45
planning for Manipulator based on Configuration Space Chen Keming Cis Peking Universit y

Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Embed Size (px)

Citation preview

Page 1: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Real-time motion planning for

Manipulator based on Configuration Space

Chen KemingCis Peking University

Page 2: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Main Contents

Introduction My current work Future work and related work C-Space visualization for Teleoperation

Page 3: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Introduction Manipulator Motion Planning Problems

– Statement:• Compute a collision-free path for a manipulator among

obstacles

– Inputs:• Geometry of manipulator and obstacles• Kinematics of manipulator (degrees of freedom)• Initial and goal manipulator configurations (placements)

– Outputs:• Continuous sequence of collision-free manipulator

configurations connecting the initial and goal configurations

Page 4: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Introduction

Tool: Configuration Space

Page 5: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Introduction

FrameworkManipulator

representation

Obstacles representation

Configuration space formulation

DiscretizationGraph

searching

Page 6: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work Motivation: Towards real-time

Human-Robot Interaction in dynamic environment

Application– (Mobile based) Manipulator interacts

with human without collision– Dual-arm robot (Chen Fen,Ding Fu-qiang

and Zhao Xi-fang “Collision-free Path Planning of dual-arm Robot.” ROBOT,vol.24,Mar.2002)

Page 7: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work Assumption

– The input data are readily available at any time

Manipulator representation– Cylinders– Reduction to 3 joints

Obstacles representation– Cylinders– Combination of main body and arms

Page 8: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

C-Space formulation– Reduction to determine whether 2 cylinders

collide in 3D W-Space

Case 1: Case 2:

Page 9: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

– Schematic

Page 10: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

– Goal configurations formulation using inverse kinematics

Discretization– Joint 1: 161, Joint 2: 71, Joint 3: 121

Page 11: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

Lazy C-Space computation due to– Large numbers of points in C-Space(total

1,383,151 points)– Real-time process requirement

Graph searching (A*)– Why use A*

• Optimal and complete

• Objective values (expanding nodes, time)

Page 12: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

– Speed up A*• OPEN is implemented as

– hash table

– priority list(implemented as Binary Heap)

• CLOSED is implemented as hash table

List implementation Hash table and Binary Heap implementation

An example (collision checking points: more than 30000)

Page 13: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

Result:

Page 14: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work Dealing with dynamic environment

– A* Replanner: Plan by A* using all the available information at the start.

– Start tracing the optimal path– If there is a discrepancy between the initial ma

p and the actual environment, update the new cost values for the corresponding arcs, run A* again for planning between the current position and the goal.

Page 15: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

A* Replanner: shortcoming– If the goal configuration is far away, little cha

nges may force the planner to use A* over the whole C-Space, although the changes in the optimal path may be small

– Hence, A* replanner can be grossly inefficient computationally for real-time process

Page 16: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work Optimization --- Dynamic A*(D*) [Stentz, 1994]

– Functionally equivalent to A* replanner– Make “local” changes to the map and the resultant opt

imal path when a discrepancy between map and the environment is found

• Essentially prunes the graph search

– So, D* could be a proper choice for optimization. But so far, it has only been used in mobile robotics to move a robot to given goal coordinates in unknown terrain [Koenig, 2002].

Page 17: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

D* Algorithm

c(x1,x2)=1c(x1,x3)=1.4

c(x1,x8)=10000,if x8 is in obstacle,x1 is a freecell

c(x1,x9)=10000.4, if x9 is in obstacle, x1 is a freecell

x9 x2 x3

x8 x1 x5

x7 x6 x7

Page 18: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=6

k=6

b=

h=5

k=5

b=

h=4

k=4

b=

h=3

k=3

b=

h=2

k=2

b=

h=1

k=1

b=

h=0

k=0

b=

5

h=6.4

k=6.4

b=

h=5.4

k=5.4

b=

h=4.4

k=4.4

b=

h=3.4

k=3.4

b=

h=2.4

k=2.4

b=

h=1.4

k=1.4

b=

h=1

k=1

b=

4

h=6.8

k=6.8

b=

h=5.8

k=5.8

b=

h=4.8

k=4.8

b=

h=3.8

k=3.8

b=

h=2.8

k=2.8

b=

h=2.4

k=2.4

b=

h=2

k=2

b=

3

h=7.2

k=7.2

b=

h=6.2

k=6.2

b=

h=5.2

k=5.2

b=

h=4.2

k=4.2

b=

h=3.8

k=3.8

b=

h=3.4

k=3.4

b=

h=3

k=3

b=

2

h=7.6

k=7.6

b=

h=6.6

k=6.6

b=

h=5.6

k=5.6

b=

h=5.2

k=5.2

b=

h=4.8

k=4.8

b=

h=4.4

k=4.4

b=

h=4

k=4

b=

1

h=8.0

k=8.0

b=

h=7.0

k=7.0

b=

h=6.6

k=6.6

b=

h=6.2

k=6.2

b=

h=5.8

k=5.8

b=

h=5.4

k=5.4

b=

h=5

k=5

B=

r/c 1 2 3 4 5 6 7

Goal

Start

Gate

Page 19: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=6

k=6

b=

h=5

k=5

b=

h=4

k=4

b=

h=3

k=3

b=

h=2

k=2

b=

h=1

k=1

b=

h=0

k=0

b=

5

h=6.4

k=6.4

b=

h=5.4

k=5.4

b=

h=4.4

k=4.4

b=

h=3.4

k=3.4

b=

h=2.4

k=2.4

b=

h=1.4

k=1.4

b=

h=1

k=1

b=

4

h=6.8

k=6.8

b=

h=5.8

k=5.8

b=

h=4.8

k=4.8

b=

h=3.8

k=3.8

b=

h=2.8

k=2.8

b=

h=2.4

k=2.4

b=

h=2

k=2

b=

3

h=7.2

k=7.2

b=

h=6.2

k=6.2

b=

h=5.2

k=5.2

b=

h=4.2

k=4.2

b=

h=3.8

k=3.8

b=

h=3.4

k=3.4

b=

h=3

k=3

b=

2

h=7.6

k=7.6

b=

h=6.6

k=6.6

b=

h=5.6

k=5.6

b=

h=5.2

k=5.2

b=

h=4.8

k=4.8

b=

h=4.4

k=4.4

b=

h=4

k=4

b=

1

h=8.0

k=8.0

b=

h=7.0

k=7.0

b=

h=6.6

k=6.6

b=

h=6.2

k=6.2

b=

h=5.8

k=5.8

b=

h=5.4

k=5.4

b=

h=5

k=5

b=

r/c 1 2 3 4 5 6 7

(7,6) 0

State k

Page 20: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=6

k=6

b=

h=5

k=5

b=

h=4

k=4

b=

h=3

k=3

b=

h=2

k=2

b=

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=6.4

k=6.4

b=

h=5.4

k=5.4

b=

h=4.4

k=4.4

b=

h=3.4

k=3.4

b=

h=2.4

k=2.4

b=

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=6.8

k=6.8

b=

h=5.8

k=5.8

b=

h=4.8

k=4.8

b=

h=3.8

k=3.8

b=

h=2.8

k=2.8

b=

h=2.4

k=2.4

b=

h=2

k=2

b=

3

h=7.2

k=7.2

b=

h=6.2

k=6.2

b=

h=5.2

k=5.2

b=

h=4.2

k=4.2

b=

h=3.8

k=3.8

b=

h=3.4

k=3.4

b=

h=3

k=3

b=

2

h=7.6

k=7.6

b=

h=6.6

k=6.6

b=

h=5.6

k=5.6

b=

h=5.2

k=5.2

b=

h=4.8

k=4.8

b=

h=4.4

k=4.4

b=

h=4

k=4

b=

1

h=8.0

k=8.0

b=

h=7.0

k=7.0

b=

h=6.6

k=6.6

b=

h=6.2

k=6.2

b=

h=5.8

k=5.8

b=

h=5.4

k=5.4

b=

h=5

k=5

