14
Titanium2008 International Titanium Association September 21-24, 2008 CAESARS PALACE LAS VEGAS, NEVADA USA page 1 of 4 Recent Advances of Titanium Alloy Powder Production by Ceramic-free Inert Gas Atomization Henrik Franz 1 , Laurenz Plöchl 1 , Dr.Frank-Peter Schimansky 2 1 ALD Vacuum Technologies GmbH, Wilhelm-Rohn-Str.35, D-63450 Hanau, Germany 2 GKSS Research Center, Max-Planck-Str. 1, D-21502 Geestacht, Germany ABSTRACT CP-Ti and γ-TiAl barsticks have been atomized by the ceramic-free E lectrode I nduction-melt Inert G as A tomization (EIGA) technique. To date, the EIGA technique had been limited to relatively small feedstock dimensions (ca. Ø50- 60mm) and relatively low melt flow rates (ca. 5- 50 kg/h). In this work, the feedstock dimensions and melt flow rates were significantly increased (ca. triplicated). Steady-state process conditions have been achieved at melt flow rates of up to 90 kg/h with feedstock dimensions of up to Ø140mm. These achievements enable to utilize titanium alloy VAR electrodes as feedstock for the EIGA and to atomize titanium powder at significantly lower specific gas consumption. INTRODUCTION Clean, spherical titanium alloy powder is used for various novel powder metallurgical processing routes such as M etal I njection M olding (MIM), rapid prototyping by laser sintering [1,2] as well as H ot I sostatic P ressing (HIP) and subsequent hot forming in the medical [3,4] and aerospace industries [5,6,7]. Typical alloy grades are CP-Ti, TiAl6V4 and also intermetallic γ-TiAl. Due to the reactivity and high melting point of these alloys, only cold crucible or crucible-free melting techniques in combination with argon atomization can be applied. One technique capable of delivering the required powder quality, fine powder yield and cost efficiency is E lectrode I nduction-melt Inert G as A tomization (EIGA) [8]. Melt flow rates of up to 50 kg/h with electrode diameters up to 60mm have been demonstrated with titanium [9]. The present work aimed at further and significant increase of the melt flow rate and electrode diameter with the ultimate objective of making the EIGA technique suitable for the utilization of commercially available titanium alloy VAR (V acuum A rc R emelting) electrode feedstock, which is available at significantly lower cost than hot-forged titanium rods but only in diameters 150mm (6 in.). Furthermore, the increase of the melt-flow rate will lead to a proportional decrease of the specific inert gas consumption during atomization. DESCRIPTION OF EIGA TECHNIQUE E lectrode I nduction-melt Inert G as A tomization (EIGA) is a technique for powder manufacturing by gas atomization. The process can be conducted ceramic-free and is therefore especially suited for reactive and refractory metals/alloys (e.g. TiAl6V4, γ-TiAl). The EIGA technique [8] is schematically shown in fig. 1. The prealloyed electrode is immersed into a conical induction coil. By induction of a high-frequency electro-magnetic field into the electrode tip, the latter is heated up to melting temperature. The liquid metal flows downward along the surface of the heated cone and falls into a gas nozzle, were it is atomized using Ar gas. The melt droplets solidify during free fall in the atomization tower, are separated from the Ar gas in the downstream cyclone and collected under Ar atmosphere in a vacuum-tight powder can. The self-consuming electrode is continuously fed downwards into the induction coil by an electric drive system. Recent developments [10,11] allow the utilization of a bare, non-insulated copper coil without the occurrence of spark discharge between the coil and the electrode, thus providing a ceramic-free atomization technique resulting in contamination-free powder. EIGA process parameters which determine the powder cost are:

Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Titanium2008 International Titanium Association

September 21-24, 2008 CAESARS PALACE LAS VEGAS, NEVADA USA

page 1 of 4

Recent Advances of Titanium Alloy Powder Production by Ceramic-free Inert Gas Atomization

Henrik Franz1, Laurenz Plöchl1, Dr.Frank-Peter Schimansky2

1ALD Vacuum Technologies GmbH, Wilhelm-Rohn-Str.35, D-63450 Hanau, Germany 2GKSS Research Center, Max-Planck-Str. 1, D-21502 Geestacht, Germany

