35
Recent Progress in Nuclear Parton Distributions CIPANP 2018, May 29 - June 3, 2018 Pía Zurita BNL 1/25

Recent Progress in Nuclear Parton Distributions · The simplest proposal: the partons know that they are not alone introduce nuclear PDFs use the same evolution equations same perturbative

  • Upload
    ngokiet

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Recent Progress in Nuclear Parton Distributions

CIPANP 2018, May 29 - June 3, 2018

Pía Zurita

BNL

1/25

✦ Why nuclear PDFs?

✦ Latest set of nPDFs

✦ Future experiments

✦ Exploiting current data

✦ Summary 2/25

Outline

Once upon a time, in a land not so far away…

… people decided to do e+A collisions for fun, because a nucleus A is just Z protons and A-Z neutrons, right?

Why nuclear PDFs?

Why nuclear PDFs?

3/25

Once upon a time, in a land not so far away…

… people decided to do e+A collisions for fun, because a nucleus A is just Z protons and A-Z neutrons, right?

Why nuclear PDFs?

Why nuclear PDFs?

3/25

OK, they were SO wrong, so now:

what is affected by the nuclear environment?

a) the non-perturbative part?

b) the perturbative part?

c) both?

Why nuclear PDFs?

b) and c) are unpopular answers

(but could be right!)

4/25

The simplest proposal:

the partons know that they are not alone

Why nuclear PDFs?

5/25

*results usually shown as the ratio of the parton in nucleus to parton in proton PDF. Other depictions may be used

fAi (x, Q2) =

Zfp/Ai (x, Q2) + (A – Z)fn/Ai (x, Q2)A

The simplest proposal:

the partons know that they are not alone

introduce nuclear PDFs

use the same evolution equations

same perturbative expansion for the observables

and try to perform a global fit to the world data*

Why nuclear PDFs?

5/25

Why nuclear PDFs?

Why nPDFs if I do not care about e+A nor p+A?

neutrino initiated DIS (useful for proton PDFs)

e+d DIS (useful for proton PDFs) non QGP effects in A+A

cosmic rays

6/25

Why nuclear PDFs?

e+e– ep

eA

pp

pA AA

expectation:

Why nPDFs if I do not care about e+A nor p+A?

neutrino initiated DIS (useful for proton PDFs)

e+d DIS (useful for proton PDFs) non QGP effects in A+A

cosmic rays

6/25

Why nuclear PDFs?

reality:

Why nPDFs if I do not care about e+A nor p+A?

neutrino initiated DIS (useful for proton PDFs)

e+d DIS (useful for proton PDFs) non QGP effects in A+A

cosmic rays

e+e– ep

eA

pp

pA AA

6/25

7/25

Latest set of nPDFs

within experimental uncertainties nPDF extraction is successful:

HKM: Hirai, Kumano, Miyama, PRD64 (2001) 034003

nDS: de Florian, Sassot, PRD69 (2004) 074028 HKN: Hirai, Kumano, Nagai, PRC76 (2007) 065207

EPS09: Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065 DSSZ: de Florian, Sassot, Stratmann, PZ, PRD85 (2012) 074028

nCTEQ15: Kovarik et al., PRD93 (2016) no.8, 085037 KA15: Khanpour, Tehrani, PRD93 (2016) no.1, 014026

EPPS16: Eskola, Paakkinen, Paukkunen, Salgado, EPJ C77 (2017) no.3, 163

Latest set of nPDFs

fi/A�x,Q2

0

�� fi/p

�x,Q2

0

�RA

i

�x,Q2

0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

10-4

10-3

10-2

10-1

1

antishadowing maximum

EMC minimum

small-x shadowing

x

a

x

e

y

e

y

a

y0

EPPS16

x

R

A

i

(x,Q

2 0)

yi(A) = yi(Aref)� AAref

�γ i [yi(Aref)–1]

Rvalence Ruv , Rdv

Rsea Ru, Rd, Rs

Rgluon Rgluon

Latest set of nPDFs

8/25

1

10

102

103

104

105

10-4

10-3

10-2

10-1

1

fixed target DIS and DYLHC dijetsLHC W & ZCHORUS neutrino dataPHENIX ⇡

0

x

Q

2[GeV

2 ]

