30
Real world energy use projections for VFEM Suite 1-6, D72 Building, 72 Dominion Road, Mt Eden, Auckland 1024, +64 9 629 1435 www.emissionimpossible.co.nz Real world energy use projections for VFEM Report prepared for Ministry of Transport by Jayne Metcalfe & Surekha Sridhar Emission Impossible Ltd 5 September 2016

Real world energy use projections for VFEM · 2 Benchmarking and literature review 3 2.1 Benchmarking 3 ... engine and regenerative braking - it cannot be charged by plugging into

  • Upload
    lamhanh

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

RealworldenergyuseprojectionsforVFEM

Suite1-6,D72Building,72DominionRoad,MtEden,Auckland1024,+6496291435www.emissionimpossible.co.nz

RealworldenergyuseprojectionsforVFEM

Reportpreparedfor

MinistryofTransport

byJayneMetcalfe&SurekhaSridharEmissionImpossibleLtd

5September2016

RealworldenergyuseprojectionsforVFEM

Page|i

ContentsGlossary ii

Summary iv

1 Introduction 11.1 Objectivesandscope 11.2 Methodology 21.3 Reportlayout 2

2 Benchmarkingandliteraturereview 32.1 Benchmarking 32.2 Literaturereview:fuelefficiencyprojections 7

3 Methodology:realworldenergyconsumptionprojections 143.1 Lightdutyvehicles:baseyear 143.2 Lightdutyvehicles:projections 153.3 Heavydutyvehicle:baseyear 163.4 Heavydutyvehicle:projections 16

4 Results 18

5 Conclusionsandrecommendations 20

References 21Appendix1 23

RealworldenergyuseprojectionsforVFEM

Page|ii

Glossary

Term Definition

BEV Abatteryelectricvehicleuseselectricmotorsinsteadofinternalcombustionengines(ICEs)forpropulsionusingpowerprovidedbyrechargeablebatterypacks.

CO2 Carbondioxideisagreenhousegas

GVM Grossvehiclemassisthemaximumallowedweightofthevehiclewhenloaded.LightvehicleshaveaGVMof4tonnesorless.HeavyvehicleshaveaGVMofmorethan4tonnes.

HCV Heavycommercialvehicles

HEV Ahybridelectricvehicleintegratesasmallbatteryandanelectricmotortoenhancetheenergytodistanceefficiencyoftheinternalcombustionengine.Thebattery’schargeismaintainedbytheinternalcombustionengineandregenerativebraking-itcannotbechargedbypluggingintoanelectricalsupply.Hybridscanoffergreaterfueleconomythanatraditionalinternalcombustionenginebutcanonlytravelveryshortdistancesonelectricpoweronly.

ICCT InternationalCouncilonCleanTransportation

ICE Aninternalcombustionengineisanenginepoweredthroughtheburningoffossilfuels.Theterm'ICE'isoftenusedasshorthandforanyvehiclepoweredbyaninternalcombustionengine,whetherpetrolordieseloranyotherflammablemedium.

IEA InternationalEnergyAgency

kWh Akilowatthouristheamountofenergyreleasedifworkisdoneataconstantrateof1kilowatt(kW)foronehour.ElectriccarbatterycapacityismeasuredinkWh.

LCV Lightcommercialvehiclesincludingvans,utesandverylighttruckslessthan4000kgGVM

LPV LightpassengervehiclesincludingpassengercarsandSUV’s

NEDC NewEuropeanDrivingCycleisthecurrenttestcyclefortypeapprovaloflightdutyvehicleemissions

PHEV Aplug-inhybridelectricvehicleisatypeofvehiclethathasabatterypackthatcanbechargedupbypluggingintoaregularelectricitysupply.InthisreportPHEVincludesvehiclesthatareconfiguredlikearegularhybrid,aswellasvehiclesthatuseanelectricmotorforpropulsionbutalsohaveaninternalcombustionengineonboardtoprovidepowerfor

RealworldenergyuseprojectionsforVFEM

Page|iii

agenerator.Thesearesometimescalledrangeextendedelectricvehicles(REEV)

REEV Arangeextendedelectricvehicleisavehicleasvehiclesthatuseanelectricmotorforpropulsionbutalsohaveaninternalcombustionengineonboardtoprovidepowerforagenerator,whichmaintainsaminimumchargelevelonthebattery.REEVscanbepluggedinandchargedup.REEVsdonotusethepetrol/dieselenginetodirectlypowerthewheels.InthisreportREEVsareincludedinthePHEVscategory.

SUV Sportsutilityvehicle

WLTP WorldHarmonisedLightVehiclesTestProcedureisanewtype-approvaltestprocedureforlightdutyvehicleswhichisexpectedtobeadoptedinEuropeandJapan.

RealworldenergyuseprojectionsforVFEM

Page|iv

Summary ThisreportprovidesprojectionsofrealworldfuelandenergyconsumptionfortheMinistryofTransport(MoT)VehicleFleetEmissionsModel.Theserealworldfactorsareintendedtorepresenttheaveragefuelconsumptionper100kmofnewvehiclessoldinagivenyear.Thesefactorsrepresentaveragefuelconsumptionofvehiclesoperatingintherealworldunderalldifferentdrivingconditionsacrossalldifferentvehicleswithintheclassification.

RealworldfuelconsumptionfactorsfordieselandpetrolICE(internalcombustionengine)vehiclesinNewZealandhavebeenestimatedbyMoTusingfuelconsumptionandtraveldatafromalargedatasetoffuelcardtransactions1.

WehavecomparedNewZealand’srealworldandtypeapprovalfuelconsumptiontrendswithinternationaltrends.ThiscomparisonfoundthataveragefuelconsumptionfornewlightdutyvehiclesinNewZealandishighercomparedwithEuropeandJapan,howevertrendsaresimilar.

ToensurethatrealworldfuelconsumptionfactorsareconservativeandrelevanttoNewZealand,wehavecalculatedallfuelconsumptionfiguresforothervehicletypesandforallprojectionyearsrelativetoMoTrealworldfactorsforNewZealand.

TheMoTrealworldfactorsunderpintheanalysisinthisreport.WerecommendthattheMoTanalysisofrealworldfuelconsumptionisregularlyupdatedandthattheanalysisisextendedtoincludeprivatelyownedvehiclesifpossible.

WehavedevelopedrealworldfuelandenergyconsumptionprojectionfactorsforNewZealandbasedontheresultsofaninternationalliteraturereview.Weestimatethatrealworldfuelconsumptionfrompetrolanddiesellightdutyvehiclesislikelytoreducebyapproximately18%and15%respectivelybetween2016and2030.Forheavydutyvehiclesweestimatethatrealworlddieselconsumptionislikelytoreducebyapproximately5%forsmalltrucksand13%forlargetrucksbetween2016and2030.Theseprojectedimprovementsinfuelandenergyconsumptionare:

• technicallyfeasible

• costeffective

• reasonablyconservative

Howevertheseprojectionsgowellbeyondcurrentregulatorytimeframessotheyareinherentlyuncertain.Werecommendthattheprojectionsareregularlyreviewedandupdated.

