป๐ถ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท 0๐ป๐ท

๐ป๐ถ๐ต + ๐ป๐ท๐ป๐ถ๐ป๐ถ๐ด

โ‹ฎ๐ป๐ถ ๐ผ โˆ’ ๐ด๐‘˜ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ป๐ท

โ‹ฎ

โ‹ฎ๐ป๐ถ๐ด๐‘˜

โ‹ฎ

๐‘ฃ๐‘ฅ(0) โ‰ค

1 โˆ’ ํœ€ โ„Žโ„Žโ„Žโ‹ฎโ„Žโ‹ฎ

โ€ข Redundant and โ€œalmost redundantโ€ inequality constraints are

eliminated while remaining constraints are tightened to obtain

a simply represented ๐‘ƒ โŠ† เทจ๐‘‚โˆž

Computing ๐‘ท

Computing ๐œฟ

17

Example

Model:

๐‘ฅ1 ๐‘ก + 1 = ๐‘ฅ1 ๐‘ก + 0.1๐‘ฅ2 ๐‘ก ,๐‘ฅ2(๐‘ก + 1) = ๐‘ฅ2 ๐‘ก + 0.1๐‘ข(๐‘ก)

Constraints:

|๐‘ฅ1| โ‰ค 1,|๐‘ฅ2| โ‰ค 0.1,

|๐‘ข| โ‰ค 0.1

Nominal closed-loop:

๐‘ข = โˆ’0.917 ๐‘ฅ1 โˆ’ ๐‘Ÿ โˆ’ 1.636๐‘ฅ2,

Reference command

๐‘Ÿ ๐‘ก = 0.5.

0 20 40 60 80-0.1

0

0.1

0.2

0.3

0.4

0.5

t

x1

x2

u

Response without reference governor

18

Example (contโ€™d)

๐‘ข = โˆ’0.917 ๐‘ฅ1 โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1.636๐‘ฅ2 , ๐‘ฃ(๐‘ก) = ๐‘…๐บ(๐‘ฃ ๐‘ก โˆ’ 1 , ๐‘ฅ ๐‘ก )

Response with reference governor

19

Example (contโ€™d)

Cross-sections of ๐‘ƒ = เทจ๐‘‚โˆž :

1 DOF spacecraft with flexible appendage

1 DOF spacecraft with flexible appendage

Almost redundant constraint elimination

Vahidi, A., Kolmanovsky, I.V., and Stefanopolou, A., "Constraint handling in a fuel cell system: A fast reference

governor approach," IEEE Transactions on Control Systems Technology, vol. 15, no. 1, pp. 86-98, January, 2007.

More general sets ๐‘ท, nonlinear systemsโ€ฆ

Scalar reference governor

Using ๐‘ท without actually computing it

Response prediction based on linear model

Online prediction-based reference governor

Nicotra, M., Garone, E., and Kolmanovsky, I.V., โ€œA fast reference governor for linear systems,โ€ AIAA

Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 460-464, 2017.

โ€ข Linear and nonlinear systems with set-bounded

disturbances and parameter uncertainties can be treated

โ€ข Feasibility at initial time implies constraint adherence and

recursive feasibility for all future times

โ€ข Finite-time convergence of ๐‘ฃ(๐‘ก) to ๐‘Ÿ(๐‘ก) or nearest steady-

state feasible value for constant ๐‘Ÿ(๐‘ก)

โ€ข Similar convergence results for ``nearly constantโ€™โ€™ and

slowly-varying ๐‘Ÿ(๐‘ก)

โ€ข Enlarged constrained domain of attraction

28

Remarks on existing theory

Survey paper

Reference governor extensions

Reference governor extensions

Reference governor extensions

Implementing Linear

Design on a

Nonlinear System

33

Adopting linear design to a nonlinear system

12/15/2014

โ€ข Consider a disturbance-free nonlinear system

๐›ฟ๐‘ฅ ๐‘ก + 1 = ๐ด๐›ฟ๐‘ฅ ๐‘ก + ๐ต๐›ฟ๐‘ฃ(๐‘ก) โˆˆ ๐‘Œ

๐›ฟ๐‘ฅ ๐‘ก = ๐‘ฅ โˆ’ ๐‘ฅ๐‘œ๐‘,

๐›ฟ๐‘ฃ ๐‘ก = ๐‘ฃ โˆ’ ๐‘ฃ๐‘œ๐‘,

๐‘“ ๐‘ฅ๐‘œ๐‘, ๐‘ฃ๐‘œ๐‘ = 0

๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก = ๐ถ ๐›ฟ๐‘ฅ ๐‘ก + ๐ท ๐›ฟ๐‘ฃ ๐‘ก

โ€ข Let a linearization of the nonlinear model at an operating

point (๐‘ฅ๐‘œ๐‘, ๐‘ฃ๐‘œ๐‘, ๐‘ฆ๐‘œ๐‘) be given by

๐‘ฅ ๐‘ก + 1 = ๐‘“ ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก

๐‘ฆ๐‘›๐‘œ๐‘›๐‘™ ๐‘ก = ๐‘” ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

34

Adopting linear design to a nonlinear system

โ€ข Main idea: Correct the linear model prediction into the future

by a disturbance term by ๐‘‘(๐‘ก)

เทœ๐‘ฆ๐‘›๐‘œ๐‘›๐‘™ ๐‘ก + ๐‘˜|๐‘ก = ๐‘ฆ๐‘œ๐‘ + ๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก + ๐‘˜ ๐‘ก + ๐‘‘ ๐‘ก

เทจ๐‘‚โˆž,๐‘Ž๐‘ข๐‘” = แˆผ ๐›ฟ๐‘ฃ, ๐›ฟ๐‘ฅ 0 , ๐‘‘ :

๐ถ๐ด๐‘ก๐›ฟ๐‘ฅ 0 + ๐ถ ๐ผ โˆ’ ๐ด๐‘ก ๐ผ โˆ’ ๐ด โˆ’1๐ต๐›ฟ๐‘ฃ + ๐ท๐›ฟ๐‘ฃ + ๐‘‘ โˆˆ ๐‘Œ~แˆผ๐‘ฆ๐‘œ๐‘},๐‘ก = 0,1,โ‹ฏ ,โˆž }โ‹‚ฮ“โˆž

Vahidi, K, Stefanopoulou, IEEE TCST 15 (1), 86-98 (2007)

โ€ข Let ๐‘‘ ๐‘ก = ๐‘ฆ๐‘›๐‘œ๐‘›๐‘™ ๐‘ก โˆ’ ๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก โˆ’ ๐‘ฆ๐‘œ๐‘ be the output deviation

from the output predicted by the linear model at current time

โ€ข Define

35

Adopting linear design to a nonlinear system

๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ๐‘œ๐‘๐›ฟ๐‘ฅ(๐‘ก)๐‘‘(๐‘ก)

โˆˆ เทจ๐‘‚โˆž,๐‘Ž๐‘ข๐‘”

๐›ฝ ๐‘ก โ†’ max ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ 0 โ‰ค ๐›ฝ ๐‘ก โ‰ค 1

โ€ข Reference governor logic:

๐‘‘ ๐‘ก = ๐‘ฆ๐‘›๐‘œ๐‘›๐‘™๐‘–๐‘› ๐‘ก โˆ’ ๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก โˆ’ ๐‘ฆ๐‘œ๐‘

๐‘Ž๐‘›๐‘‘

36

Discussion

โ€ข The proposed technique is motivated by a similar scheme in

MPC

โ€ข It is heuristic but has been shown to work well in several

applications

โ€ข The study of its theoretical properties remains an open

research problem

โ€ข Extensions to command governor and extended command

governor cases are feasible

37

Controller state and reference governor (CSRG)

Controller PlantCSRG

K. McDonough and I.V. Kolmanovsky, โ€œController state and reference governors for discrete-time

linear systems with pointwise-in-time state and control constraints,โ€ Proceedings of 2015 American

Control Conference, Chicago, IL, pp. 3607-3612, 2015.

