70
1 Electronic Supplementary Information A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da Jiang, Feng Li, Guoquan Liu, Yang Yang and Fanyang Mo * Contents 1. General information ..............................................................................2 2. Preparation of substrates ......................................................................4 2.1 Preparation of diazonium salt (1a-1x)..........................................................4 2.2 Preparation of diazonium salt 5 ..................................................................7 2.3 Preparation of amine (S-1) ...........................................................................8 3. Experimental procedures and characterization data ..........................11 3.1 Conditions optimizing for chlorination .....................................................11 3.2 Electrochemical Sandmeyer reaction of diazonium salts. ........................13 3.3 Electrochemical Sandmeyer reaction of in situ formed diazonium salt ..22 3.4 Bromination and iodination of 15 mmol scale ..........................................26 4. Mechanism study experiments ............................................................26 4.1 Electrochemical Clock reaction .................................................................27 4.2 Electrochemical reaction with TEMPO......................................................27 4.3 Electrochemical reaction with TEMPO and NBS.......................................28 4.4 Cyclic voltammetry (CV) experiments .......................................................28 5. EPR experiments and data ...................................................................32 5.1 Time-dependent 2D EPR profile of reaction a-d .......................................32 5.2 Simulations .................................................................................................33 5.3 HRMS of compound 8.................................................................................34 6. NMR charts ...........................................................................................35 7. Reference ..............................................................................................68 Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

1

Electronic Supplementary Information

A General Electrochemical Strategy for Sandmeyer

Reaction

Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da Jiang, Feng Li, Guoquan Liu, Yang Yang and Fanyang Mo*

Contents1. General information ..............................................................................22. Preparation of substrates ......................................................................4

2.1 Preparation of diazonium salt (1a-1x)..........................................................42.2 Preparation of diazonium salt 5 ..................................................................72.3 Preparation of amine (S-1) ...........................................................................8

3. Experimental procedures and characterization data ..........................113.1 Conditions optimizing for chlorination.....................................................113.2 Electrochemical Sandmeyer reaction of diazonium salts. ........................133.3 Electrochemical Sandmeyer reaction of in situ formed diazonium salt ..223.4 Bromination and iodination of 15 mmol scale ..........................................26

4. Mechanism study experiments............................................................264.1 Electrochemical Clock reaction .................................................................274.2 Electrochemical reaction with TEMPO......................................................274.3 Electrochemical reaction with TEMPO and NBS.......................................284.4 Cyclic voltammetry (CV) experiments.......................................................28

5. EPR experiments and data ...................................................................325.1 Time-dependent 2D EPR profile of reaction a-d .......................................325.2 Simulations .................................................................................................335.3 HRMS of compound 8.................................................................................34

6. NMR charts ...........................................................................................357. Reference..............................................................................................68

Electronic Supplementary Material (ESI) for Chemical Science.This journal is © The Royal Society of Chemistry 2018

Page 2: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

2

1. General information

The electrodes were purchased from AIDAHENGSHENG, Tianjin. Potentiostats

(ITECH IT6720) were purchased on JD.COM. The IKA ElectraSyn 2.0 was

purchased from IKA China agent. Solvents were purchased from TONGGUANG

CHEMICAL, Beijing or BEIJING CHEMICAL, in GR (or CCER). Purification of

products was conducted by column chromatography on silica gel (200-300

mesh, for some cases 300-400 mesh were used, from Qingdao, China). NMR

spectra were measured on a Bruker ARX400 (1H at 400 MHz, 13C at 101 MHz)

magnetic resonance spectrometer. Chemical shifts (δ) are reported in ppm

using tetramethylsilane as internal standard (s = singlet, d = doublet, t = triplet,

q = quartet, dd = doublet of doublets, m = multiplet), and coupling constants (J)

were reported in Hertz (Hz). GC-MS or FID data were measured using the

Agilent Technologies 7890B GC and the Agilent Technologies 5977B MSD. The

FID yields were all based on standard curves with 5 points and minimum 0.996

R2 value (or 4 points and minimum 0.997 R2 value). The CV experiments were

performed using electrochemical analyzer CHI627E (manufactured by Shanghai

Chenhua Apparatus Company). In situ EPR experiments were conducted using

Bruker Elexsys E580 Spectrometer.

Figure S1. Pt mesh electrodes (Photographed by Fanyang Mo)

Figure S2. The potentiostat (Photographed by Fanyang Mo)

Page 3: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

3

Figure S3. IKA ElectraSyn 2.0 (Photographed by Fanyang Mo)

Page 4: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

4

2. Preparation of substrates

2.1 Preparation of diazonium salt (1a-1x)

+ NaNO2 + HBF4

1.0 equiv 2.0 equiv

H2O, 0 oC, 40 minR R

NH2 N2BF4

S-1 1

The diazonium salts (1) were prepared according to literature procedure1.

Appropriate arylamine (S-1, 25 mmol) was dissolved in water (10 mL) and

hydrofluoroboric acid (48% w/w in water, 10.5 mL, about 2.0 equiv). After the

reaction mixture was cooled to 0 oC, sodium nitrile solution (1.73 g, 25 mmol in

6 mL water) was added dropwise. The reaction mixture was stirred at 0 oC for

40 min. The resulting precipitate was collected by filtration. The crude product

was dissolved into acetone (about 20 mL, for some low solubility product, more

acetone was used), and the solution was gently heated, and then diethyl ether

was added until the recrystallized product precipitated completely. The

diazonium salt 1 was collected by filtration, washed several times by cold

diethyl ether and dried under vacuum.

4-ethoxycarbonylbenzenediazonium tetrafluoroborate (1a) 4.56 g, 69%

yield. Pale-yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.80 (d, J = 8.9 Hz,

2H), 8.44 (d, J = 8.9 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H).2

3-ethoxycarbonylbenzenediazonium tetrafluoroborate (1b) 2.03 g, 51%

yield (15 mmol of arylamine was used). White solid. 1H NMR (400 MHz, DMSO-

d6) δ 9.27 (t, J = 1.9 Hz, 1H), 8.98 – 8.80 (m, 1H), 8.70 (dt, J = 8.1, 1.4 Hz, 1H), 8.13

(t, J = 8.1 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H).3

2-ethoxycarbonylbenzenediazonium tetrafluoroborate (1c) 5.08 g, 64%

yield (30 mmol of arylamine was used). White solid. 1H NMR (400 MHz,

DMSO-d6) δ 8.98 – 8.91 (m, 1H), 8.48 – 8.34 (m, 2H), 8.30 – 8.22 (m, 1H), 4.50 (q,

J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H).4

Page 5: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

5

4-nitrobenzenediazonium tetrafluoroborate (1d) 3.39 g, 57% yield. Gray

solid. 1H NMR (400 MHz, DMSO-d6) δ 8.93 (d, J = 9.3 Hz, 2H), 8.72 (d, J = 9.2

Hz, 2H).5

3-nitrobenzenediazonium tetrafluoroborate (1e) 4.32 g, 73% yield. White

solid. 1H NMR (400 MHz, DMSO-d6): δ 9.62 (t, J = 2.1 Hz, 1H), 9.01 (dddd, J =

10.9, 8.5, 2.2, 1.0 Hz, 2H), 8.24 (t, J = 8.4 Hz, 1H).5

2-nitrobenzenediazonium tetrafluoroborate (1f) 1.57 g, 27% yield. White

solid. 1H NMR (400 MHz, DMSO-d6): δ 9.10 (dd, J = 8.1, 1.4 Hz, 1H), 8.79 (dd, J =

8.3, 1.2 Hz, 1H), 8.53 (td, J = 8.0, 1.4 Hz, 1H), 8.41 (td, J = 7.9, 1.2 Hz, 1H).6

4-methyl-3-nitrobenzenediazonium tetrafluoroborate (1g) 2.20 g, 59%

yield (15 mmol of arylamine was used). White solid. 1H NMR (400 MHz, CD3CN)

δ 9.11 (d, J = 2.2 Hz, 1H), 8.60 (dd, J = 8.7, 2.3 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H),

2.82 (s, 3H).5

4-cyanobenzenediazonium tetrafluoroborate (1h) 4.50 g, 69% yield (30

mmol of arylamine). White solid. 1H NMR (400 MHz, DMSO-d6): δ 8.84 (d, J =

8.9 Hz, 2H), 8.46 (d, J = 8.9 Hz, 2H).7

2-cyanobenzenediazonium tetrafluoroborate (1i) 1.32 g, 24% yield. White

solid. 1H NMR (400 MHz, DMSO-d6) δ 9.00 (dd, J = 8.3, 1.1 Hz, 1H), 8.60 (dd, J =

7.8, 1.3 Hz, 1H), 8.46 (td, J = 7.8, 1.3 Hz, 1H), 8.32 (td, J = 8.1, 1.3 Hz, 1H).8

4-chlorobenzenediazonium tetrafluoroborate (1j) 4.14 g, 77% yield. White

solid. 1H NMR (400 MHz, DMSO-d6) δ 8.69 (d, J = 9.1 Hz, 2H), 8.12 (d, J = 9.1 Hz,

2H).5

4-bromobenzenediazonium tetrafluoroborate (1k) 5.18 g, 77% yield. White

solid. 1H NMR (400 MHz, DMSO-d6) δ 8.58 (d, J = 9.1 Hz, 2H), 8.26 (d, J = 9.1 Hz,

2H).5

Page 6: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

6

4-iodobenzenediazonium tetrafluoroborate (1l) 4.74 g, 60% yield. Pale-

yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.43 (d, J = 8.9 Hz, 2H), 8.35 (d, J

= 8.9 Hz, 2H).5

4-trifluoromethylbenzenediazonium tetrafluoroborate (1m) 4.17 g, 64%

yield. White solid. 1H NMR (400 MHz, DMSO-d6) δ 8.91 (d, J = 8.6 Hz, 2H), 8.42

(d, J = 8.8 Hz, 2H).9

4-mesylbenzenediazonium tetrafluoroborate (1n) 3.94 g, 58% yield. Pale-

pink solid. 1H NMR (400 MHz, DMSO-d6): δ 8.92 (d, J = 8.9 Hz, 2H), 8.51 (d, J =

8.8 Hz, 2H), 3.47 (s, 3H).

4-methylbenzenediazonium tetrafluoroborate (1o) 4.60 g, 74% yield (30

mmol of arylamine). White solid. 1H NMR (400 MHz, DMSO-d6): δ 8.55 (d, J =

8.7 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 2.50 (s, 3H).10

3-methylbenzenediazonium tetrafluoroborate (1p) 3.09 g, 50% yield (30

mmol of arylamine). Pale-pink solid. 1H NMR (400 MHz, MeCN-d3) δ 8.38 – 8.23

(m, 2H), 8.15 – 7.95 (m, 1H), 7.92 – 7.69 (m, 1H), 2.52 (s, 3H).11

2-methylbenzenediazonium tetrafluoroborate (1q) 2.78 g, 45% yield (30

mmol of arylamine). White solid. 1H NMR (400 MHz, MeCN-d3) δ 8.53 – 8.29

(m, 1H), 8.21 – 7.94 (m, 1H), 7.90 – 7.65 (m, 2H), 2.72 (s, 3H).11

4-methoxybenzenediazonium tetrafluoroborate (1r) 4.66 g, 77% yield (27.4

mmol of arylamine). Pale-gray solid. 1H NMR (400 MHz, DMSO-d6): δ 8.62 (d, J

= 9.4 Hz, 2H), 7.49 (d, J = 9.4 Hz, 2H), 4.04 (s, 3H).10

Benzenediazonium tetrafluoroborate (1s) 4.27 g, 74% yield (30 mmol of

arylamine). White solid. 1H NMR (400 MHz, DMSO-d6): δ 8.79 – 8.51 (m, 2H),

8.35 – 8.17 (m, 1H), 8.12 – 7.91 (m, 2H).5

4-fluorobenzenediazonium tetrafluoroborate (1t) 3.45 g, 66% yield. White

solid. 1H NMR (400 MHz, DMSO-d6) δ 9.06 – 8.62 (m, 2H), 8.07 – 7.70 (m, 2H).5

Page 7: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

7

4-acetylbenzenediazonium tetrafluoroborate (1u) 3.49 g, 60% yield. White

solid. 1H NMR (400 MHz, DMSO-d6) δ 8.80 (d, J = 8.7 Hz, 2H), 8.41 (d, J = 8.8

Hz, 2H), 2.71 (s, 3H).5

2-acetylbenzenediazonium tetrafluoroborate (1v) 2.78 g, 48% yield. White

solid. 1H NMR (400 MHz, DMSO-d6) δ 8.94 (dd, J = 8.2, 1.2 Hz, 1H), 8.59 (dd, J =

7.9, 1.2 Hz, 1H), 8.41 (td, J = 7.7, 1.3 Hz, 1H), 8.23 (td, J = 7.9, 1.2 Hz, 1H), 2.77 (s,