1 FuelusefactorsforthisprojectwereprovidedbyMinistryofTransport,includingfactorsforlightdutyvehicles(Wangetal.,2015)andunpublishedfactorsforheavydutyvehicles.

RealworldenergyuseprojectionsforVFEM

Page|1

1 Introduction

1.1 Objectivesandscope

TheMinistryofTransport(MoT)isredevelopingtheVehicleFleetEmissionsModel(VFEM)toincludemanymorepotentialfuelandvehiclecombinations.ThismodelisusedbyMoTtopredictNewZealand’senergyuseoutto2040.ThecurrentenergyusefactorsintheVFEMaredoingareasonablejobofpredictingenergyusefortheperiod2001-2014.

MoThascommissionedaliteraturereview(asopposedtoanyrealworldtesting)onthelikelyefficiencygainsthatmightbeexpectedinvehiclesmanufacturedineachoftheyears2016to2040,forthefollowingenergytypes:

1. Conventionalpetrol

2. Conventionaldiesel

3. Hybridpetrol

4. Hybriddiesel

5. LPG/CNG

6. Plug-inhybrid-Petrol

7. Plug-inhybrid-Diesel

8. Batteryelectric

Thesefuelscanapplytothefollowingvehicletypes:

• Lightpassenger(carsandSUVS)splitintofivebandsbasedonenginesize(cc)(<1350,1350-1599,1600-1999,2000-2999,≥3000)

• Lightcommercial(vansandutes)splitintofivebandsbasedonenginesize(cc)(<1350,1350-1599,1600-1999,2000-2999,≥3000)

• Motorcycles/mopedsinsplitintotwoenginesize(cc)bands(<60,≥60)

• Truckssplitintoninebandsbasedongrossvehiclemass(kg)(<5000,5000-7499,7500-9999,10000-11999,12000-14999,15000-19999,20000-24999,25000-29999,≥30,000)

• Busessplitintothreebandsbasedongrossvehiclemass(kg)(3501-7000,7001-12000,≥12001)

Thisprojecthasproducedaverageenergyusefactorsfrom2014to2040,fortheenergyandvehiclecombinationsthatareincludedininternationalprojections.Someenergyandvehiclecombinationsarenotincludedininternationalprojectionsbecausetheyarenotconsideredcosteffectiveortechnicallyfeasible(forexamplepetroltrucksandbuses).

RealworldenergyuseprojectionsforVFEM

Page|2

1.2 Methodology

Theprojectcomprisedthreeparts:

1. Benchmarkingandinternationalliteraturereview

2. Analysis

3. Reporting

Thisreportbrieflydescribeskeyassumptionsanddatasources.Theuncertaintyinprojectionsisalsodiscussed.Inadditiontothisreportthereisanexcelspreadsheetwhichincludesallrawdata,detailedassumptions,andcalculations.

1.3 Reportlayout

Thisreportisstructuredasfollows:

• Section2ofsummarisestheresultsofourbenchmarkingandinternationalliteraturereviewonrealworldfuelconsumption.

• Section3brieflydescribeskeythemethodologyincludingassumptionsanddatasources.

• Section4summarisestheresultsofouranalysis.

• Section5provideskeyconclusions.

RealworldenergyuseprojectionsforVFEM

Page|3

2 Benchmarkingandliteraturereview

Thischaptercomprisestwomainparts:

• BenchmarkingoffuelconsumptionandtrendstodeterminewhetherinternationalrealworldfuelconsumptionfactorsandprojectionscanbeapplieddirectlytoNewZealand.

• Literaturereviewtoidentifyinternationalrealworldfuelconsumptionprojectionsandtounderstandtheuncertaintyassociatedwiththese.

2.1 Benchmarking

Fueleconomytrends:typeapprovalvalues

NewZealanddoesnothavefueleconomystandardsforvehiclesenteringthefleetanddoesnothaveanydomesticvehiclemanufacturers.Thismeansthatthefueleconomyofvehiclesenteringthefleetdependsoninternationalrequirementsandtrends.

Newvehiclefuelefficiencystandardsandtargets,asshowninFigure1,haverequiredsignificantimprovementsinfuelefficiencyandreductionincarbondioxide(CO2)emissionsfromthelightdutyvehiclefleetglobally.ThetrendsshowninFigure1arebasedonthevaluesthatvehiclesaretypeapprovedtowhenmanufactured.

Figure1:InternationalCO2emissionstandardsandtargets[Source:ICCT,2015b]

ThemajorityofvehiclesbeingimportedintoNewZealandarebuilttoEuropean(newvehicles)orJapanese(usedvehicles)standards.Figure2,showsthetrendsintypeapprovalemissionsfromnewvehiclesenteringtheNewZealandfleet.Thisshowsthatnewvehicles

RealworldenergyuseprojectionsforVFEM

Page|4

enteringtheNewZealandfleethavehigherCO2emissions(andfuelconsumption)onaveragecomparedwithEuropeanandJapanesevehicles.However,theoveralltrendinemissionsissimilar.

Figure2:TrendsinaveragetypeapprovalCO2emissionsfromnewvehiclesinNewZealandcomparedwithEurope,JapanandAustralia[Source:ICCT,2015bandMoT,2016.Seeaccompanyingspreadsheetfordetails]

MoTresearchhasidentifiedarelationshipbetweenenginesize(orenginedisplacementmeasuredincubiccentimetresorcc)andfuelefficiencyforNewZealandvehicles(Wangetal.,2015).TobetterunderstandthedifferencebetweenaverageNewZealandCO2emissionscomparedwithEuropeandJapan,wehaveinvestigatedtheeffectofenginedisplacementonaverageCO2emissionsinternationally.AsshowninFigure3,theaverageenginesizeofnewvehiclesinNewZealandishigherthaninJapanandEuropeancountries.Figure3alsoshowsthatcountrieswithlargeraverageenginesizetendtohavehigheraverageCO2emissions.Wehaveconcludedthatthedifferenceinenginesizeaccountsforatleastsomeofthedifferencebetweenaverage(typeapproved)fuelefficiencyofnewvehiclesinNewZealandcomparedwithJapanandEurope.

Fueleconomytrends:realworldvalues

StudiescarriedoutoverseasandinNewZealand(Wangetal.,2015)havefoundthatvehiclesontheroadgenerallyconsumemorefuelthanthefuelefficiencyvaluesthattheyaretypeapprovedtowhenmanufactured.Researchhasalsoshownthatthisgapbetweenrealworldandtypeapprovedfuelconsumptionisgrowing,asillustratedinFigure4.