Gas turbine engine

Command

CSRG modified

command

Fan speed

Constraints

Linear model simulations

โ€ข Trim point to trim point transition feasibility is

determined based on set of states that can be

recovered by CSRG

โ€ข The actual transitions are controlled by CSRG

Envelope-aware flight management system

Di Donato, P.F.A., Balachandran, S., McDonough, K., Atkins, E., and Kolmanovsky, I.V., โ€œEnvelope-

aware flight management for loss of control prevention given rudder jam,โ€ AIAA Journal of Guidance,

Control, and Dynamics, vol. 40, pp. 1027-1041, 2017.

Chance constrained reference governor

Kalabic, U., Vermillion, C., and Kolmanovsky, I.V. โ€œConstraint enforcement for a lighter-than-air wind-energy

system: An application of reference governors with chance constraints,โ€ Proceedings of 20th IFAC World

Congress, Toulouse, France, IFAC-PapersOnLine, vol. 50, no. 1, pp. 13258-13263, July 2017.

Formation control

Frey, G., Petersen, C., Leve, F., Garone, E., Kolmanovsky, I.V. and Girard, A., โ€œParameter governors for

coordinated control of n-spacecraft formations,โ€ AIAA Journal of Guidance, Control, and Dynamics, vol. 40,

no. 11, pp. 3020-3025, November, 2017.

Concluding remarks

Controller PlantReference

governor

โ€ข Augment rather than replace nominal controller

โ€ข Inactive if no danger of constraint violation

โ€ข Easy to implement / fast online computations

โ€ข Special properties

โ€ข Much room for future research and applications

BACKUP SLIDES

45

The Extended Command

Governor (ECG)

46

Agenda

โ€ข Extended Command Governor (ECG)

โ€ข Design of ancillary dynamical system

โ€ข Response properties

โ€ข Interpretation as a form of Model Predictive Controller (MPC)

โ€ข Application examples

โ€ข Command governor and vector reference governor

47

Extended command governor

(Gilbert and Ong, Automatica, Vol. 47, pp. 334-340, 2011)

Motivation:

โ€ข Enlarge constrained region of attraction

โ€ข Provide faster response

โ€ข Increase robustness to unmodeled dynamics

48

Extended command governor

าง๐‘ฅ ๐‘ก + 1 = าง๐ด าง๐‘ฅ ๐‘ก

๐œŒ ๐‘ก + 1 = ๐œŒ ๐‘ก

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ ๐‘ก

๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

โ€ข Auxiliary โ€œcommand generatingโ€ subsystem:

โ€ข System:

๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + าง๐ถ าง๐‘ฅ ๐‘ก

โ€ข Requirement: าง๐ด is asymptotically stable (Schur)

Auxiliary command generator

๐œŒ(0)

๐‘ฃ ๐‘ก = าง๐ถ าง๐ด๐‘ก ๐‘ฅ 0 + ๐œŒ(0)

0 ๐‘ก

าง๐‘ฅ ๐‘ก + 1 = าง๐ด าง๐‘ฅ ๐‘ก

๐œŒ ๐‘ก + 1 = ๐œŒ ๐‘ก

๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + าง๐ถ าง๐‘ฅ ๐‘ก

๐‘ฃ ๐‘ก

โ€ข Auxiliary โ€œcommand generatingโ€ subsystem:

50

Augmented system

าง๐‘ฅ ๐‘ก + 1 = าง๐ด าง๐‘ฅ ๐‘ก

๐œŒ ๐‘ก + 1 = ๐œŒ ๐‘ก

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ ๐‘ก

๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + าง๐ถ าง๐‘ฅ ๐‘ก

โ€ข Combined system:

โ€ข Constraints:

51

Augmented system

๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

โ€ข Augmented system with constraints

าง๐‘ฅ(๐‘ก + 1)๐‘ฅ(๐‘ก + 1)

= ๐ด๐‘Žาง๐‘ฅ(๐‘ก)๐‘ฅ(๐‘ก)

+ ๐ต๐‘Ž ๐œŒ ๐‘ก

๐ด๐‘Ž =าง๐ด 0

๐ต าง๐ถ ๐ด, ๐ต๐‘Ž =

0๐ต

๐ถ๐‘Ž = ๐ท าง๐ถ ๐ถ ๐ท๐‘Ž = ๐ท

52

Strictly steady-state admissible commands

โ€ข Set ฮ“โˆž of steady-state admissible constant references:

ฮ“โˆž = แˆผ ๐œŒ 0 , าง๐‘ฅ 0 , ๐‘ฅ(0) : ๐œŒ(0) โˆˆ โ„›}

โ€ข Tightened set of steady-state feasible commands:

๐‘Ÿ โˆˆ โ„› โ‡’ ๐ป๐‘Ÿ โˆˆ 1 โˆ’ ๐œ– ๐‘Œ

โ€ข Static gain ๐ป = ๐ถ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท

0 โˆˆ ๐‘–๐‘›๐‘ก ๐‘Œ, ๐‘Œ is compact, 0 < ๐œ– < 1

53

The set ๐‘ถโˆž

๐‘‚โˆž = แˆผ ๐œŒ 0 , าง๐‘ฅ 0 , ๐‘ฅ(0) : ๐‘ฆ(๐‘ก) โˆˆ ๐‘Œ, ๐‘ก = 0,1,โ‹ฏ ,โˆž}

โ€ข Safe set

54

The set เทฉ๐‘ถโˆž

โ€ข Safe set is tightened in steady-state

เทจ๐‘‚โˆž = ๐‘‚โˆž โ‹‚ฮ“โˆž

โ€ข Properties (under suitable assumptions):

โ€ข ๐‘Ÿ โˆˆ โ„› โ‡’ (๐‘Ÿ, 0, ๐‘ฅ๐‘ ๐‘  ๐‘Ÿ ) = (๐‘Ÿ, 0, ๐ป๐‘Ÿ) โˆˆ ๐‘–๐‘›๐‘ก ๐‘‚โˆž

โ€ข เทจ๐‘‚โˆž is positively invariant for augmented system

โ€ข เทจ๐‘‚โˆž is finitely-determined

55

โ€ข Suppose ๐‘Œ is a polytope: ๐‘Œ = แˆผ๐‘ฆ: ฮ›y โ‰ค ๐œ†}

๐ป๐œŒ,๐‘ก ๐œŒ + ๐ป าง๐‘ฅ,๐‘ก าง๐‘ฅ 0 +๐ป๐‘ฅ,๐‘ก ๐‘ฅ 0 โ‰ค ๐œ†

๐ปโˆž๐œŒ โ‰ค (1 โˆ’ ๐œ–)๐œ†

๐ป าง๐‘ฅ,๐‘ก, ๐ป๐‘ฅ,๐‘ก = ฮ›๐ถ๐‘Ž๐ด๐‘Ž๐‘ก ,

๐ป๐œŒ,๐‘ก = ฮ›(๐ถ๐‘Ž ๐ผ โˆ’ ๐ด๐‘Ž๐‘ก ๐ผ โˆ’ ๐ด๐‘Ž

โˆ’1๐ต๐‘Ž + ๐ท๐‘Ž)

