Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

Embed Size (px)

Citation preview

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    1/48

    (9.6.08)Temadag om Klemetoder

    Recent Developments in Room

    Temperature Active Magnetic RegenerativeRefrigeration

    Kurt Engelbrecht, Nini Pryds, Christian Bahl

    Ris DTU

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    2/48

    (9.6.08)Temadag om Klemetoder

    Magnetic Refrigeration Background

    Alternative to vapor compression

    Magnetic refrigeration used to first break 1Ktemperature barrier near 1935, but used a one shot

    technique with a very low temperature span

    Giauque awarded the Nobel Prize in chemistry in 1949

    First regenerative magnetic refrigerator proof-of-

    concept device built by Brown in 1976

    Possible applications include residential/commercial

    space cooling, refrigeration, hydrogen

    liquefaction/storage

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    3/48

    (9.6.08)Temadag om Klemetoder

    Advantages of Magnetic Refrigeration

    Environmentally friendly

    no ozone depleting or direct global warming associated withthe refrigerant

    Possibly more efficient than current technologies

    no superheat or throttling loss

    no compressor losses

    nominally equivalent heat exchanger loss

    relatively easy to achieve efficient part load operation

    Quiet operation

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    4/48

    (9.6.08)Temadag om Klemetoder

    Room Temperature Magnetic Materials

    The magnetocaloric effect is greatest at the Curie point of the magnetic

    material, which can be adjusted by alloying

    200 225 250 275 300 325 3500

    2

    4

    6

    8

    10

    12

    Temperature (K)

    AdiabaticT

    emperatureC

    hange(K)

    0-5 Tesla

    0-2 Tesla

    Gadolinium (Gd) and

    Erbium (Er) alloy

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    5/48

    (9.6.08)Temadag om Klemetoder

    Magnetic Refrigeration Concept

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    6/48

    (9.6.08)Temadag om Klemetoder

    MagnetizationHot-to-Cold FlowCold-to-Hot FlowDemagnetization

    Cold

    Reservoir

    Hot

    Reservoir

    Heat

    Rejection

    Refrigeration

    Active Magnetic Regenerative

    Refrigerator Cycle (AMRR)

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    7/48

    (9.6.08)Temadag om Klemetoder

    Magnetic Refrigerator Design

    Considerations

    System configuration

    rotary, reciprocating, etc.

    Magnetocaloric material selection

    Regenerator design

    Magnetic field

    Heat transfer fluid selection

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    8/48

    (9.6.08)Temadag om Klemetoder

    AMRR System Configurations

    Stationary bed with an electromagnet

    magnetic field is controlled by varying the current

    to the electromagnet

    QH QC

    magnet

    regenerator

    displacer

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    9/48

    (9.6.08)Temadag om Klemetoder

    AMRR System Configurations

    Reciprocating system

    magnet

    regenerator

    displacer

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    10/48

    (9.6.08)Temadag om Klemetoder

    AMRR System Configurations

    Rotary system magnet

    regenerator

    pump

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    11/48

    (9.6.08)Temadag om Klemetoder

    Permanent

    Magnet

    bed

    rotation

    Magnetization in a Rotary Bed

    Magnetic field sweeps

    through bed.

    magnetized region

    zero magnetic field

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    12/48

    (9.6.08)Temadag om Klemetoder

    Choosing Magnetocaloric Materials

    Adiabatic temperature change

    Isothermal entropy change

    Thermal conductivity

    Magnetic hysteresis

    Practical issues cost, corrosion, toxicity,manufacturability

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    13/48

    (9.6.08)Temadag om Klemetoder

    Magnetocaloric Material Properties

    Magnetic materials generally experience a phase

    change from a ferromagnet to a paramagnet at the

    Curie Point Second-order magnetic phase transitions (SOMT)

    transition associated with the alignment of magnetic

    moments in the material

    effect is nearly instantaneous (order of nanoseconds)

    generally reversible magnetization

    First order-magnetic phase transitions (FOMT)

    latent heat and large magnetocaloric effect associated with

    transition

    higher irreversibilities than second order

    longer time associated with transition

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    14/48

    (9.6.08)Temadag om Klemetoder

    Summary of Magnetocaloric Material

    Properties

    1

    3 (0-1.45

    Tesla)30FOMT287x=0.1

    6532FOMT318x=0

    MnAs1-xSbx

    17.128FOMT287LaFe11.7Si1.3H1.1

    2727FOMT269Gd5Si3.5Ge0.5

    ~05.55.8SOMT294Gd

    (K)(K)(J/kg-K)(K)

    HysteresisTad

    -sM

    TypeTCurieMaterial

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    15/48

    (9.6.08)Temadag om Klemetoder

    AMRR Loss Mechanisms

    Heat transfer / regeneration losses

    Pumping / viscous dissipation losses

    Axial conduction

    Eddy current heating

    Heat exchanger and motor losses nominally equivalent to vapor compression

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    16/48

    (9.6.08)Temadag om Klemetoder

    Regenerator Design

    Packed regenerator

    packed sphere, packed powder, etc.