ABSTRACT CP-Ti and γ-TiAl barsticks have been atomized by the ceramic-free Electrode Induction-melt Inert Gas Atomization (EIGA) technique. To date, the EIGA technique had been limited to relatively small feedstock dimensions (ca. Ø50-60mm) and relatively low melt flow rates (ca. 5-50 kg/h). In this work, the feedstock dimensions and melt flow rates were significantly increased (ca. triplicated). Steady-state process conditions have been achieved at melt flow rates of up to 90 kg/h with feedstock dimensions of up to Ø140mm. These achievements enable to utilize titanium alloy VAR electrodes as feedstock for the EIGA and to atomize titanium powder at significantly lower specific gas consumption. INTRODUCTION Clean, spherical titanium alloy powder is used for various novel powder metallurgical processing routes such as Metal Injection Molding (MIM), rapid prototyping by laser sintering [1,2] as well as Hot Isostatic Pressing (HIP) and subsequent hot forming in the medical [3,4] and aerospace industries [5,6,7]. Typical alloy grades are CP-Ti, TiAl6V4 and also intermetallic γ-TiAl. Due to the reactivity and high melting point of these alloys, only cold crucible or crucible-free melting techniques in combination with argon atomization can be applied. One technique capable of delivering the required powder quality, fine powder yield and cost efficiency is Electrode Induction-melt Inert Gas Atomization (EIGA) [8]. Melt flow rates of up to 50 kg/h with electrode diameters up to 60mm have been demonstrated with titanium [9]. The present work aimed at further and significant increase of the melt flow rate and electrode diameter with the ultimate objective of making the EIGA technique suitable for the utilization of commercially available titanium alloy VAR (Vacuum Arc Remelting) electrode feedstock,

which is available at significantly lower cost than hot-forged titanium rods but only in diameters ≥ 150mm (6 in.). Furthermore, the increase of the melt-flow rate will lead to a proportional decrease of the specific inert gas consumption during atomization. DESCRIPTION OF EIGA TECHNIQUE Electrode Induction-melt Inert Gas Atomization (EIGA) is a technique for powder manufacturing by gas atomization. The process can be conducted ceramic-free and is therefore especially suited for reactive and refractory metals/alloys (e.g. TiAl6V4, γ-TiAl). The EIGA technique [8] is schematically shown in fig. 1. The prealloyed electrode is immersed into a conical induction coil. By induction of a high-frequency electro-magnetic field into the electrode tip, the latter is heated up to melting temperature. The liquid metal flows downward along the surface of the heated cone and falls into a gas nozzle, were it is atomized using Ar gas. The melt droplets solidify during free fall in the atomization tower, are separated from the Ar gas in the downstream cyclone and collected under Ar atmosphere in a vacuum-tight powder can. The self-consuming electrode is continuously fed downwards into the induction coil by an electric drive system. Recent developments [10,11] allow the utilization of a bare, non-insulated copper coil without the occurrence of spark discharge between the coil and the electrode, thus providing a ceramic-free atomization technique resulting in contamination-free powder. EIGA process parameters which determine the powder cost are:

Page 2: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Titanium2008 International Titanium Association

September 21-24, 2008 CAESARS PALACE LAS VEGAS, NEVADA USA

page 2 of 4

cost of the feedstock material; melt flow rate [kg/h], [lb/min]; specific Ar gas consumption (gas flow per mass unit powder [Sm3/kg], [scf/lb]);

powder yield of the useful fraction; amount of satellite formation (in most cases well expressed by the powder tap density)

Since the Ar gas flow itself cannot be reduced below a technical limit which is determined by the adjustment of the gas nozzle gap and the required gas nozzle aspiration pressure, recent work [9] has focused on the increase of the melt flow rate by design optimization of the resonance circuit and induction coil, leading to a directly proportional decrease of the specific gas consumption without significant change of the powder particle size distribution.