๐ปโˆž = ฮ›(๐ถ๐‘Ž ๐ผ โˆ’ ๐ด๐‘Žโˆ’1๐ต๐‘Ž + ๐ท๐‘Ž)

The set เทฉ๐‘ถโˆž

โ€ข Then เทจ๐‘‚โˆž is defined by affine inequalities on ๐œŒ, าง๐‘ฅ 0 , ๐‘ฅ 0 :

โ€ข Consider the disturbance-free case (๐‘Š = 0)

โ€ข Inequalities for all ๐‘ก sufficiently large (๐‘ก โ‰ฅ ๐‘กโˆ—) are redundant

and need not be included

(๐‘ก = 0,12,โ‹ฏ )

(0 < ๐œ– โ‰ช 1)

56

subject to

๐œŒ ๐‘ก , าง๐‘ฅ ๐‘ก , ๐‘ฅ(๐‘ก) โˆˆ เทจ๐‘‚โˆž

๐ฝ = ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘†(๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก ) + าง๐‘ฅ ๐‘ก ๐‘‡ าง๐‘† าง๐‘ฅ(๐‘ก) โ†’ ๐‘š๐‘–๐‘›๐œŒ(๐‘ก), าง๐‘ฅ(๐‘ก)

Extended command governor

โ€ข Optimization problem:

โ€ข Command computation based on าง๐‘ฅ(๐‘ก) and ๐œŒ(๐‘ก):

๐‘ฃ ๐‘ก = าง๐ถ าง๐‘ฅ ๐‘ก + ๐œŒ(๐‘ก)

57

Extended command governor

าง๐ด๐‘‡ าง๐‘† าง๐ด โˆ’ าง๐‘† < 0, าง๐‘†๐‘‡ = าง๐‘† > 0

โ€ข Assumption 2: The weight าง๐‘† in the cost function must satisfy

โ€ข Assumption 1: The weight ๐‘† in the cost function satisfies

๐‘†๐‘‡ = ๐‘† > 0

โ€ข Observation: If ๐œŒ ๐‘ก โˆ’ 1 , าง๐‘ฅ(๐‘ก โˆ’ 1) are feasible at time ๐‘ก โˆ’ 1,

then

๐œŒ ๐‘ก = ๐œŒ ๐‘ก โˆ’ 1 , ๐‘ฅ ๐‘ก = าง๐ด าง๐‘ฅ(๐‘ก โˆ’ 1)

are feasible at time ๐‘ก and

๐‘ฅ๐‘‡ ๐‘ก าง๐‘† ๐‘ฅ ๐‘ก โ‰ค าง๐‘ฅ๐‘‡ ๐‘ก โˆ’ 1 าง๐‘† าง๐‘ฅ(๐‘ก โˆ’ 1)

58

Observations

โ€ข Suppose ๐‘Ÿ ๐‘ก = ๐‘Ÿ(๐‘ก โˆ’ 1)

โ€ข Let ๐ฝโˆ—(๐‘ก) denote the optimal cost. Then:

๐ฝโˆ— ๐‘ก = ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก + าง๐‘ฅ ๐‘ก ๐‘‡ าง๐‘† าง๐‘ฅ ๐‘ก

= ๐ฝโˆ— ๐‘ก โˆ’ 1

โ‰ค ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก + ๐‘ฅ ๐‘ก ๐‘‡ าง๐‘† ๐‘ฅ ๐‘ก

โ‰ค ๐œŒ ๐‘ก โˆ’ 1 โˆ’ ๐‘Ÿ ๐‘ก โˆ’ 1๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ 1 โˆ’ ๐‘Ÿ ๐‘ก โˆ’ 1

+ าง๐‘ฅ ๐‘ก โˆ’ 1 ๐‘‡ าง๐‘† าง๐‘ฅ ๐‘ก โˆ’ 1

โ€ข The optimal cost is non-increasing, ๐ฝโˆ— ๐‘ก โ‰ค ๐ฝโˆ—(๐‘ก โˆ’ 1)

59

Comments [1]

โ€ข ECG plans a recovery command sequence as an output of

a stable auxiliary system to avoid constraint violation and

minimize interference with the system operation

โ€ข The first element of the recovery sequence, ๐‘ฃ ๐‘ก , is

applied to the system

โ€ข If เทจ๐‘‚โˆž is polyhedral, the ECG optimization problem is a

Quadratic Program (QP) with linear inequality constraints

โ€ข This QP can be solved online by a QP solver [such as

PQP, GPAD, Qpkwik, CVX,โ€ฆ] or explicitly by multi-

parametric solvers (MPT or hybrid toolbox)

60

Comments [2]

โ€ข ECG achieves large constrained domain of attraction

(= ๐‘ƒ๐‘Ÿ๐‘œ๐‘—๐‘ฅ เทจ๐‘‚โˆž). It is typically larger than that of RG

โ€ข ECG achieves faster response, i.e., faster

convergence of ๐‘ฃ(๐‘ก) to ๐‘Ÿ, in particular, for systems with

actuator rate limits

โ€ข Improved robustness to model uncertainty observed in

simulations

61

Theoretical results

โ€ข Suppose a feasible solution exists at time 0 and ๐‘Ÿ ๐‘ก = ๐‘Ÿ๐‘ 

for all ๐‘ก โ‰ฅ ๐‘ก๐‘ . Define ๐‘Ÿ๐‘ โˆ— = argmin

๐‘Ÿโˆˆโ„›๐‘Ÿ โˆ’ ๐‘Ÿ๐‘ 

2be the

nearest feasible reference

โ€ข Then there exists a ๐‘ก๐‘“ โˆˆ ๐‘+ such that ๐‘ฃ ๐‘ก = ๐‘Ÿ๐‘ โˆ— for all ๐‘ก โ‰ฅ ๐‘ก๐‘“ .

โ€ข Given ๐œ– > 0, there exists a ๐‘ก๐œ– โˆˆ ๐‘+ such that

๐‘ฅ ๐‘ก โˆˆ ๐นโˆž ๐‘Ÿ๐‘ โˆ— + ๐œ–๐ต๐‘› for all ๐‘ก โ‰ฅ ๐‘ก๐œ–

(Gilbert and Ong, 2011)

62

Sketch of the proof

โ€ข ๐ฝโˆ—(๐‘ก) is monotonically non-increasing, hence

๐ฝโˆ— ๐‘ก โˆ’ 1 โˆ’ ๐ฝโˆ— ๐‘ก โ†’ 0

โ€ข Using the properties of minimum norm projection on a closed

and convex set, it is shown that

าง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 โˆ’ าง๐‘ฅ ๐‘กาง๐‘†

2+ ๐œŒ(๐‘ก โˆ’ 1) โˆ’ ๐œŒ ๐‘ก

๐‘†

2โ‰ค ๐ฝโˆ— ๐‘ก โˆ’ 1 โˆ’ ๐ฝโˆ—(๐‘ก)

โ€ข Henceาง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 โˆ’ าง๐‘ฅ ๐‘ก โ†’ 0

๐œŒ ๐‘ก โˆ’ 1 โˆ’ ๐œŒ ๐‘ก โ†’ 0 as ๐‘ก โ†’ โˆž

63

Sketch of the proof

โ€ข Apply Lemma with

๐‘ง = าง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 , ๐œŒ ๐‘ก โˆ’ 1 , ๐‘ง๐‘œ๐‘ = าง๐‘ฅ ๐‘ก , ๐œŒ ๐‘ก ,

๐‘ง๐‘  = 0, ๐‘Ÿ , ๐‘„ = ๐‘‘๐‘–๐‘Ž๐‘”( าง๐‘†, ๐‘†)

64

Sketch of the proof

๐‘ง๐‘œ๐‘

๐‘ง๐‘ 

๐‘ง๐‘Ž

๐‘๐‘

๐‘Ž2 + ๐‘2 โ‰ค ๐‘2 since ๐œƒ โ‰ฅ ๐œ‹/2

๐‘

๐œƒ

โ‡’ ๐‘Ž2 โ‰ค ๐‘2 โˆ’ ๐‘2

65

Sketch of the proof

โ€ข Thus าง๐‘ฅ ๐‘ก = าง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 + ๐œ‚(๐‘ก), and ๐œ‚ ๐‘ก โ†’ 0 as ๐‘ก โ†’ โˆž.

