31
Real&me Simula&on and Preventa&ve Control of Power Blackouts Shrirang Abhyankar Computa(onal Engineer Center for Energy, Environment, and Economic System Analysis (CEEESA) Energy Systems Division [email protected] hAp://www.mcs.anl.gov/~abhyshr

Real%&me(Simula&on(and(Preventa&ve( …abhyshr/downloads/presentations/... · 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.6 0.65 0.7 0.75 0.8 ... (Analogy(h Youneedto re&re ... Generator

Embed Size (px)

Citation preview

Real-­‐&me  Simula&on  and  Preventa&ve  Control  of  Power  Blackouts  

Shrirang  Abhyankar  Computa(onal  Engineer  Center  for  Energy,  Environment,  and  Economic  System  Analysis  (CEEESA)  Energy  Systems  Division    [email protected]  hAp://www.mcs.anl.gov/~abhyshr  

Focus  on  LARGE  Power  Blackouts  

2003  Northeast  Blackout  affected  55  million  people  

LARGE  Power  Blackouts  

Southwest  Blackout  2011  affected  7  million  people  

LARGE  Power  Blackouts  

India  Blackout  2012  affected  600  million  people  

Blackouts  are  bad  

Blackouts  are  bad  

especially  when  it  interrupts  a  SuperBowl  game  

P2S2  Workshop  Panel  (09/10/2012)  

Aerial  view  of  the  San  Diego  stadium  during  the  third  quarter  of  the  Superbowl  Game  2012  

Causes  of  Power  Blackouts  

Causes  of  Power  Blackouts  

Favorable  condi&ons  for  blackout  

Genera&on-­‐Load  Imbalance   Abnormal  voltages  

Power  System  Simula&on  Research  Thrust  Areas  

§  Parallel  Extensible  Toolkit  for  Power  System  Simula(on  (PETPSS)    

§  Simula(on  of  Power  blackouts  –  Modeling  and  solver  difficul(es  –  Achieving  Real-­‐Time  or  Faster-­‐than-­‐Real-­‐Time  Simula(on  Speed.  

–  Preventa(ve  control  

Parallel  Extensible  Toolkit  for  Power  System  Simula&on  (PETPSS)  

Algorithms,  Solvers  Math  and  Computa&onal  Layer  

(PETSc)  

Power  System  Layer   Models,  Toplogy  

Applica&on  Layer   Applica&on  Interface  

Power  Flow  

Dynamics  

Op(mal  Power    Flow  

Con(ngency  Analysis  

Dynamics  Constrained  Op&mal  Power  Flow  

Simula&on  of  large  power  blackouts  

§  Simulate  short  (me-­‐frame  (seconds  to  minutes)  trajectories  (dynamics)  

dxgen

dt

=fgen(xgen, V ) 0 =g(xgen

, V, x

load

)dx

load

dt

=f

load

(xload

, V )

Solu&on  of  this  Differen&al-­‐Algebraic  (DAE)  system  needs  1.   Time-­‐stepping  Integrator  2.   Nonlinear  solver  3.   Linear  solver  

Modeling  and  Solver  Difficul&es  2003  Blackout  Precursor  events  

12:15pm   1:31pm   2:02pm   3:05pm   3:17pm  

State  es(mator  Failure  

Genera(ng  plant  Shuts  down  

Several  major  Transmission  lines  Out  due  contact  With  tree  

Major  Line  outage  due  to  contact  with  tree  

Major  Transmission  line  Out  due  contact  With  tree  

3:41pm  

Protec(on  trips  a  major  line  causing  15  other  lines  to  fail  

4:05pm  

Major  transmission  Line  tripped  due  to  Undervoltage  and  Overcurrent  condi(ons  

Modeling  and  Solver  Difficul&es  Capturing  dominos  as  they  fall  

Modeling  and  Solver  Difficul&es  

2003  NE  Blackout  Simula&on    Simulated  versus  Recorded  

Modeling  and  Solver  Difficul&es  48

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time(sec)

Voltage Magnitude(pu)

Generator Terminal

Load Bus

Figure 5.8 Voltage magnitude plot for line tripping at  dP = 2.32 pu

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45376.94

376.95

376.96

376.97

376.98

376.99

377

Time(sec)

Generator Speed(rad/sec)

Figure 5.9 Generator speed plot for line tripping at  dP = 2.32 pu

No Solution??? 