As a result of the present work, not only the atomization conversion cost is further reduced by further, significant increase of the melt flow rate, but also the titanium feedstock cost itself is addressed. ATOMIZATION EXPERIMENTS For up-scaling atomization experiments were carried out with CP-Ti and γ-TiAl feedstock, ranging between 60 and 150mm in diameter. For each barstick diameter a dedicated, conical, non-insulated copper induction coil was manufactured. Fig.2 illustrates well the size-step taken in the present work, showing the induction coils for 40 and 120mm diameter, respectively.

fig.2 Conical induction coil for 40mm (left) and

150mm (right) electrode feedstock. Large coil has non-insulated windings.

The LC-oscillating circuit of the EIGA equipment was tuned to a frequency in the range of 150-250 kHz and in such a way as to run the trials just below the maximum admissible voltage of the capacitor bank. After switching on the HF-power, the melt started to drop off the electrode tip usually within 1-2 min. For compensation of alignment tolerances between the electrode and the coil as well as of manufacturing tolerances of the coil itself, the electrode was rotated at a slow speed (ca. 5 rpm). In order to achieve a continuous, steady-state melt-flow, the vertical feed rate of the electrode was gradually increased such as to keep the immersion of the electrode tip into the coil constant.

fig.1 EIGA schematic, showing conical induction coil, inert gas nozzle, atomization tower and powder collection system

Page 3: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Titanium2008 International Titanium Association

September 21-24, 2008 CAESARS PALACE LAS VEGAS, NEVADA USA

page 3 of 4

In all trials, the atomization gas pressure was adjusted to 25 bar. Argon was used as atomization gas. For each electrode a quantity of 1500-2500g powder was atomized and representative powder samples of 100-120g were obtained by a sample divider. The powder samples were characterized by sieve analysis and the fine powder fraction (<45µm) was determined. RESULTS Table1 provides a summary of the atomization trial conditions and results.

trial no.

alloy-grade

electrode diameter [mm]

steady-state melt flow rate [kg/h]

1 CP-Ti 60 80

2 CP-Ti 80 80

3 γ-TiAl 80 80

4 CP-Ti 100 80

5 CP-Ti 100 90

6 CP-Ti 120 80

7 γ-TiAl 140 60

8 CP-Ti 150 (60)

trial no.

annular slit dia. [mm]

fine powder yield <45µm

[wt%]

remark

1 20 21.7

2 20 25.3

3 20 33.5 better fine powder yield with TiAl

4 30 18.2

5 30 17.1

6 30 12.8

7 30 18.7 better fine powder yield with TiAl

8 30 -- steady-state not reached

table 1 atomization trial results

A continuous melt flow at the electrode tip could be established in all trials, also with larger electrode diameters.

The fine powder yield is generally lower for the larger electrode diameters ≥100 mm because of the utilization of a larger gas nozzle annular slit diameter.

The larger annular slit diameter for trials no.4-8 was chosen in order to provide the alignment tolerances for the larger induction coil diameter.

Atomization of γ-TiAl electrodes resulted in a better fine powder yield.

In trial no.8, steady-state melt-flow was not achieved due to EIGA equipment power limits.

fig.3 CP-Ti EIGA powder A SEM image of the fine powder fraction of CP-Ti is shown in fig.3. CONCLUSION / OUTLOOK

Melt flow rates of up to 90 kg/h have been demonstrated with the EIGA technique, using electrode diameters up to 150mm of CP-Ti and γ-TiAl.

A continuous, steady-state melt flow was achieved.

This represents approximately a tripling of the melt flow rate and corresponding cutting in three of the specific Ar consumption compared to the previous status.

With the other atomization parameters being the same, better fine powder yields could be obtained with γ-TiAl compared to CP-Ti. This is probably caused by different physical properties of both alloy melts (such as melting point, surface tension, melt viscosity).

Page 4: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Titanium2008 International Titanium Association

September 21-24, 2008 CAESARS PALACE LAS VEGAS, NEVADA USA

page 4 of 4

The utilization of 140-150mm electrode diameter represents a qualitative breakthrough, allowing for the first time to use titanium alloy VAR electrode feedstock directly (instead of hot-forged rod material), which is available more readily and at lower cost.