โ€ข Since าง๐ด is Schur, าง๐‘ฅ ๐‘ก โ†’ 0.

โ€ข Thus ๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 โ†’ 0 and ๐‘ฅ ๐‘ก โ†’ ๐‘ฅ๐‘ ๐‘  ๐‘ก

โ€ข The proof is finalized by strict constraint admissibility in

steady-state. Formally, we demonstrate that for large ๐‘กand ํœ€ > 0 sufficiently small,

๐œŒ ๐‘ก โˆ’ ํœ€๐œŒ ๐‘ก โˆ’๐‘Ÿ๐‘ 

๐œŒ ๐‘ก โˆ’๐‘Ÿ๐‘ , าง๐‘ฅ(๐‘ก) = 0

are feasible.

โ€ข This is only possible if ๐œŒ ๐‘ก = ๐‘Ÿ๐‘  and hence ๐‘ฃ ๐‘ก = ๐‘Ÿ๐‘ 

66

Choices of เดฅ๐‘จ, เดฅ๐‘ช

โ€ข Shift register of length ๐‘› าง๐‘ฅ:

าง๐ด =

0 ๐ผ0 0

0 โ‹ฏ๐ผ โ‹ฏ

โ‹ฎ โ‹ฎ0 0

โ‹ฎ โ‹ฎโ‹ฏ ๐ผ

, าง๐ถ = ๐ผ 0 โ‹ฏ 0

โ€ข Auxiliary system outputs a recovery sequence โ€œstoredโ€ in าง๐‘ฅ(0)

โ€ข ๐‘ฃ(๐‘ก) converges to a constant, ๐œŒ 0 , in ๐‘› าง๐‘ฅ steps

67

Example

โ€ข Example: ๐‘ฃ โˆˆ ๐‘…1, ๐‘› าง๐‘ฅ = 3

โ€ข Augmented state

๐‘ฃ ๐‘› าง๐‘ฅ + ๐‘˜ = ๐œŒ 0 , ๐‘˜ โ‰ฅ 0

าง๐‘ฅ =าง๐‘ฅ1าง๐‘ฅ2าง๐‘ฅ3

โ€ข Generated command sequence:

๐‘ฃ 0 = ๐œŒ 0 + าง๐‘ฅ1 0 ,๐‘ฃ 1 = ๐œŒ 0 + าง๐‘ฅ2 0 ,๐‘ฃ 2 = ๐œŒ 0 + าง๐‘ฅ3 0

68

Choices of เดฅ๐‘จ, เดฅ๐‘ช

โ€ข Laguerre Sequence Generator:

าง๐ด =

ํœ€๐ผ ๐›ฝ๐ผ โˆ’ํœ€๐›ฝ๐ผ ํœ€2๐›ฝ๐ผ โ‹ฏ

0 ํœ€๐ผ ๐›ฝ๐ผ โˆ’ํœ€๐›ฝ๐ผ โ‹ฏ00โ‹ฎ

00โ‹ฎ

ํœ€๐ผ0โ‹ฎ

๐›ฝ๐ผํœ€Iโ‹ฎ

โ‹ฏโ‹ฏโ‹ฑ

,

าง๐ถ = ๐›ฝ ๐ผ โˆ’ํœ€I ํœ€2๐ผ โˆ’ํœ€3๐ผ โ‹ฏ โˆ’ํœ€ ๐‘โˆ’1๐ผ

where ๐›ฝ = 1 โˆ’ ํœ€2, and 0 โ‰ค ํœ€ โ‰ค 1 is a selectable parameter that

corresponds to the time constant of the fictitious dynamics. Note that

with ํœ€ = 0, this is the shift register.

(Kalabic et. al., Proc. of 2011 MSC)

69

Command governor

subject to

๐‘ฃ ๐‘ก , ๐‘ฅ(๐‘ก) โˆˆ เทจ๐‘‚โˆž

๐ฝ = ๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘†(๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก ) โ†’ ๐‘š๐‘–๐‘›๐‘ฃ(๐‘ก)

โ€ข Command Governor (ECG) is a special case of ECG with ๐‘› าง๐‘ฅ =0.

โ€ข Optimization problem:

โ€ข Lower dimensional optimization problem versus ECG,

smaller constrained domain of attraction

70

Command governor

โ€ข Lower dimensional optimization problem versus ECG

โ€ข Define constrained domain of attraction as the domain of all

states which can be recovered without constraint violation

โ€ข CG has the same domain of recoverable states as RG, which

is smaller than that of ECG

โ€ข In cases when ๐‘›๐‘ฃ > 1 (multiple command channels that need

to be coordinated), CG is faster than conventional scalar RG

71

Vector Reference Governor (VRG)

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ฮš ๐‘ก (๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 )

ฮš ๐‘ก =

๐œ…1(๐‘ก) 0 00 โ‹ฑ 00 0 ๐œ…๐‘›๐‘ฃ(๐‘ก)

0 โ‰ค ๐œ…๐‘– ๐‘ก โ‰ค 1, ๐‘– = 1,โ‹ฏ , ๐‘›๐‘ฃ

โ€ข Vector Reference Governor uses a vector gain to

independently adjust each channel

โ€ข Optimization problem: ๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘†(๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก ) โ†’ min

๐‘ฃ t

subject to ๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ฮš ๐‘ก (๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 )

๐‘ฃ ๐‘ก , ๐‘ฅ ๐‘ก โˆˆ เทจ๐‘‚โˆž72

MPC format for ECG

โ€ข ECG with the shift register can be re-formulated as a

special variant of MPC controller

โ€ข Let ๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + ๐‘ข ๐‘ก

โ€ข Introduce notation commonly used in predictive control

๐‘ฃ ๐‘ก + ๐‘˜ ๐‘ก = ๐œŒ ๐‘ก + ๐‘ข ๐‘ก + ๐‘˜ ๐‘ก , ๐‘˜ = 0,โ‹ฏ ,๐‘๐‘ โˆ’ 1

โ€ข Consider the disturbance-free case with ๐‘Š = 0

73

MPC format for ECG

โ€ข Optimization problem:

๐ฝ ๐‘ก = ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก +

๐‘˜=0

๐‘๐‘โˆ’1

๐‘ข ๐‘ก + ๐‘˜ ๐‘ก ๐‘‡ าง๐‘†๐‘˜๐‘ข ๐‘ก + ๐‘˜ ๐‘ก โ†’ min๐œŒ ๐‘ก ,๐‘ข(๐‘ก+โ‹…|๐‘ก)

subject to

๐‘ฅ ๐‘ก + ๐‘˜ + 1 ๐‘ก = ๐ด๐‘ฅ ๐‘ก + ๐‘˜ ๐‘ก + ๐ต(๐œŒ ๐‘ก + ๐‘ข ๐‘ก + ๐‘˜ ๐‘ก )