RealworldenergyuseprojectionsforVFEM

Page|5

Figure3:Comparisonofaveragefueleconomy(l/100km)andenginedisplacement(cc)forlightdutyvehiclesinternationally[Source:OECD/IEA2016andMoT.Seeaccompanyingspreadsheetfordetails]

Figure4:Gapbetweenreal-worldandofficialCO2emissionvaluesforvariousreal-worlddatasources,includingaverageestimatesforprivatecars,companycars,andalldatasources.[Source:ICCT,2015b]

Figure5comparesthetrendintypeapprovalandrealworldCO2emissionsinNewZealandandEurope.ThisshowsthataveragetypeapprovalandrealworldCO2emissions(andfuel

RealworldenergyuseprojectionsforVFEM

Page|6

consumption)fromnewvehiclesenteringtheNewZealandfleetarehighercomparedwithEuropeanvehicles,howevertheoveralltrendissimilar.

Figure5:ComparisonoftypeapprovalandestimatedrealworldCO2emissionsinNewZealandandEurope[Source:ICCT,2015bandMoT,2016.Seeaccompanyingspreadsheetfordetails]

Figure5alsoshowsestimatedrealworldfuelconsumptionfornewvehiclesenteringtheNewZealandfleetwithenginesizeequivalenttonewEuropeanvehicles,andwiththeproportionofdieselvehiclesequivalenttoEurope2.Thisshowsthat,evenforvehicleswithequivalentenginesize,theestimatedrealworldCO2emissionsandfuelconsumptionforaveragenewvehiclesinNewZealandisapproximately18%higher,comparedwithaveragenewvehiclesinEurope.ThisdifferencemaybeduetoNewZealandhavingheaviervehicles,andahigherproportionofSUVsonaveragecomparedwithEurope.However,furtherinvestigationwouldberequiredtoconfirmthis.

Ouroverallconclusionsfromthebenchmarkinganalysisare:

• AveragefuelconsumptionofnewlightdutyvehiclesinNewZealandishighercomparedwithEuropeandJapan.

• ToensurethatfuelconsumptionestimatesareconservativeandrelevanttoNewZealandwehavecalculatedallfuelconsumptionfiguresrelativetorealworldfactorsfromNewZealand.

• TrendsinfuelconsumptionaresimilarinNewZealandcomparedwithEuropeandJapan.WehavethereforeconcludedthatitisreasonabletoapplyinternationalprojectedratesoffuelefficiencyimprovementdirectlytoNewZealand.

2ThemethodtoestimaterealworldemissionsforsmallerenginesisdescribedinAppendix1.

RealworldenergyuseprojectionsforVFEM

Page|7

2.2 Literaturereview:fuelefficiencyprojections

Internationalfuelefficiencystandardsandtargets(asshowninFigure1)requireimprovementoffuelefficiencyovertime.Theseprovidesomeinformationaboutthegeneraldirectionoffuelefficiencyinfuture.However,thisprojectrequires:

• Realworldfuelconsumption.AsdiscussedinSection2.1,thereisanincreasingdiscrepancybetweenregulatedfuelefficiencyandrealworldresults.

• Projectionsoffuelconsumptionto2040.Thisiswellbeyondthecurrentlyregulatedtimeframe.

• Dataforspecificfuelandvehicletypesincludinglightdutyandheavydutyvehicles.

Toidentifyprojectionsforthisprojectwehavereviewedarangeofinternationalprojectionsandpublicationsincluding:

• CommitteeonClimateChange,2015.SectoralscenariosfortheFifthCarbonBudget,TechnicalReport.

• EAEnergyAnalyses,2016.GreenRoadmap2030:ScenariosandtoolsforaconversionofDanishtransport’senergyconsumption.

• GFEI,2016.FuelEconomyStateoftheWorld2016:Timeforglobalaction

• ICCT,2015c.Advancedtractortrailerefficiencytechnologypotentialinthe2020to2030timeframe.WhitepaperpreparedbyDelago,J.&Lutsey,N.

• Miller,2016.ReducingCO2emissionsfromroadtransportintheEuropeanUnion:Anevaluationofpolicyoptions.

• MIT,2015.OntheRoadTowards2050:PotentialforSubstantialReductionsinLight-DutyVehicleEnergyUseandGreenhouseGasEmissions,PreparedbySloanAutomotiveLaboratory,MassachusettsInstituteofTechnology

• Sims,Retal.,2014.Transportin:ClimateChange2014:Mitigationofclimatechange.ContributionofworkinggroupIIItothefifthassessmentreportoftheIntergovernmentalPanelonClimateChange.

Fromthisreviewwehaveidentifiedtwokeystudiesthatproviderealworldfuelconsumptionprojectionsrelevantforthisproject.TheseincludeadetailedstudythathasbeenundertakenforpolicydevelopmentintheEuropeanmarket(Hilletal.,2012)andtheMIT,2015report.

Hilletal.,2012

DetailedstudiesthathavebeenundertakenforpolicydevelopmentinEurope(Hilletal.,2012)andintheUSmarket(EPA/NHTSA,2012).Thesedetailedstudiesproviderobustestimatesoftheeffectivenessofawiderangeoftechnologies.

TheresultsoftheEuropeanandUSstudiesarebroadlycomparable.However,forthisproject,theEuropeanstudyismostrelevantbecause:

• AsignificantproportionofNewZealandvehiclesarebuilttoEuropeanstandards

RealworldenergyuseprojectionsforVFEM

Page|8

• TheEuropeanreport(Hilletal.,2012)providesprojectionsto2050whereastheUSstudyextendsto2025

• TheHilletal.,2012reportprovidesestimatedrealworldfuelconsumption

TheHilletal.,2012analysishasrecentlybeenreviewedandupdatedonbehalfoftheEuropeanCommission,butdetailedresultshavenotyetbeenpublished(GFEI,2016).TheUKCommitteeonClimateChangehasincorporatedtheupdatedanalysisintheir2015scenarioassessment(CommitteeonClimateChange,2015).AccordingtotheCommitteeonClimatechange(2015)report:

• Conventionalcarefficiencycouldfeasiblyimprovebyaround37%onarealworldbasisbetween2010and2030.ThisissimilartotheHilletal.,2012estimate.

• Theaverageabatementcostsofconventionalvehicleefficiencyimprovementishigherthanpreviousestimates,mainlyreflectingtheincreasedgapbetweenreal-worldandtest-cycleemissionsandlowerprojectedfuelprices.

• Theestimatedconventionalvehicleefficiencyimprovementsin2030arecost-effectiverelativetotheaveragecarbonvalueprojectedoverthelifetimeofanewvehiclein2030.Improvingtheefficiencyofconventionalvehiclesisalow-regretsmeasureandisincludedinalloftheCommitteeonClimateChangeprojections.

• UpdatedprojectionsforPHEVandBEVssuggestthattherearemoreopportunitiestoimproverealworldefficiencycomparedwithpreviousestimates.UpdatedprojectionsforimprovementoftheenergyefficiencyofPHEVsandBEVsareslightlymoreoptimisticcomparedtotheHilletal.,2012study.

• Thereislittlenewevidenceonefficiencyofheavygoodsvehicles.ClimateChangeCommittee2015projectionsforheavygoodsvehiclesarebasedontheHilletal.,2012study.

