142
10 – 12 March 2016 FARO www.rawmaterials2016.com Raw materials exploitation in Prehistory: sourcing, processing and distribution Book of Abstracts

Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – [email protected] Nuno Bicho (UAlg, Portugal) – [email protected] Raw materials 2016,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

10–12March2016FARO

www.rawmaterials2016.com

RawmaterialsexploitationinPrehistory:sourcing,processinganddistribution

BookofAbstracts

Page 2: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,
Page 3: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

UniversityofAlgarve

10,11,12March2016

Faro,Portugal

Page 4: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Coverimage:ChertandchalcedonyoutcropfromAlgarve,Portugal(photo:TelmoPereira)

BookofabstractsoftheRawmaterialsexploitationinPrehistory:sourcing,processinganddistributionmeeting

DesignedbyTelmoPereira

CompiledbyTelmoPereiraandEduardoPaixão

ISBN978-989-8472-78-6–(paper)

ISBN978-989-8472-79-3–(PDF)

Page 5: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Index

Welcome i

Organization&ScientificCommmittee ii

GeneralInformation iii

Schedule iv

Timetable viii

Listofauthorsinalphabeticorder ix

Abstracts 1

Page 6: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro i

WelcomeDearcolleagues,

GreetingsandwelcometotheRawmaterialsexploitationinPrehistory:sourcing,processinganddistributionwebsite.

Thestudyofrawmaterialshasbeenofmajorimportancetoinferimportanttraitsfrompasthumanpopulations.Amongthosetraitsonecannameecology,cognition,behaviour,technology,territoryandsocialcomplexity.Thishasbeenpossibletoachieveacrosschronologiesandregions.Bymergingarchaeologywithanthropology,geologyandgeographywehavebeenabletoacquireoutstandinginsightsaboutthosepopulations.Inthelastdecades,thesehavebeenprogressivelyrefinedduetotheincreaseduseofhigh-resolutionmethodsandquantitativedata,mostlybroughtbyotherfieldssuchasphysicsorchemistry.

Consideringsuchadvancesandthesuccessofrecentmeetings,theUniversityofAlgarvewiththeConsejoSuperiordeInvestigacionesCientíficas(IMF,Barcelona)arepleasedtoannouncetheorganizationofaninternationalconferencefocusingonongoingprojectsstudyingtheinorganicrawmaterialsusedduringPrehistoryentitled:RawMaterialsExploitationInPrehistory:Sourcing,ProcessingandDistribution.

Topicsareopentoadiversityofissues,butwewouldliketogivepreferencetohigh-resolutionmethodssuchasPIXE,XRF,EDS,massspectrometryorother,becausetheygivemeasurabledata,progressivelyreducingthesometimeshighly-criticizedsubjectivityoftheavailabledata;somethingwhichhasbeengivingincreasedimportancetoarchaeologyandanthropologyinthe21stCentury.Applicationsofsuchmethodstodifferentinorganicmaterials(lithics,ceramics,metals,glass,beads,colorants,etc.)arewelcome.Moreover,worksemphasizingintegrationofresultsobtainedondifferentsubjectswillbeprioritized.

ThenumberofstudiesislargeandnumerousprojectsusingthesemethodsareongoingthroughouttheWorldandcoveringallPrehistoricperiods.Therefore,anewmeetingwillbetheperfectsetuptopresentfreshandmorematureinformationalongwithcriticalopinionsontheadvantagesandlimitsofthesemethods.

Didyouhavefrustratingresults?Great!CometoFaroandshowthem;theywillbecrucialtodiscussfieldandlaboratoryprotocolsalongwithapplicability,rangesandlimitsofthesemethods.

Themeetingwilltakeplacebetweenthe10thand12thMarch2016attheUniversityofAlgarve,Portugal.

LookingforwardtomeetyouinFaro!

