29
93 Reference

Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

93

Reference

Page 2: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

94

1. Darnell, J., Lodish , H., and Baltimore, D. 1990. Molecular Cell Biology. New York,

Scientific American Books.

2. Barthel, A., and Schmoll, D. 2003. Novel concepts in insulin regulation of hepatic

gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 285:E685–E692.

3. Huang, S., and Czech, M. 2007. The GLUT 4 glucose transporter. Cell Metab. 5:237-

252.

4. Coady, M. J., Pajor, A. M., and Wright, E. M. 1990. Sequence homologies among

intestinal and renal Na+/glucose cotransporters. Am. J. Physiol. 259:C605-C610.

5. Joost, H. G., Bell, G. I., Best, J. D., Birnbaum, M. J., Charron, M. J., Chen, Y. T.,

Doege, H., James, D. E., Lodish, H. F., Moley, K. H., Moley, J. F., Mueckler, M.,

Rogers, S., Schurmann, A., Seino, S., and Thorens, B. 2002. Nomenclature of the

GLUT/SLC2A family of sugar/polyol transport facilitators. Am. J. Physiol.

Endocrinol. Metab. 282: E974-E976.

6. Thorens, B., Charron, M. J., and Lodish, H. F. 1990. Molecular physiology of glucose

transporters. Diabetes Care 13:209-218.

7. Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., Fukumoto, H.,

and Seino, S. 1990. Molecular biology of mammalian glucose transporters. Diabetes

Care 13:198-208

8. Birnbaun, M. J. 1989. Identification of a novel gene encoding an insulin-responsive

glucose transporter protein. Cell 57:305-15.

9. Wu, X., and Freeze, H. H. 2002. GLUT14, a Duplicon of GLUT3, Is Specifically

Expressed in Testis as Alternative Splice Forms. Genomics 80:553-557.

10. Rand, E. B., Depaoli, A. M., Davidson, N. O., Bell, G. I., and Burant, C. F. 1993.

Sequence, tissue distribution, and functional characterization of the rat fructose

transporter GLUT5. Am. J. Physiol. 264: G1169-1176.

11. Joost, H.G., and Thorens, B. 2001. The extended GLUT-family of sugar/polyol

transport facilitators: nomenclature, sequence characteristics, and potential function

of its novel members. Mol. Membr. Biol. 18: 247-256.

12. Cheeseman, C. 2008. GLUT7: a new intestinal facilitated hexose transporter. Am. J.

Physiol. Endocrinol. Metab. 295:E238-E241.

Page 3: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

95

13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis of

a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9).

Genomics 66:217-220.

14. Sasaki, T., Minoshima, S., Shiohama, A., Shintani, A., Shimizu, A., Asakawa, S.,

Kawasaki, K., and Shimizu, N. 2001. Molecular cloning of a member of the

facilitative glucose transporter gene family GLUT11 (SLC2A11) and identification of

transcription variants. Biochem. Biophys. Res. Commun. 289:1218-1224.

15. Lisinski, I., Schurmann, A., Joost, H. G., Cushman, S. W., and Al-Hasani, H. 2001.

Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells. Biochem. J.

358:517-522.

16. Doege, H., Schurmann, A., Bahrenberg, G., Brauers, A., and Joost, H. G. 2000.

GLUT8, a novel member of the sugar transport facilitator family with glucose

transport activity. J. Biol. Chem. 275:16275-16280.

17. Ibberson, M., Riederer, B. M., Uldry, M., Guhl, B., Roth, J., and Thorens, B. 2002.

Immunolocalization of GLUTX1 in the testis and to specific brain areas and

vasopressin-containing neurons. Endocrinology 143:276-284.

18. McVie-Wylie, A. J., Lamson, D. R., and Chen, Y. T. 2001. Molecular cloning of a

novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on

chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics 72:113-

117.

19. Rogers, S., Macheda, M. L., Docherty, S. E., Carty, M. D., Henderson, M. A., Soeller,

W. C., Gibbs, E. M., James, D. E., and Best, J. D. 2002. Identification of a novel

glucose transporter-like protein-GLUT-12. Am. J. Physiol. Endocrynol. Metab.

282:E733– E738.

20. Uldry, M., Ibberson, M., Horisberger, J. D., Chatton, J. Y., Riederer, B. M., and

Thorens, B. 2001. Identification of a mammalian H(+)-myo-inositol symporter

expressed predominantly in the brain. EMBO J. 20:4467-4477.

21. Augustin, R. 2010. The protein family of glucose transport facilitators: It's not only

about glucose after all. IUBMB Life Mar 5. [Epub ahead of print]

Page 4: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

96

22. Baldwin, S. A., and Lienhard, G. E. 1989. Purification and reconstitution of glucose

transporter from human erythrocytes. Methods Enzymol. 174:39 –50.

23. Kasahara, M., and Hinkle, P. C. 1977. Reconstitution and purification of the D-

glucose transporter from human erythrocytes. J. Biol. Chem. 252:7384 –7390.

24. Gould, G. W., and Holman, G. D. 1993. The glucose transporter family: structure,

function and tissue-specific expression. Biochem. J. 295:329-341.

25. Liu, M. L., Olson, A. L., Moye-Rowley, W. S., Buse, J. B., Bell, G. I., Pessin, J. E.

1992. Expression and Regulation of the Human GLUT4/Muscle-Fat Facilitative

Glucose Transporter Gene in Transgenic Mice. J. Biol. Chem. 267:11673-11676

26. Czech, M.P., and Corvera, S. 1999. Signaling Mechanisms That Regulate Glucose

Transport. J. Biol. Chem. 274: 1865-1868.

27. Carvalho, E., Kotani, K., Peroni, O.D., and Kahn, B.B. 2005. Adipose-specific

overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking

GLUT4 selectively in muscle. Am. J. Physiol. Endocrinol. Metab. 289: 551-561.

28. Cline, G.W., Petersen, K.F., Krssak, M., Shen, J., Hundal, R.S., Trajanoski, Z.,

Inzucchi, S., Dresner, A., Rothman, D.L., and Shulman, G.I. 1999. Impaired glucose

transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in

type 2 diabetes. N. Engl. J. Med. 341: 240-246.

29. Olson, A. L., and Pessin, J. E. 1995. Transcriptional Regulation of the Human

GLUT4 Gene Promoter in Diabetic Transgenic Mice. J. Biol. Chem. 270:23491–

23495.

30. Thai, M. V., Guruswamy, S., Cao, K. T., Pessin, J. E., and Olson, A. L. 1998. Myocyte

Enhancer Factor 2 (MEF2)-Binding Site Is Required for GLUT4 Gene Expression in

Transgenic Mice. J. Biol. Chem. 273:14285–14292.

31. McGee, S. L., van Denderen, B. J., Howlett, K. F., Mollica, J., Schertzer, J. D., Kemp,

B.E., and Hargreaves, M. 2008. AMP-activated protein kinase regulates GLUT4

transcription byphosphorylating histone deacetylase 5. Diabetes 57:860-867.

32. Ramachandran, B., Yu, G., and Gulick, T. 2008. Nuclear respiratory factor 1controls

myocyte enhancer factor 2A transcription to provide a mechanism for coordinate

expression of respiratory chain subunits. J. Biol. Chem. 283:11935–11946.

Page 5: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

97

33. Knight, J. B., Eyster, C. A., Griesel, B. A., and Olson, A. L. 2003. Regulation of the

human GLUT4 gene promoter: interaction between a transcriptional activator and

myocyte enhancer factor 2A. Proc. Natl. Acad. Sci. USA 100:14725–14730.

34. Armoni, M., Harel, C., Karni, S., Chen, H., Bar-Yoseph, F., Ver, M. R., Quon, M. J.,

and Karnieli, E. 2006. FOXO1 represses peroxisome proliferator-activated receptor

gamma1 and gamma2 gene promoters in primary adipocytes: a novel paradigm to

increase insulin sensitivity. J. Biol. Chem. 281:19881–19891.

35. Santalucia, T., Moreno, H., Palacin, M., Yacoub, M. H., Brand, N. J., and Zorzano, A.

2001. A novel functional co-operation between MyoD, MEF2 and TRalpha1 is

sufficient for the induction of GLUT4 gene transcription. J. Mol. Biol. 314:195–204.