b=

r/c 1 2 3 4 5 6 7

(6,6) 1

(7,5) 1

(6,5) 1.4

State k

Page 21: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=6

k=6

b=

h=5

k=5

b=

h=4

k=4

b=

h=3

k=3

b=

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=6.4

k=6.4

b=

h=5.4

k=5.4

b=

h=4.4

k=4.4

b=

h=3.4

k=3.4

b=

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=6.8

k=6.8

b=

h=5.8

k=5.8

b=

h=4.8

k=4.8

b=

h=3.8

k=3.8

b=

h=2.8

k=2.8

b=

h=2.4

k=2.4

b=

h=2

k=2

b=

3

h=7.2

k=7.2

b=

h=6.2

k=6.2

b=

h=5.2

k=5.2

b=

h=4.2

k=4.2

b=

h=3.8

k=3.8

b=

h=3.4

k=3.4

b=

h=3

k=3

b=

2

h=7.6

k=7.6

b=

h=6.6

k=6.6

b=

h=5.6

k=5.6

b=

h=5.2

k=5.3

b=

h=4.8

k=4.8

b=

h=4.4

k=4.4

b=

h=4

k=4

b=

1

h=8.0

k=8.0

b=

h=7.0

k=7.0

b=

h=6.6

k=6.6

b=

h=6.2

k=6.2

b=

h=5.8

k=5.8

b=

h=5.4

k=5.4

b=

h=5

k=5

b=

r/c 1 2 3 4 5 6 7

(7,5) 1

(6,5) 1.4

(5,6) 2

(5,5) 2.4

State k

Page 22: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=6

k=6

b(1,6)=

h=5

k=5

b=

h=4

k=4

b=

h=3

k=3

b=

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=6.4

k=6.4

b(1,5)=

h=5.4

k=5.4

b=

h=4.4

k=4.4

b=

h=3.4

k=3.4

b=

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=6.8

k=6.8

b(1,4)=

h=5.8

k=5.8

b=

h=4.8

k=4.8

b=

h=3.8

k=3.8

b=

h=2.8

k=2.8

b=

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=7.2

k=7.2

b(1,3)=

h=6.2

k=6.2

b=

h=5.2

k=5.2

b=

h=4.2

k=4.2

b=

h=3.8

k=3.8

b=

h=3.4

k=3.4

b=

h=3

k=3

b=

2

h=7.6

k=7.6

b(1,2)=

h=6.6

k=6.6

b=

h=5.6

k=5.6

b=

h=5.2

k=

b=

h=4.8

k=4.8

b=

h=4.4

k=4.4

b=

h=4

k=4

b=

1

h=8.0

k=8.0

b(1,1)=

h=7.0

k=7.0

b=

h=6.6

k=6.6

b=

h=6.2

k=6.2

b=

h=5.8

k=5.8

b=

h=5.4

k=5.4

b=

h=5

k=5

b=

r/c 1 2 3 4 5 6 7

(6,5) 1.4

(5,6) 2

(7,4) 2

(6,4) 2.4

(5,5) 2.4

State k

Page 23: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=6

k=6

b(1,6)=

h=5

k=

b=

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=6.4

k=6.4

b(1,5)=

h=5.4

k=

b=

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=6.8

k=6.8

b(1,4)=

h=5.8

k=

b=

h=4.8

k=

b=

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=7.2

k=7.2

b(1,3)=

h=6.2

k=

b=

h=5.2

k=

b=

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b(1,2)=

h=6.6

k=6.6

b=

h=5.6

k=5.6

b=

h=5.2

k=5.2

b=

h=4.8

k=4.8

b=

h=4.4

k=4.4

b=

h=4

k=4

b=

1

h=8.0

k=8.0

b(1,1)=

h=7.0

k=7.0

b=

h=6.6

k=6.6

b=

h=6.2

k=6.2

b=

h=5.8

k=5.8

b=

h=5.4

k=5.4

b=

h=5

k=5

b=

r/c 1 2 3 4 5 6 7

(7,3) 3

(6,3) 3.4

(4,5) 3.4

(5,3) 3.8

(4,4) 3.8

(3,6) 4

(4,3) 4.2

(3,5) 4.4

State k

Page 24: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b=(3,6)