WeconcludethattheHilletal.,2012studyprovidesarobustassessmentofthepotentialreductioninrealworldfuelconsumptionforawiderangeoftechnologies.Theprojectedreductionsareconsideredcosteffective.However,theprojectionsgowellbeyondregulatedrequirementssothereisconsiderableuncertaintyabouttheextentthatthesereductionswillactuallybeachieved.

MIT,2015

TheMIT,2015reportprovidesa“realisticbutaggressive”scenarioforimprovementoflightdutyvehiclefuelefficiency.Theauthorsconfirmthatitisappropriatetoapplytheprojectionsgloballystatingthat:

therelativevaluesandhowtheychange,arecloselycomparablefordifferentsizesandtypesofvehiclesinthevariousmajorworldregions,withsimilarassumptionsaboutthetechnologiesinvolvedandhowtheycombineandprogress.This“self-similar”characteristicisnotexact,but,giventheuncertaintiesinvolved,itisusuallyanappropriateassumption.

The“realisticbutaggressive”factorsaredescribedasneitheroverlyoptimisticorpessimistic.Thefactorsare:

• intendedtorepresenttheaveragenewvehiclesoldinanygivenyear(notthebest)

• basedonengineeringanalysisaswellasjudgements

RealworldenergyuseprojectionsforVFEM

Page|9

• generatedexpectingthatpoliciesandregulationswillpushthedevelopmentoffueleconomybutnotincludingdemandspecificpolicies

• basedontheassumptionthatpetroleumpriceswillcontinuetorisegradually,butwillnotbecomereallyhighoverthenextfewdecades

Somekeyassumptionsinclude:

• vehiclesizeisheldconstantacrossdifferentpropulsiontechnologiesandovertime

• vehicleweightisreducedby15%by2030,andanadditional15%by2050

• 10%improvementinaccelerationtimeto2030,taperingofftonofurtherimprovementby2050

• vehiclecontent(features)andauxiliaryloadswillincreaseovertimefollowingrecenthistory

Overallthefactorsresultinanimprovementofaround1.5%to2%compoundedwhichisroughly30%to50%betterthanthehistoricalrecord.

WeconcludethattheMIT2015studyprovidesanassessmentofpotentialreductioninrealworldfuelconsumptionfromlightdutyvehiclesthatincorporatesrealisticassumptionsandisinternationallyapplicable.

Comparisonofprojections:lightdutyvehicles

Toassesstheconservatismofprojectionswehavecomparedtheresultsforlightdutyvehiclesfromthreeprojectionsasfollows:

1. TheEuropeanstudy(Hilletal.,2012),whichprovidesprojectionsoftechnicallyfeasibleandcosteffectiveimprovementsinenergyconsumptionto2050

2. A“realisticbutaggressive”scenariofromMIT,2015whichprojectsenergyconsumptionto2050

3. A2010projectionfromtheMinistryofEnvironmentofJapanwhichispublishedintheMIT,2015report.TheMIT,2015reportjudgestheJapaneseprojectionas“conservative”.ThisJapaneseprojectiongoesto2030andhasbeenextrapolatedbyMITtoprovideaconservativeprojectionto2050.

ForpetrolanddieselICEsthecomparisonisshowninFigures6and7.

RealworldenergyuseprojectionsforVFEM

Page|10

Figure6:Comparisonofprojectedfuelconsumptionrelativeto2010forlightdutypetrolICE

Figure7:Comparisonofprojectedfuelconsumptionrelativeto2010forlightdutydieselICE

EuropeanregulationsrequireareductioninaverageCO2emissionsfrompassengercarsofaround30%between2010and2020onatypeapprovalbasis3.Thisisexpectedtotranslatetoarealworldreductionofapproximately15%to20%dependingonthetestcycleandtheeffectivenessofthetestrelativetorealworldemissions4(Miller,2016).AsshowninFigures6and7,theprojectedreductioninfuelconsumptionfromlightdutyICEvehicles

3 OnatypeapprovalbasisaverageCO2emissionsforpassengercarsinEuropearerequiredtoreducefrom140gCO2/kmin2010to95gCO2/kmin2021accordingtotheNEDCtestcycle.4Miller,2016estimatesthatrealworldCO2emissionswillreducefrom171gCO2/kmin2010to142gCO2/kmin2021undertheNEDCtestcycleassumingatargetof95gCO2/kmandarealworldgapof49%in2021.Thereportalsoestimatesthatrealworldemissionswillfallto134gCO2/kmundertheWLTPtestassumingatargetof109gCO2/kmandarealworldgapof23%in2021.

RealworldenergyuseprojectionsforVFEM

Page|11

between2010and2020rangesfrom25%accordingtoHilletal.,to13%accordingtoMIT2015,and8%accordingtotheJapanesegovernment2010projection.

RelativetothecurrentlyexpectedreductioninaveragerealworldCO2emissionsfrompassengercarsof15%to20%between2010and2020,theHilletal.,2012projectionsappearoptimisticandtheJapaneseprojectionappearspessimistic,atleastforEuropeanvehicles.

ApproximatelyhalfofvehiclesimportedtoNewZealandarebuilttoJapanesestandardssoitisimportanttoconsiderwhetherprojectionsarerealisticforJapanesevehicles.ItispossiblethatfuelefficiencyfromJapanesevehiclescouldlagbehindinternationaltrends,butthisseemsunlikelybasedonhistorictrends.AsshowninFigure1,JapanesefuelefficiencystandardshaveimprovedatasimilarratetoEuropeanstandardsoverthepast15years.FuelefficiencyrequirementsareregularlyreviewedandupdatedundertheJapaneseTopRunnerprogramme.Japanalsohastaxincentivesinplacetoencourageconsumerstopurchasefuelefficientvehicles(GovernmentofJapan,2015).

Figure8:Comparisonofprojectedfuelconsumptionrelativeto2010forlightdutypetrolhybrid

ForhybridvehiclestheMIT,2015projectionandtheHilletal.,2012projectionaresimilarasshowninFigure8.Projectionsforhybrid,pluginhybridandbatteryelectricvehiclesaremoreuncertainthanICEprojectionsbecausethesearerelativelynewtechnologiesandareevolvingquickly.Basedonourrecentreviewofelectricvehicletrends(Metcalfeetal.,2015)weareawarethatprojectionsandexpectationsaboutbatteryweight,efficiencyandcosthaveimprovedconsiderablysince2012.Onthisbasis,weconsiderthattheHilletal.,2012projectionsforhybrid,pluginhybridandelectricvehiclesarelikelytobeconservative.

Overall,basedonourliteraturereviewandthecomparisonofprojectionsweconcludethatimprovementsinfueleconomyareuncertainandcouldrealisticallybeanywherebetweentheJapanese2010andHilletal.,2012projectionsshowninFigure6to8.However,basedoncurrenttrendsandexpectationsweconsiderthattheMIT,2015projectionappearstobereasonablyconservativeandrealisticfornewICEvehicles.Forhybrid,pluginhybridandelectricvehiclesweconsiderthattheHilletal.,2012projectionsareconservativeandrepresentthebestavailableinformation.