    relatively easy to achieve high surface area fluid flow profile is generally well-distributed

    high pressure drop

    Flat plate regenerator

    low pressure drop

    requires small dimensions to achieve high heat

    transfer performance

    theoretically best regenerator performance

    performance highly dependent on geometry

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    17/48

    (9.6.08)Temadag om Klemetoder

    Prototype AMRR Performance Summary

    540GdSiGeGa

    100Gd5Si

    2Ge

    2

    spheres (0.2mm)230Gd~2001.4 (P)Nanjing University

    spheres (0.25-0.355mm)250Gd & GdEr

    spheres (0.25-0.355mm)1427Gd & GdEr

    spheres (0.43-0.5mm)1415Gd331.5 (P)

    0600

    spheres (0.15-0.3mm)38100Gd~6005 (S)Astronautics24402 (S)

    spheres (0.3 mm)26100Gd4844 (S)Chubu Electri /

    Tokyo University

    47Gd252 (S)

    (2004)

    spheres (0.2mm)200Gd492 (S)

    crushed part. (0.4mm)500Gd, GdTb & GdEr742 (S)

    University ofVictoria (2006)

    KWcm3Tesla

    Regen typedTQCRegen materialVregen

    oH

    MaxSystem

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    18/48

    (9.6.08)Temadag om Klemetoder

    Promising AMRR Innovations

    High performance magnetocaloric materials

    with tunable Curie Temperatures

    Layered regenerators

    Rotary systems

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    19/48

    (9.6.08)Temadag om Klemetoder

    Efficiency Dependence on Regenerator Volume

    Packed Sphere Regenerator8.76 kW Space Conditioning Application

    5 10 15 20 25 30 352.75

    3

    3.25

    3.5

    3.75

    4

    4.25

    4.5

    4.75

    Regenerator volume, L

    C

    oefficientof

    performance

    layered bed

    non-layered bed

    vapor compression

    B

    A

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    20/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    21/48

    (9.6.08)Temadag om Klemetoder

    AMRR Design Consideration

    ,

    ~

    v refAMRR

    vc f mc

    hm

    m c T

    &

    &

    The mass flow rate of fluid in an AMRR is much

    higher than an equivalent vapor compression

    system

    no phase change in the fluid

    For a practical system, the fluid flow rate is ~20

    times the refrigerant flow rate for vapor comp

    Requires larger connecting piping to reduce

    pressure drop

    for equal refrigeration capacity

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    22/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    23/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    24/48

    (9.6.08)Temadag om Klemetoder

    Future Work at Ris

    Currently designing next generationprototype AMRR

    Project goal: 100W cooling at 40Ktemperature span

    System should be practical and cost effective

    Prototype will be built in 2009

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    25/48

    (9.6.08)Temadag om Klemetoder

    Conclusions

    Improvements have been made to prototype AMRR

    systems recently, but the technology is still not mature

    Systems using a layered regenerator beds have been

    shown higher performance over a relatively large

    temperature span

    New magnetocaloric materials have potential to

    significantly improve AMRR performance

    Gd remains

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    26/48

    (9.6.08)Temadag om Klemetoder

    Modeling Efforts

    Developed a 1D AMRR model

    used model to determine limits of AMRR technology

    and investigate control techniquesK. L. Engelbrecht, G. F. Nellis, and S. A. Klein, 2006, Predicting the Performance

    of an Active Magnetic Regenerator Refrigerator used for Space Cooling and

    Refrigeration, HVAC&R Journal12(4):1077-1095

    K. L. Engelbrecht, G. F. Nellis, and S. A. Klein, 2006, Modeling the Transient

    Behavior of an Active Magnetic Regenerative Refrigerator, Proceedings of the

    11th International Refrigeration and Air Conditioning Conference at Purdue,

    West Lafayette, IN

    Used the model to predict the performance of a

    rotary AMRR prototype

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    27/48

    (9.6.08)Temadag om Klemetoder

    Model Verification Rotary Input Data

    Modeling parameters - geometry

    Parameter Value Parameter Value

    regenerator type packed sphere maximum applied field 1.5 Tesla

    regenerator material Gd sphere size for packing 0.425-0.5 mm

    regenerator beds 6 porosity 0.362

    regenerator height 6.6 mm motor efficiency N/S

    regenerator width 15.9 mm dwell ratio 1/3

    regenerator length 2.025 in magnet arc 120

    regenerator volume 33 cm3

    heat transfer fluid

    90% water/10%

    ethylene glycol

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    28/48

    (9.6.08)Temadag om Klemetoder

    Uncertainty in Model Inputs

    x

    ( )m t&

    heat transfer fluid properties:

    cold end,fluid enters at TC

    magnetic regenerator material properties:

    ( ) ( ) ( ) ( ), , , , , , , ,rr o r o r o

    T

    sk T x T x H c T x H x

    H

    ( ) ( ) ( ), , ,f f f fc T k T T

    ( ),o x t

    hot end,

    fluid enters at TH

    Tf(x,t)

    Tr(x,t)

    regenerator bed configurationAc, L, as, dh, , Nu(Re, Pr), f(Re), keff(Re, Pr,..)

