• View

  • Download

Embed Size (px)


  • Revista Mexicana de Ingeniera Qumica

    ISSN: 1665-2738

    Universidad Autnoma Metropolitana Unidad



    Gonzlez-Brambila, M. M.; Montoya de la Fuente, J. A.; Gonzlez-Brambila, O.; Lpez-Isunza, F.


    Revista Mexicana de Ingeniera Qumica, vol. 13, nm. 1, abril, 2014, pp. 311-322

    Universidad Autnoma Metropolitana Unidad Iztapalapa

    Distrito Federal, Mxico

    Available in:

    How to cite

    Complete issue

    More information about this article

    Journal's homepage in

    Scientific Information System

    Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

    Non-profit academic project, developed under the open access initiative

  • Revista Mexicana de Ingeniera Qumica


    Volumen 8, nmero 3, 2009 / Volume 8, number 3, 2009

    213 Derivation and application of the Stefan-Maxwell equations

    (Desarrollo y aplicacin de las ecuaciones de Stefan-Maxwell)

    Stephen Whitaker

    Biotecnologa / Biotechnology

    245 Modelado de la biodegradacin en biorreactores de lodos de hidrocarburos totales del petrleo

    intemperizados en suelos y sedimentos

    (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil

    and sediments)

    S.A. Medina-Moreno, S. Huerta-Ochoa, C.A. Lucho-Constantino, L. Aguilera-Vzquez, A. Jimnez-

    Gonzlez y M. Gutirrez-Rojas

    259 Crecimiento, sobrevivencia y adaptacin de Bifidobacterium infantis a condiciones cidas

    (Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions)

    L. Mayorga-Reyes, P. Bustamante-Camilo, A. Gutirrez-Nava, E. Barranco-Florido y A. Azaola-


    265 Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the

    presence of Valfor zeolite NaA

    (Optimizacin estadstica de la fermentacin etanlica de Saccharomyces cerevisiae en presencia de

    zeolita Valfor zeolite NaA)

    G. Inei-Shizukawa, H. A. Velasco-Bedrn, G. F. Gutirrez-Lpez and H. Hernndez-Snchez

    Ingeniera de procesos / Process engineering

    271 Localizacin de una planta industrial: Revisin crtica y adecuacin de los criterios empleados en

    esta decisin

    (Plant site selection: Critical review and adequation criteria used in this decision)

    J.R. Medina, R.L. Romero y G.A. Prez

    Revista Mexicanade Ingeniera Qumica


    Academia Mexicana de Investigacion y Docencia en Ingeniera Qumica, A.C.

    Volumen 13, Numero 1, Abril 2013

    ISSN 1665-2738


    Vol. 13, No. 1 (2014) 311-322


    UN MODELO CINETICO HETERGENEO PARA LA PRODUCCION DE BIODIESELM. M. Gonzalez-Brambila1, J. A. Montoya de la Fuente2, O. Gonzalez-Brambila3 y F. Lopez-Isunza4

    1Universidad Autonoma Metropolitana-Azcapotzalco. Av. San Pablo 180. Col. Reynosa, Tamaulipas,Azcapotzalco. Mexico, 02200, D. F., Mexico.

    2Instituto Mexicano del Petroleo. DIyP. Eje Central Lazaro Cardenas Norte 152, Mexico 07730, D. F., Mexico.3Centro de Ingeniera y Desarrollo Industrial, Av. Playa Pie de la Cuesta No. 702. Desarrollo San Pablo,

    Queretaro, Qro., 76130, Mexico.4Universidad Autonoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. Apdo.

    Postal 55-534, Mexico 09340, D.F., Mexico

    Received 27 November 2012; Accepted 13 October 2013

    AbstractThis work presents a heterogeneous dynamic model for the production of biodiesel using palmitic triglyceride andmethanol as raw materials. Triglycerides are the main compounds in vegetable oils and when its total is beyond97%, it is possible to produce biodiesel by means of a basic transesterification employing sodium hydroxide asa catalyst. The model takes into account that triglycerides are not soluble in alcohol so two liquid phases existin the batch reactor, causing the reaction to occur in the triglyceride-methanol interphase. Results show that themodel successfully calculates the concentration profile of triglyceride, alcohol and biodiesel in time as well as theintermediaries products in the reactor. It also predicts concentration profiles at different temperatures in accordanceto the Arrhenius Law.

    Keywords: biodiesel, kinetic modeling, transesterification, batch reactor, kinetic.