REFERENCES [1] N. Calder, M. Hedges, “Near Net Shape

Rapid Manufacture and Repair by LENS”, AVT-139 Specialists Meeting on Cost Effective Manufacturing via Net-Shape Processing, Amsterdam, The Netherlands, 15-17 May 2006

[2] M. Hedges, R.Grylls, Euro-uRapid 2007 Conference Proceedings

[3] W. Limberg, E. Aust, T. Ebel, R. Gerling and B. Oger, Euro PM 2004 Conference Proceedings, Eds. H. Danninger, R. Ratzi, EPMA, Shrewsbury, UK, 2004, Vol. 4, p. 457.

[4] C. Over, W. Meiners, K. Wissenbach and R. Poprawe, Ti – 2003, Science and Technology, Eds. G. Lütjering and J. Albrecht,WILEY- VCH, Weinheim 2004, Vol. I, p. 525.

[5] D. Furrer and R. Boyer, Ti – 2003, Science and Technology, Eds. G. Lütjering and J. Albrecht,WILEY- VCH, Weinheim 2004, Vol. I, p. 549.

[6] R. Gerling, A. Bartels, H. Clemens, H. Kestler, F. P. Schimansky, Intermetallics, Vol. 12 (2004), p. 275.

[7] S. Bystrzanowski, A. Bartels, H. Clemens, R. Gerling, F.P. Schimansky, G. Dehm, M. Weller and H. Kestler, Intermetallics Vol. 13 (2005), p. 515.

[8] M. Hohmann and N. Ludwig, German Patent DE 4102 101 A1,1991.

[9] R. Gerling, M. Hohmann, F. P. Schimansky, Thermec 2006, Materials Science Forum Vols 539-543 (2007) pp.2693-2698

[10] S. Pleier, M. Hohmann, W. Goy and B. Schaub, Euro PM 2004 Conference Proceedings, Eds. H. Danninger, R. Ratzi, EPMA, Shrewsbury, UK, 2004, Vol. 1, p. 89.

[11] R. Gerling and F. P. Schimansky, Euro PM 2004 Conference Proceedings, Eds. H. Danninger, R. Ratzi, EPMA, Shrewsbury, UK, 2004, Vol. 1, p. 77.

[12] G. Wegmann, R. Gerling, F.P. Schimansky, Acta Materialia, Vol.51 (2003),pp. 741-752

CONTACT Henrik Franz ALD Vacuum Technologies GmbH Wilhelm-Rohn-Str.35 D-63450 Hanau / Germany Tel.+49 (6181) 307 – 3419 [email protected] http://web.ald-vt.de/cms/

Laurenz Plöchl ALD Vacuum Technologies GmbH Wilhelm-Rohn-Str.35 D-63450 Hanau Tel.+49 (6181) 307 – 3282 [email protected] http://web.ald-vt.de/cms/ Dr.Frank-Peter Schimansky GKSS Research Center Max-Planck-Str. 1 D-21502 Geestacht / Germany Tel. +49 (4152) 87 – 2513 [email protected]

Page 5: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

Henrik FranzHenrik Franz1,a1,a, Laurenz Plöchl, Laurenz Plöchl1,b1,b, Dr.Frank, Dr.Frank--Peter SchimanskyPeter Schimansky2,c2,c

1 ALD Vacuum Technologies GmbH, Wilhelm1 ALD Vacuum Technologies GmbH, Wilhelm--RohnRohn--Str.35, DStr.35, D--63450 Hanau, Germany63450 Hanau, Germany

2 GKSS Research Center, Max2 GKSS Research Center, Max--PlanckPlanck--Str. Str. 1, D1, D--21502 Geestacht, Germany21502 Geestacht, Germany

aa henrik franz@ald-vt de bb laurenz ploechl@ald-vt de cc frank-peter schimansky@gkss dea a [email protected], b , b [email protected], c , c [email protected]

Page 6: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

Presentation ContentsPresentation ContentsPresentation ContentsPresentation Contents

Description of EIGA Atomization ProcessDescription of EIGA Atomization Process

Previous Status and Limits Previous Status and Limits -- „Large EIGA“ Development Objectives„Large EIGA“ Development Objectives

Atomization ExperimentsAtomization Experiments

ResultsResults

Conclusion and OutlookConclusion and Outlook

Page 7: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

Description of EIGA Atomization Process Description of EIGA Atomization Process

FrequencyVoltageCurrent

of Melt Powerof Melt PowerCurrentRotational SpeedVertical FeedCoil Immersion Depth

of Electrodeof Electrode

… to matchPhysical PropertiesDrip/Melt Flow Behavior

of Feedstock Materialof Feedstock Material(Electrode)(Electrode)

HF EMHF EM--field (ca.200 kHz)field (ca.200 kHz) electrode tip temperature fieldelectrode tip temperature fielddrip melting drip melting electrode tipelectrode tip

Page 8: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

Description of EIGA Atomization Process Description of EIGA Atomization Process

EIGA:EIGA: EElectrodelectrode IInductionnduction--melt Inert melt Inert GGas as AAtomizationtomization

Page 9: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

EIGA CharacteristicsEIGA Characteristicssuitable for all metallic materialssuitable for all metallic materials… and especially for reactive, refractory and … and especially for reactive, refractory and

i t l ll (Ti Z Hf V C Nb M Pt)i t l ll (Ti Z Hf V C Nb M Pt)

Description of EIGA Atomization Process Description of EIGA Atomization Process

precious metal alloys (Ti, Zr, Hf, V, Cr, Nb, Mo, Pt)precious metal alloys (Ti, Zr, Hf, V, Cr, Nb, Mo, Pt)dd5050 usually > 60µm (freeusually > 60µm (free--fall atomizing system)fall atomizing system)spherical powderspherical powdersupersuper--clean powder, no ceramic inclusions from clean powder, no ceramic inclusions from melting processmelting process 100

Example Particle Size Distributions of EIGA powderExample Particle Size Distributions of EIGA powder

Batch process with quick electrode changeBatch process with quick electrode change--over over (few minutes)(few minutes)

70

80

90

ntag

e [%

]Ti-Alloy, Ø 45 mm

Ti-Alloy, Ø 60 mm

Stainless Steel, Ø 45/65 mm

30

40

50

60m

. Vol

ume

Perc

en

Niobium-Alloy, Ø 35 mm

0

10

20

1 10 100 1000

Cum

TiAl6V4 EIGA powder (fraction <45µm)TiAl6V4 EIGA powder (fraction <45µm)

1 10 100 1000

Particle Diameter [μm]

Page 10: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

atomization rateatomization rate ≤≤ 50 kg/h50 kg/h

Previous Status and LimitsPrevious Status and Limits

atomization rate atomization rate ≤≤ 50 kg/h50 kg/h

batch (electrode) weight ranging from 5 to 50kg, depending on batch (electrode) weight ranging from 5 to 50kg, depending on alloy mass densityalloy mass density

specific inert gas consumption approx. 10 Smspecific inert gas consumption approx. 10 Sm33/kg/kg

due to limited coil size and due to limited coil size and electrode diameterelectrode diameter

Increase significantly the electrode diameterIncrease significantly the electrode diameter

Thereby increase significantly the metal flow rateThereby increase significantly the metal flow rate

… „Large“ EIGA Development Objectives … „Large“ EIGA Development Objectives 40mm Ti electrode40mm Ti electrode 120mm Ti electrode120mm Ti electrode

Thereby increase significantly the metal flow rateThereby increase significantly the metal flow rate

Thereby significantly decrease the specific inert Thereby significantly decrease the specific inert gas consumptiongas consumption

Page 11: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

Atomization ExperimentsAtomization Experiments

Fabrication of large diameter conical induction coilsFabrication of large diameter conical induction coils

(non(non--insulated copper coils insulated copper coils ceramic completely eliminated)ceramic completely eliminated)

Set proper process parameters (U, I, electrode tip immersion into coil) Set proper process parameters (U, I, electrode tip immersion into coil) depending on electrode diameter for meltdepending on electrode diameter for melt--flow startflow start--up up

Achieve and uphold steadyAchieve and uphold steady--state meltstate melt--flowflow

(steady(steady--state is characterized by stabilization/constant values of U, I and electrode state is characterized by stabilization/constant values of U, I and electrode tip immersion in dynamic equilibrium with vertical electrode feed rate)tip immersion in dynamic equilibrium with vertical electrode feed rate)

Atomization of Atomization of Ø60, Ø60, Ø80, Ø100, Ø120, Ø150 mm Ø80, Ø100, Ø120, Ø150 mm CPCP--TiTi electrodeselectrodes

(For each electrode diameter a dedicated conical induction coil was fabricated.)(For each electrode diameter a dedicated conical induction coil was fabricated.)

Atomization of Ø80, Ø140 mm Atomization of Ø80, Ø140 mm γγ--TiAlTiAl electrodeselectrodes

Production of 1500Production of 1500--2500g powder per atomization batch2500g powder per atomization batch

Division into representative samples of 100Division into representative samples of 100 120g120gDivision into representative samples of 100Division into representative samples of 100--120g120g

Sieve analysis Sieve analysis –– determination of fine powder fraction <45µmdetermination of fine powder fraction <45µm

>> >> Movie Clip Movie Clip Ø100mm CPØ100mm CP--TiTi

Page 12: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

trial electrode alloy gas (Ar) steady-state melt remarkgas nozzle

ResultsResults

fine powder no. Ø [mm]

y g ( )pressure

[bar]

yflow rate [kg/h]

1 60 CP-Ti 25 80

gannular slit diam. [mm]

20

fraction <45µm (wt%)

21.7

2 80 CP-Ti 25 80

3 80 γ-TiAl 25 80 better fine powder yield for TiAl

20

20

25.3

33.5

4 100 CP-Ti 25 80

5 100 CP-Ti 25 90

30

30

18.2

17.1

6 120 CP-Ti 25 80

7 140 γ-TiAl 25 60 better fine powder yield for TiAl

30

30

12.8

18.7

8 150 CP-Ti 25 (60) steady-state not reached due to equipment power limit30 --

Page 13: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

ResultsResults

A continuous melt flow at the electrode tip could be established in all trials, also with larger electrode diameters.

The fine powder yield is generally lower for the larger electrode diameters ≥100 mm because of the utilization of a larger gas nozzle annular slit diameter.

The larger annular slit diameter for trials no.4-8 was chosen in order to provide the alignment tolerances for the larger induction coil diameter.

Atomization of γ-TiAl electrodes resulted in a better fine powder yield.

In trial no.8, steady-state melt-flow was not achieved due to EIGA equipment power limits.EIGA equipment power limits.

CPCP--Ti EIGA powderTi EIGA powder

Page 14: Recent Advances of Titanium Alloy Powder Production by ... · Recent Advances of Titanium Alloy Powder Production by CeramicProduction by Ceramic- -free Inert Gas Atomizationfree

Recent Advances of Titanium Alloy PowderRecent Advances of Titanium Alloy PowderProduction by CeramicProduction by Ceramic--free Inert Gas Atomizationfree Inert Gas Atomization

Conclusion and OutlookConclusion and Outlook

Melt flow rates of up to 90 kg/h have been demonstrated with the EIGA technique, using electrode diameters up to 150mm of CP-Ti and γ-TiAl.

A continuous, steady-state melt flow was achieved.

This represents approximately a tripling of the melt flow rate and corresponding cutting in three of the specific Ar consumption compared to the previous status.

With the other atomization parameters being the same, better fine powder yields could be obtained with γ-TiAl compared to CP-Ti. This is probably caused by different physical properties of both alloy melts γ p p y y p y p p y(such as melting point, surface tension, melt viscosity).

The utilization of 140-150mm electrode diameter represents a qualitative breakthrough, allowing for the first time to use titanium alloy VAR electrode feedstock directly (instead of hot-forged rod material), which is available more readily and at lower cost.