48
Kinetics and Reaction Rate Theory: Surface Reactions a tutorial J W Niemantsverdriet Schuit Institute of Catalysis Eindhoven University of Technology

Reaction Rate Theory of Surface Reactions

Embed Size (px)

DESCRIPTION

Surf Reaction

Citation preview

  • Kinetics and Reaction Rate Theory:

    Surface Reactions

    a tutorial

    J W NiemantsverdrietSchuit Institute of Catalysis

    Eindhoven University of Technology

  • adsorption

    desorption

    The Catalytic Cycle

    reaction

  • Langmuir - Hinshelwood Kinetics

    Irving Langmuir1881 - 1957

    Nobel Prize 1932

    Cyril NormanHinshelwood

    1897 - 1967Nobel Prize 1956

    1915Langmuir Isotherm

    1927 Kinetics of Catalytic Reactions

  • The Arrhenius Equation

    A B AB

    k+

    k = v e -Eact /RT

    r = = k [A][B]d[AB]

    dt

    Svante Arrhenius1859 - 1927

    Nobel Prize 1903

    reaction parameter

    E

    Eact+

    Empirical !

  • Temperature Dependence of the Rate

    r = = k [A] [B]d [AB]

    d tA + B ABk

    R = 8,2

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1 200 400 600 800 1000T (K)

    rate

    k = v e- Eact / RT

    Arrhenius:

    ln k =ln v Eact / RT

    ln k

    1000 / T

  • Reaction Rate Theory(Transition State Theory)

    to rationalize

    preexponential factors of surface reactions adsorption desorption dissociation

    sticking coefficients direct versus precursor-mediated adsorption

    catalytic mechanisms Langmuir-Hinshelwood versus Eley-Rideal

  • Reaction Rate Theory

    Molecules collide, but ..only a small fraction of the collisions is reactive

    collision theory

    transition state theory

  • Reaction Rate Theory

    E

    reaction parameter

  • Collision Theory of Reaction Rates:

    Reaction:

    Hard SpheresHard SpheresH + Br2 [H-Br-Br]# HBr + Br

    Redistribution ofKinetic Energy:

    H + Br2 [H-Br-Br]# H + Br2

  • Collision Theory of Reaction Rates:

    Reaction:

    H + Br2 [H-Br-Br]# HBr + Br

    Redistribution ofKinetic Energy:

    Hard SpheresHard Spheres

    H + Br2 [H-Br-Br]# H + Br2

  • Collision Theory

    reaction if collision energy > barrier energy

    incidentally successful

    usually predicts prefactors that are too high

    major problem: disagrees with vant Hoff

    equation for the equilibrium constant

  • Reaction Rate TheoryCollision Theory:hard spheres scatter or react upon collision

    Transition State Theorymolecules possess internal degrees of freedom translation vibration rotation described by statistical thermodynamics(partition functions)

  • Ludwig Boltzmann(1844-1906)

    S = k ln (W )

    x ie

    e

    RTi /

    =

    i =

    0

    RTi /

    Boltzmann Statistics:the basis of statistical thermodynamics

  • Partition Function:

    i=

    0q e i B k T/=

    thermodynamical function of state,contains information on energy and entropy

  • Partition Function: q e i Bk Ti

    = =

    /0

    energy(average)

    chemicalpotential

    entropy

    = kT2 lnqT

    = -kT ln q

    kT ln qT

    s =

  • Partition Function: q e i Bk Ti

    = =

    /0

    chemicalpotential

    equilibriumconstant

    = -kT ln q

    qproducts qreactants

    i

    i

    K =

  • All Molecules

    vibrate

    rotate

    translate

  • Partition Function:i=

    0

    e=q i B k T/

    translation vibration rotationq l

    m k Thtrans

    B= ( ) /2 1 2

    may be large iflength l over which molecule moves is large

    (per dimension!)

    q Ik Throt

    B=8 2

    2

    large:H2: 2.9 at 500 KCO: 180 at 500 KCl2: 710 at 500 K(2-dimensional!)

    (per dimension!)

    qevib h k TB

    =

    11 /

    usually equals 1unless vibrations have very low frequency

    (per vibration!)