3H).5

2-methyl-1,3-dioxoisoindoline-5-diazonium tetrafluoroborate (1w) 0.46 g,

7% yield. White solid. 1H NMR (400 MHz, DMSO-d6) δ 9.11 (d, J = 1.7 Hz, 1H),

9.05 (dd, J = 8.1, 1.8 Hz, 1H), 8.41 (d, J = 8.1 Hz, 1H), 3.11 (s, 3H).

Quinoline-8-diazonium tetrafluoroborate (1x) 2.00 g, 83% yield (10 mmol of

arylamine, 2.0 equiv of tBuONO was used, MeOH/water 1:1 was used as solvent).

Brown solid. 1H NMR (400 MHz, DMSO-d6) δ 9.51 – 9.29 (m, 2H), 9.01 (dd, J =

8.3, 1.4 Hz, 1H), 8.91 (dd, J = 8.4, 1.6 Hz, 1H), 8.18 (t, J = 8.1 Hz, 1H), 8.05 (dd, J =

8.4, 4.4 Hz, 1H).12

2.2 Preparation of diazonium salt 5

NO2

OH

Br

K2CO3, Acetone

S-2

NO2

OS-3

Fe, conc, HClEtOH/NH4Cl (aq)

NH2

OS-4

NaNO2, HBF4

H2O, 0 oC, 40 min

N2BF4

O5

The amine S-4 was prepared according to literature procedure.13 In a 250 mL

dried flask, 2-nitrophenol (S-2, 4.17 g, 30 mmol) and K2CO3 (12.44 g, 90 mmol,

3.0 equiv) were added in acetone (60 mL), then allyl bromide (4.36 g, 36 mmol,

3.12 mL, 1.2 equiv) were added and the reaction mixture was stirred overnight at

reflux temperature. Upon completion, the reaction mixture was cooled to room

temperature, diluted with water and extracted with EtOAc. The combined

Page 8: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

8

organic layers were dried over Na2SO4 and the solvent was removed under

reduced pressure. After that, the crude product S-3 and Fe powder (8.38 g, 150

mmol, 5.0 equiv) were suspended in a 1:1 mixture of EtOH/NH4Cl(aq).

Afterwards, a few drops of HCl (conc.) were added and the solution was stirred

at reflux temperature for 5 h. Then the solution was filtered and extracted with

EtOAc. The combined organic layers were dried over Na2SO4. The solvent was

removed under reduced pressure and the residue was purified by column

chromatography (silica gel) using a 30:1 mixture of PE/EA 20:1 as an eluent to

provide S-4 as a yellow oil (4.06 g, 91% yield from S-2). 1H NMR (400 MHz,

CDCl3): δ 6.95 – 6.56 (m, 4H), 6.21 – 5.93 (m, 1H), 5.41 (dq, J = 17.2, 1.6 Hz, 1H),

5.28 (dq, J = 10.5, 1.5 Hz, 1H), 4.57 (d, J = 5.3 Hz, 2H), 3.81 (brs, 2H).

After that, the diazonium salt 5 was prepared according to the procedure in

Section 2.1. Yield: 2.44 g, 76% (from 13 mmol of S-4), white solid. 1H NMR (400

MHz, DMSO-d6) δ 8.53 (dd, J = 8.4, 1.7 Hz, 1H), 8.31 – 8.13 (m, 1H), 7.67 (dd, J =

8.9, 0.8 Hz, 1H), 7.54 – 7.37 (m, 1H), 6.21 – 6.01 (m, 1H), 5.62 – 5.48 (m, 1H), 5.42

(dq, J = 10.6, 1.4 Hz, 1H), 5.07 (dt, J = 5.3, 1.6 Hz, 2H).5

2.3 Preparation of amine (S-1)

Preparation of S-1y

+

NO2

O

HO DCC (1.5 equiv), DCM/DMFrt, overnight

H2, Pd/C (5%)

O

HN

NO2

O

N

S-5ad, 1.2 equiv 1.0 equiv

O

S-6ad

NH2

O

NO

S-1ad

MeOH

In a 250 mL dried flask, 4-nitrobenzoic acid (20 mmol, 3.34 g) and morpholine

(2.09 g, 24 mmol, 2.1 mL) were dissolved in DCM (80 mL) and DMF (4 mL).

DCC (30 mmol, 6.19 g) was added portion-wise. The reaction mixture was

Page 9: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

9

stirred overnight at room temperature. The solvent was removed and the

residue was purified by column chromatography (silica gel) using PE/EA 3:1 ~ 1:1

as eluent to give the product S-6ad as a yellow solid. Yield: 2.38 g (50%). Then,

in a 200 mL dried flask, the product S-6ad (10 mmol) was dissolved in 60 mL

methanol, following with Pd/C (5%, 0.5 g) was added. The flask was purged and

refilled with H2 in balloon pressure, and the reaction mixture was stirred

overnight at room temperature. Upon completion, the catalyst was removed by

filtration, and the solvent was then removed under reduced pressure. The

residue was purified by column chromatography (silica gel) using PE/EA 3:1 ~

0:1 as eluent to give the desired product S-1ad as a yellow solid. Yield: 2.04 g (99%

from S-6ad). 1H NMR (400 MHz, CDCl3): δ 7.47 – 7.07 (m, 2H, with CDCl3),

6.66 (d, J = 8.5 Hz, 2H), 3.89 (s, 2H), 3.78 – 3.26 (m, 8H).14

Preparation of S-1ac and S-1af

R XH

S-5X = N or O

+NO2

O

Cl Et3NDCM

NO2

O

RX

S-6

H2, Pd/C (5%)

EtOAc/MeOH

O

O

O

NH2

S-1af

NH2

O

RX

S-1

HN

O

NH2

EtOOC

S-1ac

In a 250 mL dried flask, S-5ac (20 mmol of glycine ethyl ester hydrochloride,

2.79 g) or S-5af (10 mmol of Vitamin E, 4.31 g) and Et3N (2.2 equiv for S-5ac or

1.1 equiv for S-5af) were dissolved in DCM (16 mL). Then, a solution of 4-

nitrobenzoyl chloride (1.0 equiv) in DCM (100 mL) was added dropwise at 0 oC.

After that, the reaction mixture was stirred overnight at reflux temperature.

The solvent was removed under reduced pressure to give S-6 as a crude product.

Then, in a 200 mL flask, the crude product was dissolved in 60 mL ethyl acetate

and 60 mL methanol, following with Pd/C (5%, 1 g) was added. The flask was

Page 10: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

10

purged and refilled with H2 in balloon pressure, and the reaction mixture was

stirred overnight at room temperature. Upon completion, the reaction mixture

was filtered to remove the catalyst, and the solvent was removed under reduced

pressure. The residue was purified by column chromatography (silica gel).

S-1ac: using DCM/MeOH 40:1 as eluent. Yield: 4.23 g, 95% from S-5ac, white

solid. 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.7 Hz, 2H), 6.67 (d, J = 8.6 Hz,

2H), 6.49 (s, 1H), 4.25 (q, J = 7.2 Hz, 2H), 4.21 (d, J = 4.9 Hz, 2H), 3.99 (s, 2H),

1.31 (t, J = 7.1 Hz, 3H).15

S-1af: using PE/EA 10:1 ~ PE/EA/Et3N 5:1:0.05 as eluent. Yield: 4.79 g, 87% from

S-5af (Vitamin E), white solid. 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.6 Hz,

2H), 6.71 (d, J = 8.7 Hz, 2H), 4.12 (d, J = 4.0 Hz, 2H), 2.61 (t, J = 6.8 Hz, 2H), 2.11

(s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.80 (tq, J = 13.1, 6.7 Hz, 2H), 1.62 – 1.01 (m, 24H),

0.99 – 0.60 (m, 12H).16

Preparation of S-1ae

1) NaH (1.5 equiv), THF0 oC, 5 min, then rt, 1 h2) TsCl (1.5 equiv), rt, 5 h

H2, Pd/C (5%)

MeOH/DMFNH

NO2

N

NO2

TsS-7ae S-6ae

N

NH2

TsS-1ae

The amine S-1ae was prepared according to literature procedure.17 5-Nitro-1H-

indole (S-7ae) (1.62 g, 10.0 mmol, 1.0 equiv) dissolved in THF (10 mL) was

slowly added to a suspension of NaH (60% dispersion in mineral oil, 0.60 g,

15.00 mmol, 1.5 equiv) in THF (20 mL) at 0 oC over a period of 5 min. Then the

reaction was allowed to warm up to room temperature and stirred for an

additional 1 h. Tosyl chloride (2.86 g, 15.0 mmol, 1.5 equiv) dissolved in THF (10

mL) was added slowly. The reaction mixture was stirred for an additional 5 h at

room temperature, after which it was poured into 5% NaHCO3 aq. (100 mL) and

extracted with EtOAc (3 × 50 mL). The combined organic layers were washed

with brine, dried over anhydrous Na2SO4 and concentrated in vacuo. The

Page 11: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

11

residue was crudely purified by column chromatography (silica gel) using

PE/EA 10:1 as eluent.

After that, under nitrogen atmosphere, the crude product S-6ae was dissolved

in MeOH (55 mL) and DMF (45 mL), following with Pd/C (5%, 0.5 g) was added.

The flask was purged and refilled with H2 in balloon pressure, and the reaction

mixture was stirred overnight at room temperature. After the reaction was

complete, the catalyst was removed by filtration. The reaction mixture was

poured into water (30 mL) and extracted with EtOAc (3 × 30 mL). The

combined organic phase was washed with water (3 × 30 mL), washed with brine,

dried over anhydrous Na2SO4, and concentrated in vacuo. The amine S-1ae was

purified by column chromatography (silica gel) using PE/EA 3:1 ~ 1:1 as eluent.