RealworldenergyuseprojectionsforVFEM

Page|12

Comparisonofprojections:heavydutyvehicles

Thereislimitedinformationaboutheavydutyvehiclefuelefficiencyandprojections.IntheEuropeanUniontherehasbeennohistoricalrequirementtomeasurefuelefficiencyandCO2emissionsfromheavydutyvehicles.AccordingtodatafromindustryinEurope,newHCVfuelconsumptionandCO2emissionsperformanceimprovedsteadilyuntilthemid-1990s,thenstabilisedanddidnotmateriallyimprovefurtherinthelastdecade(EuropeanCommission,2014).ThisisconsistentfindingsinNewZealandwherethefuelefficiencyofnewHDV’shasnotchangedsignificantlyoverthepastdecade5.

Heavydutyvehicleefficiencyisonlyregulatedinfourmarkets(Canada,China,JapanandUS).AsshowninFigure9,theJapaneseregulationsareexpectedtoreduceaveragefuelconsumptionfromheavydutyvehiclesby12%in2015comparedto2006(approximately1.3%perannum).

Figure9:Globalcomparisonofheavy-dutyvehicleefficiencystandards[Source:Miller,2014]

TheEuropeanCommissioniscurrentlydevelopingpolicytoregulateheavydutyvehiclefuelefficiency.TheEuropeanCommissionhasdevelopedscenariosforevaluationofpolicyoptionsincludingabaseline“nopolicychange”scenario.UnderthisscenarioHDVfuelefficiencyisassumedtoimprovebycloseto1%annuallyovertheperiod2015-2030.TheCommissionstaffworkingdocumentexplains:

...thisisareversalversuslatestfuelefficiencytrendsthathavebeeninfluencedbytheregulatoryintroductionofseveralgenerationsofnew'Euro'exhaustgaspollutantstandards,leadingtosomefuelefficiencylossesandanoverallstandstillofHDVfuelconsumptionperformanceintherecentyears.Intheassumedabsenceofnewandmorestringentexhaustgaspollutantstandards(thebaselinescenarioispreparedonano-policychangebasis)aresumptionofregularvehiclefuelefficiencyimprovementsappearsrealistic,evenwithoutpolicyactionstocurbfuelconsumptionandCO2emissions.

TheHilletal.,2012projectionsshowthatthereistechnicalandcosteffectivepotentialtoreducefuelconsumptionbetween2010and2030byaround30%forarticulatedtrucks.This

5DataprovidedbyMoT

RealworldenergyuseprojectionsforVFEM

Page|13

isconsistentwithanICCTassessment(ICCT,2015c)whichconcludesthatthereareseveralavailabletechnologypackagesthatcouldreducefuelconsumptionofarticulatedtrucksby30%to40%comparedwith2010levels.

TheHilletal.,2012reportincludesprojectionsforarangeofheavydutyvehiclesandbuses.Thereportnotesthatarangeofprojectionsarerequiredbecausetheresultsforheavydutyvehiclescannotnecessarilybescaledaccordingtosize.Heavydutyvehiclesarediverseintheirrelativesizes,technicalspecificationsandusagepatterns.Soforexample,insmallertrucksthataretypicallyusedinurbanareashybridpowertrainswillhaveagreaterimpactduetosignificantstopstartactivityandspeedfluctuations,comparedtoheaviertrucksusedforlonghauloperations.Conversely,theapplicationofaerodynamicimprovementshasmostbenefitforlargevehiclesthataretravellingathighspeedsforasignificantproportionoftheiractivity.

TheHilletal.,projectionsshowthatthereistechnicalandcosteffectivepotentialtoreducefuelconsumptionbetween2010and2030byaround13%forsmallrigidtrucks,25%forlargerigidtrucksand30%forarticulatedtrucks.

Overall,weconcludethatthereisconsiderableuncertaintyinfutureprojectionsofheavydutyvehiclefuelefficiency.Weconsiderthattherateofimprovementcouldrealisticallybeanywherebetweennoimprovement(0%perannuminkeepingwithrecenttrends)andtheprojectionsfromHilletal.,2012.

Forthisprojectwerecommend50%oftheHilletal.,projectedratesofimprovementasareasonablyconservativemiddleground.

Underthis50%oftheHilletal.,2012scenario,themaximumannualrateimprovementis1%perannumforarticulatedtrucks.Thisisreasonablecomparedwiththerateofimprovementrequiredtodateinregulatedmarkets(includingJapanatapproximately1.3%perannum)aswellasthebaseline“nopolicychange”scenarioconsideredbytheEuropeanCommission,whichassumedannualaverageimprovementofcloseto1%annually.

RealworldenergyuseprojectionsforVFEM

Page|14

3 Methodology:realworldenergyconsumptionprojections

Theprojectionsinthisreportareintendedtorepresentrealworldfuelconsumption.Theserealworldfactorsaretheaveragefuelconsumptionper100kmofnewvehiclessoldinagivenyear.Theyarebasedonfuelconsumptionofvehiclesoperatingintherealworldunderalldifferentdrivingconditions.Thesefactorsrepresentanaverageacrossalldifferentvehicleswithintheclassification.

ForthisprojectweassumedthatthedataprovidedbyMoTisrepresentativeofrealworldfuelconsumptionofvehiclesmanufacturedin2012.Fuelconsumptionfactorsforothervehicletypes,andforallprojectionyearsarecalculatedrelativetotheserealworldfactors.

Thissectionofthereportbrieflysummarisesthekeyassumptions.Detailedassumptionsandcalculationsareprovidedintheaccompanyingspreadsheet.

3.1 Lightdutyvehicles:baseyear

RealworldfuelconsumptionfactorsforlightdutydieselandpetrolICE(internalcombustionengine)vehiclesinNewZealandhavebeenestimatedbyMoTusingfuelconsumptionandtraveldatafromfuelcardtransactions(Wangetal.,2015).

Toestimatefuelconsumptionforhybridvehicles,pluginhybridsandelectricvehiclesweusedfactorsfromarecentlypublishedICCTworkingpaperoncostsandcarbonemissionsfromelectricvehicles(WolframandLutsey,2016).Thispaperprovidesupdatedenergyandfuelconsumptionlevelsfor2010powertrainsasshowninTable1.Thesefactorsincorporaterealworldadjustmentsfor2010vehiclesbasedonacomprehensivereviewofrecentliterature.