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    29/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    30/48

    (9.6.08)Temadag om Klemetoder

    Modeling Error vs. Temperature Span

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    31/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    32/48

    (9.6.08)Temadag om Klemetoder

    FLUID PUMP

    COLD HX

    MAGNETOCALORIC

    WHEEL

    PERMANENT

    MAGNET

    DRIVE MOTOR

    Example of a Prototype Rotary AMRR

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    33/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    34/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    35/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    36/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    37/48

    (9.6.08)Temadag om Klemetoder

    Reduction in Cooling Power at

    Reduced Heat Transfer

    25.4%39.10.674.017.48

    17.1%22.40.344.011.8719.6%44.10.671.011.56

    10.8%24.60.351.013.15

    2.2%67.80.814.00.24

    8.3%35.40.354.00.83

    0.3%53.20.671.00.32

    1.0%35.70.341.00.21

    WLiter/minHzK

    Cooling

    Power Loss

    Predicted

    Cooling Power

    Fluid Flow

    Rate

    Cycle

    FrequencyTCase

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    38/48

    (9.6.08)Temadag om Klemetoder

    Determining Actual Magnetic Field

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    39/48

    (9.6.08)Temadag om Klemetoder

    Governing Equations

    ( ) ( )( ) ( )

    ( ) ( )

    2

    2

    f f f f

    f f f s c f r f f f c f

    h

    rdisp c

    Nu Re ,Pr k Tm t c T T a A T T c T A T

    x d t

    enthalpy flow capacity of heat transfer toentrained fluidregenerator material

    Tk A

    x

    axialdispersion

    + +

    &

    144424443 144424443144444424444443

    1 2

    ( )

    f

    m tp

    x

    viscous

    dissipation

    =

    &

    4 43

    14243

    ( ) ( )( ) ( ) ( )

    2

    21 1

    f f f f r rs c f r c o eff c r c

    h

    Nu Re ,Pr k T T ua A T T A H k A A

    d t x t

    axialmagnetic work energy stored heat transfer from fluidconduction

    in matrix

    + + = 144424443 14243 1442443144444424444443

    Fluid:

    Regenerator:

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    40/48

    (9.6.08)Temadag om Klemetoder

    Modeling Efforts

    Developed a 1D AMRR model flexible design tool

    capable of predicting the performance of an AMRRsystem

    Verify the model experimentally

    Make the model publicly available

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    41/48

    (9.6.08)Temadag om Klemetoder

    Representative Experimental Cases

    xxx8

    xxx7xxx6

    xxx5

    xxx4xxx3

    xxx2

    xxx1highlowhighlowhighlow

    Fluid Flow RateCycle FrequencyTemperature SpanCase

    M d l S iti it t H t T f C ffi i t i th

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    42/48

    (9.6.08)Temadag om Klemetoder

    Model Sensitivity to Heat Transfer Coefficient in the

    Regenerator

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    43/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    44/48

    (9.6.08)Temadag om Klemetoder

    bed

    rotation

    mass flow inmass flow out

    Cold to Hot Flow in a Rotary Bed

    flow activated as

    bed moves over

    cold check-valve

    flow activated as

    bed moves over

    hot check-valve

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    45/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    46/48

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    47/48

    (9.6.08)Temadag om Klemetoder

    Numerical Verification: Schumann Solution

    Solid and fluid in a regenerator are initially at a uniform temperature of

    0 K and fluid at temperature THenters at t=0

    Analytical solution for transient temperature profiles of the fluid and

    solid exists Shitzer, A. and M. Levy, 1983, Transient Behavior of a Rock-Bed Thermal Storage Sytem

    Subjected to Varibable Inlet Air Temperatures: Analysis and Experimentation, Journal of Solar

    Engineering, vol 105: p. 200-206

    Solution assumes constant material properties, no axial conduction,

    and uniform heat transfer between fluid and solid

    The temperature profiles predicted by the numerical model can beverified against this analytical solution

    M d l V ifi ti Si l Bl

  • 7/28/2019 Recent Developments in Room Temperature Active Magnetic Regenerative Refrigeration

    48/48

    (9.6.08)Temadag om Klemetoder

    fluid temp

    Model Verification Single Blow

    NTU=50

    regenerator

    temp