36. Gray, S., Feinberg, M. W., Hull, S., Kuo, C. T., Watanabe, M., Sen-Banerjee, S.,

DePina, A., Haspel, R., Jain, M. K. 2002. The Kruppel-like factor KLF15 regulates

the insulin-sensitive glucose transporter GLUT4. J. Biol. Chem. 277:34322–34328.

37. Olson, A. L., Edgington, N. P., Moye-Rowley, W. S., and Pessin, J. E. 1995.

Characterization of F-Heterogeneity of the Rat GLUT4/Muscle-Adipose Glucose

Transporter Gene Product. Endocrinology 136:1962-1968.

38. Jeyaraj, S., Boehmer, C., Lang, F., and Palmada, M. 2007. Role of SGK1 kinase in

regulating glucose transport via glucose transporter GLUT4. Biochem. Biophys. Res.

Commun. 356:629-35.

39. Lawrence, J. C. Jr., Hiken, J. F., and James, D. E. 1990. Stimulation of glucose

transport and glucose transporter phosphorylation by okadaic acid in rat adipocytes. J.

Biol. Chem. 265: 19768-19776.

40. Asano, T., Katagiri, H., Takata, K., Lin, J. L., Ishihara, H., Inukai, K., Tsukuda, K.,

Kikuchi, M., Hirano, H., and Yazaki, Y. 1991. The role of N-glycosylation of GLUT1

for glucose transport activity. J. Biol. Chem. 266:24632-6.

41. Mitsumoto, Y., and Klip, A. 1992. Developmental Regulationof the Subcellular

Distribution and Glycosylation of GLUT1 and GLUT4 Glucose Transporters during

Myogenesis of L6 Muscle Cell. J. Biol. Chem. 267:4957-4962.

42. Rea, S., James, D. E. 1997. Moving GLUT4: the biogenesis and trafficking of

GLUT4 storage vesicles. Diabetes 46:1667—1677.

Page 6: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

98

43. Watson, R. T., Kanzaki, M., and Pessin, J. E. 2004. Regulated membrane trafficking

of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev. 25:177-

204.

44. Chang, L., Chiang, S. H., and Saltiel, A. R. 2004. Insulin Signaling and the

Regulation of Glucose Transport. Mol. Med. 10:65–71.

45. Pessin, J. E. and Saltiel, A. R. 2000. Signaling pathways in insulin action: molecular

targets of insulin resistance. J. Clin. Invest. 106:165-169.

46. Litherland, G. J., Hajduch, E. and Hundal, H. S. 2001. Intracellular signalling

mechanisms regulating glucose transport in insulin-sensitive tissues. Mol. Membr.

Biol. 18:195–204.

47. Zeigerer, A., Lampson, M. A., Karylowski, O., Sabatini, D. D., Adesnik, M., Ren, m.,

and McGraw, T. E. 2002. Mol. Biol. Cell. 13:2421-2435.

48. Holman, G. D., and Sandoval, I. V. 2001. Moving the insulin-regulated glucose

transporter GLUT4 into and out of storage. Trends Cell Biol. 11:173-179.

49. D E James, J Hiken, and J C Lawrence, Jr. 1989. Isoproterenol stimulates

phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes. Proc.

Natl. Acad. Sci. USA. 86:8368-8372.

50. Begum, N., and Draznin, B. J. 1992. Calcium-induced inhibition of phosphoserine

phosphatase in insulin target cells is mediated by the phosphorylation and activation

of inhibitor 1. Clin. Inuest. 90:1254-1262.

51. Reusch, J. E-B., Begum, N., Sussman, K. E., and Draznin, B. 1991. Regulation of

GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrrnology

129:3269-3273.

52. Somwar, R., Kim, D. Y., Sweeney, G., Huang, C., Niu, W., Lador, C., Ramlal. T.,

Klip, A. 2001. GLUT4 translocation precedes the stimulation of glucose uptake in

muscle cells:potential activation of GLUT4 via p38 mitogen-activated protein kinase.

Biochem. J. 359:639-649.

53. Mora, S., and Pessin, J. E. 2002. An adipocentric view of signaling and intracellular

trafficking. Diabetes/Metab. Res. Rev. 18:345-346.

Page 7: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

99

54. Watson, R. T., Kanzaki, M., and Pessin, J. E. 2004. Regulated membrane trafficking

of the insulin-responsive glucose transporter 4 in adipocytes. Endocrine Reviews,

25:177-204.

55. Ross, S. A., Gulve, E. A., and Wang, M. 2004. Chemistry and biochemistry of Type 2.

Diabetes. Chem. Rev. 104:1255-1282.

56. Gibbs, E. M., Lienhard, G. E., and Gould, G. W. 1988. Insulin-Induced Translocation

of Glucose Transporters to the Plasma Membrane Precedes Full Stimulation of

Hexose Transport. Biochemistry 27:668 1-6685.

57. Hansen, P. A. Wang, W., Marshall, B. A. Holloszy, J. O. and Mueckler, M. 1998.

Dissociation of GLUT4 Translocation and Insulin-stimulated Glucose Transport in

Transgenic Mice Overexpressing GLUT1 in Skeletal Muscle. J. Biol. Chem.

27:18173-1817.

58. Sato, M., and Mueckler, M. 1999. A Conserved Amino Acid Motif (R-X-G-R-R) in

the Glut1 Glucose Transporter Is an Important Determinant of Membrane Topology.

J. Biol. Chem. 274:24721–24725.

59. Hashiramoto, M., Kadowaki, T., Clark, A. E., Muraoka, A., Momomura, K., Sakura,

H., Tobe, K., Akanuma, Y., Yazaki, Y., and Holman, G. D. 1992. Site-directed

Mutagenesis GLUT1 in Helix 7 Residue 282 Results in Perturbation of Exofacial

LigandBinding. J. Biol. Chem. 267:7502-17507.

60. Seatter, M. J., De La Rue, S. A., Porter, L. M., and Gould, G. W. 1998. QLS Motif in

Transmembrane Helix VII of the Glucose Transporter Family Interacts with the C-1

Position of D-Glucose and Is Involved in Substrate Selection at the Exofacial Binding

Site. Biochemistry 37:1322-1326.

61. Mueckler, M. Weng, W., and Kruse, M. 1994. Glutamine 161 of Glutl Glucose

Transporter Is Critical for Transport Activity and Exofacial Ligand Binding. J. Biol.

Chem. 269:20533-20538.

62. Katagiri, H., Asano, T., Shibasaki, Y., Lin, J. L., Tsukuda, K., Ishihara, H., Akanuma,

Y., Takaku, F., and Oka, Y. 1991. Substitution of Leucine for Tryptophan 412 Does

Not Abolish Cytochalasin B Labeling but Markedly Decreases the Intrinsic Activity

of GLUT1 Glucose Transporter. J. Biol. Chem. 266:7769-7773.

Page 8: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

100

63. Inukai, K., Asano, T., Katagiri, H., Anai, M., Funaki, M., Ishihara, H., Tsukuda, K.,

Kikuchi, M., Yazaki, Y., and Oka, Y. 1994. Replacement of both tryptophan residues

at 388 and 412 completely abolished cytochalasin B photolabelling of the GLUT1

glucose transporter. Biochem. J. 302:355-361.

64. Mueckler, M., and Makepeace, C. 2004. Analysis of Transmembrane Segment 8 of

the GLUT1 Glucose Transporter by Cysteine-scanning Mutagenesis and Substituted

Cysteine Accessibility. J. Biol. Chem. 279:10494 –10499.

65. Hruz, P. W. and Mueckler, M. M. 2000. Cysteine-Scanning Mutagenesis of

Transmembrane Segment 11 of the GLUT1 Facilitative Glucose Transporter.

Biochemistry 39:9367-9372.

66. Mueckler, M., and Makepeace, C. 1999. Transmembrane Segment 5 of the Glut1

Glucose Transporter Is an Amphipathic Helix That Forms Part of the Sugar

Permeation Pathway. J Biol Chem. 274:10923–10926.

67. Mori, H., Hashiramoto, M., Clark, A. E., Yangn, J., Muraoka, A., Tamori, Y., Kasuga,

M., and Holman, G. D. 1994. Substitution of Tyrosine 293 of GLUTl Locks the

Transporter into an Outward Facing Conformation. J. Biol. Chem. 269: 11578-11583.