  • TransitionState

    Theory

  • CHads Cads + Hadson noble metals, e.g. Rh(100)

    Eb

    reaction coordinate

    ECHads

    Cads+Hads

    CHads#

    CHads Cads + HadsTransition statePaco Ample, Dani Curulla, TU/e, 2004

  • Transition State Theory

    R R# PK#

    k ThB

    k TB= K#kTST hHenry Eyring1901 - 1981

    M.G. Evans & M. Polanyi

    q#k TB Eb= -e k TB/h q

  • Transition State Theory: The Assumptions

    Eb

    reaction coordinate

    E

    R

    P

    R# passage over barrier only inforward direction

    equilibrium between reactantsand products for all degrees offreedom, except for reactioncoordinate

    passage over barrier is classicalevent, described by one reaction coordinate only

    = K#[R]d[P] k T

    hB

    K#k T

    hB

    dt

    R R# PK#

    k T

    hB = [R]

    q#

    q-

    ek TB/Ebk T

    hB

  • How to Compare

    Transition State Theory

    Expressions

    with the

    Arrhenius Equation?

  • How to Compare Transition State Theory Expression

    with Arrhenius Equation?

    Eact = kT2

    Tln kTSTKey:

    = em q#

    qkThB

    Eact = Eb + m k TBin transition state theory the activation energy is not precisely

    equal to the barrier energy

    m: number of times T appears in the rate expression

  • The meaning of

    Preexponential

    Factors

  • Meaning of Preexponentials

    = em q#

    qkThB

    Standard case:q# q; m = 1

    = ek T

    hB 1013 s-1

    transition state and reactants have same degrees of freedom and similar entropy

    Loose TST:q# >> q; m 1

    1013

  • Loose TST:q# >> q

    Tight TST:q# 0

    E

    R

    P

    reaction coordinate

    109 < < 1013 s-1 1013 < < 1017 s-1

  • Application to

    Surface Reactions:

    Adsorption

  • Adsorption

    direct:

    precursor mediated (trapping mediated):(high sticking probability)

    (low sticking probability)

    or

  • Adsorption in TST

    precursor mediated (trapping mediated):mobile transition state

    rad s = [AB]q#

    q-

    ek TB/Ebk T

    hB = [AB]

    (qtrans)2k T

    hB

    #

    (qtrans)3

    qvib#

    qvib

    qrot#

    qrot

    Collision frequencygas - surface

    Sticking coefficient

  • direct adsorptionqvibadskBT

    qtrans3 qrot qvib qtrans2kBTh

    qtrans2 qvib#

    Collision stickingfrequency coefficient

    #kads = qtrans3 qrot qvibh

    extremely small rate of adsorption due to lack of mobility in the transition state !

  • precursor mediated adsorption

    kBT qtrans2 qrot qvib

    # #

    kads = qtrans3 qrot qvibhcollision stickingfrequency coefficient

    largest possible rate of adsorption: mobility and free rotation in the precursor state !

  • Adsorption

    direct: immobile transition statelow sticking probability:

  • Application to

    Surface Reactions:

    Desorption

  • Desorption of Atoms and MoleculesAdsorbed Transition Desorbed Preexponential

    state state state factor

    mobile

    immobile

    1015 s-1

    1013 s-1

    mobile 1014-17 s-1

    immobile 1013 s-1

  • Temperature Programmed Desorption

    Temperature

    Controller

    QuadrupoleMass Analyzer

    Ultra High Vacuum

    ToPumps

    Thermocouple

    Heatingwires

    Single Crystal

    Temperature

    Rate

    of des

    orpt

    ion

  • 300 400 500 600

    CO

    0 .04 ML0 .08 ML0 .11 ML0 .17 ML0 .25 ML0 .33 ML0 .43 ML0 .47 ML

    0 .62 ML0 .59 ML

    0 .68 ML0 .70 ML0 .77 ML0 .80 ML

    0 .82 ML

    CO/Rh(100)

    Ta ds

  • Preexponential Factorsfor Desorption at Low Coverages

    CO Co(0001) 28 kcal/mol 1015 s-1

    CO Ni(111) 31 1015

    37 1017

    30 1015

    CO Ni(100) 31 1014

    CO Cu(100) 16 1014

    CO Ru(0001) 38 1016

    CO Rh(111) 32 1014

    CO Pd(111) 34 1014

    CO 35 1015

    CO Pd(100) 38 1016

    CO Pd(211) 35 1014

    CO Ir(110) 37 1013

    CO Pt(111) 32 1014

    from V.P. Zhdanov, Elementary Physicochemical Processes at Surfaces,Plenum, New York, 1991

  • Ammonia on Rh(111): Peculiar TPD patterns

    Rh atom

    NH3

    Rh (111) - (2x2) NH3

    LEED of Rh (111) + 0.25 ML NH3 NH 3

    Des

    orpt

    ion

    Rat

    e [a

    .u.]