๐‘ฅ ๐‘ก ๐‘ก = ๐‘ฅ ๐‘ก ,

๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก โˆˆ ๐‘Œ, ๐‘˜ = 0,1,โ‹ฏ ,๐‘๐‘ โˆ’ 1,

๐œŒ ๐‘ก , ๐‘ฅ ๐‘ก + ๐‘๐‘ ๐‘ก โˆˆ เทจ๐‘‚โˆž ( เทจ๐‘‚โˆž = เทจ๐‘‚โˆž๐‘…๐บ )

74

MPC format for ECG

โ€ข Condition that must hold: าง๐‘†๐‘˜ โ‰ฅ าง๐‘†๐‘˜โˆ’1 โ‰ฅ โ‹ฏ โ‰ฅ าง๐‘†0> 0

โ€ข ECG theory provides recursive feasibility and finite-time

convergence results for this special class of MPC

controllers, i.e., it guarantees that

๐œŒ ๐‘ก = ๐‘Ÿ ๐‘ก , ๐‘ข ๐‘ก + ๐‘˜ ๐‘ก = 0, ๐‘˜ = 0,โ‹ฏ ,๐‘๐‘ โˆ’ 1

for all ๐‘ก โ‰ฅ ๐‘ก๐‘  and for constant, strictly constraint

admissible, ๐‘Ÿ ๐‘ก = ๐‘Ÿ๐‘ .

75

Extended Command Governor (f16aircraft_ecg.m)

% --------- Construct appended system for ECG -----

nh = 5;

[sys_app, sys_full] = ecg_appdyn(nh, ss(A,B,C,D,dT),'laguerre', 0.4);

Abar = sys_app.A;

Cbar = sys_app.C;

nb = size(Abar, 1);

Secg = dlyap(Abar,0.1*eye(nb)); % weight matrix on xbar

โ€ฆ

Recg = diag([1,1]); % weighting matrix on rho

โ€ฆ

for i = 1:t_sim,

...

[v(:,i+1),p(:,i+1),rho(:,i+1)] = gov_ecg(Recg, Secg, Hx, Hp, Hr, h,x_gov(:,i+1),

r(:,i+1), sys_app.c, p(:,i), rho(:,i));

โ€ฆ

end76

Response with Extended Command Governor

Pitch angle

Flight path angle

๐‘Ÿ๐œƒ๐‘ฃ๐œƒ๐œƒ

๐‘Ÿ๐›พ๐‘ฃ๐›พ๐›พ

โ€ข Response with tightened rate limits

โ€ข ECG is faster than RG

โ‰ค 0 โ‡’ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก๐‘  ๐‘ ๐‘Ž๐‘ก๐‘–๐‘ ๐‘“๐‘–๐‘’๐‘‘

Constraints

77

The Set เทฉ๐‘ถโˆž (with disturbances, ๐‘พ is polyhedral)

๐ป๐œŒ,๐‘ก ๐œŒ + ๐ป าง๐‘ฅ,๐‘ก าง๐‘ฅ 0 +๐ป๐‘ฅ,๐‘ก ๐‘ฅ 0 โ‰ค ๐œ†๐‘ก

๐ปโˆž๐œŒ โ‰ค ๐œ†โˆž

๐‘Œ๐‘ก = ๐‘ฆ: ฮ›๐‘ฆ โ‰ค ๐œ†๐‘ก = ๐‘Œ โˆผ ๐ท๐‘ค๐‘Š โˆผ ๐ถ๐ต๐‘ค๐‘Š โˆผ โ‹ฏ โˆผ ๐ถ๐ด๐‘กโˆ’1๐ต๐‘ค๐‘Š

๐œ†๐‘ก = ๐œ†๐‘กโˆ’1 โˆ’maxแˆผ๐‘Š ๐‘–

ฮ›๐ถ๐ด๐‘กโˆ’1๐ต๐‘ค๐‘Š๐‘– }, ๐‘ก > 1

๐‘Œโˆž = ๐‘ฆ: ฮ›๐‘ฆ โ‰ค ๐œ†โˆž , 0 < ๐œ†โˆž < inf๐‘ก๐œ†๐‘ก

โ€ข เทจ๐‘‚โˆž is defined by affine inequalities on ๐œŒ, าง๐‘ฅ 0 , ๐‘ฅ 0 :

๐œ†0 = ๐œ† โˆ’maxแˆผ๐‘Š ๐‘–

ฮ›๐ท๐‘ค๐‘Š๐‘– }

๐‘Š = ๐‘๐‘œ๐‘›๐‘ฃโ„Žแˆผ๐‘Š(๐‘–), ๐‘– = 1,โ‹ฏ , ๐‘›๐‘ค}

(๐‘ก = 0,12,โ‹ฏ )

78

Reference Governors for

Nonlinear Systems

79

Nonlinear systems with pointwise-in-time

constraints

Control objectives

โ€ข Tracking: ๐‘ง ๐‘ก โ‰ˆ ๐‘Ÿ(๐‘ก)โ€ข Satisfy pointwise-in-time state/control constraints: ๐‘ฆ ๐‘ก โˆˆ ๐‘Œโ€ข Robustness to disturbances/uncertainties: ๐‘ค ๐‘ก โˆˆ ๐‘Š โˆ€๐‘ก โ‰ฅ 0โ€ข Optimality

โ€ข obstacle avoidance

โ€ข actuator limits

โ€ข safety limits

โ€ข โ€ฆ

๐‘ฆ ๐‘ก โˆˆ ๐‘Œ โˆ€๐‘ก โ‰ฅ 0

80

Nonlinear systems with constraints,

disturbances, and commands

โ€ข Stationary disturbances ๐‘ค ๐‘ก :

โ€ข Nonlinear system with constraints, disturbances and

commands

๐‘ฅ ๐‘ก + 1 = ๐‘“(๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก , ๐‘ค ๐‘ก )

๐‘ฆ ๐‘ก โˆˆ ๐‘Œ โ‡” (๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก ) โˆˆ ๐ถ โˆ€๐‘ก โˆˆ ๐‘+

Gilbert and Kolmanovsky, Automatica (38) 2063-2073 (2002)

- set-bounded

- set-bounded and rate bounded

- parametric uncertainties

- โ€ฆ

12/14/2014

๐‘ค โ‹… โˆˆ ๐•Ž โ‡’ ๐‘ค โ‹… +๐œŽ โˆˆ ๐•Ž ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐œŽ โˆˆ ๐‘+

81

Functional description of safe set of

states and constant commands

โ€ข Safe set* of initial states and constant commands

เดค๐‘‰ ๐‘ฅ(0), ๐‘ฃ(0) โ‰ค 0 โ‡’ ๐‘ฅ ๐‘ก , ๐‘ฃ 0 โˆˆ ๐ถ โˆ€๐‘ก โˆˆ ๐‘+

- เดค๐‘‰ is continuous (can be non-smooth)

- Strong returnability:

เดค๐‘‰ ๐‘ฅ(๐‘ก), ๐‘ฃ(0) โ‰ค โˆ’๐œ– for some ๐‘ก โˆˆ ๐‘+

๐‘ฅ ๐‘ก = ๐‘ฅ ๐‘ก ๐‘ฅ 0 , ๐‘ฃ ๐‘˜ = ๐‘ฃ 0 , ๐‘˜ = 1,โ‹ฏ , ๐‘ก โˆ’ 1

โ€ข Technical assumptions

เดค๐‘‰ ๐‘ฅ(0), ๐‘ฃ(0) โ‰ค 0 โ‡’

*Safe set is not required to be positively invariant82

Functional description of safe set of

states and constant commands

83

Scalar reference governor

subject to

โ€ข Maximize ๐›ฝ(๐‘ก)

เดค๐‘‰ ๐‘ฅ(๐‘ก), ๐‘ฃ(๐‘ก) โ‰ค 0,

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 ,

โ€ข ๐›ฝ ๐‘ก = 0 if no feasible solution exists

โ€ข Accept small increments, ๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 , only if เดค๐‘‰ ๐‘ฅ(๐‘ก), ๐‘ฃ(๐‘ก โˆ’ 1) โ‰ค โˆ’๐œ–

0 โ‰ค ๐›ฝ(๐‘ก) โ‰ค 1

โ€ข Solution via bisections or grid search, explicit in some cases (e.g., if เดค๐‘‰ is quadratic)

โ€ข Solution within a known tolerance is sufficient for subsequent theoretical results to hold.