EPJ C77 (2017) no.3, 163

A He Li Be C Al Ca Fe Cu Ag Sn W Pt Au Pb# points 37 168 35 232 35 66 78 19 7 159 58 7 41 869

e+A, ν+A and p(d)+A experiments 1811 data points

9/25

Latest set of nPDFs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

R

Pb

g

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

R

Pb

S

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

R

Pb

V

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

EPJ C77 (2017) no.3, 163

10/25

Latest set of nPDFs

neutron excess/non-isoscalar corrections

The valence

49u + 1

9d

�A + 3Z9A

�u +

�4A – 3Z9A

�d

proton nucleus

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2)

R

Pb

d

V(x,Q

2=10

GeV

2)

R

Pb

u

(x,Q

2=10

GeV

2)

R

Pb

d

(x,Q

2=10

GeV

2)

R

Pb

s

(x,Q

2=10

GeV

2)

R

Pb

g

(x,Q

2=10

GeV

2)

EPJ C77 (2017) no.3, 163

10/25

The valenceLatest set of nPDFs

11/25

The seaLatest set of nPDFs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

R

Pb

g

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

R

Pb

S

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

R

Pb

V

(x,Q

2=10

GeV

2 )x

EPPS16EPS09DSSZ

EPJ C77 (2017) no.3, 163

11/25

The seaLatest set of nPDFs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2 )

R

Pb

d

V(x,Q

2=10

GeV

2 )

R

Pb

u

(x,Q

2=10

GeV

2 )

R

Pb

d

(x,Q

2=10

GeV

2 )

R

Pb

s

(x,Q

2=10

GeV

2 )

R

Pb

g

(x,Q

2=10

GeV

2 )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2 )

R

Pb

d

V(x,Q

2=10

GeV

2 )

R

Pb

u

(x,Q

2=10

GeV

2 )

R

Pb

d

(x,Q

2=10

GeV

2 )

R

Pb

s

(x,Q

2=10

GeV

2 )

R

Pb

g

(x,Q

2=10

GeV

2 )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2)

R

Pb

d

V(x,Q

2=10

GeV

2)

R

Pb

u

(x,Q

2=10

GeV

2)

R

Pb

d

(x,Q

2=10

GeV

2)

R

Pb

s

(x,Q

2=10

GeV

2)

R

Pb

g

(x,Q

2=10

GeV

2)

EPJ C77 (2017) no.3, 163

12/25

Latest set of nPDFs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

R

Pb

g

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

R

Pb

S

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

R

Pb

V

(x,Q

2=10

GeV

2 )

x

EPPS16EPS09DSSZ

EPJ C77 (2017) no.3, 163

the 😈 and 👻 gluon

12/25

Latest set of nPDFs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-4

10-3

10-2

10-1

1

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

EPPS16nCTEQ15

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2 )

R

Pb

d

V(x,Q

2=10

GeV

2 )

R

Pb

u

(x,Q

2=10

GeV

2 )

R

Pb

d

(x,Q

2=10

GeV

2 )

R

Pb

s

(x,Q

2=10

GeV

2 )

R

Pb

g

(x,Q

2=10

GeV

2 ) EPJ C77 (2017) no.3, 163

the 😈 and 👻 gluon

Future experiments

Future experiments

“data” with estimated uncertainties

impact estimations are tied to the initial parameterizations

for x < 0.001 the theoretical curves are extrapolations

mostly focused on the gluon

13/25

Electron-Ion collider

Measurements with A ≥ 56 (Fe):eA/μA DIS (E-139, E-665, EMC, NMC) JLAB-12νA DIS (CCFR, CDHSW, CHORUS, NuTeV)DY (E772, E866)DY (E906)

x10-410-5 10-3 10-2 10-1 1

Q2

(GeV

2 )104

103

102

10

1

0.1

EIC √s = 32 − 90 GeV, 0.01 ≤ y ≤

0.95

EIC √s = 15 − 40 GeV, 0.01 ≤ y ≤

0.95

perturbativenon-perturbative

x

Q2

(GeV

2 )