68. Doege, H., Schürmann, A., Ohnimus, H., Monser, V., Holman, G. D., and Joost, H. G.

1998. Serine-294 and threonine-295 in the exofacial loop domain between helices 7

and 8 of glucose transporters ( GLUT ) are involved in the conformational alterations

during the transport process. Biochem. J. 329:289–293.

69. M. Mueckler, and C. Makepeace. 2005. Cysteine-scanning Mutagenesis and

Substituted Cysteine Accessibility Analysis of Transmembrane Segment 4 of the

Glut1 Glucose Transporter. J. Biol. Chem. 280:39562-39568.

70. Schurmann A, Doege H, Ohnimus H, Monser V, Buchs A, Joost HG 1997 Role of

conserved arginine and glutamate residues on the cytosolic surface of glucose

transporters for transporter function. Biochemistry 36:12897-12902.

71. Mohan, S. S., Perry, J. J., Poulose, N., Nair, B. G., and Anilkumar, G. 2009.

Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter

and docking studies with ATP and its inhibitors, J. Biomol. Struct. Dyn. 26:455–464.

Page 9: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

101

72. Liu, Q., Vera, J. C., Peng, H. and Golde, D. W. 2001. The predicted ATP binding

domains in the hexose transporter GLUT1 critically affect transport activity.

Biochemistry 40:7874-7881.

73. Cloherty, E. K., Levine, K. B., Graybill, C. and Carruthers, A. 2002. Cooperative

Nucleotide Binding to the Human Erythrocyte Sugar Transporter. Biochemistry

41:12639-12651.

74. Heard, K. S. Fidyk, N. and Carruthers, A. 2000. ATP-Dependent Substrate Occlusion

by the Human Erythrocyte Sugar Transporter. Biochemistry 39:3005-3014.

75. Shetty M, Loeb JN, Vikstrom K, Ismail-Beigi F. 1993. Rapid activation of GLUT-1

glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells.

J. Biol. Chem. 268:17225-17232.

76. Shi, Y., Liu, H., Vanderburg, G., Samuel, S. J., Ismail-Beigi, F. and Jung, C. Y. 1995.

Modulation of GLUT1 intrinsic activity in clone 9 cells by inhibition of oxidative

phosphorylation. J. Biol. Chem. 270:21772-21778.

77. Chang, K. J., and cuatrecasas, P. 1974. Adenosine Triphosphate-dependent Inhibition

of Insulin-stimulated Glucose Transport in Fat Cells. J. Biol. Chem. 249:3170-3180.

78. Smith, R. M. Tiesinga, J. J., Shah, N., Smith, J. A., and Jarett, L. 1993. Genistein

inhibits insulin-stimulated glucose transport and decreases immunocytochemical

labeling of GLUT4 carboxyl-terminus without affecting translocation of GLUT4 in

isolated rat adipocytes: additional evidence of GLUT4 activation by insulin. Arch.

Biochem. Biiophys. 300:238-246.

79. Bazuine, M. van den Broek, J., and Maassen, A. 2005. Genistein directly inhibits

GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Biochem. and Biophys. Res.

Commun. 326:511–514.

80. Afzal, I., Cunningham, P., and Naftalin, R. J. 2002. Interactions of ATP, oestradiol,

genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the

humanerythrocyte glucose transporter, GLUT1. Biochem. J. 365:707-719.

81. Liu, H., Xiong, S., Shi, Y., Samuel, S. J., Lachaal, M., and Jung, C. Y. 1995. ATP

dependent binding of a 70-kDa cytosolic protein to the glucose transporter in rat

adipocytes. J. Biol. Chem. 270:7869-7875.

Page 10: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

102

82. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R.,

Allard, W. J., Lienhard, G. E., and Lodish, H. F. 1985. Sequence and structure of a

human glucose transporter. Science 229:941–945.

83. M. Heinze, I. Monden, and K. Keller. 2004. Cysteine-Scanning Mutagenesis of

Transmembrane Segment 1 of Glucose Transporter GLUT1: Extracellular

Accessibility of Helix Positions. Biochemistry 43:931-936.

84. A. Olsowski, I. Monden, G. Krause, and K. Keller. 2000. Cysteine Scanning

Mutagenesis of Helices 2 and 7 in GLUT1 Identifies an Exofacial Cleft in Both

Transmembrane Segments. Biochemistry 39:2469-2474.

85. A. Alisio, and M. Mueckler. 2004. Relative Proximity and Orientation of Helices 4 and

8 of the GLUT1 Glucose Transporter. J. Biol. Chem. 279:26540 –26545.

86. M, Mueckler, and C. Makepeace. 2002. Analysis of Transmembrane Segment 10 of the

Glut1 Glucose Transporter by Cysteine-scanning Mutagenesis and Substituted

Cysteine Accessibility. J Biol Chem. 277:3498 –3503.

87. M. Mueckler, W. Roach, and C. Makepeace. 2004. Transmembrane Segment 3 of the

Glut1 Glucose Transporter Is an Outer Helix. J. Biol. Chem. 279:46876 –46881.

88. M. Mueckler, and C. Makepeace. 2006. Transmembrane Segment 12 of the Glut1

Glucose Transporter Is an Outer Helix and Is Not Directly Involved in the Transport

Mechanism. J. Biol. Chem. 281:36993–36998.

89. M. Mueckler, and C. Makepeace. 2009. Model of the Exofacial Substrate-Binding Site

and Helical Folding of the Human Glut1 Glucose Transporter Based on Scanning

Mutagenesis. Biochemistry 48:5934–5942.

90. Mueckler, M., and Makepeace, C. 2008. Transmembrane Segment 6 of the Glut1

Glucose Transporter is an Outer Helix and Contains Amino Acid Side Chains Essential

for Transport Activity. J. Biol. Chem. 283:11550-11555.

91. Hirai, T., Heymann, J. A., Maloney, P. C., and Subramaniam, S. 2003. Structural

Model for 12-Helix Transporters Belonging to the Major Facilitator Superfamily. J.

Bacteriol. 185:1712–1718.

92. Martinez-Arca, S., Lalioti, V. S., and Sandoval, I. V. 2000. Intracellular targeting and

retention of the glucose transporter GLUT4 by the perinuclear storage compartment

Page 11: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

103

involves distinct carboxyl-tail motifs, J. Cell Sci. 113:1705-1715.

93. Song, X., M., Hresko, R. C., and Mueckler, M. M. 2008. Identification of amino acid

residues within the C terminus of the Glut4 glucose transporter that are essential for

insulin simulated redistribution to the plasma membrane. J. Biol. Chem, 283:12571-

12585.

94. Heyward, C. A., Pettitt, T. R., Leney, S. E., Welsh, G. I., Tavaré, J. M., Wakelam, M. J.

2008. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing

vesicles. BMC Cell Biol. 209:25.

95. Sachs, J. N., and Engelman, D. M. 2006. Introduction to the Membrane Protein

Reviews: The Interplay of Structure, Dynamics, and Environment in Membrane

Protein Function. Annu. Rev. Biochem. 75:707–712.

96. Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. 1995. SCOP: a structural

classification of proteins database for the investigation of sequences and structures. J.

Mol. Biol. 247:536-40.

97. Hol, L., and Sander, C. 1997. Dali/FSSP classification of three-dimensional protein

folds. Nucleic Acids Res. 25:231-234.

98. Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B., and Thornton,

J. M. 1997. CATH--a hierarchic classification of protein domain structures. Structure

5:1093-108.

99. Ginalski, K. 2006. Comparative modeling for protein structure prediction. Curr. Opin.

Struct. Biol. 16:172–177.

100. Cavasotto, C. N., and Phatak, S. S. 2009. Homology modeling in drug

discovery:current trends and applications. Drug Discov. Today 14:676-683.

101. Song, L., Kalyanaraman, C., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Brown,

S., Imker, H. J., Babbitt, P. C., Almo, S. C., Jacobson, M. P., Gerit, J. A. 2007.

Prediction and assignment of function for a divergent N-succinyl amino acid

racemase. Nat. Chem. Biol. 3:486-491.

102. Guimarães, A. J., Hamilton, A. J., de M. Guedes, H. L., Nosanchuk, J. D., Zancopé-

Oliveira, R. M. 2008. Biological function and molecular mapping of M antigen in

yeast phase of Histoplasma capsulatum. PLoS ONE. 3: e3449.