84

Reference governor: basic approach

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ(๐‘ก) โ‰ค 0

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ(๐‘ก + 4) โ‰ค 0

85

Definitions

ฮ  ๐‘ž = แˆผ๐‘ฅ: เดค๐‘‰ ๐‘ฅ, ๐‘ž โ‰ค 0} is a โ€œsafeโ€ set with ๐‘ฃ ๐‘ก = ๐‘ž

ฮ ๐œ€ ๐‘ž = แˆผ๐‘ฅ: เดค๐‘‰ ๐‘ฅ, ๐‘ž โ‰ค โˆ’๐œ–}

โ€ข Let ๐‘† be a compact and convex set such that for ๐‘ฃ โˆˆ ๐‘†technical assumptions hold

โ€ข For ๐‘ž โˆˆ ๐‘† define:

86

Acceptance Logic

โ€ข Let ๐›ฝโˆ—(๐‘ก) denote the solution to the optimization problem. If

๐›ฝโˆ— ๐‘ก ๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1โˆž< ๐›ฟ

whileเดค๐‘‰ ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก โˆ’ 1 > โˆ’ํœ€

โ‡’ ๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 (maintain the last command)

โ€ข Practical guidelines:

๐›ฟ โ‰ค 10โˆ’2max๐‘Ÿ,๐‘ฃโˆˆ๐‘†

๐‘Ÿ โˆ’ ๐‘ฃโˆž

Select ํœ€ so that ฮ ๐œ€ ๐‘ž is between 0.9 and 0.99 of ฮ (๐‘ž)

87

Reference Governor Response Properties

โ€ข Constraint satisfaction:

๐‘ฅ 0 โˆˆ ฮ  ๐‘ฃ 0 โ‡’ ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก โˆˆ ๐ถ โˆ€๐‘ก โˆˆ ๐‘+

โ€ข It is possible to handle any initial state such that

๐‘ฅ 0 โˆˆ ฮ IS =แˆซ

๐‘žโˆˆ๐‘†

ฮ (๐‘ž)

โ€ข Finite time convergence property for constant reference

inputs

๐‘Ÿ ๐‘ก = ๐‘Ÿ0 โˆˆ ๐‘† for all ๐‘ก โ‰ฅ ๐‘ก0 โ‡’ โˆƒ ว๐‘ก โ‰ฅ ๐‘ก0 such that ๐‘ฃ ๐‘ก = ๐‘Ÿ0for all ๐‘ก โ‰ฅ ว๐‘ก

88

Reference Governor Response Properties

โ€ข Response properties for non-constant inputs:

๐‘Ÿ ๐‘ก โˆ’ ๐‘Ÿ0 โˆžโ‰ค ๐›ฟ0 for all ๐‘ก โ‰ฅ ๐‘ก0, ๐‘Ÿ0 โˆˆ ๐‘†, and 0 < ๐›ฟ0 <

1

2๐›ฟ,

Then if ๐›ฟ is sufficiently small โ‡’ ๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ0 โˆžโ‰ค ๐›ฟ0 for all ๐‘ก

sufficiently large

โ€ข Under additional assumptions,

๐‘ฃ ๐‘ก = ๐‘Ÿ(๐‘ก) if ๐‘Ÿ ๐‘ก โˆ’ ๐‘Ÿ0 โˆžโ‰ค ๐›ฟ0 for all ๐‘ก โ‰ฅ ๐‘ก0, r0 โˆˆ ๐‘†

โ€ข Can handle additional constraints

๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1โˆžโ‰ค ๐›ฟ๐‘š๐‘Ž๐‘ฅ

89

Constructing เดฅ๐‘ฝ

โ€ข Closed-loop Lyapunov or ISS-Lyapunov functions

- Define เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = ๐‘‰ ๐‘ฅ, ๐‘ฃ โˆ’ ๐‘ ๐‘ฃ , where ๐‘‰ is a Lyapunov or an ISS-

Lyapunov function of the closed-loop system

- For a given ๐‘ฃ, maximize ๐‘ ๐‘ฃ subject to sublevel set

ฮ  ๐‘ฃ = แˆผ๐‘ฅ: เดค๐‘‰ ๐‘ฅ. ๐‘ฃ โ‰ค 0} satisfying constraints

- In cases with bounded disturbances, need ๐‘ ๐‘ฃ โ‰ฅ ๐‘๐‘š๐‘–๐‘›(๐‘ฃ) for the

sublevel set ฮ (๐‘ฃ) to be strongly returnable

- Simplifications occur due to positive invariance of sublevel sets

90

Constructing เดฅ๐‘ฝ

โ€ข Off-line simulations and machine learning

- เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = ฮฆ(๐‘ฅ, ๐‘ฃ) is a classifier separating safe and unsafe initial

conditions and constant commands

- Scenarios (Monte Carlo simulations) are run with respect to ๐‘ค(โ‹…)

- Non-smooth classifiers permitted, e.g., เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = min๐‘—แˆผฮฆ๐‘—(๐‘ฅ, ๐‘ฃ)}.

Thus can represent unions of safe regions.

ฮฆ ๐‘ฅ(0), ๐‘ฃ โ‰ค 0 โ‡’ (๐‘ฅ(0), ๐‘ฃ) is safe

- In the disturbance-free case, model simulations are run for

various combinations of ๐‘ฅ(0) and ๐‘ฃ

91

Constructing เดฅ๐‘ฝ

๐‘ง =๐‘ฅ๐‘ฃ

ฮฆ๐‘— ๐‘ง = maxแˆผ๐œ‚๐‘–๐‘—๐‘‡ ๐‘ง โˆ’ ๐‘๐‘— , ๐‘– โˆˆ ๐ผ}

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = เดค๐‘‰ ๐‘ง = min๐‘—

ฮฆ๐‘—(๐‘ง)

Example: Cover safe initial

conditions and commands

by a union of hyper-

rectangles

92

เดฅ๐‘ฝ implicitly defined through on-line prediction

โ€ข Constraints:

๐ถ = แˆผ ๐‘ฅ, ๐‘ฃ : โ„Ž๐‘– ๐‘ฅ, ๐‘ฃ โ‰ค 0, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ}

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = ๐‘š๐‘Ž๐‘ฅแˆผโ„Ž๐‘–(๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค โ‹… , ๐‘ฃ), ๐‘– = 1,โ‹ฏ , ๐‘Ÿ, ๐‘ก = 0,โ‹ฏ , ๐‘ก0, ๐‘ค โ‹… โˆˆ ๐‘Š}

where ๐‘ก0 is sufficiently large so that

โ„Ž๐‘– ๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค โ‹… , ๐‘ฃ โ‰ค โˆ’๐œ–, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ, ๐‘ค โ‹… โˆˆ ๐‘Š and ๐‘ก โ‰ฅ ๐‘ก0