Yield: 1.72 g (60%), yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 8.7 Hz,

1H), 7.70 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 3.6 Hz, 1H), 7.18 (d, J = 8.1 Hz, 2H), 6.76

(d, J = 2.3 Hz, 1H), 6.69 (dd, J = 8.8, 2.3 Hz, 1H), 6.47 (dd, J = 3.7, 0.8 Hz, 1H),

3.60 (s, 2H), 2.32 (s, 3H).17

Page 12: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

12

3. Experimental procedures and characterization data

3.1 Conditions optimizing for chlorination

This part shows some of the experimental data of chlorination. If not noted, the

experiments were conducted by adopting a procedure as described in Section

3.2. GC-FID yields were given.Table S1. Conditions optimizing for chlorination using metal chloride.

R

N2BF4

+

1, 0.3 mmol

LiClO4 (0.5 mmol), 20 oC

MeCN, I, 3 h(+) Pt, (-) as indicated

R

Cl[Cl]

Entry R [Cl] Equiv

I (mA) Cathode Additional

conditionsYield (FID)

1 CN LiCl 3.0 10 Graphite ~ 20%

2 CN CaCl2 3.0 10 Graphite Trace

3 Br CaCl2 3.0 10 Stainless steel (SS) ND

4 Me CaCl2 3.0 10 SS ND

5 Me CaCl2 3.0 10 Pt-plate + NCS (1.0 equiv) ND

6 Me CaCl2 5.0 10 Ni foam + 1M HCl (0.15 mL) 7.6%

7 Me MgCl2

5.0 10 Ni foam ND

8 Me LiCl 6.0 10 Ni foam 41.5%

9 Br LiCl 6.0 10 Ni foam 9.2%

10 Me LiCl 6.0 15 Pt-plate 0.5 mmol 45.1%

11 OMe LiCl 6.0 10 Ni foam 26.8%

12 Me LiCl 6.0 15 Ni foam (old) 19.0%

13 Me LiCl 6.0 15 Ni foam 47.2%

14 OMe LiCl 6.0 15 Ni foam ND

15 Me LiCl 6.0 20 Ni foam 48.9%

16 Br LiCl 6.0 20 Ni foam 36.8%

17 Me LiCl 6.0 20 Ni foam DMF as the solvent Trace

18 Me LiCl 6.0 20 Ni foam MeOH as the solvent 9.1%

19 Me LiCl 6.0 20 Ni foam Acetone as the solvent 9.0%

Page 13: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

13

Chlorination using NCS, TCCA, etc. For reactions conducted at 35 oC or higher,

they were proceed in a 20 mL glass tube, 5 mL solvent was used. The tube was

closed during the reaction, and an oil bath was used to control the reaction

temperature.Table S2. Chlorination using NCS, TCCA, etc.

+10 mA, 20 oC, 3 h

TCCABu4NClO4, MeOH/DMF 5:1

R

N2BF4

1, 0.3 mmolR

Cl

4

Entry R TCCA Equiv Yield (FID)

1 COOEt 1.0 19.9%2 COOEt 3.0 16.3%3 Me 1.0 15.9%4 Me 2.0 18.0%

N2BF4+

Bu4NClO4, MeOH/DMF

EtOOC1a, 0.3 mmol

NCSI, 20 oC, 3 h

Cl

EtOOC4a

Entry NCS Equiv I (mA) Yield (FID)

5 3.0 10 15.7%6 5.0 10 15.7%7 3.0 15 16.3%

+ NCSMeOH/DMF 5:1, 15 mA, 3 h

3.0 eq.Bu4NClO4 (0.4 mmol), T

1o, 0.5 mmol

N2BF4 Cl

4o

Entry Temperature (oC)

Yield (FID)

8 50 40.4%9 35 41.0%10 35 (10 mA, 2 h) 15.3%11 20 25.6%12 20 (2.0 equiv NCS) 24.6%

Chlorination using CCl4 (as solvent). Conditions: 1 (0.3 mmol), 10 mA, 3 h. For

cases running at 20 oC, 3 mL solvent and Bu4NClO4 (85.5 mg, 0.25 mmol) were

used. For other cases, 5 mL solvent and Bu4NClO4 (171 mg, 0.5 mmol) were used

and the reaction tube was closed.

Page 14: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

14

Table S3. Chlorination using CCl4 (as solvent).

R

N2BF4Solvent (CCl4), Bu4NClO4

10 mA, T, 3 h R

Cl

1, 0.3 mmol 4

Entry R Solvent Temperature (oC)

Yield (FID)

1 COOEt CCl4 (non-conducting) 20 02 COOEt MeOH/CCl4/DMF 3:2:1 20 31.5%3 COOEt CCl4/DMF 5:1 20 42.1%4 COOEt CCl4/DMF 5:1 50 57.6%5 COOEt CCl4/DMF 5:1 75 39.7%6 Br CCl4/DMF 5:1 20 43.6%7 Br CCl4/DMF 5:1 50 41.4%8 Br CCl4/DMF 5:1 75 37.4%9 Me MeOH/CCl4/DMF 3:2:1 20 39.1%10 Me CCl4/DMF 5:1 20 45.3%11 Me CCl4/DMF 5:1 50 48.3%12 OMe MeOH/CCl4/DMF 3:2:1 20 49.7%13 OMe CCl4/DMF 5:1 20 13.9%

3.2 Electrochemical Sandmeyer reaction of diazonium salts.

N2BF4+

1

20 oC, 10 mA, 3 h(-)Pt/(+)Pt

undivided cell, in air

X[X]R R

2, 3, 4

A

reduction

A

reduction

Bu4NClO4 (0.83 equiv)MeOH/DMF 5:1 (0.15 M)

In a 10 mL tube equipped with a stir bar, diazonium salt (1, 0.3 mmol),

halogenation reagent and Bu4NClO4 (0.25 mmol, 85.5 mg) were dissolved in a

mixed solvent of MeOH (2.5 mL) and DMF (0.5 mL), following with two Pt net

electrodes were immerged. The reaction mixture was stirred at 20 oC, with

constant current was continuous given for 3 h. The slightly modified conditions

were given in each case.

Upon completion, for cases given the isolated yields, the reaction mixture was

poured into diethyl ether (60 mL), washed with water two times (20 mL * 2).

The combined water phase was extracted with diethyl ether for another time,

Page 15: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

15

and the secondary organic phase was washed with water again. The combined

organic phase was dried over Na2SO4, then the solvent was removed and the

desired product was purified by column chromatography (silica gel).

For other cases, the salt in reaction mixture was removed by a small silica gel

chromatography or extraction with diethyl ether and water. Then, internal

standard substance was added (about 28 mg of n-decane for FID, or about 27

mg of 4-(Trifluoromethoxy)anisole for 19F NMR) and the yield was measured by

GC-FID or 19F NMR directly.

50.5 mg, 74% isolated yield. Colorless liquid. 1H NMR (400

MHz, CDCl3): δ 7.91 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 8.6 Hz,

2H), 4.37 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). 13C NMR

(101 MHz, CDCl3) δ 165.89, 131.65, 131.09, 129.39, 127.90, 14.31. Rf = 0.6 (PE/EA

10:1), using PE/EA 50:1 ~ 30:1 as eluent.18

29.0 mg, 42% isolated yield. Colorless liquid. 1H NMR (400

MHz, CDCl3): 8.18 (t, J = 1.8 Hz, 1H), 7.98 (dt, J = 7.8, 1.3 Hz,

1H), 7.72 – 7.60 (m, 1H), 7.32 (t, J = 7.9 Hz, 1H), 4.38 (q, J = 7.1

Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 165.27, 135.75, 132.55,

132.43, 129.90, 128.13, 122.41, 61.41, 14.29. Rf = 0.65 (PE/EA 10:1), using PE/EA

30:1 as eluent.19

20.6 mg, 30% isolated yield. Colorless liquid. 1H NMR (400 MHz,

CDCl3): δ 7.83 – 7.72 (m, 1H), 7.71 – 7.58 (m, 1H), 7.41 – 7.27 (m,

2H), 4.40 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). 13C NMR (101

MHz, CDCl3) δ 166.27, 134.27, 132.60, 132.38, 131.16, 127.12, 121.54, 61.65, 14.22. Rf =

0.65 (PE/EA 10:1), using PE/EA 50:1 ~ 30:1 as eluent.20

MeOH/DMF 20:1 was used as the solvent, 1 h. 50.6 mg, 84%

isolated yield. White solid. 1H NMR (400 MHz, CDCl3): δ 8.11 (d,

J = 9.0 Hz, 2H), 7.70 (d, J = 9.0 Hz, 2H). 13C NMR (101 MHz,

CDCl3) δ 132.63, 125.02. Rf = 0.55 (PE/EA 10:1), using PE/EA 40:1 ~ 30:1 as

EtOOC

Br

2a

O2N

Br

2d

Br

2cCOOEt

Br

2b

EtOOC

Page 16: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

16

eluent.21

MeOH/DMF 20:1 was used as the solvent. 32.9 mg, 54%

isolated yield. White solid. 1H NMR (400 MHz, CDCl3) δ 8.39 (t,

J = 2.1 Hz, 1H), 8.29 – 8.04 (m, 1H), 7.94 – 7.74 (m, 1H), 7.45 (t, J

= 8.1 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 148.79, 137.62, 130.62, 126.78, 122.88,

122.15. Rf = 0.6 (PE/EA 10:1), using PE/EA 100:1 ~ 35:1 as eluent.22

48.6 mg, 76% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3): δ 8.11 (d, J = 1.9 Hz, 1H), 7.62 (dd, J = 8.2, 2.1 Hz, 1H),

7.23 (d, J = 8.2 Hz, 1H), 2.56 (s, 3H). 13C NMR (101 MHz, CDCl3)

δ 149.59, 135.97, 134.11, 132.55, 127.56, 119.66, 20.09. Rf = 0.6 (PE/EA 10:1), using

PE/EA 30:1 as eluent.23

45.8 mg, 84% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3): δ 7.64 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H). 13C

NMR (101 MHz, CDCl3) δ 133.42, 132.65, 128.03, 118.07, 111.25. Rf =

0.55 (PE/EA 10:1), using PE/EA 30:1 as eluent.24

45.8 mg, 84% isolated yield. White solid. 1H NMR (400 MHz, CDCl3)

δ 7.84 – 7.57 (m, 2H), 7.57 – 7.34 (m, 2H). 13C NMR (101 MHz, CDCl3)

δ 134.34, 133.89, 133.22, 127.63, 125.36, 117.15, 115.91. Rf = 0.4 (PE/EA

10:1), using PE/EA 30:1 ~ 20:1 as eluent.25

MeOH/DMF 20:1 was used as the solvent, NBS (3.0 equiv) was

used. 29.6 mg, 52% isolated yield. Pale-yellow solid. 1H NMR

(400 MHz, CDCl3), δ 7.48 – 7.36 (m, 2H), 7.24 – 7.14 (m, 2H). 13C

NMR (101 MHz, CDCl3) δ 133.22, 132.77, 130.21, 120.27. Rf = 0.7 (PE), using PE as

eluent.26

MeOH/DMF 20:1 was used as the solvent, NBS (3.0 equiv) was

used. 57.4 mg, 81% isolated yield. White solid. 1H NMR (400

MHz, CDCl3), δ 7.36 (s, 4H). 13C NMR (101 MHz, CDCl3) δ 133.14,

121.06. Rf = 0.7 (PE), using PE as eluent.27

Br

2e

O2N

Br

2g

O2N

NC

Br

2h

Br

2iCN

Cl

Br

2j

Br

Br

2k

Page 17: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

17

MeOH/DMF 20:1 was used as the solvent, NBS (3.0 equiv) was

used. 57.8 mg, 68% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3), δ 7.64 – 7.46 (m, 2H), 7.25 – 7.17 (m, 2H). 13C NMR (101