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=10003.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=6.6

k=6.6

b=(3,2)

h=5.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=7.0

k=7.0

b=(3,2)

h=6.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(1,6) 6

(1,5) 6.4

(1,4) 6.8

(1,2) 7.6

(1,3) 8.0

(1,1) 8.0

State k

Page 25: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b=(3,6)

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=6.6

k=6.6

b=(3,2)

h=5.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=7.0

k=7.0

b=(3,2)

h=6.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(1,6) 6

(1,5) 6.4

(1,4) 6.8

(1,2) 7.6

(1,3) 8.0

(1,1) 8.0

State k

Page 26: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b=(3,6)

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b

2

h=7.6

k=7.6

b=(2,2)

h=6.6

k=6.6

b=(3,2)

h=5.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=7.0

k=7.0

b=(3,2)

h=6.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(1,6) 6

(1,5) 6.4

(1,4) 6.8

(1,2) 7.6

(1,3) 8.0

(1,1) 8.0

State k

Page 27: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

(4,3) 4.2

(1,6) 6

(1,5) 6.4

(1,4) 6.8

(1,2) 7.6

(1,3) 8.0

(1,1) 8.0

State k

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b=(3,6)

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=6.6

k=6.6

b=(3,2)

h=5.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=7.0

k=7.0

b=(3,2)

h=6.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

Page 28: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b

h=10003

k=4

b

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=6.6

k=6.6

b=(3,2)

h=10004.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=7.0

k=7.0

b=(3,2)

h=6.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(3,2) 5.6

(1,6) 6

(1,5) 6.4

(1,4) 6.8

(1,2) 7.6

(1,3) 8.0

(1,1) 8.0

State k

Page 29: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=10005.6

k=6.6

b=(3,2)

h=10004.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=10006.0

k=7.0

b=(3,2)

h=10005.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(1,6) 6(4,1) 6.2(1,5) 6.4(3,1) 6.6(2,2) 6.6(1,4) 6.8(2,1) 7.0(1,2) 7.6(1,3) 8.0(1,1) 8.0

State k

Page 30: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=10005.6

k=6.6

b=(3,2)

h=10004.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=10006.0

k=7.0

b=(3,2)

h=10005.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(1,6) 6(4,1) 6.2(1,5) 6.4(3,1) 6.6(2,2) 6.6(1,4) 6.8(2,1) 7.0(1,2) 7.6(1,3) 8.0(1,1) 8.0

State k

Page 31: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b=(3,6)

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b)=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=10005.6

k=6.6

b=(3,2)

h=10004.6

k=5.6

b=(4.3)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=10006.0

k=7.0

b=(3,2)

h=10005.6

k=6.6

b=(3,2)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(4,1) 6.2(1,5) 6.4(3,1) 6.6(2,2) 6.6(1,4) 6.8(2,1) 7.0(1,2) 7.6(1,3) 8.0(1,1) 8.0

State k

Page 32: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b=(3,6)

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=10005.6

k=6.6

b=(3,2)

h=7.6

k=7.6

b=(4.1)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=10006.0

k=7.0

b=(3,2)

h=7.2

k=7.2

b=(4,1)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

(5,2) 4.8(5,1) 5.8(3,2) 5.6(1,5) 6.4(3,1) 6.6(2,2) 6.6(1,4) 6.8(2,1) 7.0(1,2) 7.6(1,3) 8.0(1,1) 8.0

State k

Page 33: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

6

h=20004

k=6

b=(2,6)

h=10004

k=5

b=(3,6)

h=10003

k=4

b=(4,6)

h=3

k=3

b=(5,6)

h=2

k=2

b=(6,6)

h=1

k=1

b=(7,6)

h=0

k=0

b=

5

h=20004.4

k=6.4

b=(2,6)

h=10004.4

k=5.4

b=(3,6)

h=10003.4

k=4.4

b=(4,6)

h=3.4

k=3.4

b=(5,6)

h=2.4

k=2.4

b=(6,6)

h=1.4

k=1.4

b=(7,6)

h=1

k=1

b=(7,6)