Page 12: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

104

103. Proell, M., Riedl, S. J., Fritz, J. H., Rojas, A. M., and Schwarzenbacher, R. 2008.

The Nod-like receptor (NLR) family: a tale of similarities and differences. PloS One

3:e2119.

104. Salomone-Stagni, M., Zambelli, B., Musiani, F., Ciurli, S. 2007. A model-based

proposal for the role of UreF as a GTPase-activating protein in the urease active site

biosynthesis. Proteins 68:749–761.

105. Autin, L., Dahlbäck, B., and Viloutreix, B. O. 2006 Proposed structural models of

the prothrombinase (Fxa–FVa) complex. Proteins 63:440–450.

106. Sun, W., Gerth, C., Maeda, A., Lodowski, D. T., Van Der Kraak, L., Saperstein, D. A.,

Héon, E., and Palczewski, K. 2007. Nove RDH12 mutations associated with Leber

congenital amaurosis and cone–rod dystrophy: biochemical and clinical evaluations.

Vision Res. 47:2055–2066.

107. Gagnidze, K., Sachchidanand, Rozenfeld, R., Mezei, M., Zhou, M. M., and Devi, L.

A. 2008. Homology modeling and site-directed mutagenesis to identify selective

inhibitors of endothelin-converting enzyme-2. J. Med. Chem. 51:3378–3387.

108. Luther, K.B., Schindelin, H., Haltiwanger, R. S. 2009. Structural and mechanistic

insights into lunatic fringe from a kinetic analysis of enzyme mutants. J. Biol. Chem.

284:3294–3305.

109. Hillisch, A., Peters, O., Kosemund, D., Müller, G., Walter, A., Schneider, B.,

Reddersen, G., Elger, W., and Fritzemeier, K. H. 2004. Dissecting physiological roles

of estrogen receptor alpha and beta with potent selective ligands from structure based

design. Mol. Endocrinol. 18:1599–1609.

110. Eyers, P. A., van den Ijssel, P., Quinlan, R. A., Goedert, M., and Cohen, P. 1999. Use

of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in

vivo specificity of SB 203580. FEBS Lett. 451:191–196.

111. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le

Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M.

2000. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 289:739-

745.

112. Okada, T., Fujiyoshi, Y., Silow, M., Navarro, J., Landau, E. M., and Shichida, Y.

Page 13: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

105

2002. Functional role of internal water molecules in rhodopsin revealed by X-ray

crystallography. Proc. Natl. Acad. Sci. USA. 99:5982-5987.

113. Okada, T., Sugihara, M., Bondar, A. N., Elastner, M., Entel, P., and Buss, V. 2004.

The retinal conformation and its environment in rhodopsin in light of a new 2.2 A

crystal structure. J. Mol. Biol. 42:571-583.

114. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S.,

Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K., and Stevens, R. C.

2007. High-resolution crystal structure of an engineered human beta2-adrenergic G

protein-coupled receptor. Science. 318:1258-1265.

115 Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., and Ernst, O. P. 2008. Crystal

structure of the ligand-free G-protein-coupled receptor opsin. Nature. 454:183-187.

116 Jaakola, V. P., Grifffith, M. T., Hanson, M. A., Cherezov, V., Chien, E. Y., Lane, J. R.,

Ijzerman, A. P., Stevens, R. C. 2008. The 2.6 angstrom crystal structure of a human

A2A adenosine receptor bound to an antagonist. Science. 322:1211-1217.

117 Radestock, S., Weil, T., and Renner, S. 2008. Homology model-based virtual

screening for GPCR ligands using docking and target-biased scoring. J. Chem. Inf.

Model. 48:1104–1117.

118 Cavasotto, C. N., Orry, A. J., Murgolo, N. J., Czarniecki, M. F., Kocsi, S. A., Hawes,

B. E., O'Neill, K. A., Hine, H., Burton, M. S., Voigt, J. H., Abagyan, R. A., Bayne, M.

L. 2008. Discovery of novel chemotypes to a G-protein-coupled receptor through

ligand-steered homology modeling and structure-based virtual screening. J. Med.

Chem. 51:581–588.

119 Landu, M., Herz, K., Padan, E., Ben-Tal, N., Model Structure of the Na /H Exchanger

1 (NHE1) Functional and Clinical implecations. J. Biol. Chem. 282:37854 –37863.

120 Huang, Y., Lemieux, J., Song, J., Auer, M., and Wang, D. N. 2003. Structure and

Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli. Science

301:616-620.

121 Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. 2003.

Structure and Mechanism of the Lactose Permease of Escherichia coli. Science

301:610-615.

Page 14: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

106

122 Yin, Y., He, X., Szewczyk, P., Nguyen, T., and Chang, G. 2006. Structure of the

Multidrug Transporter EmrD from Escherichia coli. Science 312:741-744.

123 Salas-Burgos, A., Iserovich, P., Zuniga, F., Vera, J. C., and Fischbarg, J. 2004.

Predicting the three-dimensional structure of the human facilitative glucose transporter

glut1 by a novel evolutionary homology strategy: insights on the molecular

mechanism of substrate migration, and binding sites for glucose and inhibitory

molecules. Biophys. J. 87:2990 :2999.

124 Zuniga, F. A., Shi, G., Haller, J. F., Rubashkin, A., Flynn, D. R., Iserovich, P., and

Fischbarg, J. 2001. A Three-dimensional Model of the Human Facilitative Glucose

Transporter Glut1. J. Biol. Chem. 276:44970–44975.

125 Manolescu, A., Salas-Burgos, A. M., Fischbarg, J., and Cheeseman, C. I. 2005.

Identification of a Hydrophobic Residue as a Key Determinant of Fructose Transport

by the Facilitative Hexose Transporter SLC2A7 (GLUT7). J. Biol. Chem. 280:42978 –

42983.

126 Dwyer, D. S. 2001. Model of the 3-D structure of the GLUT3 glucose transporter and

molecular dynamics simulation of glucose transport. Proteins. 42:531–541.

127 Karplus, M., and Petsko, G. A. 1990. Molecular dynamics simulations in biology.

Nature 347:631-639.

128 Karplus, M., and McCammon, J. A. 2002. Molecular dynamics simulations of

biomolecules. Nature struct. Biol. 9:646-652.

129 McCammon, J. A., Gelin, B. R., and Karplus, M. 1977. Dynamics of folded proteins.

Nature 267:585–590.

130 Tai, K., Shen, T., Borjesson, U., Philippopoulos, M., McCammon, J. A. 2001.

Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase.

Biophys. J. 81:715-24.

131 Filizola, M., Laakkonen, L., and Loew, G. H.1999. 3D modeling, ligand binding and

activation studies of the cloned mouse δ, μ and κ opioid receptors. Protein Eng.

12:927–942.

132 Campbell, J. D., Deol, S. S., Ashcroft, F. M., Kerr, I. D., and Sansom, M. S. P. 2004.

Nucleotide-Dependent Conformational Changes in HisP: Molecular Dynamics

Page 15: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

107

Simulations of an ABC Transporter Nucleotide-Binding Domain. Biophys. J. 87:3703–

3715.

133 Amiri, S., Sansom, M. S. P. and Biggin, P. C. 2007. Molecular dynamics studies of

AChBP with nicotine and carbamylcholine: the role of water in the binding pocket.

Protein Eng. Des. Sel. 20:353–359.

134 Gumbart, J., and Schulten, K. 2006. Molecular dynamics studies of the archaeal

translocon. Biophys. J. 90:2356-2367.

135 Spijker, P., Vaidehi, N., Freddolino, P. L., Hilbers, P. A. J., and Goddard III, W. A.

2006. Dynamic behavior of fully solvated 2-adrenergic receptor, embedded in the

membrane with bound agonist or antagonist. Proc. Natl. Acad. Sci. USA. 103:4882–

4887.

136 Arinaminpathy, Y. Sansom, M. S. P., and Biggin, P. C. 2002. Molecular Dynamics

Simulations of the Ligand-Binding Domain of the Ionotropic Glutamate Receptor

GluR2. Biophys. J. 82:676 – 683.

137 Liu, X., Xu, Y., Li, H., Wang, X., Jiang, H., Barrantes, F. J. 2008. Mechanics of

Channel Gating of the Nicotinic Acetylcholine Receptor. PLoS Comput. Biol. 4:e19.

138 de Groot, B. L., and Grubmuller, H. 2001. Water permeation across biological

membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science. 294:2353-

2357.