No Solution??? 

Is  this  leading  to  a  blackout?  

Allevia&ng  solver  difficul&es  72

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(sec)

Volta

ge m

agnit

ude(

pu)

Generator TerminalLoad Bus

Figure 5.40 Collapse of load bus voltage captured in transient stability simulations using voltage dependent impedance load model.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-200

-150

-100

-50

0

50

100

150

Time(sec)

Phas

e An

gle(d

eg)

Generator TerminalLoad Bus

Figure 5.41 Phase angle oscillations at the load bus

Pn = P0

✓Vn

Vn�s

◆2

Improved  load  modeling  

Voltage  collapse  trajectory  

Real-­‐&me  Blackout  simula&ons  

§  What’s  the  need?  –  Assist  operators  to  assess  dynamics  in  real-­‐(me  when  events  are  evolving.  

§  Issue:  Such  simula(ons  are  too  slow  (not  real-­‐&me  speed)  

Transmission  system  control  center  

Achieving  Real-­‐Time  Dynamic  Simula&on  Speed:  1.  Paralleliza&on  

Single  processor  

G  

G  

G  

G  

Vec  

Two  processors  

G  

G  Vec  

G  

G  Vec  

Communica(on  

P0   P1  

Mul&ple  processors  (cores)  used  for  solving  the  problem  

Achieving  Real-­‐Time  Dynamic  Simula&on  Speed:  2.  Efficient  parallel  linear  solvers  

Linear  solver  is  the  biggest    computa&onal  boXleneck!!  

Time    Integra&on  

 

Nonlinear  Solve  

 

Linear  Solve  Nonlinear  solver  

Parallel  linear  solver  achieved  10X  linear  solver  speedup  on  16  cores  for  a  50,000  bus  test  system  

Execu(on  (me  

Achieving  Real-­‐Time  Dynamic  Simula&on  Speed:  3.  Adap&ve  Time-­‐stepping  

44

With the continuation power flow as the basis for the transient stability studies,

the transient stability simulations were carried out by tripping branch 4-5 at 0.2 seconds.

The basic aim of the transient stability simulations was to determine whether the system

can survive the transient and reach the corresponding steady state operating point on the

PV curve with one line in service. The line tripping was modeled by taking out branches

1-4, 4-5 and 5-6. The load was assumed to hold its constant PQ characteristic throughout

the transient. The response of the system to line tripping at various loading levels is

described in the following sections.

5.2.1 Loading upto 2.31 pu. The first simulation involved the transient analysis of the

system for a loading level of dP = 1.0 pu. The response of the system to tripping a line is

shown in Figures 5.4 -5-5.

0 5 10 15 20 250.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Time(sec)

Voltage M

agnitude

(pu)

Generator TerminalLoad Bus

Figure 5.4 Voltage magnitude plot for line tripping at dP = 1.0 pu

Take  smaller  steps  when  things  are  evolving  rapidly,  larger  steps  otherwise  

�t �t �t

�tn+1 = �tn||en+1||�1/p

Time-­‐step  adap&vity  

0.00  

1.00  

2.00  

3.00  

4.00  

5.00  

6.00  

7.00  

1   2   4   8   16   24  

Execu&

on  &me  (sec)  

#  Cores  

Achieving  Real-­‐Time  Dynamic  Simula&on  Speed:  Puang  it  all  together:  Test  case  1  

Faster-­‐than-­‐real-­‐&me  

Slower-­‐than-­‐real-­‐&me  

Scalability  plot  of  a  5  second  simula&on  of  a  20,000  node  system    

-­‐  Achieved  faster-­‐than-­‐real-­‐&me  speed  of  under  1  second  execu&on  &me  on  16  cores.  

-­‐  Execu&on  &me  using  state-­‐of-­‐the-­‐art  algorithm  on              single  core  =  35  seconds  

0  

5  

10  

15  

20  

1   2   4   8   12  

Execu&

on  Tim

e  (sec)  

#cores  

Achieving  Real-­‐Time  Dynamic  Simula&on  Speed:  Puang  it  all  together:  Test  case  2  

Faster-­‐than-­‐real-­‐&me  

Slower-­‐than-­‐real-­‐&me  

Scalability  plot  of  a  5  second  simula&on  of  a    20,000  node  system  ~  150,000  variables    

-­‐  Achieved  real-­‐&me  speed  of  under  5  seconds  execu&on  &me  on  8  cores.  

-­‐  Execu&on  &me  using  state-­‐of-­‐the-­‐art  algorithm  on  single  core  =  300  seconds  

Preventa&ve  control  of  Power  Blackouts:  The  Gotham  Analogy  

h  

               JOKER’S  NO  FLY  ZONE  

Preventa&ve  control  of  Power  Blackouts:  The  Gotham  Analogy  

h  

You  need  to  re&re  Alfred  

Preventa&ve  control  of  Power  Blackouts:  The  Gotham  Analogy  

h  

Thank  you  Mr.  Fox!  

Preventa&ve  Control  of  Power  Blackouts  

§  Modify  ini(al  opera(ng  point  by  including  scenarios  that  could  violate  security  and  poten&ally  lead  to  blackouts.  

§  Need  to  solve  an  “Op(mal  Control”  problem  

28  

Op(mal  Power    Flow  

(Nonlinear  Op&miza&on)  

 

Transient  Stability  (Differen&al-­‐  

Algebraic  Equa&ons)  

min C(p)

s.t. gs(p) = 0

hs(p) h+

p� p p+

x = f(x, y, p), x(t0) = I

x0(p)

0 = g(x, y, p), y(t0) = I

y0(p)

h(x(t), y(t)) 0, 8(t)

� =� fT

x

�+ gTx

µ� hx

0 =� fT

y

�+ gTy

µ� hy

rpH =

Z T

0fTp � dt �

�xTp �

����t=0

p

Path  constraints  

Adjoint-­‐sensi(vity    based  gradient  calcula(on  

Preventa&ve  Control  of  Blackouts  

Generator  3  would  trip  

Without  incorpora&ng  dynamic  scenarios  

Modified  dispatch  by  incorpora&ng      both  scenarios  

On-going work and future steps

I Optimization with multiple dynamics scenarios (faults atdi↵erent locations).

Total cost = $6216.08Generator Bus Number MW

Gen1 1 162.71Gen2 2 103.16Gen3 3 51.53

0 0.5 1 1.5 2 2.5 358.5

59

59.5

60

60.5

61

61.5

Time (sec)

Fre

qu

ency

= ω

/2π

Figure: Generator frequencies forfaults at Bus 7 and Bus 9

I Low-level implementation (PETSc + IPOPT)I Mixed-BFGS approach for computing HessianI Parallelizing dynamics scenariosI Transiently unstable scenarios

Without dynamic constraints

Total cost = $5297.41

Table: Generation schedule without dynamic constraints

Generator Bus Number MW

Gen1 1 89.81Gen2 2 134.33Gen3 3 94.20

0 0.2 0.4 0.6 0.8 158.5

59

59.5

60

60.5

61

61.5

Time (sec)

Freq

uenc

y =

ω/2

π

Gen 1

Gen 2

Gen 3

Figure: Generator frequencies forfault at Bus 7

0 0.2 0.4 0.6 0.8 158.5

59

59.5

60

60.5

61

61.5

62

Time (sec)

Freq

uenc

y =

ω/2

π

Gen 1

Gen 2

Gen 3

Figure: Generator frequencies forfault at Bus 9

Generator  2  would  trip  

Summary  

§  Presented  relevant  research  on  modeling,  real-­‐(me  simula(on,  and  preven(ve  control  of  large  power  blackouts.  

§  We  are  off  to  a  promising  start,  but  there’s  s(ll  a  long  way  to  go.  

QUESTIONS??