MHz, CDCl3) δ 139.07, 133.46, 122.21, 92.05. Rf = 0.75 (PE), using PE

as eluent.28

60.1 mg, 85% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3): δ 7.82 (d, J = 8.6 Hz, 2H), 7.73 (d, J = 8.6 Hz, 2H),

3.06 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 139.55, 132.72,

129.04, 128.99, 44.54. Rf = 0.4 (PE/EA 3:1), using PE/EA 7:1 ~ 4:1 as eluent.29

72.3 mg, 87% isolated yield. Colorless liquid. 1H NMR (400

MHz, CDCl3) δ 7.92 – 7.64 (m, 4H), 4.37 (q, J = 7.1 Hz, 2H),

1.39 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 166.11,

137.66, 131.01, 129.97, 100.56, 61.24, 14.30. Rf = 0.6 (PE/EA 10:1). Using PE/EA 30:1

as eluent.30

71.8 mg, 87% isolated yield. Colorless liquid. 1H NMR (400

MHz, CDCl3) δ 8.37 (s, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.87 (d, J =

7.9 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H),

1.39 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 165.11, 141.63, 138.42, 132.39,

130.02, 128.73, 93.76, 61.39, 14.31. Rf = 0.65 (PE/EA 10:1). Using PE/EA 30:1 as

eluent.31

61.1 mg, 74% isolated yield. Colorless liquid. 1H NMR (400

MHz, CDCl3) δ 7.98 (dd, J = 7.9, 1.2 Hz, 1H), 7.79 (dd, J = 7.8,

1.7 Hz, 1H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.14 (td, J = 7.7, 1.7 Hz,

1H), 4.40 (q, J = 7.2 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ

166.63, 141.23, 135.51, 132.48, 130.82, 127.88, 93.97, 61.72, 14.23. Rf = 0.65 (PE/EA

10:1). Using PE/EA 30:1 as eluent.32

63.7 mg, 93% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3) δ 7.94 – 7.75 (m, 2H), 7.47 – 7.31 (m, 2H). 13C NMR (101

I

Br

2l

MeO2S

Br

2n

EtOOC

I

3a

NC

I

3h

I

3b

EtOOC

I

3cCOOEt

Page 18: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

18

MHz, CDCl3) δ 138.52, 133.17, 118.23, 111.76, 100.31. Rf = 0.5 (PE/EA 10:1), using

PE/EA 30:1 as eluent.30

52.1 mg, 76% isolated yield. White solid. 1H NMR (400 MHz, CDCl3)

δ 8.06 – 7.81 (m, 1H), 7.78 – 7.56 (m, 1H), 7.54 – 7.39 (m, 1H), 7.38 –

7.19 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 139.56, 134.28, 133.74,

128.33, 120.62, 119.34, 98.41. Rf = 0.45 (PE/EA 10:1), using PE/EA 30:1 ~ 20:1 as

eluent.33

42.9 mg, 60% isolated yield. White solid. 1H NMR δ 7.67 – 7.45 (m,

2H), 7.14 – 6.94 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 138.73,

134.22, 130.55, 91.19. Rf = 0.7 (PE), using PE/EA 1:0 ~ 50:1 as

eluent.34

51.4 mg, 61% isolated yield. White solid. 57.8 mg, 68% isolated

yield. White solid. 1H NMR (400 MHz, CDCl3), δ 7.64 – 7.46 (m,

2H), 7.25 – 7.17 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 139.07, 133.46,

122.21, 92.05. Rf = 0.75 (PE), using PE as eluent.28

55.7 mg, 56% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3) δ 7.40 (s, 4H). 13C NMR (101 MHz, CDCl3) δ 139.34, 93.41. Rf

= 0.75 (PE), using PE as eluent.35

53.6 mg, 63% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3) δ 7.94 (dd, J = 8.7, 2.1 Hz, 2H), 7.66 (dd, J = 8.7, 2.0 Hz,

2H), 3.05 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 140.19, 138.69,

128.79, 101.60, 77.36, 77.34, 77.05, 44.50. Rf = 0.4 (PE/EA 3:1), using PE/EA 7:1 ~

4:1 as eluent.36

64.4 mg, 87% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3): δ 7.83 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 2.57 (s,

3H). 13C NMR (101 MHz, CDCl3) δ 197.31, 137.91, 136.34, 129.73,

101.12, 26.51. Rf = 0.4 (PE/EA 10:1), using PE/EA 30:1 ~ 25:1 as eluent.37

I

3iCN

MeO2S

I

3n

I

Ac3u

I

3jCl

I

3k (2l)Br

I

3lI

Page 19: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

19

51.6 mg, 70% isolated yield. Colorless liquid. 1H NMR (400 MHz,

CDCl3) δ 7.94 (dd, J = 7.9, 1.1 Hz, 1H), 7.47 (dd, J = 7.7, 1.8 Hz, 1H),

7.41 (td, J = 7.5, 1.1 Hz, 1H), 7.13 (td, J = 7.6, 1.8 Hz, 1H), 2.62 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 201.82, 144.01, 140.89, 131.85, 128.35, 128.09, 90.99,

29.53. Rf = 0.45 (PE/EA 10:1), using PE/EA 30:1 ~ 20:1 as eluent.38

58.8 mg, 68% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3) δ 8.18 (d, J = 1.4 Hz, 1H), 8.07 (dd, J = 7.8, 1.4 Hz, 1H),

7.57 (d, J = 7.8 Hz, 1H), 3.18 (s, 3H). 13C NMR (101 MHz, CDCl3)

δ 167.86, 167.02, 142.87, 133.52, 132.33, 131.34, 124.48, 100.75, 24.11.

Rf = 0.4 (PE/EA 10:1), using PE/EA 30:1 ~ 25:1 as eluent.39

29.5 mg, 39% isolated yield. Pale-yellow solid. 1H NMR (400 MHz,

CDCl3) δ 9.10 – 8.80 (m, 1H), 8.46 – 8.18 (m, 1H), 8.14 – 7.94 (m, 1H),

7.88 – 7.67 (m, 1H), 7.51 – 7.34 (m, 1H), 7.27 – 7.04 (m, 1H). 13C NMR

(101 MHz, CDCl3) δ 151.45, 147.06, 140.06, 136.79, 128.83, 127.70, 121.94, 103.45. Rf

= 0.6 (PE/EA 3:1), using PE/EA 20:1 ~ 10:1 as eluent.40

MeCN was used as the solvent, 20 mA, Ni foam as the cathode.

36.2 mg, 64% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3): δ 7.89 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 3.06

(s, 3H). 13C NMR (101 MHz, CDCl3) δ 140.49, 139.04, 129.72,

128.93, 44.57. Rf = 0.5 (PE/EA 3:1), using PE/EA 6:1 ~ 4:1 as eluent.41

MS data for cases given GC-FID or NMR yields.

6x10

0

1

2

3

4

5

6

7

8

9200.8

154.8

74.9

142.8

170.7

62.9 91.850.8 128.8116.798.8 186.755.8 86.9 252.969.8 210.8 219.8178.9 280.9268.9194.7165.1

Counts vs. 质荷比 (m/z)45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300

Conditions for 2f: MeOH/DMF 20:1, 1 h. NBS (3.0 equiv) was used.

I

3vAc

N

O

O

I

3w

MeO2S

Cl

4n

Br

2f, m/z: 200.94 (100.0%),202.94 (97.3%), 201.95 (6.5%),

203.94 (6.3%)

NO2

NI

3x

Page 20: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

20

6x10

0

1

2

3

4

5

6

7

8

9110.9 189.8

74.9

95.884.950.9

60.9 154.8129.1105.8 142.2 163.7 176.6 221.9204.8 267.8231.7

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330

6x10

0

1

2

3

4

5

6

7

8

9144.8 223.8

204.7

74.8124.8

94.8

173.768.8 98.8118.850.8 80.762.8 106.8 154.7136.7 166.7 198.7 271.7184.7 289.7239.8 252.6

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

6x10

0

1

2

3

4

5

6

7

8

990.9

171.8

64.8

50.873.8

80.7 118.7 142.7105.8 129.8 154.7 203.7164.9 190.8180.7 280.9266.9

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330

Conditions for 2o: DMF, 4.5 h.6x10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 188.0

173.0

143.0

63.177.0 92.0

117.0 157.051.0 107.1 129.070.1 88.1 166.2 207.1 327.1279.7235.9180.3 261.9

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Conditions for 2r: DMF, 2 h.6x10

0

1

2

3

4

5

6

7

8

976.8 157.7

50.8

61.8 116.7 140.7129.7105.792.7 183.6 206.6164.6 280.8192.6 252.9

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Conditions for 2s: DMF.

Cl

Br

2j, m/z: 189.92 (100.0%),191.92 (97.3%), 193.91

(31.1%)

F3C

Br

2m, m/z: 223.94 (100.0%),225.94 (97.3%), 224.95(7.6%), 226.95 (7.4%)

Br

2o, m/z: 169.97 (100.0%),171.97 (97.3%), 170.98(7.6%), 172.97 (7.4%)

MeO

Br

2r, m/z: 185.97 (100.0%),187.97 (97.3%), 186.97(7.6%), 188.97 (7.4%)

Br

2s, m/z: 155.96 (100.0%),157.96 (97.3%), 156.96(6.5%), 158.96 (6.3%)

Page 21: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

21

5x10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

173.995.1

75.1

50.1

68.178.9

61.1142.988.0 116.9103.9 128.0 156.9 205.2 237.0196.7 327.9 346.3249.1

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Conditions for 2t: DMF.6x10

0

1

2

3

4

5

6

7

8

9248.8

202.775.8

218.7

190.7

91.8 126.763.8

232.7141.950.8 151.799.9 175.8164.7121.8 185.0 210.8 330.969.8 267.6 280.9132.7

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

Conditions for 3d: 2 h.6x10

0

1

2

3

4

5

6

7

8

9237.8

110.9

74.9

126.7

118.850.9 84.860.9 151.7 175.8 202.7138.7 163.7 267.5221.9186.0100.3 253.0232.3 330.6284.8

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

281.6

74.7

154.6

126.5

141.160.7 202.6175.6104.6 116.690.6 253.4163.6 311.5267.4232.0188.6 219.8 330.8 357.5

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

329.8

202.9

75.9126.850.0

164.9151.860.9 138.8 253.7101.3 405.9281.8 322.1301.8188.081.8 267.0217.9 238.1

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470

O2N

I

3d, m/z: 248.93 (100.0%),249.93 (6.5%)

I

Cl

3j, m/z: 237.90 (100.0%),239.90 (32.0%), 238.91(6.5%), 240.91 (2.1%)

I

I

3l, m/z: 329.84 (100.0%),330.84 (6.5%)

Br

2t, m/z: 173.95 (100.0%),175.95 (97.3%), 174.95(6.5%), 176.95 (6.3%)

F

I

Br

3k (2l), m/z: 281.85 (100.0%),283.85 (97.3%), 282.86(6.5%), 284.86 (6.3%)