    ResumenEste trabajo presenta el desarrollo de un modelo dinamico para la produccion de biodiesel utilizando como materiasprimas triglicerido palmtico y metanol. Los aceites vegetales se componen principalmente de trigliceridos y cuandola concentracion de estos ultimos es mayor al 97%, se utiliza un catalizador basico para llevar a cabo la reaccion detransesterificacion para obtener biodiesel. Este modelo considera que los trigliceridos no son solubles en el metanol,por lo que se forman dos fases al colocar ambos en un reactor por lotes, lo cual provoca que la reaccion se lleve acabo unicamente en la superficie de la gotas, esto es en la interfase metanol-triglicerido. Los resultados obtenidoscon el modelo predicen de manera satisfactoria los perfiles de concentracion de trigliceridos, alcohol y biodieselen el tiempo, as como la concentracion de los productos intermedios dentro del reactor. As mismo predice ladisminucion del tamano de las gotas y los perfiles de concentracion a diferentes temperaturas.

    Palabras clave: biodiesel, modelado, transesterification, reactor por lotes, cinetica.

    1 Introduction

    The usage of vegetable oils as fuel was deeplyconsidered in the early days of the Diesel enginedevelopment. In fact, Rudolph Diesel himselfdemonstrated the performances of his engine usingpeanut oil. Nonetheless, the high viscosity of

    vegetable oils makes their use unsuitable for existingengines. It is interesting to note that, even thoughthe viscosity of vegetable oil is ten times higher thandiesels, their corresponding esters viscosities varyby a factor of two. The means to reduce vegetable oilviscosity has been widely studied and several methodshave been developed (Kiss et al., 2008). Some of

    Corresponding author. E-mail: o

    Publicado por la Academia Mexicana de Investigacion y Docencia en Ingeniera Qumica A.C. 311

  • Gonzalez-Brambilia et al./ Revista Mexicana de Ingeniera Qumica Vol. 13, No. 1 (2014) 311-322

    the most reported include: 1) direct use and blendedwith Diesel (Maa y Hanna, 1999), 2) use of microemulsions with short-chain of alcohols (Maa y Hanna,1999), 3) thermal cracking (pyrolysis) of vegetableoils (Charusiri y Vitidsant, 2005), 4) transesterificationof triglycerides catalyzed by bases, acids or enzymes(Hills, 2003), and 5) esterification of fatty acids withalcohols, using acid (H2SO4) or solid acid catalysts(Kiss et al., 2006-I), (Kiss et al., 2006-II).

    Biodiesel, in an ordinary sense, is understood asthe fuel obtained from vegetable oils, animal fats orgreases. However, in order to be classified as biodiesel,it must meet ASTM D 6751, or 14214:2008 Europeanstandards for flash point, water and sediment content,viscosity, sulfated ash, total sulfur, copper stripcorrosion, cetane index, cloud point, carbon residue,acid number, free and total glycerin, phosphorus andvacuum distillation end point as indicates in Table 1.(Garca y Garca, 2006).

    Biodiesel has several distinct advantages whencompared to Diesel obtained from petroleum. Inaddition of being fully competitive to Diesel inmost technical aspects it is 98.3% biodegradablewithin 21 days (Garca y Garca, 2006) and itshigher flash point makes its handling and storagesafer. With the exception of NOx emissions, it issafe to argue that biodiesel is cleaner than Dieselsince its emissions of CO during combustion are50% lower; biodiesel does not contain sulfur sothere are no SOx emissions; there are no particleemissions either; biodiesel does not hold polycyclicaromatic hydrocarbons (PAH), or their nitro polycyclicaromatic hydrocarbons derivate (nPAH). It shouldnot be overlooked that CO2 produced by biodieselcombustion is a link in the natural carbon cyclemeaning that no additional contribution of carbon isadded to biosphere, disregarding the fuels used forharvest raw materials.

    The two main disadvantages of biodiesel are itslower calorific power compared to Diesel (9,500kcal/kg vs. 10,800 kcal/kg) and a gelation temperaturenear 0C. The most common uses of biodiesel incompression-ignition engines are in its pure form,B100, or blended with diesel in 5% (B5) or 20%(B20). Minor engine modifications may be required inolder diesel engines to avoid seals dissolution of whenpure biodiesel is used; however B5 and B20 blends canbe used without any adjustment (Ataya et al., 2007).

    The chemical structure of biodiesel is of fatty acidalkyl esters and two of the most common means toobtain it by chemical reaction are: transesterification

    using an alkali catalyst to transform triglyceridesin their corresponding fatty acid alky esters (ifthe content of free fatty acids is lower than 1.5%), and esterification using an acid catalyst toobtain the alkyl esters of free fatty acids (whenconcentration of free fatty acids is more than 2%).Strong liquid acid catalysts are less sensitive tofree fatty acids concentration and can simultaneouslyconduct esterification and transesterificatio