Table1:Updatedelectricenergyandfuelconsumptionlevelsof2010powertrains[Source:WolframandLutsey,2016]

Fuel 2010PowerTrain

2010realworld

adjustmentfactor

AdjustedFuelConsumption

AdjustedElectricity

Consumption

RelativetoEquivalent

ICE

RelativetoPetrol

ICE

kWh/100km kWh/100km Petrol ICE 1.24 70.3 100% Diesel ICE 1.24 56.0 100% Petrol HEV 1.41 55.5 79% Diesel HEV 1.41 50.2 90% Petrol PHEV(operatingon

fuel)1.41 55.5 79%

Diesel PHEV(operatingonfuel)

1.41 50.2 90%

BEV BEVandPHEVoperatingonelectric

1.41 20.4 29%

RealworldenergyuseprojectionsforVFEM

Page|15

BasedonfactorsshowninTable1,fuelconsumptionforallvehicleswascalculatedrelativetotheMoTrealworldfuelconsumptionfactorfortheequivalentinternalcombustionengine.Forexample:

1600–1999ccpetrolHEVfuelconsumption=1600-1999ccpetrolICEMoTrealworldfuelconsumptionx79%

ToestimatefuelconsumptionforPHEVs(pluginhybridelectricvehicles)weneedtoestimatetheproportionoftimethatthevehicleoperatesonelectricity.Weassume48%ofdrivinginelectricmodebasedontheresultsofarecentreview(Plötzetal.,2015).Thisreportestimatesanaverageof48%forlargevehicles,typicalofthecurrentlyavailablePHEVsinNewZealand(MitsubishiOutlander,ToyotaPriusandVolvoV60).

FuelconsumptionofPHEV’swascalculatedrelativetotheequivalentMoTfuelconsumption.Forexample:

1600–1999ccpetrolPHEVpetrolconsumption=1600-1999ccpetrolICEMoTrealworldfuelconsumptionx79%x(100%-48%)

Electricityconsumptioniscalculatedonthesamebasis,forexample:

1600–1999ccpetrolPHEVelectricityconsumption=equivalentenergyconsumptionof1600-1999ccpetrolICEMoTrealworldfuelconsumptionx29%x(48%)

Batteryelectricvehiclesarecalculatedonthesamebasisi.e.29%oftheequivalentenergyconsumptionofapetrolICE.

3.2 Lightdutyvehicles:projections

AllprojectedenergyconsumptionfactorsarecalculatedrelativetothebaseyearfactorsusingthereductionratesshowninTable2asfollows.

RealworldenergyuseprojectionsforVFEM

Page|16

Table2:Improvementinfuelefficiencyassumedinprojectionsforlightdutyvehicles

Category Fuel Power-train

Reductioninfuelconsumptionover10yearperiod Notes

2010to2020

2020to2030

2030to2040

LPV

Petrol

ICE 13% 13% 12% 1HEV 20% 14% 8% 2

PHEV HEVfactorforpetrolandBEVfactorforelectricity

Naturalgas ICE petrolICEfactor

Diesel

ICE 11% 11% 11% 1HEV 15% 13% 8% 2

PHEV HEVfactorfordieselandBEVfactorforelectricity

Electric BEV 9% 10% 5% 2

LCV

Petrol

ICE 13% 13% 12% 1

HEV 14% 9% 9% 2

PHEVHEVfactorforpetrolandBEVfactorfor

electricity

Naturalgas ICE petrolICEfactor

Diesel

ICE 11% 11% 11% 1

HEV 10% 9% 8% 2

PHEVHEVfactorfordieselandBEVfactorfor

electricity

Electric BEV 7% 6% 6% 2

Notes:1RateofreductionintheMIT,2015“realisticbutaggressive”projectionofrealworldfuelconsumptionto20502RateofreductioninHill.etal,2012projectionofrealworldfuelconsumptionto2050

3.3 Heavydutyvehicles:baseyear

RealworldfuelconsumptionfactorsforheavydutydieselICEvehiclesinNewZealandhavebeencalculatedbyMotusingalargedatasetofrealworldfuelconsumptionandtraveldata.

BusfuelconsumptionfactorswerenotavailablesothesearebasedonfuelconsumptionestimatesfromHilletal.,2012.

BasedonfactorsshowninTable3,fuelconsumptionforallothervehicleswascalculatedrelativetotheMoTrealworldfuelconsumptionfactorfortheequivalentinternalcombustionengine.

3.4 Heavydutyvehicles:projections

NewZealandheavydutyvehiclesareclassifiedbyweightsowehaveassumedthat:

• smallrigidtruckprojectionsapplytoalltruckslessthan15tonnesGVM

RealworldenergyuseprojectionsforVFEM

Page|17

• largerigidtruckprojectionsapplytoalltrucksbetween15tonnesand25tonnesGVM

• articulatedtruckprojectionsapplytoalltrucksover25tonnesGVM

AllprojectedenergyconsumptionfactorsarecalculatedrelativetothebaseyearfactorsusingthereductionratesshowninTable4asfollows.

Table3:Relativefuelconsumptionfactorsassumedforbaseyearheavydutyvehicles

Category Fuel&powertrain GVM

Relativetoequivalent

ICENotes

HCV

DieselHEV<15000kg 81% ratioreportedinHilletal.,2012forsmallrigidtruck<25000kg 91% ratioreportedinHilletal.,2012forlargerigidtruck>25000kg 94% ratioreportedinHilletal.,2012foratriculatedtruck

NaturalgasICE

<15000kg 115% ratioreportedinHilletal.,2012forsmallrigidtruck<25000kg 114% ratioreportedinHilletal.,2012forlargerigidtruck>25000kg 114% ratioreportedinHilletal.,2012foratriculatedtruck

BEV<15000kg 31% ratioreportedinHilletal.,2012forsmallrigidtruck

otherweightsnotapplicablebecausenofactorsprovidedinHilletal.,2012.Notconsideredfeasible.

Bus HEV allweights71% ratioreportedinHilletal.,2012forbusBEV allweights30% ratioreportedinHilletal.,2012forbus

Table4:Improvementinfuelefficiencyassumedinprojectionsforheavydutyvehicles

Category Fuel Power-train

Reductioninfuelconsumptionover10yearperiod Notes

2010to2020

2020to2030

2030to2040

HCV<15tonne

Diesel ICE 3% 4% 3% 1

HEV 0% 4% 3% 1

Electric BEV 4% 6% 5% 2

Naturalgas ICE 3% 4% 2% 1

HCVrigid>15tonne

DieselICE 5% 8% 4% 1

HEV 5% 9% 5% 1

Naturalgas ICE 5% 8% 3% 1

HCVarticulated>25tonne

DieselICE 8% 10% 5% 1

HEV 7% 10% 5% 1

Naturalgas ICE 8% 10% 4% 1

BusDiesel ICE 3% 6% 2% 1

HEV 1% 5% 2% 1

Naturalgas ICE 3% 6% 2% 1

Electric BEV 1% 5% 5% 2

RealworldenergyuseprojectionsforVFEM

Page|18

4 Results

Detailedresultsofourprojectionsareprovidedintheaccompanyingspreadsheet.AselectionofkeyresultsareillustratedinFigures10,11and12.

Figure10:FuelefficiencyfactorsandprojectionsforLPV<2000cc

Figure11:FuelefficiencyfactorsandprojectionsforLCV<2000cc

RealworldenergyuseprojectionsforVFEM

Page|19

Figure12:Fuelefficiencyfactorsandprojectionsforheavyvehicles

RealworldenergyuseprojectionsforVFEM

Page|20

5 Conclusionsandrecommendations

RealworldfuelconsumptionfactorsfordieselandpetrolICE(internalcombustionengine)vehiclesinNewZealandhavebeenestimatedbyMoTusingfuelconsumptionandtraveldatafromalargedatasetofrealworldfuelcardtransactions6.