Page 22: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

22

6x10

0

1

2

3

4

5

6

7

8

9144.9 271.8

94.9 124.974.9

252.7

68.8 98.9 118.950.9 135.880.961.9 221.8175.8151.8 202.8163.8 289.8 331.0240.0

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390

6x10

0

1

2

3

4

5

6

7

8

990.9 217.8

64.9

126.7

50.973.9

108.8 164.7151.7 175.8 190.8140.7 267.5202.570.0 253.2211.8 281.0

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360

6x10

0

1

2

3

4

5

6

7

8

9217.9

91.0

65.0126.8

51.0 73.9 108.9 151.8 267.7164.8140.8 175.8 190.8 253.7122.0 202.8

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

6x10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

218.0

91.1

65.1 126.9

50.1 73.1 267.9140.9108.9 165.0151.9 175.9 253.9189.0122.1 203.0 212.8 327.0

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

6x10

0

1

2

3

4

5

6

7

8

9233.8

218.8

190.791.8

62.9 76.8

126.7106.8

202.850.8 164.7116.7 253.6151.8 175.8142.8 267.6101.2 280.788.0 358.8214.1

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360

6x10

0

1

2

3

4

5

6

7

8

976.9 203.8

50.8

126.6

101.8

61.1 151.7 175.7163.8138.7 267.670.2 88.0 188.7114.8 253.3 280.7208.3 326.8 340.9219.6

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360

I

F3C

3m, m/z: 271.93 (100.0%),272.93 (7.6%)

I

3o, m/z: 217.96 (100.0%),218.96 (7.6%)

I

MeO

3r, m/z: 233.95 (100.0%),234.96 (7.6%)

I

3s, m/z: 203.94 (100.0%),204.95 (6.5%)

I

3p, m/z: 217.96 (100.0%),218.96 (7.6%)

I

3q, m/z: 217.96 (100.0%),218.96 (7.6%)

Page 23: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

23

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5221.6

94.7

74.7

126.6

68.750.7 110.760.7 267.5203.6140.6 151.687.7 175.6 253.4163.699.8 193.6 330.7280.7

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5 139.0

156.0

184.0111.0

75.0

149.0 169.085.0 104.051.0 65.0 128.093.1 207.0 281.0266.9

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

6x10

0

1

2

3

4

5

6

7

8

9110.9 189.8

74.9

95.884.950.9

60.9 154.8129.1105.8 142.2 163.7 176.6 221.9204.8 267.8231.7

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

179.7

144.8 160.7

129.7

74.8

124.894.868.8 110.7

50.8 80.161.8152.7 206.8 252.9193.0 220.1 266.6172.6 228.5 284.6

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

691.0

125.9

62.998.950.9 72.9

110.9 152.9 162.9138.9 173.0 206.9183.9 193.3

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

3.3 Electrochemical Sandmeyer reaction of in situ formed diazonium salt

1) tBuONO (1.1 equiv), solventacid, 0 oC, 0.5 h

2) [X], Bu4NClO4 (0.83 equiv)(-)Pt/(+)Pt, 10 mA, 20 oC, 3 h

Ar NH2 Ar XA

reduction

I

F3t, m/z: 221.93 (100.0%),

222.94 (6.5%)

EtOOC

Cl

4a, m/z: 184.03 (100.0%),186.03 (32.0%), 185.03(9.7%), 187.03 (3.1%)

Cl

4o, m/z: 126.02 (100.0%),128.02 (32.0%), 127.03(7.6%), 129.02 (2.4%)

Cl

Br

4k (2j), m/z: 189.92(100.0%), 191.92 (97.3%),

193.91 (31.1%)

Cl

F3C4m, m/z: 180.00 (100.0%),

181.99 (32.0%), 181.00(7.6%), 183.00 (2.4%)

Page 24: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

24

In a 10 mL tube equipped with a stir bar, aryl amine (0.3 mmol) was dissolved in

given solvent. The reaction mixture was cooled to 0 oC, then acid and tBuONO

(90%, 1.1 equiv, 45 μl) was added and the reaction mixture was stirred at 0 oC

for 30 min. After that, Bu4NClO4 (0.25 mmol, 85.5 mg) and halogenation

reagent was added, following with two Pt net electrodes were immerged into

the solvent. The reaction mixture was stirred at 20 oC for 3 h, with 10 mA

constant current was continuous given. Finally, the desired product was

measured by GC-FID or purified according to the procedure described in

Section 3.1.

71.1 mg, 72% isolated yield. White solid. 1H NMR (400 MHz,

CDCl3) δ 7.72 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 1.33

(s, 12H). 13C NMR (101 MHz, CDCl3) δ 136.92, 136.28, 84.04,

24.86. Rf = 0.2 (PE), using PE/EA 50:1 ~ 30:1 as eluent.42

61.2 mg, 78% isolated yield. White solid. 1H NMR (400 MHz,

DMSO-d6) δ 10.03 (s, 1H), 7.62 (d, J = 8.7 Hz, 2H), 7.42 (d, J =

8.8 Hz, 2H), 2.04 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ

168.92, 139.60, 137.76, 121.61, 86.76, 24.54. Rf = 0.15 (PE/EA 3:1),

using PE/EA 3:1 ~ 2:1 as eluent.43

71.2 mg, 71% isolated yield. White solid. 1H NMR (400

MHz, CDCl3) δ 7.78 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5

Hz, 2H), 6.82 (s, 1H), 4.25 (q, J = 7.2 Hz, 2H), 4.20 (d, J

= 5.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz,

CDCl3) δ 170.05, 166.66, 137.81, 133.06, 128.66, 98.90, 77.38, 77.06, 76.74, 61.78,

41.89, 14.18. Rf = 0.35 (PE/EA 3:1), using PE/EA 5:1 ~ 3:1 as eluent.44

50.1 mg, 53% isolated yield. Pale-yellow solid. 1H NMR (400

MHz, CDCl3) δ 7.77 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.3 Hz,

2H), 4.17 – 3.06 (m, 8H). 13C NMR (101 MHz, CDCl3) δ

B

I

O

O

3aa

AcHN

I

3ab

I

O

HNEtOOC

3ac

I

O

N

3ad

O

Page 25: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

25

169.48, 137.76, 134.68, 128.86, 96.15, 66.83. Rf = 0.3 (PE/EA 3:1), using PE/EA 5:1 ~

PE/EA/Et3N 3:1:0.08 as eluent.45

53.8 mg, 45% isolated yield. Gray solid. 1H NMR (400 MHz,

CDCl3) δ 7.87 (d, J = 1.7 Hz, 1H), 7.74 (dd, J = 8.5, 6.8 Hz, 3H),

7.57 (dd, J = 8.7, 1.7 Hz, 1H), 7.52 (d, J = 3.7 Hz, 1H), 7.26 – 7.11 (m,

2H), 6.57 (d, J = 3.7 Hz, 1H), 2.35 (s, 3H). 13C NMR (101 MHz,

CDCl3) δ 145.27, 134.99, 133.03, 130.25, 129.99, 127.18, 126.80, 117.76, 115.35, 108.00,

87.44, 21.61. Rf = 0.6 (PE/EA 5:1), using PE/EA 20:1 as eluent.46

117.6 mg, 59% isolated

yield. Pale-yellow oil.

1H NMR (400 MHz,

CDCl3): δ 8.16 – 7.58

(m, 4H), 2.61 (t, J =

6.8 Hz, 2H), 2.17 – 0.76 (m, 47H). 13C NMR (101 MHz, CDCl3) δ 164.73, 149.58,

140.47, 137.98, 131.56, 129.10, 126.78, 125.02, 123.22, 117.54, 101.34, 75.14, 39.40,

37.47, 37.31, 32.82, 31.02, 29.73, 28.01, 24.83, 24.48, 22.75, 22.66, 21.05, 20.65, 19.78,

19.69, 13.06, 12.22, 11.88. IR: ν = 2923, 2866, 1735, 1586, 1480, 1460, 1414, 1392, 1377,

1334, 1267, 1237, 1174, 1090, 1007, 912, 863, 843, 750, 735, 677, 636, 463, 412 cm-1.

HRMS: Calcd. C36H54IO3+ [M+H]+: 661.3112. Found: 661.3127. Calcd. C36H57INO3

+

[M+NH4]+: 678.3378. Found: 678.3383. Rf = 0.65 (PE/EA 10:1), using PE ~ PE/EA

50:1 as eluent.

MS data for cases given GC-FID or NMR yields.

6x10

0

1

2

3

4

5

6

7

8

9183.0

202.0

155.076.1

228.050.1

149.1

104.0

65.1 131.0 213.093.0 121.0 143.0 172.0 253.1

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

O

O

O

I

3af

I

NTs

3ae

EtOOC

Br

2a, m/z: 227.98 (100.0%),229.98 (97.3%), 228.98(9.7%), 230.98 (9.5%)

Page 26: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

26

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

182.9

101.9

74.9

50.9

90.462.0 116.9 154.9129.969.9 141.9 284.9165.9 253.0204.0 331.0219.9175.0 268.9194.9

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

Conditions for 2h: NaNO2 (1.1 equiv), HBF4 (2.0 equiv), H2O (0.05 mL). Then,

MeOH/DMF 5:1 (3 mL), Na2SO4 (10 equiv), NBS (2.0 equiv), 10 mA, 3 h.

6x10

0

1

2

3

4

5

6

7

8

990.9

171.8

64.8

50.873.8

80.7 118.7 142.7105.8 129.8 154.7 203.7164.9 190.8180.7 280.9266.9

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330

Conditions for 2o: DMF, HBr (1.5 equiv, 6.5 M in aqueous), Na2SO4 (6.0 equiv).6x10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 188.0

173.0

143.0

63.177.0 92.0

117.0 157.051.0 107.1 129.070.1 88.1 166.2 207.1 327.1279.7235.9180.3 261.9

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Conditions for 2r: DMF, HBr (1.5 equiv, 6.5 M in aqueous), Na2SO4 (6.0 equiv).

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6198.9

212.0168.9118.0

102.090.976.950.9 142.1 156.962.9 182.9133.098.2 191.4 207.4

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

Conditons for 2y: DMF, HBr (1.5 equiv, 6.5 M in aqueous), Na2SO4 (6.0 equiv).

NC

Br

2h, m/z: 180.95 (100.0%),182.95 (97.3%), 181.96(7.6%), 183.95 (7.4%)

tBu

Br

2y, m/z: 212.02 (100.0%),214.02 (97.3%), 213.02(10.8%), 215.02 (10.5%)

Br

2o, m/z: 169.97 (100.0%),171.97 (97.3%), 170.98(7.6%), 172.97 (7.4%)

MeO

Br

2r, m/z: 185.97 (100.0%),187.97 (97.3%), 186.97(7.6%), 188.97 (7.4%)

Page 27: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

27

6x10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

234.0

152.1

76.1 126.163.050.0 102.187.0 117.0 142.2 206.0192.9180.0169.0 217.0

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Conditons for 2z: DMF, HBr (1.5 equiv, 6.5 M in aqueous), Na2SO4 (6.0 equiv).