Thecoordinators,

TelmoPereira(UAlg,Portugal)–[email protected](CSIC-IMF–Barcelona,Spain)–[email protected](UAlg,Portugal)–[email protected]

Page 7: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro ii

Organization&ScientificCommittee

Organization

TelmoPereira:InterdisciplinaryCenterforArchaeologyandEvolutionofHumanBehavior,UniversidadedoAlgarve([email protected])

XavierTerradas:ConsejoSuperiordeInvestigacionesCientíficas.IMF–DepartamentodeArqueologíayAntropología,Barcelona([email protected])

NunoBicho:InterdisciplinaryCenterforArchaeologyandEvolutionofHumanBehavior,UniversidadedoAlgarve([email protected])

CongressSecretariat

EduardoPaixão:InterdisciplinaryCenterforArchaeologyandEvolutionofHumanBehavior,UniversidadedoAlgarve([email protected])

ScientificCommittee

AndersHögberg:DepartmentofCulturalSciences|Archaeology,LinnaeusUniversity,Sweden([email protected])

DavidBraun:CenterfortheAdvancedStudyofHomininPaleobiology,GeorgeWashingtonUniversity,USA([email protected])

JacekLech:InstituteofArchaeologyandEthnology,WarsawPolishAcademyofSciences,Poland([email protected])

PierrePetrequin:MSHELedoux,CNRSandFranche-ComtéUniversity,Basançon,France([email protected])

RobertH.Tykot:DepartmentofAnthropology,UniversityofSouthFlorida,Tampa,USA([email protected])

ThiloRehren:UCLQatar,GeorgetownBuilding,HamadbinKhalifaUniversity,Doha,Qatar([email protected])

Page 8: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro iii

Generalinformation

HowtoarriveFarohasan international airport located just3km from theCampusGambelas.There, you canfindtaxisthatwillbringyoutotheCampusGambelasortoFarodowntowninjustafewminutes.

InFarodowntown,youcanfindthetrainstationandabusstration,closetoeachother.Theyareaproximately7kmfromtheCampusandtheybothhavetaxisandbusstopsthatwillbringyoutotheCampus.InbothSevillaandLisbonyoucanfindfastbusesandtrainstoFaro.

If you chose coming by car, it is also easy to arrive to Faro and the Campus because therehighwaysallthroughtheway.IfyouarecomingfromSpain,justfollowtheindicationsPortugal,Algarve,FaroandifyouarecomingfromNorth,followtheindicationsAlgarveFaro.

WheretostayFarohasawide rangeofpossibilitieswhereyoucanrestduringyourstay inFaro.Hotelsandhostals are constantly being upgraded and new ones opening. They targuet from exquisitecostumerstoeasygoingbagpackers.SothebestoptionistocheckforroomsintheInternetsincethepricescanvaryconsiderably.Takealookat:

www.booking.com/http://www.budgetplaces.com/

http://www.hostelworld.com/

http://www.rumbo.pt/

www.trivago.pt/

WheretoeatTheCampusGambelashasseveralplaces,includingacanteen,whereyoucanlunch.Inaddition,therearealsomultipleplacesrightnexttotouniversityentrance.

HowtomoveCampusGambelas isapproximately7kmfromFaro’scitycenter.YoucanrentacarorusetheurbanbuslinesthatcrosstheCampusevery20minutes(seenextpages).Theuniversitywillnotbeabletoprovideanyshutleservice.

VenuesThecongresswillbehost in theFacultyofEconomy fromtheUniversityofAlgarve, located inCampus Gambelas. The bus stop is right in front of the buildingwhere the congresswill takeplace.

Whenyouarrivejustfollowtheindicationsforthecongressroom.Ateamofvolunteerswillbeinthereceptiontogiveyourdocumentation.

Page 9: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro iv

ScheduleThursday,10March2015–9h15 1

Openingsession 1

Thursday,10March2015–9h00 1

Geochemical-MineralogicalProvenanceDeterminationOfStoneToolsAndTheirArchaeologicalImplications:ScientificMethods,DataBackgroundAndDataEvaluation 1

OralPresentations 2

9h30 Sciutoetal.:NearInfraredimagingspectroscopyforlithicmaterialscharacterisation.FromquantitativedatatospatialanalysisonaMesolithicdwellingsiteinNorthernSweden.