Thisprojectdevelopedfactorsforothervehicletypesandforfutureyears.ToensurethatthesefactorsareconservativeandrelevanttoNewZealandwehavecalculatedallfuelconsumptionfiguresrelativetoMoTrealworldfactorsforNewZealand.

TheMoTrealworldfactorsunderpinthisanalysis.WerecommendthattheMoTanalysisisregularlyupdated.Itisalsoimportantthattheanalysisisextendedtoincludeprivatelyownedvehicles,includingoldervehiclesandvehiclesmanufacturedtoJapanesestandards(asrecommendedbyWangetal.,2015).

WehavedevelopedprojectionfactorsforNewZealandvehiclefuelsandenergyconsumptionbasedoninternationalprojections.

Theprojectedfuelandenergyconsumptionfactorsarebasedonimprovementsthatare

• technicallyfeasible

• costeffective

• reasonablyconservative

Howevertheseprojectionsgowellbeyondcurrentregulatorytimeframessotheyareinherentlyuncertain.

Werecommendthattheprojectionsareregularlyreviewedandupdated.

6FuelusefactorsforthisprojectwereprovidedbyMinistryofTransport,includingfactorsforlightdutyvehicles(Wangetal.,2015)andunpublishedfactorsforheavydutyvehicles.

RealworldenergyuseprojectionsforVFEM

Page|21

References

CommitteeonClimateChange,2015.SectoralscenariosfortheFifthCarbonBudget,TechnicalReport.PreparedfortheCommitteeonClimateChange

EAEnergyAnalyses,2015.VehicleEnergyUseandCost-MethodologyusedinGronTransportRoadmap2030.WorkingPaper

EuropeanCommission,2014.CommissionStaffWorkingDocument,ImpactAssessmentaccompanyingthedocumentStrategyforReducingHeavyDutyVehiclesFuelConsumptionandCO2emissions.

EPA/NHTSA,2012.JointTechnicalSupportDocument:FinalRulemakingfor2017to2025Light-DutyVehicleGreenhouseGasEmissionStandardsandCorporateAverageFuelEconomyStandards.U.S.EnvironmentalProtectionAgencyandNationalHighwayTrafficSafetyAdministration.

GFEI,2016.FuelEconomyStateoftheWorld2016:TimeforGlobalAction.PreparedbytheGlobalFuelEconomyInitiative,

GovernmentofJapan,2015.Japan’ssecondbiennialreportundertheUnitedNationsFrameworkConventiononClimateChange.

Hill,N.etal.,2012.Areviewoftheefficiencyandcostassumptionsforroadtransportvehiclesto2050.

ICCT,2015a.Datatables[August2015]GlobalPVstandardchartlibrary(accessed27/7/2016)Availableat:http://www.theicct.org/global-pv-standards-chart-library

ICCT,2015b.Fromlaboratorytoroad:A2015UpdateofOfficialand“Real-World”FuelConsumptionandCO2valuesforPassengerCarsinEurope,PreparedbytheTietge,U;Zacharof,N;Mock,P;Franco,V;German,J;Bandivadekar,A(ICCT);Ligterink,N(TNO)&Lambrecht,U(IFEU)

ICCT,2015c.Advancedtractortrailerefficiencytechnologypotentialinthe2020to2030timeframe.WhitepaperpreparedbyDelago,J.&Lutsey,N.

ICCT,2016.EuropeanVehicleMarketStatistics,Pocketbook2015/16.PreparedbytheInternationalCouncilonCleanTransportation.

MBIE,2016.EnergyinNewZealand2015.PreparedbytheMinistryofBusiness,InnovationandEmployment

MetcalfeJ,KuschelG,&DenneT(2015).Researchintothelongtermtrendsforelectricvehiclepriceandsupply–understandingdevelopmentsintheglobalmarket,PreparedforMinistryofTransport,June

Miller,J.andFacanho,C.,2014.Thestateofcleantransportpolicy2014.PreparedfortheInternationalCouncilonCleanTransportation

Miller,J.,2016.ReducingCO2emissionsfromroadtransportintheEuropeanUnion:Anevaluationofpolicyoptions(Workingpaper2016-10).PreparedfortheInternationalCouncilonCleanTransportation

MIT,2015.OntheRoadTowards2050:PotentialforSubstantialReductionsinLight-DutyVehicleEnergyUseandGreenhouseGasEmissions,PreparedbySloanAutomotiveLaboratory,MassachusettsInstituteofTechnology

MoT,2016.QuarterlyFleetStatisticsSpreadsheetJantoMar2016update.xls.PreparedbytheMinistryofTransport

OECD/IEA,2016.TechnologyandPolicyDriversoftheFuelEconomyofNewLight-DutyVehicles:Comparativeanalysisacrossselectedautomotivemarkets(Workingpaper12),Preparedbythe

RealworldenergyuseprojectionsforVFEM

Page|22

InternationalEnergyAgency

Plötz,P.,Funke,S.&Jochem,P.,2015.Real-worldfueleconomyandCO2emissionsofplug-inhybridelectricvehicles,

Sims,R.,Schaeffer,R.,Creutzig,F.,Cruz-Núñez,X.,D’Agosto,M.etal.,2014.Transportin:ClimateChange2014:Mitigationofclimatechange.ContributionofworkinggroupIIItothefifthassessmentreportoftheIntergovernmentalPanelonClimateChange.[Edenhofer,O.,R.Pichs-Madruga,Y.Sokona,E.Farahani,S.Kadner,K.Seyboth,A.Adler,I.Baum,S.Brunner,P.Eickemeier,B.Kriemann,J.Savolainen,S.Schlömer,C.vonStechow,T.ZwickelandJ.C.Minx(eds.)].CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA

Wang,H.etal.,2015.Real-worldfuelefficiencyoflightvehiclesinNewZealand.InAustralasianTransportResearchForum.pp.1–13.

Wolfram,P.&Lutsey,N.,2016.Electricvehicles:Literaturereviewoftechnologycostsandcarbonemissions(WorkingPaper2016-14)PreparedfortheInternationalCouncilonCleanTransportation

RealworldenergyuseprojectionsforVFEM

Page|23

Appendix1

ThisappendixdescribesthecalculationtoestimateNZaveragerealworldCO2emissionsforsmallerenginesizeequivalenttoEuropeasshowninFigure5.TheproportionofdieselandpetrolvehicleshasalsobeenadjustedtobeequivalenttotheEuropeanfleet.