139 Sotomayor, M., and Schulten, K. 2004. Molecular Dynamics Study of Gating in the

Mechanosensitive Channel of Small Conductance MscS. Biophys. J. 87:3050–3065.

140 Sands, Z. A., and Sansom, M. S. 2007. How does a voltage sensor interact with a lipid

bilayer? Simulations of a potassium channel domain. Structure. 15:235-244.

141 Jogini, V., and Roux, B. 2007. Dynamics of the Kv1.2 voltage-gated K+ channel in a

membrane environment. Biophys. J. 93:3070-3082.

142 Ivetac, A., Campbell, J. D., and Sansom, M. S. P. 2007. Dynamics and Function in a

Bacterial ABC Transporter: Simulation Studies of the BtuCDF System and Its

Components. Biochemistry 46: 2767-2778.

143 Law, C. J., Enkavi, G., Wang, D. N, and Tajkhorshid, E. 2009. Structural Basis of

Substrate Selectivity in the Glycerol-3-Phosphate:Phosphate Antiporter GlpT. Biophys.

Page 16: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

108

J. 97:1346–1353.

144 D'Rozario, R. S., and Sansom, M. S. P. 2008. Helix dynamics in a membrane

transport protein: comparative simulations of the glycerol-3-phosphate transporter and

its constituent helices. Mol. Memb. Biol. 25:571-583.

145 Holyoake, J., and Sansom, M. S. P. 2007. Conformational Change in an MFS Protein:

MD Simulations of LacY. Structure 15:873–884.

146 Yin, Y., Jensen, M. Ø. Tajkhorshid, E., and Schulten, K. 2006. Sugar Binding and

Protein Conformational Changes in Lactose Permease. Biophys. J. 91:3972–3985.

147 Jensen, M. Ø., Yin, Y., Tajkhorshid, E., and Schulten, K. 2007. Sugar Transport across

Lactose Permease Probed by Steered Molecular Dynamics. Biophys. J. 93:92–102.

148 Ma, J., Sigler, P. B., Xu, Z., and Karplus, M. 2000. A dynamic model for the allosteric

mechanism of GroEL. J. Mol. Biol. 302:303-313.

149 Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, G., Roux, B., and Kuriyan, J.

2001. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck

underlies their inactivation by C-terminal tyrosine phosphorylation. Cell. 105:115-26.

150 Martınez, L., Sonoda, M. T., Webb, P., Baxter, J. D., Skaf, M. S., and Polikarpov, I.

2005. Molecular Dynamics Simulations Reveal Multiple Pathways of Ligand

Dissociation from Thyroid Hormone Receptors. Biophys. J. 89:2011–2023.

151 Gao, M., Lu, H., and Schulten, K. 2002. Unfolding of titin domains studied by

molecular dynamics simulations. J. Muscle Res. Cell Motil. 23:513-521.

152 Isralewitz, B., Izrailev, S., and Schulten, K. 1997. Binding pathway of retinal to

bacterioopsin: A prediction by molecular dynamics simulations. Biophys. J. 73:2972

2979.

153 Jensen, M. Ø., Yin, Y., Tajkhorshid, E., and Schulten, K. 2007. Sugar Transport across

Lactose Permease Probed by Steered Molecular Dynamics. Biophys. J. 93:92–102.

154 Gu, Y., Shrivastavaa, I. H., Amarac, S. G., and Bahar, I. 2009. Molecular simulations

elucidate the substrate translocation pathway in a glutamate transporter. Proc. Natl.

Acad. Sci. USA. 106:2589 –2594.

155 Zou, H., Zheng, M., Luo, X., Zhu, W., Chen, K., Shen, J., and Jiang, H. 2008.

Dynamic Mechanism of Fatty Acid Transport across Cellular Membranes through

Page 17: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

109

FadL: Molecular Dynamics Simulations. J. Phys. Chem. B 112:13070–13078.

156 Li, W., Liu, H., Scott, E. E., Grater, F., Halpert, J. R., Luo, X., Shen, J., and Jiang, H.

2005. Possible pathway(s) of Testosterone egress from the active site of

CytochromeP450 2B1: A steered molecular dynamics simulation. Drug Metab. Dispos.

33:910-919.

157 Saam, J., Tajkhorshid, E., Hayashi, S., and Schulten, K. 2002. Molecular Dynamics

Investigation of Primary Photoinduced Events in the Activation of Rhodopsin.

Biophys. J. 83:3097–3112.

158 Parravicini, C., Ranghino, G., Abbracchio, M. P., and Fantucci, P. 2008. GPR17:

Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand

binding features in comparison with P2Y receptors. BMC Bioinformatics 9:263.

159 Pedretti, A., Bocci, E., Maggi, R., Vistoli, G. 2008. Homology modelling of human

DHCR24 (seladin-1) and analysis of its binding properties through molecular docking

and dynamics simulations. s t e r o i d s 73:708–719.

160 Huang, X., and Zhan, C. G. 2007. How Dopamine Transporter Interacts with

Dopamine: Insights from Molecular Modeling and Simulation. Biophys. J. 9: 3627–

3639.

161 Yi, M., Tjong, H., and Zhou, H. X. 2008. Spontaneous conformational change and

toxin binding in 7 acetylcholine receptor: Insight into channel activation and

inhibition. Proc. Natl. Acad. Sci. USA. 105:8280 – 8285.

162 Cheng, X., Wang, H., Grant, B., Sine, S. M., McCammon, J. A. 2006. Targeted

Molecular Dynamics Study of C-Loop Closure and Channel Gating in Nicotinic

Receptors. PLoS Comput. Biol. 2:e134.

163 Landry, Y., and Gies, J. P. 2008. Drugs and their molecular targets: an updated

overview. Fundam. Clin. Pharmacol. 22:1–18.

164 Anderson, A. C. 2003. The Process of Structure-Based Drug Design. Chem. Biol.

10:787–797.

165 Reddy, A. S., Pati, S. P., Kumar, P. P., Pradeep, H. N., and Sastry, G. N. 2007. Virtual

Screening in Drug Discovery – A Computational Perspective. Curr. Protein Pept. Sci.

8:329-351.

Page 18: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

110

166 Li, C., Xu, L., Wolan, D.W., Wilson, I. A., and Olson, A.J. 2004. Virtual screening of

human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase against the

NCI diversity set by use of AutoDock to identify novel nonfolate inhibitors. J. Med.

Chem. 47:6681-6690.

167 Lyne, P. D., Kenny, P. W., Cosgrove, D. A., Deng, C., Zabludoff, S., Wendoloski, J. J.,

and Ashwell, S. 2004. Identification of compounds with nanomolar binding affinity for

checkpoint kinase-1 using knowledge-based virtual screening. J. Med. Chem. 47:1962-

1968.

168 Rella, M., Rushworth, C.A., Guy, J.L., Turner, A.J., Langer, T., Jackson, R. M. 2006.

Structure-based pharmacophore design and virtual screening for novel angiotensin

converting enzyme 2 inhibitors. J. Chem. Inf. Model. 46:708-716.

169 Rogers, J.P., Beuscher, A.E., Flajolet, M., McAvoy, T., Nairn, A.C., Olson, A.J.,

Greengard, P. 2006. Discovery of protein phosphatase 2C inhibitors by virtual

screening. J. Med. Chem. 49:1658-1667.

170 Zhou, Y., Peng, H., Ji., Q., Qi, J., Zhu, Z., Yang, C. 2006. Discovery of small

molecule inhibitors of integrin alphavbeta3 through structure-based virtual screening.

Bioorg. Med. Chem. Lett. 16:5878-5882.

171 Mozziconacci, J.C., Arnoult, E., Bernard, P., Do, Q. T., Marot, C., and Allory, L. M.

2005. Optimization and validation of a docking-scoring protocol; application to virtual

screening for COX-2 inhibitors. J. Med. Chem. 48:1055-1068.

172 Steindl, T., Laggner,C., Langer,T. 2005. Human rhinovirus 3C protease: generation of

pharmacophore models for peptidic and nonpeptidic inhibitors and their application in

virtual screening. J. Chem. Inf. Model. 45:716-724.

173 Tuck, K. L., 2005. Chemical Biology: Tools for Advancing Drug Design. Chemistry

in Australia. 72:7-9.

