29
Receptorarchitecture and Neural Systems Karl Zilles Institute of Neuroscience and Medicine INM-1 Research Centre Jülich and University Hospital of Psychiatry, Psychotherapy and Psychosomatics RWTH Universität Aachen

Receptorarchitecture and Neural Systems

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Receptorarchitecture and Neural Systems

Karl Zilles

Institute of Neuroscience and Medicine INM-1

Research Centre Jülich and

University Hospital of Psychiatry, Psychotherapy and

Psychosomatics

RWTH Universität Aachen

m

Transmitter Systems

Glutamate (ubiquitous;

excitatory)

GABA (ubiquitous;

inhibitory)

Acetylcholine (basal forebrain

Ch1 Septum

Ch2 vertical band

Ch3 horizontal b.

Ch4 NbM)

Dopamine (substantia nigra,

ventral tegmental

area VTA)

Noradrenaline (locus coeruleus)

Serotonin (raphe nuclei)

medial forebrain bundle

Receptors are protein complexes in the cell

membrane, to which transmitters selectively bind.

ionotropic receptors have an integrated ion channel

and regulate ion fluxes between extra- and intracellular space

metabotropic receptors are linked to intracellular

second messenger systems, and control metabolic

pathways, ion channels, gene activity, etc.

R

Example: Ionotropic Transmitter Receptors

postsynaptic

ionotropic

receptor

transmitter

ion channel

postsynaptic

membrane

presynaptic

ionotropic

receptor

presynaptic

membrane

axonal bouton

Adenosin A1 D1, D2, D4

D1, D2, D4

Dopamine

AMPA, NMDA, kainate

AMPA, NMDA, kainate

AMPA, NMDA, kainate

AMPA, NMDA, kainate

Glutamate

GABAA, bz.binding site

GABAA, bz.binding site

GABAA, bz.binding site

GABAA, bz.binding site

GABAB

GABAB

GABAA, bz.binding site

GABAB

GABA

nicotinic, M1, M2, M3

nicotinic, M1, M2, M3

Acetylcholine

a1, a2

a1, a2

Noradrenaline

5-HT1A, 5-HT2

5-HT1A, 5-HT2

Serotonin

How to map receptor distributions:

• in vivo receptor PET

• in vitro quantitative receptor autoradiography

• immunohistochemistry of receptor proteins and subunits

• transcriptomics

HG05/00

Sulcus

centralis

slab 2

native

slab 2

frozen

at -70° C

slab 2

Quantitative in vitro Receptor Autoradiography: Method (1)

Gyrus

praecentralis

Serial sections (20 µm) mounted onto glass slides

• Preincubation: re-hydrate sections. Remove endogenous

substances

• Main incubation: buffer solution with [3H]-ligands which

specifically bind to a given receptor type

• Washing step: stop binding procedure. Eliminate surplus

[3H]-ligand and buffer salts

Binding protocol

Total and nonspecific binding

Specific binding = total binding – nonspecific binding

Total binding

[3H]-ligand (nM)

Nonspecific binding

[3H]-ligand (nM) + displacer (µM)

Image processing

0

50

100

150

200

250

0 150000 350000

Receptor density

(fmol/mg protein)

Gre

y v

alu

es

Linearised autoradiograph

grey values

code

receptor densities

5-HT1A

M2 receptor

[3H] oxotremorine-M

184 fmol/mg protein

262 341 420

Myelin staining

Primary visual cortex

* *

Gennari‘s stripe

V2

V2

V1

V1

Myelin

vertical

meridian

vertical

meridian

GABAA Receptor

V2

V2

V1

V1

vertical

meridian

Sulcus

calcarinus

Zilles, K., Palomero-Gallagher, N. , Schleicher, A.: Transmitter receptors and functional anatomy

of the cerebral cortex. J. Anat. 205: 417-432 (2004)

vertical

meridian

Entorhinal-Hippocampal System

sub CA1

mol

CA2

fimbria

CA3

Kainate NMDA

AMPA

perforant path

mossy fibres

Schaffer collateral

CA1

mol

CA1

mol CA3 CA2

Glutamatergic terminals of

the perforant path and the

Schaffer collaterals

Glutamatergic terminals of the mossy fibers

Glutamatergic terminals of the perforant path

and the Schaffer collaterals

295 464 633 802

221 357 493 629 417 632 486 1061 fmol/mg protein fmol/mg protein

fmol/mg protein

Primary Sensory Cortices

Macaque

Brain

Human

Brain

primary

somatosensory

cortex

low density high density

primary

auditory

cortex

motor

cortex

motor cortex sc

sc

Cholinergic muscarinic M2 receptor

primary

auditory

cortex

primary

somatosensory

cortex

Receptor Fingerprints

Dopamine

Acetylcholine

Serotonin

Glutamate

Noradrenaline GABA

Low

denisty

High

density

AMPA Kainate NMDA M1 M2 M3 nicotinic

a1 a2 GABAA 5-HT1A 5-HT2 D1 D2

Multimodal visualization of receptor organization

in human cerebral cortex

Zilles, K., Schleicher, A., Palomero-Gallagher, N., Amunts, K.:

Quantitative analysis of cyto- and receptorarchitecture of the human brain, pp. 573-602.