CalculationofrealworldCO2emissionsfromNewZealandvehicleswithEuropeanequivalentenginesizeandproportionofdieselvehicles

1. EstimaterealworldCO2emissionsfornewvehicleimportsbasedonNZaveragetypeapprovalemissionsfornewvehicleimportsandrealworldupliftfactors.RealworldCO2iscalculatedforpetrolanddieselseparatelybasedonequation1:

𝑹𝑾𝑪𝑶𝟐 𝒈 𝒌𝒎 𝒚𝒆𝒂𝒓,𝒇𝒖𝒆𝒍= 𝒕𝒚𝒑𝒆𝒂𝒑𝒑𝒓𝒐𝒗𝒂𝒍𝑪𝑶𝟐𝒚𝒆𝒂𝒓,𝒇𝒖𝒆𝒍×𝑹𝑾𝒖𝒑𝒍𝒊𝒇𝒕𝒇𝒂𝒄𝒕𝒐𝒓𝒚𝒆𝒂𝒓,𝒇𝒖𝒆𝒍

Equation1where:• yearistheanalysisyear2010to2014• fuelispetrolordiesel• typeapprovalCO2=averageCO2emissionsfortheanalysisyearasreportedby

MoT(quarterlyfleetstatistics)forNZNewPetrolvehiclesandNZNewDieselvehicles

• RWupliftfactors(realworldupliftfactors)wereestimatedfromFigures9and10ofWangetal.,2015foreachanalysisyearasfollows:

Year PetrolRWupliftfactor

DieselRWupliftfactor

2010 14% 13%2011 18% 18%2012 20% 18%2013 22% 21%2014 24% 21%

2. AdjustNZrealworldCO2toestimateCO2emissionsfromNZvehicleswithsmallerenginesizeequivalenttoEuropeasfollows:

𝑹𝑾𝑪𝑶𝟐𝒇𝒐𝒓𝑬𝑼𝒆𝒏𝒈𝒊𝒏𝒆𝒔𝒊𝒛𝒆 𝒈 𝒌𝒎 𝒚𝒆𝒂𝒓,𝒇𝒖𝒆𝒍

= 𝑹𝑾𝑪𝑶𝟐(𝒈 𝒌𝒎)𝒚𝒆𝒂𝒓,𝒇𝒖𝒆𝒍 ×𝑪𝑪𝒂𝒅𝒋𝒖𝒔𝒕𝒎𝒆𝒏𝒕𝒚𝒆𝒂𝒓,𝒇𝒖𝒆𝒍Equation2

where:• CCadjustmentyear,fuelareshowninTable5.Thesefactorsarecalculatedforeach

analysisyearandforpetrolanddieselasdescribedinsteps4to6following.• yearistheanalysisyear2010to2014• fuelispetrolordiesel

RealworldenergyuseprojectionsforVFEM

Page|24

3. CalculateweightedaveragerealworldCO2emissionsbasedontheproportionofdieselandpetrolvehiclesintheEuropeanfleet.

CalculationofCCadjustmentThissectiondescribesthecalculationoftheCCadjustmentfactorusedinEquation2.TheadjustmentfactorhasbeenestimatedforeachanalysisyeartoaccountforanychangesinaverageenginesizeinEuropeandNewZealand.MoTresearchhasestablishedarelationshipbetweenrealworldfuelconsumptionandenginesizeforNewZealand(Wangetal.,2015).Wehaveusedthisrelationshiptoestimateanadjustmentfactorasfollows.

4. EstimateNZrealworldfuelconsumptionforpetrolvehicleswithNewZealandaverageenginesizeandforpetrolvehicleswithEuropeanenginesizeaccordingtoequation4:

𝑵𝒁𝑹𝑾𝒑𝒆𝒕𝒓𝒐𝒍𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 (𝒍 𝟏𝟎𝟎𝒌𝒎) = 𝟎. 𝟎𝟎𝟏𝟓×𝒆𝒏𝒈𝒊𝒏𝒆𝒔𝒊𝒛𝒆(𝒄𝒄) + 𝟓. 𝟖𝟔

Equation3

5. EstimaterealworldfuelconsumptionforNZdieselvehicleswithNewZealandaverageenginesizeandforNZdieselvehicleswithEuropeanenginesizeaccordingtoequation5:

𝑵𝒁𝑹𝑾𝒅𝒊𝒆𝒔𝒆𝒍𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 𝒍 𝟏𝟎𝟎𝒌𝒎 = 𝟎. 𝟎𝟎𝟐𝟏×𝒆𝒏𝒈𝒊𝒏𝒆𝒔𝒊𝒛𝒆 𝒄𝒄 + 𝟑. 𝟗𝟐

Equation4

6. CalculateCCadjustmentfactorsforpetrolanddieselforeachanalysisyearaccordingtoequation6and7:

𝑷𝒆𝒕𝒓𝒐𝒍𝑪𝑪𝒂𝒅𝒋𝒖𝒔𝒕𝒎𝒆𝒏𝒕𝒚𝒆𝒂𝒓 =𝑵𝒁𝑹𝑾𝒑𝒆𝒕𝒓𝒐𝒍𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑬𝑼𝒆𝒏𝒈𝒊𝒏𝒆𝒔𝒊𝒛𝒆𝒚𝒆𝒂𝒓𝑵𝒁𝑹𝑾𝒑𝒆𝒕𝒓𝒐𝒍𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑵𝒁𝒆𝒏𝒈𝒊𝒏𝒆𝒔𝒊𝒛𝒆𝒚𝒆𝒂𝒓

Equation5

and

𝑫𝒊𝒆𝒔𝒆𝒍𝑪𝑪𝒂𝒅𝒋𝒖𝒔𝒕𝒎𝒆𝒏𝒕𝒚𝒆𝒂𝒓 =𝑵𝒁𝑹𝑾𝒅𝒊𝒆𝒔𝒆𝒍𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑬𝑼𝒆𝒏𝒈𝒊𝒏𝒆𝒔𝒊𝒛𝒆𝒚𝒆𝒂𝒓𝑵𝒁𝑹𝑾𝒅𝒊𝒆𝒔𝒆𝒍𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑵𝒁𝒆𝒏𝒈𝒊𝒏𝒆𝒔𝒊𝒛𝒆𝒚𝒆𝒂𝒓

Equation6

RealworldenergyuseprojectionsforVFEM

Page|25

Table5:CCAdjustmentfactors

NewZealand Europe CCAdjustment

factortoestimateNZRWCO2forEU

enginesize

Vehiclebuildyear

Averageenginecapacitynew

vehicles

Estimatedrealworldfuel

efficiencyforaverageNZenginecc

Averageenginecapacitynewvehicles[2]

EstimatedNZrealworldfuelefficiencyforaverageEUenginecc

Petrol Diesel Petrol* Diesel** Petrol Diesel Petrol* Diesel** Petrol Diesel

cc cc l/100km l/100km cc cc l/100km l/100km

2010 2317 2603 9.3 9.4 1450 1800 8.04 7.7 86% 82%2011 2219 2614 9.2 9.4 1440 1800 8.02 7.7 87% 82%2012 2152 2602 9.1 9.4 1425 1800 8.00 7.7 88% 82%2013 2124 2639 9.0 9.5 1400 1800 7.96 7.7 88% 81%2014 2119 2687 9.0 9.6 1360 1800 7.90 7.7 87% 81%