174 Nguyen, T. L., Gussio, R., Smith, J. A., Lannigan, D. A., Hecht, S. M., Scudiero, D.

A., Shoemaker, R. H., and Zaharevitz, D. W. 2006. Homology model of RSK2 N-

terminal kinase domain, structure-based identification of novel RSK2 inhibitors, and

preliminary common pharmacophore. Bioorg. Med. Chem. 14:6097–6105.

175 Honma, T., Hayashi, K., Aoyama, T., Hashimoto, N., Machida, T., Fukasawa. K.,

Page 19: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

111

Iwama, T., Ikeura, C., Ikuta, M., Suzuki-Takahashi , I., Iwasawa, Y., Hayama, T.,

Nishimura, S., and Morishima, H. 2001. Structure-based generation of a new class of

potent Cdk4 inhibitors: new de novo design strategy and library design. J. Med. Chem.

44:4615–4627.

176 Schapira, M., Raaka, B. M., Samuels ,H. H., Abagyan, R. 2000. Rational discovery of

novel nuclear hormone receptor antagonists. Proc. Natl. Acad. Sci. USA. 97:1008–

1013.

177 Schafferhans, A. Klebe, G. 2001. Docking ligands onto binding site representations

derived from proteins built by homology modelling. J. Mol. Biol. 307:407–427.

178 Cywin, C. L., Dahmann, G., Prokopowicz, A. S. 3rd, Young, E. R., Magolda, R. L.,

Cardozo, M. G., Cogan, D. A., Disalvo, D., Ginn, J. D., Kashem, M. A., Wolak, J. P.,

Homon, C. A., Farrell, T. M., Grbic, H., Hu, H., Kaplita, P. V., Liu, L. H., Spero, D.

M., Jeanfavre, D. D., O'Shea, K. M., White, D. M., Woska, J. R. Jr, Brown, M. L.

2007. Discovery of potent and selective PKC-theta inhibitors. Bioorg. Med. Chem.

Lett. 17:225–230.

179 Chothia, C., Lesk, A. M. 1986. The relation between the divergence of sequence and

structure in proteins. EMBO J. 5:823-826.

180 Lesk, A.M. and Chothia, C. 1986. The response of protein structures to amino-acid

sequence changes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 317:345–356.

181 Rost, B. 1999. Twilight zone of protein sequence alignments. Protein Eng. 12:85–94.

182 Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., Sali, A. 2000. of

genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29:291-325.

183 Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W.,

Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 25:3389-3402.

184 Bork, P., and Gibson, T. J., 1996. Applying motif and profile searches. Methods

Enzymol. 266:162–184.

185 Ginalski, K., Grishin, N. V., Godzik, A., Rychlewski, L. 2005. Practical lessons from

protein structure prediction. Nucleic Acids Res. 33:1874–1891.

186 Shi, J., Blundell, T. L. and Mizuguchi, M. 2001.

FUGUE: sequence-structure

Page 20: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

112

homologyrecognition using environment-specific substitution tables and structure-

dependent gappenalties. J. Mol. Biol. 310:243-257.

187 Wallner, B., Elofsson, A. 2006. Identification of correct regions in protein models

using structural, alignment, and consensus information. Protein Sci. 15:900-913.

188 Jones, D. T. 1999. GenTHREADER: an efficient and reliable protein fold recognition

method for genomic sequences. J. Mol. Biol. 287:797-815.

189 Ouali, M., and King, R.D. 2000. Cascaded multiple classifiers for secondary structure

prediction. Protein Sci. 9: 1162–1176.

190 Rost, B., Sander, C., and Schneider, R. 1994. PHD--an automatic mail server for

protein secondary structure prediction. Comput Appl Biosci. 10: 53-60.

191 Bryson, K., McGuffin, L.J., Marsden, R.L., Ward, J.J., Sodhi, J.S., and Jones, D.T.

2005. Protein structure prediction servers at University College London. Nucl. Acids

Res. 33: W36-W38.

192 Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.L. 2001. Predicting

transmembrane protein topology with a hidden Markov model: application to complete

genomes. J. Mol. Biol. 305: 567–580.

193 Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G., and Gibson,

T.J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence

alignment through sequence weighting, position-specific gap penalties and weight

matrix choice. Nucleic Acids Res. 22: 4673-4680.

194 Li, X., Romero, P., Rani, M., Dunker, A.K., and Obradovic, Z. 1999. Predicting

protein disorder for N-, C-, and internal regions. Genome Inform. Ser. Workshop

Genome inform. 10:30-40.

195 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and

analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.

196 Sali, A., and Blundell, T. L. 1993. Comparative protein modeling by satisfaction of

spatial restraints. J. Mol. Biol. 234:779-815.

197 Xiang, Z., Soto, C. S., Honig, B. 2002. Evaluating conformational free energies: the

colony energy and its application to the problem of loop prediction. Proc. Natl. Acad.

Sci. USA. 99:7432–7437.

Page 21: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

113

198 Canutescu, A. A, Shelenkov, A. A., Dunbrack, R. L., Jr. 2003. A graph-theory

algorithm for rapid protein side-chain prediction. Protein Sci 12:2001–2014.

199 Leach, A. R. 2001. Molecular Modelling Principles and Applications. 2nd ed.,

Pearson. Education.

200 Laskowski, R. A., McArthur, M. W., Moss, D. S., Thornton, J. M. 1993.

PROCHECK: a program to check the stereochemical quality of protein structures. J.

Appl. Crystalogr. 26:283–91.

201 Colovos, C. and Yeates, T. O. 1993. Verification of protein structures: Patterns of

nonbonded atomic interactions. Protein Sci. 2:1511-1519.

202 Liang, J., Edelsbrunner, H. and Woodward, C. 1998. Anatomy of protein pockets and

cavities: Measurement of binding site geometry and implications for ligand design.

Protein Science 7:1884-1897.

203 Dundas, J., Ouyang, Z, Tseng, J., Binkowski, A., Turpaz, Y. and Liang, J. 2006.

CASTp: computed atlas of surface topography of proteins with structural and

topographical mapping of functionally annotated residues. Nucleic Acids Res. 34:116-

118.

204 Hendlich, M., Rippmann, F. and Barnickel, G. 1997. LIGSITE: Automatic and

efficient detection of potential small molecule binding sites in proteins. J. Mol Graph

Model. 15:359 –363.

205 Brady, G. P. and Stouten, P. F. W. 2000. Fast prediction and visualization of protein

binding pockets with PASS, J. Comput. Aided Mol. 14:383–401.

206 Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B.A., Sansom, M. S. 1996. HOLE:

a program for the analysis of the pore dimensions of ion channel structural models. J.

Mol. Graph 14:354–360.

207 Honig B, Nicholls A. 1995. Classical electrostatics in biology and chemistry. Science.

268:1144-1149.

208 Ligand Explorer: http://www.kukool.com/ligand/help/

209 Protein interactions calculator(PIC): http://crick.mbu.iisc.ernet.in/~PIC/

210 LPC/CSU : http://ligin.weizmann.ac.il/cgi-bin/lpccsu/LpcCsu.cgi

211 Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H. J. 2005. PatchDock

Page 22: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

114

and SymmDock: servers for rigid and symmetric docking. Nucl. Acids. Res. 33:W363-

367.

212 Goodsell, D. S., Morris, G. M., Olson, A. J. 1996. Automated docking of flexible

ligands: applications of AutoDock. J. Mol. Recognit. 9:1-5.

213 Glide, version 5.0, Schrödinger, LLC, New York, NY, 2008.

214 SMILES translator: http://cactus.nci.nih.gov/services/translate/

215 Jklustor: http://www.chemaxon.com/products/jklustor/

216 Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J.

C. 2005. GROMACS: Fast, flexible, and free. J. Comput. Chem. 26:1701–1718.

217 Peter Tieleman's site: http://moose.bio.ucalgary.ca/

218 PRODRG: http://davapc1.bioch.dundee.ac.uk/prodrg/

219 GROMACS: http://www.gromacs.org/

220 Berendsen, H. J. C., Postma, J. P. M., DiNola, A., Haak, J. R. 1984. Molecular

dynamics with coupling to an external bath. J. Chem. Phys. 81:3684-3690.

221 Nose, S., Klein, M. L. 1983. Constant Pressure Molecular-Dynamics for Molecular-

Systems. Molecular Physics 50:1055-1076.

222 Parrinello, M., Rahman, A. 1981. Polymorphic Transitions in Single-Crystals - a New

Molecular- Dynamics Method. Journal of Applied Physics 52:7182-7190.