6x10

0

1

2

3

4

5

6

7

8

9230.8

247.8275.7

202.8

75.9

103.9

148.964.9 126.7

50.9 260.792.9 115.3 176.0142.0 190.7 219.8163.8 284.7

Counts vs. 质荷比 (m/z)50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410

3.4 Bromination and iodination of 15 mmol scale

N2BF4+

1h, 15 mmol3.26 gram

100 mA, 10 h(-)Graphite/(+)Pt X

[X]

2h, X = Br, 76%, with NBS (2.0 equiv)3h, X = I, 80%, with CH2I2 (3.0 equiv)

NC NCJ = 2.78 mA/cm-2

at cathode

In a 200 mL well dried beaker equipped with a stir bar, diazonium salt 1h, (3.26

g, 15 mmol), and Bu4NClO4 (3.42 g, 10 mmol) were dissolved in a mixed solvent

of MeOH (100 mL) and DMF (20 mL). Then NBS (5.34 g, 30 mmol, 2.0 equiv) or

CH2I2 (12.03 g, 45 mmol, 3.63 mL, 3.0 equiv) was added, following with a Pt net

electrode in the center as the anode, and 4 graphite plates (10 cm * 3 cm * 1 mm

each, about 3 cm immersed in the solution) in each side of a square as the

cathode in parallel were stretched into the solvent (as Scheme 3 shown). The

reaction mixture was stirred at 20 oC for 3 h, with 100 mA constant current was

continuous given. Upon completion, most of methanol was removed using a

rotary evaporator, then the residual solution was poured into diethyl ether (150

mL) and washed with water two times (50 mL * 2). The combined water phase

Ph

Br

2z, m/z: 231.99 (100.0%),233.99 (97.3%), 232.99(13.0%), 234.99 (12.6%)

EtOOC

I

3a, m/z: 275.96 (100.0%),276.97 (9.7%)

Page 28: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

28

was extracted by diethyl ether (100 mL) for another time, following with the

second organic phase was washed with water (50 mL). The organic phase was

combined and dried over Na2SO4, then the solvent was removed under reduced

pressure and the desired product 2h or 3h was purified by column

chromatography (silica gel) using PE/EA 30:1 as eluent.

Bromination (2h): 2.08 g, 76% yield. Iodination (3h): 2.74 g, 80% yield.

4. Mechanism study experiments

4.1 Electrochemical Clock reaction

+ CH2I2

N2BF4

O O

I

53.0 equiv

6, 37% (NMR)23% (ISO)

I

O

not detected

Bu4NClO4MeOH/DMF 5:1

20 oC, 10 mA, 3 h

In a 10 mL tube equipped with a stir bar, 1t (0.3 mmol, 79.2 mg), CH2I2 (0.9

mmol, 73 μl, 3.0 equiv) and Bu4NClO4 (0.25 mmol, 85.5 mg) were dissolved in a

mixed solvent of MeOH (2.5 mL) and DMF (0.5 mL), following with two Pt net

electrodes immerged into the solvent. The reaction mixture was stirred at room

temperature for 3 h, with 10 mA constant current was continuous given. After

that, most of MeOH was removed under reduced pressure and the residue was

poured into diethyl ether (60 mL), washed with water two times (20 mL * 2)

and dried over Na2SO4. The product 6 was measured by 1H NMR or purified by

preparation thin-layer chromatography (silica gel) using PE/EA 20:1 as eluent.

Yield: 37% according to 1H NMR, 18.2 mg (23%) isolated as a colorless liquid. 1H

NMR (400 MHz, CDCl3) δ 7.25 – 7.14 (m, 2H), 6.95 – 6.85 (m, 1H), 6.81 (d, J = 8.0

Hz, 1H), 4.72 – 4.58 (m, 1H), 4.34 (dd, J = 9.4, 5.5 Hz, 1H), 3.85 (dt, J = 9.2, 4.5 Hz,

1H), 3.51 – 3.39 (m, 1H), 3.21 (t, J = 9.8 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ

160.18, 129.36, 128.77, 124.35, 120.69, 110.26, 77.68, 44.85, 9.00.47

4.2 Electrochemical reaction with TEMPO

Page 29: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

29

N2BF4

EtOOC1a

O

EtOOC7, 62% (ISO)

NBu4NClO4MeOH/DMF 5:1

(-)Pt/(+)Pt20 oC, 10 mA, 3 h

+ TEMPO

2 equiv

In a 10 mL tube equipped with a stir bar, 1a (0.3 mmol, 79.2 mg), TEMPO (0.6

mmol, 93.8 mg, 2.0 equiv) and Bu4NClO4 (0.25 mmol, 85.5 mg) were dissolved

in a mixed solvent of MeOH (2.5 mL) and DMF (0.5 mL), following with two Pt

net electrodes immerged into the solvent. The reaction mixture was stirred at

room temperature for 1 h, with 10 mA constant current was continuous given.

After that, the reaction mixture was poured into diethyl ether (60 mL), washed

with water two times (20 mL * 2) and dried via Na2SO4. The diethyl ether was

then removed, and the desired product was purified by column

chromatography (silica gel) using PE/EA 40:1~30:1 as an eluent to give the

product 7 as a colorless oil. Yield: 56.3 mg (62%). 1H NMR (400 MHz, CDCl3) δ

8.01 – 7.84 (m, 2H), 7.24 (d, J = 20.1 Hz, 2H), 4.33 (q, J = 7.2 Hz, 2H), 1.72 – 1.52

(m, 5H), 1.46 – 1.39 (m, 1H), 1.36 (t, J = 7.2 Hz, 3H), 1.23 (s, 6H), 0.99 (s, 6H). 13C

NMR (101 MHz, CDCl3) δ 167.39, 166.55, 131.02, 122.36, 113.71, 60.58, 60.42, 39.71,

32.38, 20.45, 16.98, 14.44.48

4.3 Electrochemical reaction with TEMPO and NBS

TEMPO (2.0 equiv)20 oC, 3 h

Bu4NClO4, MeOH/DMF 5:1NBS (2.0 equiv)

N2BF4

EtOOC1a

Br

EtOOC2a, 45% (FID), 0 mA

62% (FID), 10 mA

In a 10 mL tube equipped with a stir bar, 1a (0.3 mmol, 79.2 mg), TEMPO (0.6

mmol, 93.8 mg, 2.0 equiv), NBS (0.6 mmol, 107 mg, 2.0 equiv) and Bu4NClO4

(0.25 mmol, 85.5 mg) were dissolved in a mixed solvent of MeOH (2.5 mL) and

DMF (0.5 mL), following with two Pt net electrodes stretched into the solvent.

The reaction mixture was stirred at room temperature for 3 h, with no current

Page 30: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

30

or 10 mA constant current was continuous given. After that, the reaction

mixture was analyzed by GC-MS and the yield of 2a was measured by GC-FID.

4.4 Cyclic voltammetry (CV) experiments

In all cases, a mixture solvent of MeOH and DMF (5:1 v/v) contented Bu4NClO4

(0.1 M) as electrolyte was used. The experiments used an L-shape glassy carbon

electrode as the working electrode, a Pt wire as the counter electrode and a

saturated calomel electrode (SCE) as the reference electrode. The electric

potential was between +1.5 and -0.5 V vs SCE, with 0.01 V/s scan rate. For cases

with a single reagent, the concentration was 5 mM (for 1a) or 10 mM (for NBS

and TEMPO), while for cases with two reagents a tenfold concentration was

required to increase the signal for their cooperative process.

Figure S4. Cyclic voltammetry curves

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.41.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.41.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4

i / m

odul

ated

inte

nsity

E / V vs SCE

1a CCl4 1a+CCl4

i / m

odul

ated

inte

nsity

E / V vs SCE

1a CH2I2 1a+CH2I2

i / m

odul

ated

inte

nsity

E / V vs SCE

0.269 V

0.214 V

1a

-0.120 V

NBSb

1a+NBS

i / m

odul

ated

inte

nsity

E / V vs SCE

a

c d

-0.019 V

0.269 V

0.574 V 0.269 V0.495 V

1a -0.120 V

-0.120 V0.395 V

0.269 V

-0.120 V

TEMPO 1a+TEMPO

Original data:

Page 31: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

31

1.5 1.0 0.5 0.0 -0.5-16

-12

-8

-4

0

4

8

Cur

rent

(μA

)

Voltage (V)

a) Background, no other reagents

1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6-2

0

2

4

6

8

10

Cur

rent

(μA

)

Voltage (V)

b) With 1a (5 mM)

1.5 1.0 0.5 0.0 -0.5

-5

0

5

10

15

Cur

rent

(μA

)

Voltage (V)

c) With NBS (10 mM)

1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6

0

1

2

3

4

5

Cur

rent

(mA

)

Voltage (V)

d) With 1a (50 mM) and NBS (100 mM)

1.5 1.0 0.5 0.0 -0.5

-40

-30

-20

-10

0

10

Cur

rent

(μA

)

Voltage (V)

e) With TEMPO (10 mM)

1.5 1.0 0.5 0.0 -0.5-8

-6

-4

-2

0

2

4

Cur

rent

(mA

)

Voltage (V)

f) With 1a (50 mM) and TEMPO (100 mM)

1.5 1.0 0.5 0.0 -0.5-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Cur

rent

(μA

)

Voltage (V)

g) CCl4/DMF 5:1 as solvent

1.5 1.0 0.5 0.0 -0.5-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Cur

rent

(mA

)

Voltage (V)

h) With 1a (50 mM), CCl4/DMF 5:1 as solvent

Page 32: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

32

1.5 1.0 0.5 0.0 -0.5-6

-4

-2

0

2

Cur

rent

(μA

)

Voltage (V)

i) With CH2I2 (15 mM)

0.6 0.4 0.2 0.0 -0.2 -0.4-0.1

0.0

0.1

0.2

0.3

0.4

Cur

rent

(mA

)

Voltage (V)

j) With 1a (50 mM) and CH2I2 (150 mM)

Page 33: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

33

5. EPR experiments and data

Bu4NClO4 (513 mg, 1.5 mmol) was dissolved in a mixed solvent of MeOH (12.5

mL) and DMF (2.5 mL). Two Teflon plugs were drilled 3 mm hole, Two Pt wires

(0.2 mm diameter) were welded with general electric wires and passed through

each plug.

For each case, PBN (21.3 mg, 0.12 mmol, 1.2 equiv), 1a (if necessary, 26.4 mg, 0.1

mmol, 1.0 equiv) and NBS (if necessary 35.6 mg, 0.2 mmol, 2.0 equiv) were

dissolved in 1 mL of the prepared electrolyte solution. Then, the reaction

mixture was added into a glass flat cell (0.3 mm thickness in the working area,

with a liquid storage pot above, about 0.2 mL of solvent was required). The flat

cell was closed using the plugs as mentioned above, meanwhile the Pt wires

were stretched from each side as electrodes.

X-band cw-EPR spectra were measured on a Bruker Elexsys E580 spectrometer

with a super-high-Q resonator at room temperature. In all cases, the Q valuses

after sample loading were similar (1500±300). The magnetic field scanning

region was between 3420 and 3620 G and containede 1024 points. MW power

was 9.464 mW and modulation amplitude was 1 G. A total of 300 spectra were

aquired in a time course of ~ 100 min. In each case, the current was given in a

constant voltage of 16 V since about 6 min after the experiment was began (in

order to obtain a blank control at the beginning). The EPR spectra were

simulated using the EasySpin-5.2.14 running in Matlab (R2017a).

5.1 Time-dependent 2D EPR profile of reaction a-d

Page 34: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

34

Figure S5. Time-dependent 2D EPR profile of reaction a-d

5.2 Simulations

Table S4. Simulation of reaction a, b at 30 min.

Exp g value linewidth (G)

aN (G) aH (G) Residual

a 2.0039 1.346 13.27 3.14 0.0660b 2.0039 1.796 13.02 2.37 0.0547

Page 35: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

35

Figure S6. Comparison of simulation and experimental data

3450 3480 3510 3540

Inte

nsity

(a.u

.)

Field (G)

Experiment Simulated

Reaction a, 30 min

3450 3480 3510 3540

Inte

nsity

(a.u

.)

Field (G)

Experiment Simulated

Reaction b, 30 min

5.3 HRMS of compound 8

NO

CO2Et

Compound 8

HNO

CO2Et

H

Chemical Formula: C20H24NO3+

Exact Mass: 326.17507Chemical Formula: C20H24NO3

Exact Mass: 326.17562

Compound 8+

Bu4N

Chemical Formula: C16H36N+

Exact Mass: 242.28423

Page 36: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

36

6. NMR charts

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.03

2.00

1.93

1.95

-0.00

1.38

1.39

1.41

1.58

4.35

4.36

4.38

4.40

7.26

7.57

7.59

7.90

7.92

0102030405060708090100110120130140150160170180190200

f1 (ppm)

14.31

61.25

76.71

77.03

77.35

127.90

129.39

131.09

131.65

165.89

EtOOC

Br

2a

EtOOC

Br

2a

Page 37: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

37

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.12

2.08

1.00

0.99

1.00

0.97

0.00

1.38

1.40

1.42

1.59

4.36

4.38

4.39

4.41

7.26

7.30

7.32

7.34

7.66

7.67

7.67

7.67

7.68

7.69

7.69

7.69

7.96

7.97

7.97

7.98

7.99

7.99

8.17

8.18

8.18

0102030405060708090100110120130140150160170180190200

f1 (ppm)

14.29

61.41

76.71

77.02

77.34

122.41

128.13

129.90

132.43

132.55

135.75

165.27

Br

2b

EtOOC

Br

2b

EtOOC

Page 38: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

38

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.02

2.00

1.91

0.97

0.94

0.00

1.39

1.41

1.43

4.38

4.40

4.41

4.43

7.26

7.29

7.30

7.31

7.32

7.33

7.34

7.34

7.34

7.36

7.36

7.38

7.38

7.64

7.65

7.66

7.66

7.67

7.76

7.77

7.77

7.78

7.79

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

14.22

61.65

76.71

77.03

77.24

77.35

121.54

127.12

131.16

132.38

132.60

134.27

166.27

Br

2cCOOEt

Br

2cCOOEt

Page 39: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

39

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

2.01

2.00

-0.00

7.26

7.68

7.71

8.10

8.12

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.70

77.02

77.34

125.02

132.63

O2N

Br

2d

O2N

Br

2d

Page 40: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

40

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

1.02

1.00

1.04

1.00

0.00

7.27

7.43

7.45

7.47

7.83

7.83

7.83

7.83

7.85

7.85

7.85

7.85

8.17

8.17

8.17

8.18

8.19

8.19

8.20

8.20

8.39

8.39

8.40

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.72

77.04

77.36

122.15

122.88

126.78

130.62

137.62

148.79

BrO2N

2e

BrO2N

2e

Page 41: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

41

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.13

1.00

1.02

1.02

0.00

2.56

7.22

7.24

7.27

7.61

7.61

7.63

7.63

8.11

8.12

8.12

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

20.09

76.73

77.04

77.36

119.66

127.56

132.55

134.11

135.97

149.59

BrO2N

2g

BrO2N

2g

Page 42: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

42

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

2.00

2.00

-0.00

1.59

7.27

7.52

7.54

7.63

7.65

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

76.73

77.05

77.37

111.25

118.07

128.03

132.65

133.42

NC

Br

2h

NC

Br

2h

Page 43: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

43

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

2.01

2.00

-0.00

1.57

7.26

7.41

7.41

7.43

7.43

7.45

7.45

7.46

7.47

7.47

7.49

7.49

7.66

7.67

7.68

7.68

7.69

7.69

7.71

7.71

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.72

77.04

77.36

115.91

117.15

125.36

127.63

133.22

133.89

134.34

BrCN

2i

BrCN

2i

Page 44: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

44

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

2.00

2.01

0.00

1.54

7.20

7.20

7.21

7.22

7.23

7.26

7.40

7.41

7.41

7.42

7.43

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.71

77.03

77.35

120.27

130.21

132.77

133.22

Cl

Br

2j

Cl

Br

2j

Page 45: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

45

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

4.00

7.36

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.71

77.03

77.35

121.06

133.14

Br

Br

2k

Br

Br

2k

Page 46: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

46

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

1.97

2.00

0.00

1.54

7.21

7.22

7.23

7.24

7.24

7.26

7.52

7.53

7.53

7.55

7.55

7.56

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.72

77.04

77.36

92.05

122.21

133.46

139.07

I

Br

2l

I

Br

2l

Page 47: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

47

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.16

2.01

2.00

-0.00

3.06

7.27

7.72

7.74

7.81

7.83

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

44.54

76.72

77.03

77.35

128.99

129.04

132.72

139.55

MeO2S

Br

2n

MeO2S

Br

2n

Page 48: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

48

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.07

2.03

4.00

1.37

1.39

1.41

4.34

4.36

4.38

4.40

7.26

7.74

7.75

7.76

7.76

7.79

7.79

7.81

0102030405060708090100110120130140150160170180190200

f1 (ppm)

14.30

61.24

76.71

77.03

77.35

100.56

129.97

131.01

137.66

166.11

I

COOEt

3a

I

COOEt

3a

Page 49: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

49

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.00

2.00

0.99

1.00

0.93

0.92

-0.00

1.38

1.39

1.41

4.35

4.37

4.39

4.40

7.16

7.18

7.20

7.26

7.86

7.88

8.00

8.02

8.37

0102030405060708090100110120130140150160170180190200

f1 (ppm)

14.31

61.39

76.71

77.02

77.34

93.76

128.73

130.02

132.39

138.42

141.63

165.11

COOEt

3b

I

COOEt

3b

I

Page 50: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

50

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.08

2.08

1.00

1.02

0.98

0.97

1.40

1.41

1.43

4.38

4.39

4.41

4.43

7.12

7.13

7.14

7.14

7.16

7.16

7.26

7.38

7.38

7.40

7.40

7.42

7.42

7.78

7.78

7.80

7.80

7.97

7.98

7.99

8.00

0102030405060708090100110120130140150160170180190200

f1 (ppm)

14.23

61.72

76.71

77.03

77.35

93.97

127.88

130.82

132.48

135.51

141.23

166.63

COOEt

3cI

COOEt

3cI

Page 51: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

51

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

2.00

2.03

-0.00

0.00

7.26

7.36

7.36

7.38

7.38

7.38

7.84

7.85

7.86

7.87

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.72

77.04

77.35

100.31

111.76

118.23

133.17

138.52

NC

I

3h

NC

I

3h

Page 52: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

52

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

1.09

1.01

1.02

1.00

0.00

7.26

7.27

7.27

7.29

7.29

7.31

7.31

7.44

7.44

7.46

7.46

7.48

7.48

7.60

7.60

7.61

7.61

7.62

7.62

7.63

7.91

7.91

7.92

7.93

7.94

7.94

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.71

77.03

77.35

98.41

119.34

120.62

128.33

133.74

134.28

139.56

I

3iCN

I

3iCN

Page 53: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

53

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

2.00

2.00

-0.00

7.06

7.06

7.07

7.08

7.08

7.09

7.25

7.58

7.58

7.59

7.60

7.61

7.61

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.74

77.05

77.37

91.19

130.55

134.22

138.73

I

3jCl

I

3jCl

Page 54: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

54

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

4.00

7.40

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

76.74

77.06

77.38

93.41

139.34

I

3lI

I

3lI

Page 55: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

55

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.14

2.00

2.00

0.00

3.05

7.26

7.65

7.65

7.67

7.67

7.93

7.94

7.95

7.96

0102030405060708090100110120130140150160170180190200

f1 (ppm)

44.50

76.71

76.73

77.03

77.05

77.34

77.36

101.60

128.79

138.69

140.19

MeO2S

I

3n

MeO2S

I

3n

Page 56: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

56

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.04

2.00

2.00

0.00

2.57

7.27

7.65

7.67

7.82

7.84

0102030405060708090100110120130140150160170180190200210

f1 (ppm)

26.51

76.73

77.05

77.37

101.12

129.73

136.34

137.91

197.31

I

Ac3u

I

Ac3u

Page 57: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

57

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.02

0.93

0.93

1.02

1.00

0.00

2.62

7.10

7.11

7.12

7.13

7.14

7.15

7.27

7.39

7.39

7.41

7.41

7.43

7.43

7.46

7.46

7.48

7.48

7.93

7.93

7.95

7.95

0102030405060708090100110120130140150160170180190200210

f1 (ppm)

29.53

76.74

77.06

77.37

90.99

128.09

128.35

131.85

140.89

144.01

201.82

I

3vAc

I

3vAc

Page 58: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

58

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.12

1.00

1.00

0.96

0.00

3.18

7.27

7.56

7.58

8.06

8.07

8.08

8.08

8.18

8.18

0102030405060708090100110120130140150160170180190200

f1 (ppm)

24.11

76.73

77.05

77.36

100.75

124.48

131.34

132.33

133.52

142.87

167.02

167.86

N

O

O

I

3w

N

O

O

I

3w

Page 59: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

59

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

1.06

1.01

1.02

1.03

1.00

1.00

0.00

7.20

7.21

7.22

7.22

7.24

7.24

7.26

7.29

7.39

7.39

7.40

7.41

7.41

7.42

7.43

7.43

7.44

7.75

7.76

7.77

7.77

7.78

7.79

7.79

7.80

8.03

8.04

8.05

8.05

8.06

8.07

8.07

8.08

8.30

8.31

8.32

8.32

8.33

8.33

8.34

8.97

8.98

8.98

8.99

8.99

9.00

0102030405060708090100110120130140150160170180190200

f1 (ppm)

76.84

77.16

77.48

103.45

121.94

127.70

128.83

136.79

140.06

147.06

151.45

NI

3x

NI

3x

Page 60: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

60

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

11.95

2.01

2.00

0.00

1.33

1.54

7.26

7.50

7.52

7.71

7.73

0102030405060708090100110120130140150160170180190200

f1 (ppm)

24.86

76.70

77.01

77.33

84.04

136.28

136.92

B

I

O

O

3aa

B

I

O

O

3aa

Page 61: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

61

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.00

1.94

2.00

0.99

2.04

2.50

2.50

2.51

2.51

2.52

3.35

7.41

7.43

7.61

7.63

10.03

0102030405060708090100110120130140150160170180190200

f1 (ppm)

24.54

39.37

39.58

39.79

40.00

40.21

40.42

40.63

86.76

121.61

137.76

139.60

168.92

AcHN

I

3ab

AcHN

I

3ab

Page 62: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

62

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.05

2.00

1.97

1.00

1.99

1.98

-0.00

1.29

1.31

1.33

1.79

4.20

4.21

4.23

4.25

4.26

4.28

6.82

7.27

7.51

7.53

7.77

7.79

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

14.18

41.89

61.78

76.74

77.06

77.38

98.90

128.66

133.06

137.81

166.66

170.05

I

O

HNEtOOC

3ac

I

O

HNEtOOC

3ac

Page 63: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

63

-3-2-1012345678910111213141516

f1 (ppm)

8.00

1.84

1.85

0.00

3.44

3.74

7.14

7.16

7.27

7.76

7.78

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

66.83

76.75

77.07

77.38

96.15

128.86

134.68

137.76

169.48

I

O

N

3ad

O

I

O

N

3ad

O

Page 64: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

64

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.00

0.92

2.13

0.89

0.96

2.84

1.13

-0.00

1.56

2.35

6.57

6.58

7.22

7.24

7.26

7.52

7.53

7.55

7.56

7.58

7.58

7.72

7.74

7.74

7.76

7.86

7.87

0102030405060708090100110120130140150160170180190200

f1 (ppm)

21.61

76.71

77.03

77.18

77.34

87.44

108.00

115.35

117.76

126.80

127.18

129.99

130.25

133.03

134.99

145.27

I

NTs

3ae

I

NTs

3ae

Page 65: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

65

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

53.41

2.00

3.77

-0.00

0.84

0.86

0.87

1.05

1.05

1.06

1.07

1.07

1.08

1.10

1.10

1.11

1.12

1.13

1.13

1.14

1.15

1.16

1.20

1.22

1.23

1.25

1.26

1.26

1.28

1.30

1.31

1.32

1.33

1.33

1.35

1.37

1.38

1.39

1.40

1.42

1.51

1.52

1.54

1.56

1.99

2.03

2.05

2.11

2.17

2.59

2.61

2.63

7.25

7.87

7.89

7.94

7.96

0102030405060708090100110120130140150160170180190200

f1 (ppm)

11.88

12.22

13.06

19.69

19.78

20.65

21.05

22.66

22.75

24.48

24.83

28.01

29.73

31.02

32.82

37.31

37.47

39.40

75.14

76.71

77.03

77.35

101.34

117.54

123.22

125.02

126.78

129.10

131.56

137.98

140.47

149.58

164.73

O

O

O

I

3af

O

O

O

I

3af

Page 66: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

66

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

3.06

2.00

2.00

0.00

3.06

7.27

7.55

7.57

7.88

7.91

0102030405060708090100110120130140150160170180190200

f1 (ppm)

44.57

76.71

77.03

77.23

77.35

128.93

129.72

139.04

140.49

MeO2S

Cl

4n

MeO2S

Cl

4n

Page 67: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

67

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)1.03

1.03

0.99

1.01

1.05

0.97

1.00

1.95

0.00

0.00

1.54

3.19

3.21

3.24

3.44

3.44

3.45

3.45

3.46

3.47

3.48

3.48

3.82

3.83

3.85

3.86

3.87

4.32

4.34

4.35

4.36

4.63

4.63

4.65

4.67

4.67

6.80

6.82

6.87

6.89

6.89

6.89

6.91

6.91

6.91

7.18

7.18

7.18

7.19

7.20

7.20

7.20

7.21

7.21

7.22

7.22

7.23

7.23

7.26

0102030405060708090100110120130140150160170180190200

f1 (ppm)

9.00

44.85

76.72

77.04

77.35

77.68

110.26

120.69

124.35

128.77

129.36

160.18

O

CH2I

6

O

CH2I

6

Page 68: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

68

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

f1 (ppm)

6.02

6.00

3.07

1.20

5.22

2.12

1.97

2.00

0.99

1.23

1.35

1.36

1.38

1.41

1.41

1.42

1.42

1.43

1.55

1.56

1.57

1.57

1.58

1.59

1.60

1.60

1.61

1.62

1.62

1.62

1.63

1.64

1.65

1.66

4.30

4.32

4.34

4.36

7.21

7.25

7.26

7.92

7.92

7.94

7.94

0102030405060708090100110120130140150160170180190200

f1 (ppm)

14.44

16.98

20.45

32.38

39.71

60.42

60.58

76.72

77.04

77.36

113.71

122.36

131.02

166.55

167.39

EtOOC

ON

7

EtOOC

ON

7

Page 69: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

69

7. Reference1. D. Prasad Hari, T. Hering and B. König, Angew. Chem. Int. Ed., 2014, 53, 725-728.2. V. Gaud, F. Rougé, Y. Gnanou and J.-P. Desvergne, Reactive and Functional Polymers, 2012,

72, 521-532.3. B. Xing, C. Ni and J. Hu, Angew. Chem. Int. Ed., 2018, 57, 9896-9900.4. H. Jiang, Y. Chen, B. Chen, H. Xu, W. Wan, H. Deng, K. Ma, S. Wu and J. Hao, Org. Lett., 2017,

19, 2406-2409.5. W. Erb, A. Hellal, M. Albini, J. Rouden and J. Blanchet, Chem. Eur. J., 2014, 20, 6608-6612.6. R. Wang, L. Chen, P. Liu, Y. Wang and Q. Zhang, Chem. Eur. J., 2012, 18, 11343 - 11349,11347.7. C. Fessele, S. Wachtler, V. Chandrasekaran, C. Stiller, T. K. Lindhorst and A. Krueger, Eur. J.

Org. Chem., 2015, 2015, 5519 - 5525.8. A. P. Colleville, R. A. J. Horan and N. C. O. Tomkinson, Organic Process Research and

Development, 2014, 18, 1128 - 1136.9. H.-H. Yang and McCreery, Anal. Chem., 1999, 71, 4081 - 4087.10. Z. Y. Tang, Y. Zhang, T. Wang and W. Wang, Synlett, 2010, DOI: 10.1055/s-0029-1219090, 804

- 808.11. H. M. Nelson, S. H. Reisberg, H. P. Shunatona, J. S. Patel and F. D. Toste, Angew. Chem. Int.

Ed., 2014, 53, 5600-5603.12. P. Nikolaienko and M. Rueping, Chem. Eur. J., 2016, 22, 2620-2623.13. J. Ouyang, X. Su, Y. Chen, Y. Yuan and Y. Li, Tetrahedron Lett., 2016, 57, 1438-1441.14. H. Pang, F. Gallou, H. Sohn, J. Camacho-Bunquin, M. Delferro and B. H. Lipshutz, Green Chem.,

2018, 20, 130-135.15. K. Munakata, S. Tanaka and S. Toyoshima, Chem. Pharm. Bull., 1980, 28, 2045-2051.16. X. Wang, Y. Xu, Y. Zhou, Y. Zhang and J. Wang, Synthesis, 2014, 46, 2143-2148.17. X. Wang, Y. Xu, F. Mo, G. Ji, D. Qiu, J. Feng, Y. Ye, S. Zhang, Y. Zhang and J. Wang, J. Am. Chem.

Soc., 2013, 135, 10330-10333.18. J. T. Joseph, A. M. Sajith, R. C. Ningegowda and S. Shashikanth, Advanced Synthesis and

Catalysis, 2017, 359, 419 - 425.19. G. C. Ramaprasad, B. Kalluraya, B. S. Kumar and R. K. Hunnur, Eur. J. Med. Chem., 2010, 45,

4587-4593.20. X. Sun, G. Shan, Y. Sun and Y. Rao, Angew. Chem. Int. Ed., 2013, 52, 4440-4444.21. Q. Ke, M. Wu, H. Yu and G. Lu, ChemCatChem, 2017, 9, 733 - 737.22. Y. Shao, H. Zheng, Z. Wu, L. Huang, J. Tong, M. Wu and X. Sun, Journal of Chemical Research,

2017, 41, 504 - 508.23. W. E. Conrad, K. X. Rodriguez, H. H. Nguyen, J. C. Fettinger, M. J. Haddadin and M. J. Kurth,

Org. Lett., 2012, 14, 3870 - 3873.24. S. Zheng, C. Yu and Z. Shen, Org. Lett., 2012, 14, 3644 - 3647.25. R. M. Denton, J. An, P. Lindovska and W. Lewis, Tetrahedron, 2012, 68, 2899 - 2905.26. G. A. Molander and L. N. Cavalcanti, J. Org. Chem., 2011, 76, 7195 - 7203.27. WO2017/60905, 2017.28. WO2015/68159, 2015.29. J. Lai and G. Yuan, Tetrahedron Lett., 2018, 59, 524 - 527.30. A. A. Cant, R. Bhalla, S. L. Pimlott and A. Sutherland, Chem. Commun., 2012, 48, 3993 - 3995.

Page 70: Reaction A General Electrochemical Strategy for Sandmeyer · A General Electrochemical Strategy for Sandmeyer Reaction Qianyi Liu, Beiqi Sun, Zheng Liu, Yi Kao, Bo-Wei Dong, Shang-Da

70

31. L. Wang and W. Lu, Org. Lett., 2009, 11, 1079-1082.32. L. Li, W. Liu, H. Zeng, X. Mu, G. Cosa, Z. Mi and C.-J. Li, J. Am. Chem. Soc., 2015, 137, 8328-

8331.33. B. Du, X. Jiang and P. Sun, J. Org. Chem., 2013, 78, 2786 - 2791.34. Y. Suzuki, Y. Ishiwata, K. Moriyama and H. Togo, Tetrahedron Lett., 2010, 51, 5950-5953.35. S. Gennen, B. Grignard, T. Tassaing, C. Jérôme and C. Detrembleur, Angew. Chem. Int. Ed.,

2017, 56, 10394-10398.36. Y. Yang, Y. Bao, Q. Guan, Q. Sun, Z. Zha and Z. Wang, Green Chem., 2017, 19, 112 - 116.37. W. Liu, X. Yang, Y. Gao and C.-J. Li, J. Am. Chem. Soc., 2017, 139, 8621 - 8627.38. B. Yang, K. Chansaenpak, H. Wu, L. Zhu, M. Wang, Z. Li and H. Lu, Chem. Commun., 2017, 53,

3497 - 3500.39. EP2163554, 2010.40. J. Wu, Z. Liao, D. Liu, C.-W. Chiang, Z. Li, Z. Zhou, H. Yi, X. Zhang, Z. Deng and A. Lei, Chem. Eur.

J., 2017, 23, 15874-15878.41. B. Yu, A.-H. Liu, L.-N. He, B. Li, Z.-F. Diao and Y.-N. Li, Green Chem., 2012, 14, 957 - 962.42. L. Candish, M. Teders and F. Glorius, J. Am. Chem. Soc., 2017, 139, 7440-7443.43. R.-J. Tang, T. Milcent and B. Crousse, J. Org. Chem., 2018, 83, 930-938.44. G. N. Nkepang, A. F. Hedrick, V. Awasthi and H. Gali, Bioorg. Med. Chem. Lett, 2016, 26, 479-

483.45. T. Wang, L. Yuan, Z. Zhao, A. Shao, M. Gao, Y. Huang, F. Xiong, H. Zhang and J. Zhao, Green

Chem., 2015, 17, 2741-2744.46. G. Chen, T. Shigenari, P. Jain, Z. Zhang, Z. Jin, J. He, S. Li, C. Mapelli, M. M. Miller, M. A. Poss,

P. M. Scola, K.-S. Yeung and J.-Q. Yu, J. Am. Chem. Soc., 2015, 137, 3338-3351.47. A. L. J. Beckwith and G. F. Meijs, J. Org. Chem., 1987, 52, 1922-1930.48. L. Liang, M.-S. Xie, H.-X. Wang, H.-Y. Niu, G.-R. Qu and H.-M. Guo, J. Org. Chem., 2017, 82,

5966-5973.