Current polarized DIS ep data:CERN DESY JLab-6 SLAC

Current polarized RHIC pp data:PHENIX π0 STAR 1-jet W bosons

JLab-12104

103

102

10

1

10-4 10-3 10-2 10-1 1

EIC √s = 22 − 63 GeV, 0.01 ≤ y ≤

0.95

EIC √s = 45 − 141 GeV, 0.01 ≤ y ≤

0.95

Eur.Phys.J. A52 (2016) no.9, 268

there is much more about EIC than nPDFs (duh!) visit http://www.eicug.org/ for more info

Future experiments: EIC

14/25

Aschenauer, Fazio, Lamont, Paukkunen, PZ, PRD96 (2017) no.11, 114005

)2(GeV2Q

1 10 210 310

(x)

10

)-lo

g2

(x,Q

red

σ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-1x = 5.2x10

-1x = 3.2x10

-1x = 2.0x10

-1x = 1.3x10

-2x = 8.2x10

-2x = 5.2x10

-2x = 3.2x10

-2

x = 2.0x10

-2

x = 1.3x10

-3

x = 8.2x10

-3

x = 5.2x10

-3

x = 3.2x10

-3

x = 2.0x10

-3

x = 1.3x10-4

x = 8.2x10

-4

x = 5.2x10-4

x = 3.2x10

e+Au

/A-1Ldt = 10 fb∫

= 31.6 GeVs = 44.7 GeVs = 89.4 GeVs

Fe)≥World Data (A CT14NLO+EPPS16

)2(GeV2Q1 10 210 310 410

(x)/1

010

)-log

2(x

,Qre

dccσ

00.05

0.10.150.2

0.250.3

0.350.4

0.450.5

-1x = 5.2x10-1x = 3.2x10

-1x = 2.0x10

-1x = 1.3x10

-2x = 8.2x10

-2x = 5.2x10

-2x = 3.2x10

-2x = 2.0x10

-2

x = 1.3x10

-3

x = 8.2x10

-3

x = 5.2x10

-3

x = 3.2x10-3

x = 2.

0x10

-3

x = 1.

3x10-4

x = 8.

2x10-4

x = 5.

2x10

-4

x = 3.

2x10

-4

x = 2.

0x10

e+Au

/A-1Ldt = 10 fb∫

= 31.6 GeVs = 44.7 GeVs = 89.4 GeVs

CT14NLO+EPPS16

Future experiments: EIC

Inclusive and charm reduced cross-section

15/25

gPb

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EPPS16* + EIC (inclusive + charm)EPPS16* + EIC (inclusive only)

EPPS16*

2 = 10 GeV2Q

= 31.6 - 89.4 GeVs

x4−10 3−10 2−10 1−10 1

Re

d.

fact

or

0

2

4

6

8

10EPPS16* + EIC (inclusive + charm)

EPPS16* + EIC (inclusive only)

gPb R

00.20.40.60.8

11.21.41.61.8

2

2 = 10 GeV2Q = 31.6 - 44.7 GeVs

x4−10 3−10 2−10 1−10 1

Red

. fac

tor

02468

10

gPb

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EPPS16* + EIC (inclusive + charm)EPPS16* + EIC (inclusive only)

EPPS16*

2 = 10 GeV2Q

= 31.6 - 89.4 GeVs

x4−10 3−10 2−10 1−10 1

Re

d.

fact

or

0

2

4

6

8

10EPPS16* + EIC (inclusive + charm)

EPPS16* + EIC (inclusive only)

impact on EPPS16* nPDFs

PRD96 (2017) no.11, 114005

https://indico.fnal.gov/event/15328/session/4/contribution/15/material/slides/0.pdf

See also C. Weiss talk at “Santa Fe Jets and Heavy Flavor Workshop, 30-Jan-18”

Future experiments: EIC

16/25

Klasen, Kovarik, Potthoff, PRD95 (2017) no.9, 094013

Klasen and Kovarik, arXiv:1803.10985 [hep-ph].