223 Kandt, C., Ash, W. L., Tieleman, D. P. 2007. Setting up and running molecular

dynamics simulations of membrane proteins. Methods. 41:475-488.

224 Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G.

1995. A Smooth Particle Mesh Ewald Method, J. Chem. Phys. 103:8577-8593.

225 Humphrey, W., Dalke, A., and Schulten, K. 1996. VMD – Visual Molecular

Dynamics, J. Mol. Graphics. 14:33-38.

226 DeLano, W. L. 2002. "The PyMOL Molecular Graphics System." DeLano Scientific

LLC, San Carlos, CA, USA. http://www.pymol.org

227 Barrett, C. P., B. A. Hall, and M. E. M. Noble. 2004. Dynamite: a simple way to gain

insight into protein motions. Acta Crystallogr. D. 60:2280–2287.

228 Xmgrace: http://plasma-gate.weizmann.ac.il/Grace/

229 Isralewitz, B., Gao, M., and Schulten, K. 2001. Steered molecular dynamics and

Page 23: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

115

mechanical functions of proteins. Curr. Opin. Struct. Biol. 11:224 –230.

230 Torrie, G. M., Valleau, J. P. 1974. Monte-Carlo study of a phase-separating liquid-

mixture by umbrella sampling, Chem. Phys. Lett. 28:578-581.

231 Kumar, S. , Rosenberg, J. M., Bouzida, D., Swendsen, R. H. , Kollman, P. A. 1992.

The weighted histogram analysis method for free-energy calculations on biomolecules.

I. The method. J. Comput. Chem. 13:1011-1021.

232 Souaille, M., Roux, B. 2001. Extension to the weighted histogram analysis method:

combining umbrella sampling with free energy calculations. Comput. Phys. Commun.

135:40–57.

233 Almqvist, J., Huang, Y., Hovmoller, S., and Wang, D.N. 2004. Homology Modeling

of the Human Microsomal Glucose 6-Phosphate Transporter Explains the Mutations

that Cause the Glycogen Storage Disease Type Ib. Biochemistry 43:9289-9297.

234 Perry, J.L., Dembla-Rajpal, N., Hall, L.A., and Pritchard, J.B. 2006. A Three

dimensional model of Human Organic Anion Transporter. J. Biol. Chem. 281:38071-

38079.

235 Zhang, X., Shirahatti, N.V., Mahadevan, D., and Wright, S.H. 2005. A conserved

glutamate residue in transmembrane helix 10 influences substrate specificity of rabbit

OCT2 (SLC22A2). J. Biol. Chem. 280:34813-34822.

236 Lagerstedt, J.O., Voss, J.C., Wieslander, A., and Persson, B.L. 2004. Structural

modeling of dual-affinity purified Pho84 phosphate transporter. FEBS Lett. 578:262-

268.

237 Almqvist, J., Huang, Y., Laaksonen, A., Wang, D.N., and Hovmoller, S. 2007.

Docking and homology modeling explain inhibition of the human vesicular glutamate

transporters. Protein Sci. 16:1819-1829.

238 Olsowski, A., Monden, I., and Keller, K. 1998. Cysteine-scanning mutagenesis of

flanking regions at the boundary between external loop I or IV and transmembrane

segment II or VII in the GLUT1 glucose transporter. Biochemistry. 37:10738-10745.

239 Basketter, D. A., Widdas, W. F. 1978. Asymmetry of the hexose transfer system in

human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and

maltose as competitive inhibitors. J. Physiol. 278:389 – 401.

Page 24: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

116

240 Vinten, J. 1978. Cytochalasin B inhibition and temperature dependence of 3-O-

methylglucose transport in fat cells. Biochim. Biophys. Acta. 11:259-73.

241 Afzal, I., Cunningham, P. and Naftalin, R.J. 2002. Interactions of ATP, oestradiol,

genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the

human erythrocyte glucose transporter, GLUT1. Biochem. J. 365: 707-719.

242 Vera, C., Reyes, A. M., Carcamo, J. G., Velasquez, F. V., Rivas, C. I., Zhang, R. H.,

Strobel, P., Iribarren, R., Scher, H. I., Slebe, J. C., and Golde, D. W. 1996. Genistein Is

a Natural Inhibitor of Hexose and Dehydroascorbic Acid Transport through the

glucose transporter, GLUT1. J. Biol. Chem. 271:8719-8724.

243 Levine, K.B., Cloherty, E.K., Hamill, S., and Carruthers, A. 2002. Molecular

Determinants of Sugar Transport Regulation by ATP. Biochemistry 41: 12629-12638.

244 Robinson, L. J., Pang, S., Harris, D.S, Heuser, J., and James, D.E. 1992.

Translocation of the Glucose Transporter (GLUT4) to the Cell Surface in

Permeabilized 3T3-L1 Adipocytes: Effects of ATP, Insulin, and GTP3,S and

Localization of GLUT4 to Clathrin Lattices. J Cell Biol. 117: 1181-1196.

245 Vishnu Prasad, C. N., Mohan, S. S., Banerji, A., and Gopalakrishnapillai, A. 2009.

Kaempferitrin inhibits GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes.

Biochem. Biophys. Res. Commun. 380:39–43.

246 O’Mara, M., Cromer, B, Parker, M. and Chung, S. H. 2005. Homology Model of the

GABAA Receptor Examined Using Brownian Dynamics. Biophys. J. 88:3286–3299.

247 Melis, C., Lummis, S. C., and Molteni, C. 2008. Molecular Dynamics Simulations of

GABA Binding to the GABAC Receptor: The Role of Arg104. Biophys. J. 95:4115–

4123.

248 Osolodkin, D. I., Chupakhin, V. I., Palyulin, V. A., and Zefirov, N. S. 2009.

Molecular modeling of ligand–receptor interactions in GABAC receptor. J. Mol.

Graph. Model. 27:813–821.

249 Law, R. J., and Lightstone, F. C. 2009. Modeling Neuronal Nicotinic and GABA

Receptors: Important Interface Salt-Links and Protein Dynamics. Biophys. J. 97:1586–

1594.

250 Arinaminpathy, Y., Biggin, P. C., Shrivastava, I. H., Sansom, m. S. 2003. A

Page 25: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

117

prokaryotic glutamate receptor: homology modelling and molecular dynamics

simulations of GluR0. FEBS Lett. 553:321-327.

251 Saladino, A. C., Xu, Y., Tang, P. 2005. Homology Modeling and Molecular Dynamics

Simulations of Transmembrane Domain Structure of Human Neuronal Nicotinic

Acetylcholine Receptor. Biophys. J. 88:1009–1017.

252 Shim, J. Y. 2009. Transmembrane Helical Domain of the Cannabinoid CB1 Receptor.

Biophys. J. 96:3251–3262.

253 Hyslop, P. A., Morel, B., Sauerheber, R. D. 1990. Organization and interaction of

cholesterol and phosphatidylcholine in model bilayer membranes. Biochemistry.

29:1025-38.

254 Ali, S., Smaby, J, M., Momsen, M. M., Brockman, H. L., and Brown, R. E. 1998.

Acyl chain-length asymmetry alters the interfacial elastic interactions of

phosphatidylcholines. Biophys J. 74:338-48.

255 Pabst, G,, Rappolt, M., Amenitsch, H., Laggner, P. 2000. Structural information from

multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray

data. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 62:4000-

4009.

256 Kucerka, N., Tristram-Nagle, S., Nagle, J. F. 2005. Structure of fully hydrated fluid

phase lipid bilayers with monounsaturated chains. J Memb. Biol. 208:193-202.

257 Petrache, H. I., Dodd, S. W., Brown, M. F. 2000. Area per lipid and acyl length

distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy.

Biophys. J. 79: 3172-3192.

258 Seelig, J., Waespe-Sarcevic, N. 1978. Molecular order in cis and trans unsaturated

phospholipid bilayers. Biochemistry. 17:3310-3315.

259 Ollila, S., Hyvnen, M. T., and Vattulainen, I. 2007. Polyunsaturation in Lipid

Membranes: Dynamic Properties and Lateral Pressure Profiles. J. Phys. Chem. B

111:3139-3150.

260 Chiu, S. W., Jakobsson, E., Subramaniam, S., and Scott, H. L. 1999. Combined

Monte Carlo and Molecular Dynamics Simulation of Fully Hydrated Dioleyl and

Palmitoyl-oleyl Phosphatidylcholine Lipid Bilayers. Biophys. J. 77:2462–2469.