In: Brain Mapping: The Methods, 2nd edition (A.W. Toga and J.C. Mazziotta, eds.). Academic Press (2002)

A receptor fingerprint is…

AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

nACh

a1

a2

5-HT1A

5-HT2

D1

area 4

caudate

putamen

0

500

1000

1500

2000

2500

3000

Receptor Fingerprints

AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

N

a1

a2

5-HT2

D1

1000

2000

3000

Hippocampus

CA1-3

0

primary motor cortex

AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

N

a1

a2

5-HT2

D1

0

5-HT1A 5-HT1A 1000

2000

3000

What receptors tell us about laminar segregation and input-output relations

in the cerebral cortex

molecular layer I

outer granular layer II

inner granular layer IV

outer pyramidal layer III

inner pyramidal layer V

polymorphic layer VI

CYTOARCHITECTURE

thalamo-

cortical

input

cortico-

cortical

input

CONNECTIVITY SYNAPTIC DENSITY

cortico-

-cortical,

-striatal,

-thalamic,

-bulbar, and

-spinal

output

AM

PA

K

ain

ate

N

MD

A

GA

BA

A

GA

BA

B

BZ

750

100

850

75

1700

100

2200

100

3000

100

3500

100

V1 I

III

IVa

IVb

IVc V VI

PFm 44d I II

IIIab

IIIc IV

V

VI

47 4d pSTG

/ STS

IFS1

/ IFJ 45 I II IIIab IIIc IV

V

VI

I II

IIIc IV

V

VI

I II

IIIc IV V

VI

I II

IIIc

V

VI

I II

IIIc IV

V

VI

I II

IIIc IV

V

VI

IIIab IIIab IIIab IIIab IIIab

II

PFm

47

IFS1/IFJ

45 pSTG/STS

44d

4d

V1

0

1000

2000

3000 AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

N

a1

a2

5-HT1A

5-HT2

D1

L. I

0

1000

2000

3000 AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

N

a1

a2

5-HT1A

5-HT2

D1

Ll. II-III

Receptor Fingerprints of the primary visual cortex: layer specificity

0

1000

2000

3000 AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

N

a1

a2

5-HT1A

5-HT2

D1

L. IV

L. V

0

1000

2000

3000 AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

N

a1

a2

5-HT1A

5-HT2

D1 L. VI

0

1000

2000

3000 AMPA

kainate

NMDA

GABAA

GABAB

BZ

M1

M2 M3

N

a1

a2

5-HT1A

5-HT2

D1

7

47

IFS1/IFJ 9

45p

44v 46 PFop

PFt

PFcm

PFm

PF

pSTG/STS

4d

44d

3b

Te1

Te2 45a

PGa PGp

4v

V1

FG1 FG2

32

Sentence comprehension-related and non-related brain regions

15 transmitter receptor types and cognitive systems

K. Zilles, M. Bacha-Trams, N. Palomero-Gallagher, K. Amunts, A.D. Friederici (2015). Common

molecular basis of the sentence comprehension network revealed by neurotransmitter receptor

fingerprints. Cortex 63: 79-89

fMRI defined regions “sentence comprehension task”

Euclidean Distance

0.5 1 1.5 2 2.5 3

FG2

FG1

PGp

Te2

PFt

PFop

PFcm

PGa

7

PFm

PF

pSTG/STS

IFS1/IFJ

45p

45a

44v

44d

32

9

46

47

4d

4v

V1

Te1

3b

Euclidean Distance

0.5 1 1.5 2 2.5 3

FG1

FG2

7

9

46

32

44v

44d

47

45a

pSTG/STS

Te2

45p

IFS1/IFJ

4v

4d

3b

Te1

V1

PF

PFm

PGa

PFcm

PFop

PFt

PGp

Left hemisphere

(language dominant side) Right hemisphere

multimodal

association

primary

sensory

language

network

multimodal

association

K. Zilles, M. Bacha-Trams, N. Palomero-Gallagher, K. Amunts, A.D. Friederici (2015). Common

molecular basis of the sentence comprehension network revealed by neurotransmitter receptor

fingerprints. Cortex 63: 79-89

Cluster analysis of the human cingulate cortex:

A multi-region model based on receptor fingerprints

Palomero-Gallagher, N., Vogt, B.A.,

Schleicher, A., Mayberg, H.S., Zilles, K. (2009) Receptor architecture of human cingulate cortex:

Evaluation of the four-region neurobiological

model.

Human Brain Mapping 30: 2336-2355

Eu

cli

de

an

dis

tan

ce

(W

ard

lin

ka

ge

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

23d

23c

31

d23

v2

3

30

29l

29m

24a

24b

24cv

24cd

32

p2

4a

'

p2

4b

'

24

dv

24d

d

24

c'v

24

c'd

32'

25

a2

4b

'

a24a'

33

24a

24b

24cv

24cd

32

p2

4a

'

p2

4b

'

24

dv

24d

d

24

c'v

24

c'd

32'

25

a2

4b

'

a24a'

33

25

33

RSC

ACC

MCC

PCC aMCC pMCC

emotion

decision

motor

control

visuo-

spatial

attention

memory

limbic

memory

au

ton

om

ic

co

ntr

ol

Institute of Neuroscience and

Medicine (INM-1),

Research Centre Jülich

Katrin Amunts

Mareike Bacha-Trams

Svenja Caspers

Nicola Palomero-Gallagher

Axel Schleicher

Thanks to: