8
iMedPub Journals http://www.imedpub.com 2016 Vol. 1 No. 1: 5 1 © Under License of Creative Commons Attribution 3.0 License | This article is available in: http://www.imedpub.com/synthesis-and-catalysis-open-access/ Synthesis and Catalysis: Open Access Review Article Sandip Sabale 1,2 , Jian Zheng 1 , Rama S Vemuri 1 , Xiao-Ying Yu 1 , B Peter McGrail 1 and Radha Kishan Motkuri 1 1 Pacific Northwest Naonal Laboratory, Richland, WA 99352, USA 2 Department of Chemistry, Jaysingpur College, Jaysingpur, Maharashtra, India Corresponding author: Radha Kishan Motkuri [email protected] Pacific Northwest Naonal Laboratory, Richland, WA 99352, USA. Tel: +1 509 371 6484 Fax: (509) 376-5368 Citaon: Sabale S, Zheng J, Vemuri RS, et al. Recent Advances in Metal-Organic Frameworks for Heterogeneous Catalyzed Organic Transformations. Synth Catal. 2016, 1:1. Recent Advances in Metal-Organic Frameworks for Heterogeneous Catalyzed Organic Transformaons Abstract In this review, we summarize recent advances on Metal-Organic Framework (MOF) based heterogeneous catalyc chemistry. Catalyc performance of varied configuraons of MOFs including acve sites, post synthec modificaon, and MOF derived catalysts, is summarized in the context of various organic transformaon reacons. Post synthec modificaon of MOFs via funconalizaon of organic linkers with acve catalyc moiees is deliberated. Also, efficacy of carbonaceous catalysts derived from MOFs is discussed. Overall, an outlook on MOF’s applicaon in heterogeneous catalysis is presented. Keywords: Metal-Organic Framework (MOF); Heterogeneous catalysis; Post synthesis modificaon; Organic transformaons; Catalyst Received: November 07, 2016; Accepted: December 06, 2016; Published: December 12, 2016 Introducon Nanoporous Metal-organic frameworks (MOFs) are an important class of new materials that have aracted researchers owing to their special properes [1-7]. The main advantage of MOFs is their versality in chemical composion, organic and inorganic building units, and the bifunconal metal/acid sites for inseron using isorecular chemistry [8,9]. Owing to their crystalline characteriscs, tunable porous structure with high surface areas (up to 10000 m 2 /g) and large pore volumes, made them superior materials for various applicaons in gas/vapor sorpon, separaon, drug delivery and heterogeneous catalysis [10-15]. Specifically, the potenal inner porosity similar to that of zeolites and the ease of access to the metal ions in the pore, made them superior in heterogeneous catalysis [16,17]. Moreover, both metal centers and organic linkers contribute to the catalyc acvies while pores serve as a host for small molecules and/or supports for metal/metal oxide nanoclusters [18,19]. Though the low thermal and chemical stability of MOFs definitely limit the use of MOFs in high temperature vapor phase catalysis reacons, MOFs can compete with or even outperform the exisng zeolites in low temperature liquid phase reacons [20]. Here, we report a brief overview on the recent progress of MOFs used in heterogeneous catalysis of different organic reacons. We evaluated the heterogeneous catalysis of MOFs by considering: (i) Acve sites in MOFs for organic transformaons; (ii) Post- synthesis modificaon; and (iii) MOF derived catalysis. Acve sites in MOFs for organic transformaons MOFs with exoc topologies and chemical acvies have shown outstanding catalyc performance in various organic transformaon reacons and to name a few are oxidaon, acetylaon, epoxidaon, hydrogenaon, coupling, condensaon, alkylaon, hydroxylaon and cyclizaon. The catalyc acvity in MOFs is generated at both metal nodes (largely acng as Lewis acids) and also any exposed terminal ligands (usually Lewis basic sites). Specifically, the Lewis acid sites from the metal nodes can be generated by removing the coordinated water molecules from the MOF framework by exposing the metal sites. Kaskel et al. demonstrated the dehydraon of HKUST-1 (Cu 3 (btc) 2 ) to produce open Cu(II) sites for cyanosilylaon of aldehydes, but later when they aempted with large pore Cr-MIL-101 (Cr 3 F(H 2 O) 2 O(BDC) 3 ), where Cr(III) sites showed higher Lewis acidity than Cu(II) sites for the same cyanosilylaon reacons [21,22]. A specific list of

Recent Advances in Metal-Organic Frameworks for Heterogeneous

Embed Size (px)

Citation preview

Page 1: Recent Advances in Metal-Organic Frameworks for Heterogeneous

iMedPub Journalshttp://www.imedpub.com

2016Vol. 1 No. 1: 5

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://www.imedpub.com/synthesis-and-catalysis-open-access/

Synthesis and Catalysis: Open Access

Review Article

Sandip Sabale1,2,Jian Zheng1,Rama S Vemuri1,Xiao-Ying Yu1,B Peter McGrail1 andRadha Kishan Motkuri1

1 PacificNorthwestNationalLaboratory,Richland,WA99352,USA

2 DepartmentofChemistry,JaysingpurCollege,Jaysingpur,Maharashtra,India

Corresponding author: RadhaKishanMotkuri

[email protected]

PacificNorthwestNationalLaboratory,Richland,WA99352,USA.

Tel: +15093716484Fax:(509)376-5368

Citation: SabaleS,ZhengJ,VemuriRS,etal.RecentAdvancesinMetal-OrganicFrameworksforHeterogeneousCatalyzedOrganicTransformations.SynthCatal.2016,1:1.

Recent Advances in Metal-Organic Frameworks for Heterogeneous Catalyzed

Organic Transformations

AbstractIn this review, we summarize recent advances on Metal-Organic Framework(MOF)basedheterogeneouscatalyticchemistry.CatalyticperformanceofvariedconfigurationsofMOFsincludingactivesites,postsyntheticmodification,andMOFderivedcatalysts,issummarizedinthecontextofvariousorganictransformationreactions. Post syntheticmodification ofMOFs via functionalization of organiclinkerswithactivecatalyticmoietiesisdeliberated.Also,efficacyofcarbonaceouscatalystsderivedfromMOFsisdiscussed.Overall,anoutlookonMOF’sapplicationinheterogeneouscatalysisispresented.

Keywords: Metal-Organic Framework (MOF); Heterogeneous catalysis; Postsynthesismodification;Organictransformations;Catalyst

Received:November07,2016; Accepted: December06,2016;Published: December12,2016

IntroductionNanoporousMetal-organicframeworks(MOFs)areanimportantclassofnewmaterialsthathaveattractedresearchersowingtotheir special properties [1-7]. Themain advantage ofMOFs istheir versatility in chemical composition, organic and inorganicbuildingunits,andthebifunctionalmetal/acidsitesforinsertionusing isoreticular chemistry [8,9]. Owing to their crystallinecharacteristics, tunable porous structure with high surfaceareas (up to 10000m2/g) and largepore volumes,made themsuperiormaterialsforvariousapplicationsingas/vaporsorption,separation, drug delivery and heterogeneous catalysis [10-15].Specifically,thepotentialinnerporositysimilartothatofzeolitesandtheeaseofaccesstothemetalionsinthepore,madethemsuperior in heterogeneous catalysis [16,17]. Moreover, bothmetal centers and organic linkers contribute to the catalyticactivitieswhileporesserveasahostforsmallmoleculesand/orsupportsformetal/metaloxidenanoclusters[18,19].Thoughthelow thermalandchemical stabilityofMOFsdefinitely limit theuseofMOFsinhightemperaturevaporphasecatalysisreactions,MOFs can compete with or even outperform the existingzeolites in low temperature liquid phase reactions [20]. Here,wereportabriefoverviewontherecentprogressofMOFsusedin heterogeneous catalysis of different organic reactions. WeevaluatedtheheterogeneouscatalysisofMOFsbyconsidering:(i) Active sites in MOFs for organic transformations; (ii) Post-synthesismodification;and(iii)MOFderivedcatalysis.

Active sites in MOFs for organic transformationsMOFs with exotic topologies and chemical activities haveshown outstanding catalytic performance in various organictransformation reactions and to name a few are oxidation,acetylation,epoxidation,hydrogenation,coupling,condensation,alkylation,hydroxylationandcyclization.ThecatalyticactivityinMOFsisgeneratedatbothmetalnodes(largelyactingasLewisacids)andalsoanyexposedterminalligands(usuallyLewisbasicsites).Specifically,theLewisacidsitesfromthemetalnodescanbegeneratedbyremovingthecoordinatedwatermoleculesfromtheMOF framework by exposing themetal sites. Kaskel et al.demonstratedthedehydrationofHKUST-1(Cu3(btc)2)toproduceopenCu(II)sitesforcyanosilylationofaldehydes,butlaterwhentheyattemptedwithlargeporeCr-MIL-101(Cr3F(H2O)2O(BDC)3),whereCr(III) sites showedhigherLewisacidity thanCu(II) sitesfor the samecyanosilylation reactions [21,22].A specific listof

Page 2: Recent Advances in Metal-Organic Frameworks for Heterogeneous

2

ARCHIVOS DE MEDICINAISSN 1698-9465

2016Vol. 1 No. 1: 5

This article is available in http://www.imedpub.com/synthesis-and-catalysis-open-access/

Synthesis and Catalysis: Open Access

the organic transformation reactions catalyzed by MOFs arediscussedindetailandalsosummarizedinTable 1.

Acetylation: Acetylation of alcohols is an important andfundamental reaction in organic synthesis, mainly because ofmanyhydroxylgroups’presenceinbiological/syntheticsystems.Copper salts proved to be better catalytic materials for suchO-acetylationreactionsintheliterature.Byconsideringthis,Singhetal.,demonstratedO-acytalizaitonofalcoholsbyusingcopperbased Cu-BDCMOF and achieved up to 93% yield at ambientconditions (Figure 1) [23]. TheMOF showedexcellent catalyticactivity for both primary and secondary aliphatic alcohols duetofreeandaccessiblemetallicsites(Cu(II)with39.96%ofactivesitecontent)withintheporeinteractingwiththe-CO-groupofacetic anhydride for the activation of acetyl group for productformation.Variousacetylderivativesweresynthesizedwithmorethan70%yield.

Epoxide activation: The regioselective and enantioretentiveepoxideactivationinthecontextofquantitativechemicalfixationof CO2 into five membered cyclic carbonates under ambientconditions was demonstrated by Beyzavi et al. [24] using apolyoxohafniumcluster(Hf6)basedNU-1000.ByconsideringthefactofstrongerdissociationenthalpiesoftheHf-Obond(802kJ/mol) over the Zr-Obond (776 kJ/mol), authors synthesizedHf-clusterbasedNU-1000andsuccessfullydemonstrateditsstrongerBronsted acid character compared to the parent Zr-basedNU-1000.ForatestreactionofcycloadditionofstyreneoxideusingCO2at1atmpressure,Hf-NU-1000showed100%yieldatroomtemperaturewhileZr-NU-1000showedjustlessthanhalf(~46%

yield), respectively (Figure 2). ThisMOF bearing strongerM-Obondswithmoreoxophilicnature showedasamultifunctionalcatalyst for the regioselective and enantioretentive formationof 1,2-bifunctionalized systems via solvolytic nucleophilic ringopeningoftheepoxides.

Hydrogenation: Kozachuketal. [25],demonstrated thedefect-engineered framework structure with controlled instruction ofdefect-generating linkers sites into a Ruthenium analogue ofHKUST-1.Here,byusingamixed-linkersolid-solutionapproach,introducedstructuraldefectsbyincorporatingsimilar/samesizedligandpyridine-3-5-dicarboxylate(pydc)inRu-HKUST-1synthesis.

MOF Linker Activesites Reaction(s) Reactant Conversion RefCu–BDC BDC Cu(II) O-acetylation Alcohols 80% [23]

Hf-NU-1000 H4TBAPywithbenzoicacid Hf(II)RegioselectiveEnantioretentiveEpoxideactivation

Epoxides/styreneoxide 90% [24]

Ru3(btc)2-x(pydc)xXy H3btcandH2pydc Ru(III) Hydrogenation 1-octene 100% [25]

MOF-199 H3btc Cu(II) OxidativeC-Ccoupling N,N-dimethylanilineandphenylacetylene 96%

[27][Cu(tdc)(bpe)]

n·2n(H2O)·n(MeOH) H2tdc;bpe Cu(II) Glaserhomo-coupling PhenylacetyleneandK2CO3

82% [28]

Zn(II)-IRMOF-9-Irdcppy-

NH2

H2bpdc-(NH2)2;H2dcppyIr(I)

-NH2

Knoevenagelcondensation

AllylicN-alkylation

Indoline-7-carboxyaldehydeand

malonitrile95% [29]

Cz-POF-1 Cz-1,3,3,5,5-tetra(9H-carbazol-9yl)-1,1-biphenyl π-conj.

Hydroxylation

α-alkylation

Dehalogenation

Arylboronicacids

Aldehydes

Phynacylbromide

94%

90%

99%

[59]

Cu(BDC) 1,4-benzenedicarboxylate Cu(II) Oxidativecyclizationα-hydroxyketonesand

1,2-aryldiamines82% [30]

NUGRH-1 N,N'-di[3,5-di(4-carboxyphenyl)phenyl]urea Urea Friedel−Crafts

Indole,

β-nitrostyrene98% [31]

InPF-110 H3btb In(III) Streckerreaction Acetophenone 99% [32]

Table 1 Summary of known catalyticMOFs for organic transformations. (BDC=1,4-benzenedicarboxylic acid; H4TBAPy=1,3,6,8-tetrakis(p-benzoicacid)purene;H3btc=benzene-1,3,5-tricarboxylate;H2pydc=pyridine-3,5-dicarboxylate;H2tdc=2,5-thiophenedicarboxylicacid;bpe=1,2-bis(4-pyridyl)ethane;H2bpdc-NH2=2,2´-diamino[1,1´-Biphenyl]-4,4´-dicarboxylicacid;H2dcppy=6-(4-carboxyphenyl)nicotinicacid;BDC=1,4-benzenedicarboxylate;H3btb=1,3,5-tris(4-carboxyphenyl)benzenetribenzoicacid).

R OH

O CH3

O

H3C

O

Cu(BDC)+

RO CH3

O

(R=alkyl)

RT, solvent-free

Figure 1 Acetylation of alcohols using acetic anhydride inCu(BDC)atRTandsolventfreeconditions[23].

R

O Hf-NU-1000

CO2 R

OO

O

(R=methyl or aryl)

Figure 2 CycloadditionreactionsofCO2withepoxidesinpresenceofHf-NU-1000[24].

Page 3: Recent Advances in Metal-Organic Frameworks for Heterogeneous

3

ARCHIVOS DE MEDICINAISSN 1698-9465

2016Vol. 1 No. 1: 5

© Copyright iMedPub This article is available in http://structural-crystallography.imedpub.com/archive.php

Synthesis and Catalysis: Open Access

© Under License of Creative Commons Attribution 3.0 License

ThePydc incorporation intheframeworkshowed lowerchargeand induced the partial reduction of ruthenium sites at thepaddle-wheel moieties, which triggered high reactivity in theOlefinhydrogenationcatalysis.1-Octene,asamodelcompoundwasclearlyobserved,andthedefect–engineeredsampleshowedenhancedhydrogenationperformancewithlessthan1hforfullconversion when compared to 3-4 h taken by the parent Ru-MOF(Figure 3).Theenhancedactivityisattributedtotherate-determiningstepofRu-HspeciesformationduringpretreatmentandthePydcassistingtheheterolyticactivationbyactingasthebaseligandpyridyl-Nsite.

Coupling reactions:CoppercontainingMOFsarereportedtobeidealactiveandstablesolidcatalystsforcouplingreactionswithexcellentselectivityandscope.Luzetal.[26],demonstratedthesynthesis of imidazopyridine derivatives by three-componentcouplingof2-aminopyridine,benzaldehyde,andphenylacetylenein the presence of two copper based MOFs, Cu(2-pymo)2 (2-pymo=2-hydroxypyrimidinolate) and Cu(BDC) as catalysts.Thoughbothshoweddecentcatalyticperformance,thelamellarCu(BDC) outperformed the domino three-component couplingreaction with >97% yield. Likewise, Dang et al. [27], reportedthesynthesisofpropargylamineviadirectoxidativeC-Ccouplingof N,N-dimethylaniline and phenyl acetylene using copperbasedHKUST-1.Thiscopper-catalyzedC-Ccouplingresultswith96%conversionwithin3hat120°C inthepresenceof5mol%HKUST-1. The catalyst was recovered and reused significantlywithoutdegradationofthecatalyticactivity.Differentderivativesof N,N-dimethylaniline with electron donating groups (ex:methyl) and electron withdrawing groups (ex: bromo) weresuccessfully coupled toobtainmore than55%yield (Figure 4).Similarly,acopperbased2Dpillared-bilayerflexibleMOFCu(tdc)(bpe)n.2n(H2O).n(MeOH) (tdc=2,5 thiophene dicarboxylic acid;bpe=1,2-bis(4-pyridyl)ethane) has been used in Glaser typehomo-coupling reaction by Parshamoni et al. [28] The homecouplingofPhenylacetylenewith5mol%ofthecatalystshowedalmost~82%yieldoftheGlacerproductat110°Cfor6hwherethe same reaction with Cu(BDC) as a catalyst did not lead tothehomo-coupledproductevenafterdaysofthereaction.Theleaching study shows that the catalysis is heterogeneous andcatalystcanbereusedafterseveralcycleswithoutanystructuralchanges.Agoodconversionandselectivitytothehomo-couplingproductofvarietyofotheraromaticalkyneswerealsoobserved.

Condensation: The Knoevenagel condensation of Indoline-7-carboxyaldehydeandmalonitrilewassuccessfullyachievedbyDauetal.[29]usingsiteisolatedtandemcatalyst,aZn(II)basedZn(II)-IRMOF-9-Irdcppy-NH2 with >95% conversion. In this catalysis,theisolatedamineandIr(I)sitesoftheMOFshowindependentcatalytic activity performing Knoevenagel condensation andallylicN-alkylation, respectively,owing to thebifunctionalityofthe catalyst. The authors utilized themixed linker approach tointegrate H2bpdc-(NH2)2 and H2dcppy (bpdc=1,1′-Biphenyl-4,4′-dicarboxylic acid; dcppy=6-(4-carboxyphenyl)nicotinic acid) toproduceanewMOF,IRMOF-9-dcppy-NH2, and ~95%conversionwas shown at 55C (Figure 5). The authors demonstrated thepotentialuseofMOFtoengendercomplexcatalyticsystemsthatwerenotlimitedtoanysingleclassofcatalyticspecies.

Oxidative cyclization: Thecopperbased Cu(BDC)MOFisusedasanefficientheterogeneouscatalystforthesynthesisofquinoxalineviaoxidativecyclizationcatalysisbyTruongandDangetal. [30]ThelamellarCu(BDC)showedhighercatalyticactivityoverothercopper based HKUST-1, MOF-118, and Cu2(BDC)2(DABCO) andeven higher than that ofMn(BDC) and Ni2(BDC)2(DABCO). Thecatalystshowedveryhighrecyclabilityandreusabilityforseveraltimeswithoutasignificantdegradation incatalyticactivity.Thecatalytic oxidative cyclization of α-hydroxyacetophenone gives100% conversion with O-phenylenediamine within 3 hours(Figure 6).Thisstudyalsoexploredthecyclizationwithdifferentderivativesofphenylenediaminewithtimevariations.

Friedel-crafts activator:AureacontainingZnbasedhydrogenbonddonorMOFwithnovelarchitecture(NU-GRH-1)wasconstructedbyHalletal.[31] usingureafunctionalizedtetracarboxylatestrutsfor Lewis acid activation in the Friedel-Craft reactions (Figure 7). The ideal combination of Lewis acidity and H-bond donor

RH2

Ru-MOFR

(R= alkyl)

Figure 3 OlefinhydrogenationreactioninpresenceofRu-MOF[25].

N + N

KHUST-1

Figure 4 OxidativeC-CcouplingreactioninpresenceofHKUST-1ascatalyst[27].

NH

+

O

NC CN+ O O

O IRMOF-9-dcppy-NH2

N

CN

NC

Figure 5 TandemcatalyticKnoevenagel condensationusingZincbasedIRMOF-9-dcppy-NH2ascatalyst[29].

OH

O

+

NH2

NH2

N

N

Cu(BDC)

Toluene

Figure 6 TheoxidativecyclizationreactionusingCu(BDC)catalyst[30].

NH

+NO2

HN

NO2NU-GRH-1Toluene, 60 oC

Figure 7 Indole Friedel-Crafts reactions catalyzed by NU-GRH-1[31].

Page 4: Recent Advances in Metal-Organic Frameworks for Heterogeneous

4

ARCHIVOS DE MEDICINAISSN 1698-9465

2016Vol. 1 No. 1: 5

This article is available in http://www.imedpub.com/synthesis-and-catalysis-open-access/

Synthesis and Catalysis: Open Access

MNPs inside MOFs can be achieved by a stepwise process ofparticleinfiltrationfollowedbydecompositioninwhich,thesizeandshapeofthenanoparticlegovernstheporesize,shape,andchannelstructureofMOF[34,36]RecentlydevelopedandknownPSMMOFsaresummarizedinTable 2withcorrespondingorganictransformations.

InanotherexampleofPSMbasedMOFs,Feietal.[37],usedtheZr(VI)-basedUIO-67frameworkforcrosslinkingwith2,2’-bipyredineto form UiO-67-bpydc/bpdc MOF, as 2,2’-Bippyredene-5,5’-dicarboxylic acid is one of the most widely used bidentatechelatorsintransitionmetalcoordinationchemistry(Figure 10).The resultingproduct isanewrobustcatalyticMOFwithopen2,2’-bipyridine chelating sites in the framework, which readilyformscomplexwithPdCl2,asanefficientcatalyst. Thequantitativemetalation with palladium is achieved to attach the Pd(bpy)Cl2 species on the struts of the MOFs with high crystallinityand porosity, thus exhibiting efficient, heterogeneous andrecyclablecatalysisofSuzuki-Miyauracross-couplingreactionof4-bromotolueneandphenylboronicacidwith89%conversionat95°Cin16h.

Further, Roy et al. [38], also demonstrated the Suzuki-Miyuracross-couplingofarylhalideandphenylboronicacidinwaterbyusingPd(0)NPsgraftedatthesurfaceofaCo-containingMOF,withgreaterthan60%conversion.ThiscatalystwasfurtherextendedfortheSonogashiracross-couplingreactionofiodobenzeneandphenylacetylenewith35-90%conversionasshowninFigure 11.

Similarly, enantioselective Rh and Ru-functionalized MOFwhich was three times active over homogenous catalyst wasreportedbyFalkowskietal.[39]Here,porousZr-MOFbasedona 2,2′-bis(diphenyl-phosphino)-1,1′-binaphthyl (BINAP))-deriveddicarboxylate linker was synthesized and post-syntheticallymetalated with Ru and Rh for enantioselective catalyst forasymmetric organic transformations, including addition of arylandalkylgroupstoα,β-unsaturatedketonesandhydrogenationofsubstitutedalkeneandcarbonylcompoundswithmorethan99%conversion(Figure 12).

Mannaetal.[40]reportedthehydrogenationof1-octenein16hwith100%yieldusingpostmetalated sal-Fe-MOFwhichwasa porous Zr-based metal-organic framework of UiO topologybridged with salicylaldimine derived dicarboxylate ligand and

capabilityofthisnewMOFshowedenhancedcatalyticactivityfornewbond-formingreactionssuchasFriedel-Craftreactions.TheenhancedcatalyticperformanceoftheMOFisenhancedthroughpre-activationwith silyl Lewis acid. The reaction rates in theseFriedel-Crafts reactions using the newMOFwere greater thanthoseofcommonhomogeneoushydrogenbonddonors.

Strecker reaction: Amesoporous indiumbasedMOF, InPF-110has been synthesized by Fisac et al. [32] with a large densityof active Indiummetal centers. TheMOF showed outstandingcatalytic performance for the formation of substitutedα-aminonitrilesthroughStreckerreactionofketones.TheMOF,InPF-110 catalyzedone-pot three component Strecker reactionof acetophenone, phenylamine and trimethyl silyl cyanide inactivationsolventssuchaswater,methanolandethanolsolventswithexcellent(~99%)yields(Figure 8).Otherconversionswiththederivativesoftheacetophenonehavebeenalsocarriedoutwithmorethan80%yieldinmethanolandethanolsolvents.

Post synthetic modified MOF as a catalystIntroducing the catalytic active site in the MOF pore is ofsubstantial interest; as such sites may add properties thatfacilitate applications with enhanced properties, specificallytowards sorption and catalysis. The direct synthesis of suchdesired activeMOF structures not only can be hard to predictthe formation, but also challenging to design and synthesize.Post syntheticmodification (PSM) is a great approach that canuse covalent modification of the pre-formed MOF structureto introduce such active sites for effective catalysis [33-34]. Aschematic representationofPSMpresented inFigure 9,whereWenbinLinetal.developedregioselectiveandenantioselectivecatalyst for accelerating the rates of specific reactions andenhancingtheselectivitytothedesiredproduct[35].

AnotherexampleofPSM is themetalationorencapsulationofactive species such asmetal complexesormetal nanoparticles(MNP)intheframeworkofporousMOFs.HeretheMOFframeworkisusedasasupportorhostforthecatalyticspecies,whichwaspositionedinthecavitybynoncovalentinteractionsusinga‘ship-in-a-bottleorbottle-around-the-ship’approach.Metalationwith

R1 R2

O+ R3 NH2

+ Si CN R2

R1

NCNH R3InPF-110

RT

Figure 8 StrekertypereactionofketonesinpresenceofInPF-110[32].

Figure 9 Representation of a homochiral MOF and its postsyntheticmodification(PSM)togiveacatalyticallyactiveMOF.PrintedwithpermissionfromMaetal.[35].

Br BHO OH

+UiO-67-Pdbpydc

K2CO3; Toluene

Figure 10 Suzuki-Miyaura coupling reaction of 4-bromotolueneandphenylboronicacid[37].

X +H2O; K2CO3

Pd/MCoS-1

Figure 11 Suzuki-Miyaura cross-coupling reaction of aryl halideswithphenylboronicacid[38].

Page 5: Recent Advances in Metal-Organic Frameworks for Heterogeneous

5

ARCHIVOS DE MEDICINAISSN 1698-9465

2016Vol. 1 No. 1: 5

© Copyright iMedPub This article is available in http://structural-crystallography.imedpub.com/archive.php

Synthesis and Catalysis: Open Access

© Under License of Creative Commons Attribution 3.0 License

MOF derived catalysisMetal nanoparticles (NPs) have attracted significant attentionduetotheirhighefficiencyintheorganiccatalyticreactionslikehydrogenation,dehydrogenation,oxidation,C-C cross coupling,Suzuki-Miyura coupling reactions etc. However, inmany cases,the unstable andmorphological or structural changes of smallNPs under reaction conditions reduce the catalytic efficiencyof the metal based catalysts [43,44]. Researchers have solvedthis problemby embedding theNPs in the cage or channel ofporousmaterialsorbyfabricatingacompositecatalystwithnewnanomaterialslikemesoporoussilica,graphene,MOSx,andmetal-organicframeworks[45-48].Duetotheirpromisingmechanicalandchemicalstabilityandlargesurfacearea,thecarbonaceousmaterials, such as active carbons, carbon nanotubes andgraphene have been used as efficient support materials forpreparingheterogeneouscatalysts.TheembeddedNPsincarbon

postsynthetic metalation with iron (II) chloride. Impressively,theobtainedsal-Fe-MOFdisplayedveryhighturnovernumbersofupto145000andshowsanamazingmorethan15timesofreusabilitybyrecyclingthecatalyst.Similarly,WenbinLin’sgroupused post synthetic metalation approach for the synthesis ofbipyridyl-containingMOF,bpy-UiO,whichfurtherpostmetalatedwithIridiumandpalladiumresultinginbpy-UiO-Irandbpy-UiO-PdMOFs respectively. Thebpy-UiO-Ir is ahighlyactivecatalystfor both borylation of aromatic C-H bonds and O-silylation ofbenzilicsilyletherswithatleastthreeordersofmagnitudehigherreactivitywhen compared to a homogeneous control reaction.Morethan80%dehydrogenationofsubstitutedcyclohexanoneswas carried out in the presence of the bpy-UiO-Pd catalyst(Figure 13) [41].An impressivefeatureofthiswork is that, thebpy-UiO-Irwasrecycledandreused20timesfortheborylationreaction without loss of catalytic activity. In another report,the same group synthesized a series of robust and porousbipyridyl- and phenanthroline-based MOFs of UiO topologyusingadicarboxylate linkerandtheirpostsyntheticmetalationwithIridiumresultingintheBPV-MOF-Ir,mBPV-MOF-IrandmPT-MOF-Ir [42]. The obtained catalysts are highly active catalystsfortandemhydrosilylationofarylketonesandaldehydes(100%conversion) followed by dehydrogenative ortho-silylation ofbenzylicsilyl ethers as well as C−H borylation of arenes with100% conversion. Here, mBPV-MOF-Ir exhibited high Turnovernumber(TONs)ofupto17000forC−Hborylationreactionsandwas recycled and reused without degradation for more than15times. ThemPT-MOF-Ir showed impressive catalytic activityin tandem dehydrosilylation / dehydrogenative cyclization ofN-methylbenzyl amines to azasilolanes in the absence of ahydrogen acceptor. The accompanying distinctiveness of theseMOF-Ircatalystsisthattheyaresignificantlymoreactive(upto95times)andstablethantheirhomogeneouscounterparts.

HostMOF Metal ResultingMOF Reaction(s) Reactant Conversion Ref.

UiO-67-bpydc Pd UiO-67-Pdbpydc0.5/

bpdc0.5

Suzuki–Miyaura

cross-coupling

Phenylboronicacidand

4-bromotoluene89% [37]

MCoS-1 Pd Pd/MCoS-1Suzuki–Miyaura

cross-coupling

Arylhalidesand

Phenylboronicacid60-98% [38]

BINAP-MOFRu

Rh

Ru-BINAP

Rh-BINAP

Asymmetricaddition

Hydrogenation

ArylboronicAcids

β-KetoEsters

99%

97%[39]

bpy-UiOIr

Pd

bpy-UiO-Ir

bpy-UiO-Pd

Borylation;

Ortho-silylation

Dehydrogenation

Arenes

BenzylicsilylethersCyclohexenones

83%

83%

80%

[41]

[Sal-MOF] Fe sal-Fe-MOF Hydrogenation 1-Octene 92% [40]BPV-MOF,mBPV-MOF

mPT-MOF

Ir

Ir

BPV-MOF-Ir,mBPV-MOF-Ir

mPT-MOF-Ir

Hydrosilylation

Dehydrosilylation/dehydrogenativecyclization

Aldehydes/Ketones

N-MethylbenzylAmines

100%

100%[42]

Table 2 Summary of known post synthetic modified MOF catalysts for organic transformations. (Bpydc=2,2´-bipyridine-5,5´-dicarboxylic acid;bpdc=4,4´-biphenyldicarboxylicacid;CoS=CobaltSalicylate;BINAP=2,2´-bis(diphenyl-phosphino)-1,1´-binaphthyl;bpy-2,2´bipyridine-5,5´-dicarboxylicacid; sal=salicylaldimine; BPV=5,5’-bis(carboxyethenyl)-2,2’-bipyridine; mBPV=5,5’-bis (methoxy-carbonylethenyl)-2,2’-bipyridine; PT=3,8-bis(4-carboxyphenyl)phenanthroline;mPT=3,8-bis(4-methoxycarbonylphenyl)phenanthroline).

O

+

BHO OH

Rh-BINP

O

Dioxane/H2O

Figure 12 Asymmetricadditionofarylboronicacidto2-cyclohexenone[39].

H B BO

O

O

OB

O

O2 +

bpy-UiO-Ir/100 0C ORMOF-Ir/150 0C

2C-H Borylation

Figure 13 C-HborylationofarenesusingBpy-UiO-IrandMOF-Irascatalysts[41,42].

Page 6: Recent Advances in Metal-Organic Frameworks for Heterogeneous

6

ARCHIVOS DE MEDICINAISSN 1698-9465

2016Vol. 1 No. 1: 5

This article is available in http://www.imedpub.com/synthesis-and-catalysis-open-access/

Synthesis and Catalysis: Open Access

catalystseasilyblockthemicroporesoftheactivecarbonwhichresults in diminished catalytic conversions as the NPs hinderthediffusionofreactants.AlsophysicallyattachedNPswiththecarbonundergoleachingduringthereactionwhichsignificantlyreducedthecatalyticactivity.Recently,MOFshavebeenutilizedasprecursors/templates for synthesisofporousNPs supportedcarbonstructures,astheyexhibitmesoporosity,recyclabilityandseperability[49-50].Todate,muchprogresshasbeenachievedinderivinghighperformancecatalystmaterialsfromMOFs.OneofthebestexamplesofMOFderivedcatalystsistheporousmetalembeddedcarbonderivedfromdirectcarbonizationoftheMOFinreducingenvironments[51-55].Directcarbonizationproducesa hierarchical porous carbon structure with pore structureretainedfromtheMOFalongwithactivemetalatomsembeddedatthenodes(Figure 14).

To overcome the significant challenges to develop the lowcost noble metal nanocatalyst with high catalytic activity andselectivity,convenientseparationandreusability,Zhangetal.[56]synthesizedanewermagneticallyseparablegold(Au/MPC)andpalladium(Pd/MPC)NPsbasedporouscarboncompositederivedfromFe-MIL-88A.TheMOFderivednanocatalystswhichpossesslargesurfacearea,mesoporesandsuperpara-magnetismforeasyseparationandconvenientrecoveryforreusability.TheobtainedAu/MPC and Pd/MPCswere successfully used for the efficient(100%conversion)reductionof4-nitrophenolto4-aminophenolwiththerateconstantofk=1×10-2and1.2×10-2 respectively.Maetal.[57]reportedtheone-steppyrolysisofZIF-67,producedN-doped porous carbon incorporating well-dispersed Co/CoONPs as an excellent catalyst with magnetic separability andreusability. Catalyst possesses chemoselectivity for the tandemdehydrogenationofammoniaboraneandhydrogenationofnitrocompounds at room temperature with 86-100% yield. In theirstudy Dong et al. [58,59] carried out Suzuki-Miyura couplingreactions with high catalytic efficiency yield ranging from 90-99%ofarylhalidewithphenylboronicacidusingMOF-5-derivednanoporouscarbon immobilizedwithPalladiumNPs.Thisworkhighlights the development of efficient heterogeneous catalystusingMOF-Derived porous carbon as hosts for ultrafinemetalnanoparticles.

ThoughMOFsservedasheterogeneouscatalystsformorethanadecade,overthepastfewyears,theresearchadvancedfurtherbecause of many new kinds of MOF chemistry developmentwhichshowedhigher thermalandchemical stability.Enhancedstability aspect ofMOFs facilitated post synthesismodificationto derive MOFs with enhanced catalytic performance. Thus,with imminent prospective in tunability, flexibility and stabilityin MOFs, definitely take these materials into next generationcatalysis for industrial applications. Also, the porous structureof MOF with spatial presence of metallic centers provided anewplatform for thedevelopmentof porous carbonmaterials(withembeddedmetalnanocluster)asefficientheterogeneouscatalysts.

AcknowledgementPacific Northwest National Laboratory (PNNL) is operated byBattelle for theU.S.Departmentof EnergyunderContractDE-AC05-76RL01830.SSisthankfultoUniversityGrantsCommission,New-Delhi, India for awarding Raman Postdoctoral FellowshiptoworkatPNNL(F.No.5-105/2016(IC);Dated10thFEB,2016).XYY thanks for the support from the PNNLMaterial SynthesisandSimulationacrossScales(MS3)InitiativeLaboratoryDirectedResearchandDevelopment(LDRD).

Figure 14 Schematic representation of graphitized nanoporouscarbonssynthesisfromMOFdriventemplatesynthesis.TheZIF-8parentmodelofcage-typeporestructure(top)andrhombic dodecahedral morphology (bottom) convertedintocarbonwithretainingitsmorphologywasrepresentedhere.PrintedwithpermissionfromZhangetal.[51].

Page 7: Recent Advances in Metal-Organic Frameworks for Heterogeneous

7

ARCHIVOS DE MEDICINAISSN 1698-9465

2016Vol. 1 No. 1: 5

© Copyright iMedPub This article is available in http://structural-crystallography.imedpub.com/archive.php

Synthesis and Catalysis: Open Access

© Under License of Creative Commons Attribution 3.0 License

References1 EddaoudiM,LiHL,YaghiOM(2000)Highlyporousandstablemetal-

organicframeworks:Structuredesignandsorptionproperties.JAmChemSoc122:1391-1397.

2 WangTC,BuryW,Gomez-GualdronDA,VermeulenNA,MondlochJE,etal.(2015)UltrahighSurfaceAreaZirconiumMOFsandInsightsintotheApplicabilityoftheBETTheory.JAmChemSoc137:3585-3591.

3 HorikeS,ShimomuraS,KitagawaS(2009)Softporouscrystals.NatChem1:695-704.

4 Motkuri RK, Annapureddy HVR, VijaykumarM, Schaef HT,MartinPF, et al. (2014) Fluorocarbon adsorption in hierarchical porousframeworks.NatCommun5:4368.

5 LiJR,KupplerRJ,ZhouHC(2009)Selectivegasadsorptionandseparationinmetal-organicframeworks.ChemSocRev38:1477-1504.

6 DeyC,KunduT,BanerjeeR(2012)Reversiblephasetransformationin proton conducting Strandberg-type POM based metal organicmaterial.ChemCommun48:266-268.

7 Vemuri RS,ArmatisPD, Bontha JR,McGrail BP,Motkuri RK (2015)AnOverviewofDetectionandNeutralizationofChemicalWarfareAgentsUsingMetalOrganicFrameworks.JBioterrorismBiodefense6:137.

8 Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, et al. (2002)SystematicdesignofporesizeandfunctionalityinisoreticularMOFsandtheirapplicationinmethanestorage.Science295:469-472.

9 Stock N, Biswas S (2012) Synthesis of Metal-Organic Frameworks(MOFs): Routes to Various MOF Topologies, Morphologies, andComposites.ChemRev112:933-969.

10 FarhaOK,EryaziciI,JeongNC,HauserBG,WilmerCE,etal.(2012)Metal–OrganicFrameworkMaterialswithUltrahighSurfaceAreas:IstheSkytheLimit?JAmChemSoc134:15016-15021.

11 ThallapallyPK,TianJ,RadhaKishanM,FernandezCA,DalgarnoSJ,et al. (2008) Flexible (Breathing) Interpenetrated Metal−OrganicFrameworks forCO2 SeparationApplications. JAmChemSoc130:16842-16843.

12 DasAK,VemuriRS,KutnyakovI,McGrailBP,MotkuriRK(2016)AnEfficient Synthesis Strategy for Metal-Organic Frameworks: Dry-GelSynthesisofMOF-74FrameworkwithHighYieldandImprovedPerformance.ScientificReports6.

13 NugentP,BelmabkhoutY,BurdSD,CairnsAJ,LuebkeR,etal.(2013)Porous materials with optimal adsorption thermodynamics andkineticsforCO2separation.Nature495:80-84.

14 Motkuri RK, Thallapally PK, Annapureddy HV, Dang LX, Krishna R,etal.(2015)Separationofpolarcompoundsusingaflexiblemetal-organicframework.ChemCommun(Camb)51:8421-8424.

15 Cui YJ, Li B, He HJ, ZhouW, Chen BL, et al. (2016)Metal-OrganicFrameworksasPlatforms forFunctionalMaterials.AccountsChemRes49:483-493.

16 Corma A, Garcia H, Xamena FX (2010) EngineeringMetal OrganicFrameworksforHeterogeneousCatalysis.ChemRev110:4606-4655.

17 MotkuriRK,LiuJ,FernandezCA,NuneSK,ThallapallyPK,etal.(2014)MetalOrganicFrameworks-SynthesisandApplications.InIndustrialCatalysisandSeparations,AppleAcademicPress,pp61-103.

18 Xuan W, Zhu C, Liu Y, Cui Y (2012) Mesoporous metal–organicframeworkmaterials.ChemSocRev41:1677-1695.

19 ThallapallyPK,FernandezCA,MotkuriRK,NuneSK,LiuJ,etal.(2010)Micro and mesoporous metal-organic frameworks for catalysisapplications.DaltonT39:1692-1694.

20 Cho SH, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006)A metal–organic framework material that functions as anenantioselectivecatalystforolefinepoxidation.ChemCommun24:2563-2565.

21 SchlichteK,KratzkeT,KaskelS (2004) Improvedsynthesis, thermalstability and catalytic properties of the metal-organic frameworkcompoundCu3(BTC)2.MicroporousandMesoporousMaterials73:81-88.

22 Henschel A, Gedrich K, Kraehnert R, Kaskel S (2008) CatalyticpropertiesofMIL-101.ChemCommun35:4192-4194.

23 Singh SJ, Kale SR,GawandeMB,VelhinhoA, JayaramRV (2014)Asynthesisofcopperbasedmetal-organicframeworkforO-acetylationofalcohols.CatalCommun44:24-28.

24 BeyzaviMH, Klet RC, Tussupbayev S, Borycz J, Vermeulen NA, et al.(2014)AHafnium-BasedMetalOrganicFrameworkasanEfficientandMultifunctionalCatalystforFacileCO2FixationandRegioselectiveandEnantioretentiveEpoxideActivation.JAmChemSoc136:15861-15864.

25 Kozachuk O, Luz I, Xamena FX , Noei H, Kauer M, et al. (2014)Multifunctional,Defect-EngineeredMetal-OrganicFrameworkswithRutheniumCenters:SorptionandCatalyticProperties.AngewChemIntEdit53:7058-7062.

26 Luz I, i Xamena FL, Corma A (2012) Bridging homogeneous andheterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts forthree-component couplingand cyclization reactions for the synthesisofpropargylamines,indolesandimidazopyridines.JCatal285:285-291.

27 DangGH,NguyenDT,LeDT,TruongT,PhanNT(2014)Propargylaminesynthesis via direct oxidative C-C coupling reaction betweenN,N-dimethylanilines and terminal alkynes under metal-organicframeworkcatalysis.JMolCatala-Chem395:300-306.

28 Parshamoni S, Sanda S, Jena HS, Konar S (2014) A copper basedpillared-bilayer metal organic framework: its synthesis, sorptionpropertiesandcatalyticperformance.DaltonT43:7191-7199.

29 DauPV,CohenSM(2015)ABifunctional,Site-IsolatedMetal-OrganicFramework-BasedTandemCatalyst.InorgChem54:3134-3138.

30 DangGH,VuYT,DongQA,LeDT,TruongT,etal.(2015)Quinoxalinesynthesis via oxidative cyclization reaction using metal-organicframework Cu(BDC) as an efficient heterogeneous catalyst. ApplCatala-Gen491:189-195.

31 Hall EA, Redfern LR, Wang MH, Scheidt KA (2016) Lewis AcidActivationofaHydrogenBondDonorMetal-OrganicFrameworkforCatalysis.AcsCatal6:3248-3252.

32 FisacDR,Diaz LMA, IglesiasM, SnejkoN,Puebla EG, et al. (2016)A Mesoporous Indium Metal-Organic Framework: RemarkableAdvancesinCatalyticActivityforStreckerReactionofKetones.JAmChemSoc29:9089-9092.

33 EvansJD,SumbyCJ,DoonanCJ(2014)Post-syntheticmetalationofmetal-organicframeworks.ChemSocRev43:5933-5951.

34 DeriaP,MondlochJE,KaragiaridiO,BuryW,HuppJT,etal.(2014)Beyondpost-synthesismodification:evolutionofmetal-organicframeworksviabuildingblockreplacement.ChemSocRev43:5896-5912.

35 MaLQ,FalkowskiJM,AbneyC,LinWB(2010)Aseriesofisoreticularchiralmetal-organicframeworksasatunableplatformforasymmetriccatalysis.NatChem2:838-846.

Page 8: Recent Advances in Metal-Organic Frameworks for Heterogeneous

8

ARCHIVOS DE MEDICINAISSN 1698-9465

2016Vol. 1 No. 1: 5

This article is available in http://www.imedpub.com/synthesis-and-catalysis-open-access/

Synthesis and Catalysis: Open Access

36 TanabeKK, Cohen SM (2011) Postsyntheticmodificationofmetal-organicframeworks-aprogressreport.ChemSocRev40:498-519.

37 FeiH,CohenSM(2014)Arobust,catalyticmetal–organicframeworkwithopen2,2′-bipyridinesites.ChemCommun50:4810-4812.

38 RoyAS,MondalJ,BanerjeeB,MondalP,BhaumikA,etal.(2014)Pd-graftedporousmetal–organicframeworkmaterialasanefficientandreusableheterogeneouscatalystforC–Ccouplingreactionsinwater.ApplCatalA:Gen469:320-327.

39 Falkowski JM, Sawano T, Zhang T, Tsun G, Chen Y, et al. (2014)Privileged phosphine-based metal–organic frameworks for broad-scopeasymmetriccatalysis.JAmChemSoc136:5213-5216.

40 Manna K, Zhang T, Carboni Ml, Abney CW, Lin W, et al. (2014)Salicylaldimine-Based Metal–Organic Framework Enabling HighlyActive Olefin Hydrogenationwith Iron and Cobalt Catalysts. J AmChemSoc136:13182-13185.

41 MannaK,ZhangT,LinW(2014)Postsyntheticmetalationofbipyridyl-containing metal–organic frameworks for highly efficient catalyticorganictransformations.JAmChemSoc136:6566-6569.

42 Manna K, Zhang T, Greene FX, Lin WB (2015) Bupyridine- andPhenanthroline-Based Metal-Organic Frameworks for HighlyEfficientandTandemCatalyticOrganicTransformationsviaDirectedC-HActivation.JAmChemSoc137:2665-2673.

43 LinY,QiaoY,WangY,YanY,HuangJ(2012)Self-assembledlaminatednanoribbon-directed synthesis of noble metallic nanoparticle-decoratedsilicananotubesandtheircatalyticapplications.JMaterChem22:18314-18320.

44 ZhaoM,DengK,HeL,LiuY,LiG,etal.(2014)Core–shellpalladiumnanoparticle@metal–organic frameworks as multifunctionalcatalystsforcascadereactions.JAmChemSoc136:1738-1741.

45 XiaB,YanY,WangX,LouXWD(2014)Recentprogressongraphene-basedhybridelectrocatalysts.MaterHorizons1:379-399.

46 YanY,XiaB,XuZ,WangX(2014)Recentdevelopmentofmolybdenumsulfides as advanced electrocatalysts for hydrogen evolutionreaction.AcsCatal4:1693-1705.

47 Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, et al. (2009)Metal–organicframeworkmaterialsascatalysts.ChemSocRev38:1450-1459.

48 ChoW,ParkS,OhM(2011)CoordinationpolymernanorodsofFe-MIL-88Band theirutilization for selectivepreparationofhematiteandmagnetitenanorods.ChemCommun47:4138-4140.

49 LeeHJ,ChoW,LimE,OhM(2014)One-potsynthesisofmagneticparticle-embedded porous carbon composites from metal–organicframeworksandtheirsorptionproperties.ChemCommun50:5476-5479.

50 ShenK,ChenX,Chen J, Li Y (2016)DevelopmentofMOF-DerivedCarbon-Based Nanomaterials for Efficient Catalysis. Acs Catal 6:5887-5903.

51 ZhangL,WangX,WangR,HongM(2015)StructuralEvolutionfromMetal–Organic Framework to Hybrids of Nitrogen-Doped PorousCarbon and Carbon Nanotubes for Enhanced Oxygen ReductionActivity.ChemMater27:7610-7618.

52 DongZ,LeX,LiuY,DongC,MaJ (2014)Metalorganic frameworkderived magnetic porous carbon composite supported goldand palladium nanoparticles as highly efficient and recyclablecatalystsforreductionof4-nitrophenolandhydrodechlorinationof4-chlorophenol.JMaterChemA2:18775-18785.

53 RaoofJB,HosseiniSR,Ojani,R,MandegarzadS(2015)MOF-derivedCu/nanoporous carbon composite and its application for electro-catalysisofhydrogenevolutionreaction.Energy90:1075-1081.

54 Mandegarzad S, Raoof JB, Hosseini SR, Ojani R (2016) Cu-Ptbimetallicnanoparticlessupportedmetalorganicframework-derivednanoporous carbon as a catalyst for hydrogen evolution reaction.ElectrochimActa190:729-736.

55 WezendonkTA,SantosVP,NasalevichMA,WarringaQS,DugulanAI,et al. (2016) Elucidating theNature of Fe Species during Pyrolysisof the Fe-BTCMOF into Highly Active and Stable Fischer–TropschCatalysts.AcsCatal6:3236-3247.

56 ZhangL,SuZ,JiangF,YangL,QianJ,etal.(2014)Highlygraphitizednitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reductionreactions.Nanoscale6:6590-6602.

57 MaX,ZhouYX,LiuH,LiY,JiangHL(2016)AMOF-derivedCo-CoO@N-dopedporouscarbonforefficienttandemcatalysis:dehydrogenationofammoniaboraneandhydrogenationofnitrocompounds.ChemCommun52:7719-7722.

58 DongW,ZhangL,WangC,FengC,ShangN,etal.(2016)Palladiumnanoparticles embedded in metal–organic framework derivedporous carbon: synthesis and application for efficient Suzuki–Miyauracouplingreactions.RscAdv6:37118-37123.

59 LuoJ,ZhangX,ZhangJ(2015)CarbazolicPorousOrganicFrameworkas an Efficient, Metal-Free Visible-Light Photocatalyst for OrganicSynthesis.AcsCatal5:2250-2254.