Page 26: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

118

261 Seelig, A., and Seelig, J. 1977. Effect of a single cis double bond on the structure of a

phospholipid bilayer, Biochemistry 16:45–50.

262 Ollila, S., Hyvnen, M. T., and Vattulainen, I. 2007. Polyunsaturation in Lipid

Membranes: Dynamic Properties and Lateral Pressure Profiles. J. Phys. Chem. B

111:3139-3150.

263 Aittoniemi, J., Niemela, P. S., Hyvonen, M. T., Karttunen, M., and Vattulainen, I.

2007. Insight into the Putative Specific Interactions between

Cholesterol,Sphingomyelin, and Palmitoyl-Oleoyl Phosphatidylcholine. Biophys. J.

92:1125–1137.

264 Bennett, M., D’Rozario, R., Sansom, M.S.P., and Yeagle, P.L. 2006. Asymmetric

stability among transmembrane helices of lactose permease. Biochemistry 45:8088–

8095.

265 Amadei, A., A. B. M. Linssen, and H. J. C. Berendsen. 1993. Essential dynamics of

proteins. Proteins Struct. Funct. Genet. 17:412–425.

266 Jung, E. K., Chin, J. J., and Jung, C. Y. Structural Basis of Human Erythrocyte

Glucose Transporter Function in Reconstituted System. J. Biol. Chem. 261:9155-9160.

267 Law, C. J., Yang, Q., Soudant, C., Maloney, P. C., and Wang, D. N. 2007. Kinetic

evidence is consistent with the rocker-switch mechanism of membrane transport by

GlpT. Biochemistry 46:12190-12197.

268 Hirai T, Heymann JA, Shi D, Sarker R, Maloney PC, Subramaniam S. 2002. Three

dimensional structure of a bacterial oxalate transporter. Nat. Struct. Biol. 9:597–600.

269 Hildebrand, P. W., Gunther, S., Goede, A., Forrest, L., Frömmel C., Preissner, R.

2008. Hydrogen-Bonding and Packing Features of Membrane Proteins: Functional

Implications. Biophys. J. 94:1945–1953.

270 Deisenhofer, J., Epp, O., Sinning, I., and Michel, H. 1995. Crystallographic

Refinement at 2.3 Å Resolution and Refined Model of the Photosynthetic Reaction

Centre from Rhodopseudomonas viridis . J. MoL Biol. 246:429-457.

271 Govaerts, C., Lefort, A., Costagliola, S., Wodak, S. J., Ballesteros, J. A., Van Sande,

J., Pardo, L., and Vassart, G. 2001. A Conserved Asn in Transmembrane Helix 7 Is an

On/Off Switch in the Activation of the Thyrotropin Receptor. J. Biol. Chem.

Page 27: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

119

276:22991–22999.

272 Therien, A. G., Grant, F. E. M., and Deber, C. M. 2001. Interhelical hydrogen bonds

in the CFTR membrane domain. Nature Struct. Biol. 8:597:601.

273 Choi, M. Y., Cardarelli, L., Therien, A. G., and Deber, C. M. 2004. Non-Native

Interhelical Hydrogen Bonds in the Cystic Fibrosis Transmembrane Conductance

Regulator Domain Modulated by Polar Mutations. Biochemistry 43:8077-8083.

274 Javadpour, M. M., Eilers, M., Groesbeek, M., and Smith, s. O. 1999. Helix Packing in

Polytopic Membrane Proteins: Role of Glycine in Transmembrane Helix Association.

Biophys. J. 77:1609 –1618.

275 Russ, W. P., and Engelman, D. M. 2000. The GxxxG Motif: A Framework for

Transmembrane Helix-Helix Association. J. Mol. Biol. 296:911-919.

276 Senes, A., Ubarretxena-Belandia, I., and Engelman, D. M. 2001. The Calpha---H...O

hydrogen bond: A determinant of stability and specificity in transmembrane helix

interactions. Proc. Natl. Acad. Sci. USA. 98:9056 –9061.

277 MacKenzie, K. R., Prestegard, J. H., and Engelman, D. M. 1997. A transmembrane

helix dimer: structure and implications. Science 276:131-133.

278 Fu, D., Libson, A., Miercke, L. J., Weitzman, C., Nollert, P., Krucinski, J.m and

Stroud, R. M. 2000. Structure of a glycerol-conducting channel and the basis for its

selectivity. Science. 290:481-486.

279 Bansal, A., and Sankararamakrishnan, R. 2006. Homology modeling of major

intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of

transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct.

Biol. 7:27.

280 Ermolova, n. V., Smirnova, I, N., Kasho, V. N., and Kaback, H. R. 2005. Interhelical

Packing Modulates Conformational Flexibility in the Lactose Permease of Escherichia

coli. Biochemistry 44:7669-7677.

281 Ballesteros, J. A., Jensen, A. D., Liapakis, G., Rasmussen, S. G. Shi, L., Gether, U.,

and Javitch, J. A. 2001. Activation of the 2-Adrenergic Receptor Involves Disruption

of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6.

J. Biol. Chem.276:29171–29177.

Page 28: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

120

282 Loland, C. J., Grånas, C., Javitch, J. A., and Gether, U. 2004. Identification of

Intracellular Residues in the Dopamine Transporter Critical for Regulation of

Transporter Conformation and Cocaine Binding. J. Biol. Chem. 279:3228–3238.

283 Kniazeff, J., Shi, L., Loland, C. J., Javitch, J. A., Weinstein, H., and Gether, U. 2008.

An Intracellular Interaction Network Regulates Conformational Transitions in the

Dopamine Transporter. J. Biol. Chem. 283:17691–17701.

284 Law, C. J., Almqvist, J., Bernstein, A., Goetz, R. M., Huang, Y., Soudant, C.,

Laaksonen, A., Hovmöller, S., and Wang, D. N. 2008. Salt bridge dynamics control

substrate-induced conformational change in the membrane transporter GlpT. Mol. Biol.

8:826–837.

285 Yin, Y., Jensen, M. Ø., Tajkhorshid, E., and Schulten, K. 2006. Sugar Binding and

Protein Conformational Changes in Lactose Permease. Biophys. J. 91:3972–3985.

286 Blodgett, D. M., De Zutter, J. K., Levine, K. B., Karim, P., and Carruthers, A. 2007.

Structural basis of GLUT1 inhibition by cytoplasmic ATP. J. Gen. Physiol. 130:157-

68.

287 Levine, K. B., Hamill, S., Cloherty, E. K., and Carruthers, A. 2001. Alanine Scanning

Mutagenesis of the Human Erythrocyte Glucose Transporter Putative ATP Binding

Domain. Blood Cells, Mol. Dis. 27:139 –142.

288 Lachaal, M., Spangler, R. A., and Jung, C. Y. 2001. Adenosine and adenosine

triphosphate modulate the substrate binding affinity of glucose transporter GLUT1 in

vitro. Biochim. Biophys. Acta 1511:123-133.

289 Wang, J., Falke, J. J., and Chan, S. I. 1986. A proton NMR study of the mechanism of

the erythrocyte glucose transporter. Proc. Nati. Acad. Sci. USA 83:3277-3281.

290 Nomura, M., Takahashi, T., Nagata, N., Tsutsumi, K., Kobayashi, S., Akiba, T.,

Yokogawa, K., Moritani, S., and Miyamoto, K. 2008. Inhibitory Mechanisms of

Flavonoids on Insulin-Stimulated Glucose Uptake in MC3T3-G2/PA6 Adipose Cells.

Biol. Pharm. Bull. 31:1403—1409.

291 Strobel, P., Allard, C., Perez-Acle, T., Calderon, R., Aldunate, R., and Leighton, F.

2005. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat

adipocytes. Biochem. J. 386: 471–478.

Page 29: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2366/14/14_references.p… · 95 13. Phay, J. E., Hussain, H. B., and Moley, J. F. 2000. Cloning and expression analysis

121

292 Prasad, C. N., Anjana, T., Banerji, A., and Gopalakrishnapillai, A. 2010. Gallic acid

induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett.

584:531-536.

293 Irwin, J. J., and Shoichet, B. K. 2005. ZINC—a free database of commercially

available compounds for virtual screening. J. Chem. Inf. Model. 45:177-82.