๐œ™ = โ€œsolutionโ€

Bemporad, IEEE TAC AC-43(4) 451-461 (1998); Gilbert and K, Automatica, 38, 2063-2073, 2002

โ€ข On-line prediction of maximum constraint violation

93

เดฅ๐‘ฝ implicitly defined through on-line prediction

Sun and K., IEEE TCST 13 (6), pp. 991-919, 2005

โ€ข Simplifications in parametric uncertainty/robust reference

governor case

๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค โ‰ˆ ๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค0 +๐œ•๐œ™

๐œ•๐‘คแ‰š๐‘ก,๐‘ฅ,๐‘ฃ,๐‘ค0

(๐‘ค โˆ’ ๐‘ค0)

๐œ•๐œ™

๐œ•๐‘ค|๐‘ก,๐‘ฅ,๐‘ฃ,๐‘ค0

= solution of sensitivity ODEs

94

Control of EAMSD

โ€ข Position and current constraints

Miller, K, Gilbert, Washabaugh, IEEE Control Systems Magazine,2000

๐‘‘๐‘ฅ1๐‘‘๐‘ก

= ๐‘ฅ2

๐‘‘๐‘ฅ2๐‘‘๐‘ก

=๐‘˜

๐‘š๐‘ฅ1 โˆ’

๐‘

๐‘š๐‘ฅ2 +

๐›ผ

๐‘š

๐‘ข

๐‘‘0 โˆ’ ๐‘ฅ1๐›พ , ๐‘ข = ๐‘–๐›ฝ

๐‘ข =1

๐›ผ(๐‘‘0 โˆ’ ๐‘ฅ1 )

๐›พ ๐‘˜๐‘ฃ โˆ’ ๐‘๐‘‘๐‘ฅ2

๐‘‘0

๐‘ฅ๐‘’(๐‘ฃ)

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ =๐‘˜

2๐‘ฅ1 โˆ’ ๐‘ฃ 2 +

๐‘š

2๐‘ฅ22 โˆ’ ๐‘ ๐‘ฃ

Position constraint

๐‘ฅ1

๐‘ฅ2

Current constraint

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ โ‰ค 0

95

Control of EAMSD

Without RG

Experimental Results

With RG

โ€ข Position and current constraints

๐‘‘0

Position response

96

17:00-17:20, Paper FrC15.4 Add to My Program

Constrained Spacecraft Attitude Control on SO(3) Using

Reference Governors and Nonlinear Model Predictive Control

Kalabic, Uros V. Univ. of Michigan

Gupta, Rohit Univ. of Michigan

Di Cairano, Stefano Mitsubishi Electric Res. Lab.

Bloch, Anthony M. Univ. of Michigan

Kolmanovsky, Ilya V. The Univ. of Michigan

16:20-16:40, Paper WeC06.2 Add to My Program

Constraint Enforcement of Piston Motion in a Free-Piston Engine

Zaseck, Kevin Univ. of Michigan

Brusstar, Matthew The United States Environmental Protection

Agency

Kolmanovsky, Ilya V. The Univ. of Michigan

Nonlinear reference governor

applications at 2014 ACC

97

Reference Governor for Linear

Systems with Nonlinear

Constraints

98

Linear systems with nonlinear constraints

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ ๐‘ก

๐‘ฆ ๐‘ก โˆˆ ๐‘Œ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘ก โˆˆ ๐‘+

y ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก

๐‘Œ = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ โ‰ค 0, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ

โ€ข Linear system model:

โ€ข Treat nonlinear constraints (without polyhedral approximations):

Kalabic et. al., Proc. of 2011 CDC, pp. 2680-2686 99

Comments

โ€ข Motivation: Handling constraints for Feedback Linearizable systems

โ€ข Theory in Gilbert, K., and Tan (1994,1995) and Gilbert and K. (2002) is

applicable to the case of linear systems and nonlinear constraints

โ€ข We discuss computations, heuristics and examples

100

Scalar Reference Governor

๐›ฝ ๐‘ก โˆˆ 0,1 ,

๐‘ฆ ๐‘ก + ๐‘˜|๐‘ก โˆˆ ๐‘Œ, ๐‘˜ = 0,โ‹ฏ ๐‘กโˆ—

๐›ฝ ๐‘ก โ†’ ๐‘š๐‘Ž๐‘ฅ

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1

โ€ข Optimization problem:

1We use the approach of Bemporad (1998) with implicitly defined constraints

2Here ๐‘กโˆ— is a finite determination index or an upper bound on it. We assume it

to be known in all the subsequent developments.

101

Linear model based prediction

๐‘ฆ ๐‘ก + ๐‘˜|๐‘ก = ฮ“ ๐‘˜ ๐‘ฅ ๐‘ก + ๐ป ๐‘˜ ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐ป ๐‘˜ (๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 )

ฮ“ ๐‘˜ = ๐ถ๐ด๐‘˜ ,

๐ป ๐‘˜ = ๐ถ โˆ’ ฮ“ ๐‘˜ (๐ผ โˆ’ ๐ด)โˆ’1๐ต + ๐ท

โ€ข Predicted output is an affine function of ๐›ฝ(๐‘ก)

โ€ข Predicted response to a constant command

๐‘ฃ ๐‘ก + ๐‘˜|๐‘ก โ‰ก ๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก )

102

Convex nonlinear constraints

If ๐›ฝ 0 = 0 is feasible, then an admissible interval for the values of ๐›ฝ ๐‘ก is of

the form

๐พ ๐‘ก = 0, ๐›ฝ๐‘š๐‘Ž๐‘ฅ ๐‘ก , 1 โ‰ฅ ๐›ฝ๐‘š๐‘Ž๐‘ฅ ๐‘ก โ‰ฅ0

and the reference governor sets ๐›ฝ ๐‘ก =๐›ฝ๐‘š๐‘Ž๐‘ฅ ๐‘ก . The constraints are satisfied

for all ๐‘ก โ‰ฅ 0.

โ€ข Suppose that

๐‘Œ = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ โ‰ค 0, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ

โ„Ž๐‘– are convex functions

โ€ข Proposition

103

Algorithmic implementation

If โ„Ž๐‘– ๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก > 0 where ๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก is the predicted response with

๐›ฝ ๐‘ก = ๐›ผ, use bisections to search for a scalar ๐›ผ+ that approximately

solves

โ„Ž๐‘– ฮ“ ๐‘˜ ๐‘ฅ ๐‘ก + ๐ป ๐‘˜ ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ผ+๐ป ๐‘˜ ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 = 0

โ€ข Set ๐›ผ = 1.

โ€ข For ๐‘– = 1,โ‹ฏ , ๐‘Ÿ, and ๐‘˜ = 0,โ‹ฏ , ๐‘กโˆ—, repeat

โ€ข Update ๐›ผ = ๐›ผ+

โ€ข Apply โ€œconstraints active last firstโ€ evaluation heuristics (see the

paper)

104

Convex Quadratic Constraints

๐‘ฆ๐‘‡ เทจ๐‘„๐‘ฆ + แˆš๐‘†๐‘ฆ + แˆš๐ถ โ‰ค 0, เทจ๐‘„ = เทจ๐‘„๐‘‡ โ‰ฅ 0

โ€ข Suppose that the constraints are of the form

โ€ข This is a quadratic function of ๐›ฝ(๐‘ก). The root finding can be performed by

solving a quadratic equation.