4

h=20006.8

k=6.8

b=(2,5)

h=10004.8

k=5.8

b=(3,5)

h=10003.8

k=4.8

b=(4,5)

h=3.8

k=3.8

b=(5,5)

h=2.8

k=2.8

b=(6,5)

h=2.4

k=2.4

b=(7,5)

h=2

k=2

b=(7,5)

3

h=8.0

k=8.0

b=(2,2)

h=10005.2

k=6.2

b=(3,4)

h=10004.2

k=5.2

b=(4,4)

h=4.2

k=4.2

b=(5,4)

h=3.8

k=3.8

b=(6,4)

h=3.4

k=3.4

b=(7,4)

h=3

k=3

b=(7,4)

2

h=7.6

k=7.6

b=(2,2)

h=10005.6

k=6.6

b=(3,2)

h=7.6

k=7.6

b=(4.1)

h=10004.2

k=5.2

b=(5,3)

h=4.8

k=4.8

b=(6,3)

h=4.4

k=4.4

b=(7,3)

h=4

k=4

b=(7,3)

1

h=8.0

k=8.0

b=(2,2)

h=10006.0

k=7.0

b=(3,2)

h=7.2

k=7.2

b=(4,1)

h=6.2

k=6.2

b=(5,2)

h=5.8

k=5.8

b=(6,2)

h=5.4

k=5.4

b=(7,2)

h=5

k=5

b=(7,2)

r/c 1 2 3 4 5 6 7

Page 34: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Exam 1

Page 35: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Exam 2

Page 36: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

My Current Work

Compared with A* replanner in our problem, D* performance superior over A* replanner

0

50

100

150

200

250

300

Exam 1 Exam 2

A* repl annerD*

Checking points per replanning

Page 37: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Future work and related work Modify program, make it more robust with more ex

periments, speed up with more modifications. D* Limitation

– D* search from goal configuration, what if there are several goal configurations (it’s common in manipulator motion planning)?

– When the goal object is moving– Current on-line planning methods using A* based techni

ques focus on multi-directional search and parallel planning ([Dominik HENRICH, Christian WURLL and Heinz WÖRN, 1998], etc )

– D* should be adapted for our problems

Page 38: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Future work and related work

– Consult other D*-like replanning algorithms (e.g D* Lite [Koenig, 2002] )

Survey other real-time motion planning techniques in high dimensional C-Space

– Decomposition-based methods ([Kavraki, 2001], [Me

diavilla, 2002], etc)– Probabilistic roadmap based methods(most de

al with static environment)

Page 39: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Future work and related work

Use a more general 3D model to represent manipulator and obstacles

– Hierarchy structure– Tree structure

Page 40: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Future work and related work

– Taxonomy

Page 41: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Future work and related work

Experiment using real robot arm: a challenging work

Images from cameras Model parameters

Computer vision techniquesMotion planning

Page 42: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

C-Space Visualization for Teleoperation

Applications of C-Space Visualization– Provide important qualitative information for

mechanical design (E.Sacks, C.Pisula and L.Joskowicz “Visualizing 3D Configuration Spaces for Mechanical Design.” ).

– Evaluation of path planning methods– Teleoperation (I.Ivanisevic and J.Lumelsky “Configuration Spa

ce as a Means for Augmenting Human Performance in Teleoperation Tasks.” IEEE Trans.Syst.Man,Cyber.,vol.30,pp.471-484,Jun.2000).

Page 43: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

C-Space Visualization for Teleoperation

It’s easier for humans to handle motion planning problems in C-Space than in W-Space

Page 44: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

C-Space Visualization for Teleoperation

Challenges– When the computer which generates C-Space data is

not the same as the computer which receives humans input, C-Space data must be transfered through network

– C-Space data are too large• 161*71*121 for my current implementation

– C-Space data change caused by dynamic environment, etc

– Poor network bandwidth

Page 45: Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

C-Space Visualization for Teleoperation

So, C-Space data compression is necessary Additional work

C-Space for a Cylinder Object

C-Space Data

3D Models Data

3D Model Data Compression

Framework :