    200 300 400 500100Temperature [K]

    Lateral Interactions?Preexponential Factor?

    (2x2) NH3

    R. M. van Hardeveld, R.A. van Santen and J.W. Niemantsverdriet Surface Sci. 369 (1996) 23

  • NH3 on Rhodium, TPD and Calculations

    NH3 on coverage Eads (kJ/mol)TPD Calculated

    Rh(111) 0 81.53.00.11 820.25 70

    Rh(100) 0 90.04.00.11 910.25 81

    F. Frechard, R.A. van Santen, A. Siokou, J.W. Niemantsverdriet and J. HafnerJ. Chem. Phys., 111 (1999) 8124

    Lateral Interactions cannot explain the large shift in TPD !

    Better explanation: mobile adsorption state, which becomes hindered at higher coverage

  • Dissociation:

    The CO molecule dissociates in the transition state:

    optimal overlap between d- and 2*-orbitals

    De Koster and Van Santen

  • Dissociation of Adsorbed Molecules

    O2 Ag(110) 7.8 kcal/mol 1.7 109 s-1

    Ag(111) 8.3 1.7 107

    O2 Pt(111) 2.5 9.0 1011

    N2 Fe(111) 4.3 7.0 107

    C2H6 Pt(111) 16.4 8.0 109

    C2H2 Pt(111) 13.2 3.0 1012

    CH4 Rh film 11 2. 1010

    from C T Campbell, Y K Sun and W H Weinberg, Chem. Phys. Lett. 179 (1991) 53

    Dissociation proceeds through tight transition stateswith prefactors smaller than for desorption

  • Application to

    Surface Reactions:

    CO Oxidation

    LH or ER?

  • CO oxidation (surface-mediated)

    +

    adsorption reaction desorption

    CO

    O2

    catalyst

    CO2

    E

    adsorption reaction desorption

    reaction coordinate

  • Eley - Rideal Mechanismdirect reaction between gas phase

    and adsorbed species

    How likely is an E-R event ???

  • Eley-Rideal orLangmuir-Hinshelwood

    CO + Oads = CO2

    CO + Oads

    CO2COads + Oads CO2,ads

    CO + 1/2 O2

    E

    reaction coordinate

    - 42.5

    - 74.1

    26.8

    - 73.3- 67.9

    0

    on Rhodium (111)

    kcal/mol

    -6

    +

    in the most favorable case for ER (Eact = 0): kER / kLH = 7 x 10W H Weinberg, in Dynamics of Gas-Surface Interactions, (C.T. Rettner and M.N.R. Ashfold, eds.) Royal Society of Chemistry, Cambridge,1991

  • ammonia

    synthesi

    s

    Langmu

    ir

    Hinshelw

    oodCom

    putation

    al

    chemistry

    Berzeliu

    s

    Equilibr

    ium

    hermody

    namics

    1800 1900 2000

    TST

    Know

    ledge

    Fundamental & Applied CatalysisHow much do we know?

    IR

    Surface

    Science

    T

  • Schuit Institute of Catalysis

    TPD-TPSIMS-HREELSMarco Hopstaken (now Philips)Martijn van Hardeveld (now Shell)Herman Borg (now Philips)Wouter van Gennip (now Philips)Davy NieskensSander van Bavel

    Acknowledgements

    Collaborations

    TU/e:Prof Rutger van SantenProf Peter HilbersDr Johan Lukkien

    Univ TarragonaProf Josep Ricart

    DFT CalculationsDr Daniel CurullaPaco Ample (Univ Tarragona)Tracy Bromfield (Sasol)

    FundingNWO, NCF, Spanish Ministerio de EduacionCatalan GovernmentEindhoven University of Technology

    Concepts of Modern Catalysis and Kinetics I. Chorkendorff & J.W. NiemantsverdrietCopyright 2003 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 3-527-30574-2Price: 69 Euro

    Langmuir - Hinshelwood KineticsPartition Function:Partition Function:Partition Function:All MoleculesPartition Function:CO oxidation (surface-mediated)