Future experiments: EIC

Jets and di-jets

17/25

Future experiments: LHeC LHeC

18/25

Future experiments: LHeC LHeC

from H. Paukkunen’s

talk in POETIC8

The LHeC Pseudodata

The neutral-current pseudodata:

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Q2=2GeV

2Q

2=5GeV

2Q

2=10GeV

2Q

2=20GeV

2Q

2=50GeV

2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Q2=100GeV

2Q

2=200GeV

2Q

2=500GeV

2Q

2=1000GeV

2Q

2=2000GeV

2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

10-6

10-4

10-2

1

Q2=5000GeV

2

10-4

10-2

1

Q2=10000GeV

2

10-4

10-2

1

Q2=20000GeV

2

10-4

10-2

1

Q2=50000GeV

2

10-4

10-2

1

Q2=100000GeV

2

LHeC pseudodata

xxxxx

Ratiosofreducedcross-sections

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

The e↵ect of LHeC pseudodata

The NC data after including NC+CC data into the analysis

0.6

0.8

1.0

1.2

Q2=2GeV

2Q

2=5GeV

2Q

2=10GeV

2Q

2=20GeV

2Q

2=50GeV

2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

10-6

10-4

10-2

1

Q2=100GeV

2

10-4

10-2

1

Q2=200GeV

2

10-4

10-2

1

Q2=500GeV

2

10-4

10-2

1

Q2=1000GeV

2

10-4

10-2

1

Q2=2000GeV

2

LHeC pseudodata LHeC fit

xxxxx

Ratio

ofthereducedcross-sections

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

The e↵ect of LHeC pseudodata

The CC data after including NC+CC data into the analysis

0.6

0.8

1.0

1.2

Q2=100GeV

2Q

2=200GeV

2Q

2=500GeV

2Q

2=1000GeV

2Q

2=2000GeV

2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

10-4

10-2

1

Q2=5000GeV

2

10-2

1

Q2=10000GeV

2

10-2

1

Q2=20000GeV

2

10-2

1

Q2=50000GeV

2

10-2

1

Q2=100000GeV

2

LHeC pseudodata LHeC fit

xxxxx

Ratio

ofthereducedcross-sections

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

“data” from EPS09

NC & CC

NC

CC

The LHeC Pseudodata

The neutral-current pseudodata:

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Q2=2GeV

2Q

2=5GeV

2Q

2=10GeV

2Q

2=20GeV

2Q

2=50GeV

2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Q2=100GeV

2Q

2=200GeV

2Q

2=500GeV

2Q

2=1000GeV

2Q

2=2000GeV

2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

10-6

10-4

10-2

1

Q2=5000GeV

2

10-4

10-2

1

Q2=10000GeV

2

10-4

10-2

1

Q2=20000GeV

2

10-4

10-2

1

Q2=50000GeV

2

10-4

10-2

1

Q2=100000GeV

2

LHeC pseudodata

xxxxx

Ratiosofreducedcross-sections

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

19/25

from H. Paukkunen’s talk in POETIC8

The e↵ect of LHeC pseudodata

The improvement after adding the LHeC data (Q2 = 10GeV2)

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2 )

R

Pb

d

V(x,Q

2=10

GeV

2 )

R

Pb

u

(x,Q

2=10

GeV

2 )

R

Pb

d

(x,Q

2=10

GeV

2 )

R

Pb

s

(x,Q

2=10

GeV

2 )

R

Pb

g

(x,Q

2=10

GeV

2 )

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

The e↵ect of LHeC pseudodata

The improvement after adding the LHeC data (Q2 = 10GeV2)

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2)

R

Pb

d

V(x,Q

2=10

GeV

2)

R

Pb

u

(x,Q

2=10

GeV

2)

R

Pb

d

(x,Q

2=10

GeV

2)

R

Pb

s

(x,Q

2=10

GeV

2)

R

Pb

g

(x,Q

2=10

GeV

2)

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

The e↵ect of LHeC pseudodata

The improvement after adding the LHeC data (Q2 = 10GeV2)

x x x

x x x

R

Pb

u

V(x,Q

2=10

GeV

2)

R

Pb

d

V(x,Q

2=10

GeV

2)

R

Pb

u

(x,Q

2=10

GeV

2)

R

Pb

d

(x,Q

2=10

GeV

2)

R

Pb

s

(x,Q

2=10

GeV

2)

R

Pb

g

(x,Q

2=10

GeV

2)

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

Future experiments: LHeC

20/25

Future experiments: AFTER AFTER

For more information see Ingo Schienbein’s talk:

https://indico.ectstar.eu/event/9/contributions/191/attachments/119/141/trento_160418.pdf

Proposed fixed target experiment at LHC

study the large-x parton content in nucleons/nucleistudy the dynamics and spin of gluons inside

(un)polarised nucleons/nuclei

Study heavy-ion collisions between RHIC and SPS

energies towards large rapidities

21/25

Exploiting current data

Exploiting current dataArcheology: DY in π+A

Badier, et al., Phys. Lett. B104 (1981) 335, P. Bordalo, et al., Phys. Lett.

B193 (1987) 368, J. G. Heinrich, et al., Phys. Rev. Lett. 63 (1989) 356–359.

Paakkinen, Eskola, Paukkunen, Phys.Lett. B768 (2017) 7-11

Centrality dependent data: Helenius, Eskola, Honkanen, Salgado, JHEP 1207 (2012) 073.

Paukkunen, Phys.Lett. B745 (2015) 73-78, Helenius, Paukkunen, Eskola,

Eur.Phys.J. C77 (2017) no.3, 148.

Particle production: Helenius, Eskola, Paukkunen, Nucl.Phys. A932 (2014) 415-420

https://indico.cern.ch/event/663878/contributions/2926133/attachments/

1618981/2574636/Paukkunen_POETIC8.pdf

Kusina, Lansberg, Schienbein, Shao, arXiv:1712.07024 [hep-ph] 22/25

Summary

several nPDFs sets available, comparing them is tricky

all give NICE descriptions of the data

0.7

0.8

0.9

1

1.1

1.2

F 2Ca /F 2D

EMC

NMC

E136

E665

Q2= 10 GeV2

-0.2

0

0.2

0.001 0.01 0.1 1x[R

(data)- R(theory)] / R(theory)

0.7

0.8

0.9

1

1.1

1.2

F 2Ca /F 2D

EMC

NMC

E136

E665

Q2= 10 GeV2

-0.2

0

0.2

0.001 0.01 0.1 1x[R

(data)- R(theory)] / R(theory)

0.7

0.8

0.9

1

1.1

1.2

0.001 0.01 0.1 1

x

EMCNMCE139E665

Ca

0.8

1

0.8

1

0.8

1

0.8

1

10-2

10-1

1

NMCE-139

He/D Be/D

C/D Al/D

Ca/DF 2 /FAF 2FD

Fe/D

Ag/D

xN

Au/D

10-2

10-1

1

0.8

1

0.8

1

0.8

1

0.8

1

10-2

10-1

1

NMCE-139

He/D Be/D

C/D Al/D

Ca/DF 2 /FAF 2FD

Fe/D

Ag/D

xN

Au/D

10-2

10-1

1

0.8

1

0.8

1

0.8

1

0.8

1

10-2

10-1

1

NMCE-139

He/D Be/D

C/D Al/D

Ca/DF 2 /FAF 2FD

Fe/D

Ag/D

xN

Au/D

10-2

10-1

1

0.8

1

0.8

1

0.8

1

0.8

1

10-2

10-1

1

NMCE-139

He/D Be/D

C/D Al/D

Ca/DF 2 /FAF 2FD

Fe/D

Ag/D

xN

Au/D

10-2

10-1

1

0.80.9

11.1

0.80.9

11.1

0.80.9

11.1

10-2

10-1

1

F 2 /

F AF 2F D He / D

NMC

Li / D

C / D Ca / D

C / D

EMC

Cu / D

xNSn / D

xN

0.80.9

11.1

10 -2 10 -1 1

0.80.9

11.1

0.80.9

11.1

0.80.9

11.1

10-2

10-1

1

F 2 /

F AF 2F D He / D

NMC

Li / D

C / D Ca / D

C / D

EMC

Cu / D

xNSn / D

xN

0.80.9

11.1

10 -2 10 -1 1

0.80.9

11.1

0.80.9

11.1

0.80.9

11.1

10-2

10-1

1

F 2 /

F AF 2F D He / D

NMC

Li / D

C / D Ca / D

C / D

EMC

Cu / D

xNSn / D

xN

0.80.9

11.1

10 -2 10 -1 1

0.80.9

11.1

0.80.9

11.1

0.80.9

11.1

10-2

10-1

1

F 2 /

F AF 2F D He / D

NMC

Li / D

C / D Ca / D

C / D

EMC

Cu / D

xNSn / D

xN

0.80.9

11.1

10 -2 10 -1 1

0.80.9

11.1

0.80.9

11.1

0.80.9

11.1

10-2

10-1

1

F 2 /

F AF 2F D He / D

NMC

Li / D

C / D Ca / D

C / D

EMC

Cu / D

xNSn / D

xN

0.80.9

11.1

10 -2 10 -1 1

0.001 0.01 0.1 1x

0.8

0.85

0.9

0.95

1

1.05

1.1

F 2Ca (x

,Q2 )/F

2D(x

,Q2 )

NNLO KA15E139E665EMCNMCNLO AT12NLO HKN07

40Ca2020

Q2=5 GeV2

EMC (chariot) ⇥ o↵set 0.92

EMC (addendum)

EPPS16

F

A 2(x,Q

2 )/F

D 2(x,Q

2 )

F

A 2(x,Q

2 )/F

D 2(x,Q

2 )

F

A 2(x,Q

2 )/F

Li

2(x,Q

2 )

EMC (chariot) ⇥ o↵set 0.92

EMC (addendum)

EPPS16

F

A 2(x,Q

2 )/F

D 2(x,Q

2 )

F

A 2(x,Q

2 )/F

D 2(x,Q

2 )

F

A 2(x,Q

2 )/F

Li

2(x,Q

2 )

EMC(chariot)⇥

o↵set0.92

EMC(addendum)

EPPS16

F

A

2 (x,Q2)/F

D2 (x,Q

2)

F

A

2 (x,Q2)/F

D2 (x,Q

2)

F

A

2 (x,Q2)/F

Li2 (x,Q

2)

EMC (chariot) ⇥ o↵set 0.92

EMC (addendum)

EPPS16

F

A 2(x,Q

2 )/F

D 2(x,Q

2 )

F

A 2(x,Q

2 )/F

D 2(x,Q

2 )

F

A 2(x,Q

2 )/F

Li

2(x,Q

2 )

Summary

23/25

Summary

far from the precision of proton PDFs due to the available data

future colliders have a huge potential to help us improve:

• low energy: kinematical range moderately extended, high precision data• high energy: kinematical range extended, more chances of finding new

phenomena• for charm: win-win situation!• also FL will help determine the gluon

- for DIS at an EIC:

• relevant decrease of the gluon uncertainty• higher energy c.o.m. relevant

- for jets and di-jets at an EIC:

- also great possibilities for LHeC 24/25

Summary

While we wait for new results to include:

• look for other measurements/observables (be creative!)

• improve FFs so we can use available data

• apply more refined techniques in nPDFs extractions

• joint PDFs + nPDFs + FFs + nFFs analysis?

• …

25/25

• LHC Run II • RHIC isobar run• JLAB 12

Coming soon… ish:

Comparing nuclear PDFsSET HKM nDS HKN EPS09 DSSZ nCTEQ15 KA15 EPPS16

d a t a

t y p e

e-DIS yes yes yes yes yes yes yes yes

D-Y no yes yes yes yes yes yes yes

pions no no no yes yes yes no yes

ν-DIS no no no no yes no no yes

EW no no no no no no no yes

jets no no no no no no no yes

# data points 309 420 1241 929 1579 740 1479 1811

χ2/N 1.828 0.714 1.197 0.787 0.978 0.793 1.147 0.988

Q02(GeV2) 1 0.4 1 1.69 1 1.69 2 1.69

accuracy LO NLO NLO NLO NLO NLO NNLO NLO

proton PDF MRST2001 GRV MRST98 CTEQ6.1M MSTW2008 CTEQ6.1 JR09 CT14NLO

deuteron no/yes no yes no no yes/no ? no

flavour separation? valence no no no no valence no yes

Latest set of nPDFs