โ€ข Then the constraints can be re-written as

๐‘ฅ ๐‘ก ๐‘‡ ๐‘ฃ ๐‘ก ๐‘‡ + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ(๐‘ก))๐‘‡ เดค๐‘„ ๐‘˜๐‘ฅ(๐‘ก)

๐‘ฃ ๐‘ก + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ(๐‘ก)

+ าง๐‘† ๐‘˜๐‘ฅ(๐‘ก)

๐‘ฃ ๐‘ก + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ(๐‘ก)+ แˆš๐ถ โ‰ค 0

105

Mixed Logical Dynamic Constraints

๐‘”๐‘– ๐‘ฆ > 0 โ†’ โ„Ž๐‘– ๐‘ฆ โ‰ค 0, ๐‘– = 1,โ‹ฏ๐‘Ÿ,

โ€ข We consider a set of constraints of if-then type

where ๐‘”๐‘– , โ„Ž๐‘– are convex functions

โ€ข Observations:

โ€ข The set of ฮฒ ๐‘ก โˆˆ [0,1] for which ๐‘”๐‘–(๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก ) โ‰ค 0 is a

(possibly empty) sub-interval of [0,1], ๐พ๐‘–(๐‘˜)

โ€ข The set of ฮฒ ๐‘ก โˆˆ [0,1] for which โ„Ž๐‘–(๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก ) โ‰ค 0 is

another (possibly empty) sub-interval of [0,1], ๐พ๐‘–(๐‘˜)

106

Mixed Logical Dynamic Constraints

๐‘”๐‘– ๐‘ฆ(๐‘ก + ๐‘˜|๐‘ก) > 0 โ†’ โ„Ž๐‘– ๐‘ฆ(๐‘ก + ๐‘˜|๐‘ก) โ‰ค 0

โ€ข Then the set of feasible ๐›ฝ ๐‘ก โˆˆ [0,1] for which

is also an interval 0,1 โˆฉ ๐พ๐‘– ๐‘˜ โˆฉ ๐พ๐‘–(๐‘˜)

โ€ข The recursive feasibility of ๐›ฝ ๐‘ก = 0 is preserved by the reference

governor, hence it follows that the feasible values of ๐›ฝ(๐‘ก) satisfy

ฮฒ ๐‘ก โˆˆ 0, ๐›ฝ๐‘š๐‘Ž๐‘ฅ , ๐›ฝ๐‘š๐‘Ž๐‘ฅ โ‰ฅ 0

107

Concave Constraints

โ€ข Suppose that the constraint functions โ„Ž๐‘– in Y = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ โ‰ค 0 , ๐‘– =1,โ‹ฏ๐‘Ÿ, are concave

โ€ข Approximate the constraints by the dynamically reconfigurable affine

constraints

๐‘ฆ(๐‘ก + ๐‘˜|๐‘ก) โˆˆ ๐‘Œ๐‘(๐‘ก)

where

๐‘Œ๐‘ ๐‘ก = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ๐‘–,โˆ— ๐‘ก +๐œ•โ„Ž๐‘–๐œ•๐‘ฆ

(๐‘ฆ๐‘–,โˆ— ๐‘ก )(๐‘ฆ โˆ’ ๐‘ฆ๐‘–,โˆ— ๐‘ก ) โ‰ค 0 ,

๐‘– = 1,โ‹ฏ ๐‘Ÿ,

and ๐‘Œ๐‘(๐‘ก) โŠ† ๐‘Œ

108

Concave Constraints

If ๐‘ฆ๐‘–โˆ— 0 , ๐‘– = 1,โ‹ฏ ๐‘Ÿ exist such that ๐›ฝ 0 = 0 is feasible, then

๐›ฝ ๐‘ก = 0 and ๐‘ฆ๐‘–โˆ— ๐‘ก =๐‘ฆ๐‘–โˆ— ๐‘ก โˆ’ 1 remain feasible for ๐‘ก > 0 and

constraints are adhered to for all ๐‘ก>0.

โ€ข Proposition

๐‘ฆ ๐‘ก

โ„Ž(๐‘ฆ)

๐‘ฆ๐‘–โˆ— ๐‘ก

๐‘ฆ

109

Spacecraft relative motion example

โ€ข Dynamic model is linear

โ€ข Hillโ€“Clohessy-Wiltshire equations

โ€ข Constraints are nonlinear:

โ€ข Approach within LOS half-cone in front of

the docking port (convex, quadratic)

โ€ข Thrust/delta-v magnitude squared is

limited (convex, quadratic)

โ€ข Soft-docking: Small velocity when close to

docking position (Mixed Logical Dynamic

with quadratic ๐‘” and โ„Ž)

110

Spacecraft relative motion example

-1000 0 1000-300

-200

-100

0

100

200

300

Ra

dia

l p

ositio

n (

m)

Along-track position (m)-1000 0 1000

-300

-200

-100

0

100

200

300

Cro

ss-t

rack p

ositio

n (

m)

Along-track position (m)

โ€ข Reference governor is applied to

guide in-track orbital position set-point

for an unconstrained LQ controller

0 200 400 600 8000

1

2

3

4

5

time (sec)LOS cone

Dockingposition

820 830 840 8500

0.2

0.4

0.6

0.8

1

time (sec)

force (N)

Separation distance

Relative velocity

magnitude

111

Electromagnetically Actuated Mass Spring Damper

โ€ข Dynamics are feedback linearizable

โ€ข Constraints

- Current limit results in a concave nonlinear constraint

- Overshoot constraint is linear

แˆถ๐‘ฅ1แˆถ๐‘ฅ2

=0 1

โˆ’๐‘˜/๐‘š โˆ’๐‘/๐‘š

๐‘ฅ1๐‘ฅ2

+0

1/๐‘š๐‘ข

๐‘ข = ๐‘˜๐‘ฃ โˆ’ ๐‘๐‘‘๐‘ฅ2

0 โ‰ค ๐‘ข โ‰ค๐›ผ ๐‘–๐‘š๐‘Ž๐‘ฅ

๐›พ

๐‘‘0 โˆ’ ๐‘ฅ1๐›พ

๐‘ฅ1 โ‰ค 0.008

force

max. current

112

Electromagnetically Actuated Mass Spring Damper

0 2 4 60

0.002

0.004

0.006

0.008

0.01

0.012

mass position x1

(m)

time (sec)

unconstrained

imax

=0.5342

imax

=0.365

0 1 2 3 4 50

0.2

0.4

0.6

0.8

current (A)

time (sec)

unconstrained

imax

=0.5342

imax

=0.365

113

Electromagnetically Actuated Mass Spring Damper

โ€ข Landing control example

โ€ข Voltage limits

โ€ข MLD constraints on soft-landing

velocity AND magnetic force

exceeding spring force

๐‘‘๐‘ง

๐‘‘๐‘ก= ๐‘ž

๐‘‘๐‘ž

๐‘‘๐‘ก=

1

๐‘š(โˆ’๐น๐‘š๐‘Ž๐‘” + ๐‘˜๐‘  ๐‘ง๐‘  โˆ’ ๐‘ง โˆ’ ๐‘๐‘ž)

๐‘‘๐‘–

๐‘‘๐‘ก=๐‘‰๐‘ โˆ’ ๐‘Ÿ๐‘– +

2๐‘˜๐‘Ž๐‘–(๐‘˜๐‘ + ๐‘ง)2

๐‘ž

2๐‘˜๐‘ ๐‘˜๐‘ + ๐‘ง

๐น๐‘š๐‘Ž๐‘” =๐‘˜๐‘Ž

๐‘˜๐‘ + ๐‘ง 2๐‘–2

114

Electromagnetically Actuated Mass Spring Damper

115