2

9h50 Diasetal.:Non-invasivenucleartechniquesappliedtostoneidolscharacterization:mobilityandinteractionintherecentprehistoryofsouthPortugal

3

10h10 Hughesetal.:GeochemicalCharacterizationofPaleolithicObsidianArtifactsfromPoland 4

10h30 Braunetal.:HomininstoneresourcesusealongtheWestCoastofSouthAfricaintheMid-Pleistocene:EvidencefromElandsfontein

5

10h50 Espinosaetal.:SiliceousrawmaterialsourcesatlaSierritadeTicul,Yucatan,Mexico:afirstapproachoflithicprocurementduringlatePleistoceneandearlyHoloceneintheMayalowlands

6

11h10 COFFEEBREAK

11h20 Driscolletal.:TheIrishLithicLandscapesProject:arawmaterialprovenancingprojectintegratinggeochemical(ED-XRF)andpetrographicanalysesofmaterialfromprehistoricIreland

7

11h40 Brandletal.:TheMultiLayeredChertSourcingApproach(MLA)usingLA-ICP-MSandCODA 8

12h00 Moreauetal.:SourcingofflintartefactsfromwesternBelgiumandtheGermanRhineland:usingvisualandgeochemicalmethodsfollowingamulti-layeredapproach

9

12h20 Werraetal.:HowusefularepetrologicalandgeochemicalmethodsinidentifyingUpperJurassic“chocolate”flintinCentralPoland? 10

12h40 Zarinaetal.:ResearchproceduresforsourcingrawmaterialsoftheStoneAgeflinttoolsfoundinLatvia 11

13h00 LUNCHBREAK

14h20 Roldánetal.:Compositionalvariabilityofflintandimplicationsintheidentificationofrawmaterialssourcesofpre-historicalartefacts,EasternSpain

12

14h40 Thacker:Amulti-methodapproachforcharacterizingchertgeochemicalvariabilityatAzinheira-RioMaior,Portugal:TheRMAROnlineDatabase

13

15h00 Finkeletal.:Preliminarygeochemicalresults(ICP-MS)offlintdebitagefromanewlydiscoveredmegaextractionandreductionareaintheEasternGalilee,Israel

14

15h20 Jordãoetal.:TheZambujal’sarrowheads:apetroarchaeologicapproachtoflint’sprovenancedetermination 15

15h40 Discussion

15h55 COFFEEBREAK

Posters–Friday,18h45

SánchezdelaTorre:ThegeochemicalcharacterisationoftheHibarette-MontgaillardflyschchertsandMontsaunèschertsbyED-XRFandLA-ICP-MS.ArchaeologicalimplicationsfortheMagdalenianofSWEurope

16

Fantietal.:AnewWesternMediterraneanobsidiangroup?InpursuitoftheSXobsidiansourcefromMonteArci,Sardinia 17

Fernandesetal.:Goingfurtherinflintstudieswiththe“chaîneévolutive”concept 18

Gallelloetal.:CharacterizationofDoleritePrehistorictoolsinMediterraneanIberia:Anewmethodologicalapproach 19

Guiavarc'hetal.:CharacterizationbyPIXEelementalanalysisoffibrolite:applicationtothestudyofNeolithicpolishedaxesprovenance

20

Hartochetal.:“Wheredoesyoursaddlequerncomefrom?”GrindingintheactualprovinceofLimburg(BE)duringtheIronAge 21

Melosuetal.:Whatfortheseblades?FlintbladesproductionandcirculationinLateNeolithicSardinia 22

Mills:trackingthehunters:geochemicalprovenancingofMiddle-PalaeolithicstonetoolsasameanstoreconstructNeanderthalbehaviourintheEnglishChannelregion

23

Rey-Soléetal.:SiliceousrawmaterialsexploitationatHortdelaBoquerasite(MargalefdeMontsant,Tarragona,España):firstapproachesonICP-MS-LAanalysis

24

Silvestreetal.:Compositionalanalysisonlithicbeads.Thecaseofthelowparanáwetland,Argentina 25

Stewart:Thequintessenceofchert;therareearthelementsandtheiruseintheprovenancingofarchaeologicallithicmaterial 26

Tarriñoetal.:FlintsoftheGravettianWorkshopofMugarduiaSur(SierradeUrbasa,westerPyrenees,Spain) 27

Tarriñoetal.:LithicrawmaterialprocurementatElHornoCave(Cantabria,NorthernSpain) 28

Hawsetal.:GeochemicalsourcingofchertinPortugueseEstremadura 29

Page 10: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro v

Thursday,10March2015-16h05 30

TheRoutesOfArchaeologicalColouringMaterials:FromTheSourcesToTheUses 30

OralPresentations 31

16h05 Salomonetal.:TheRoutesOfArchaeologicalColouringMaterials:FromTheSourcesToTheUses 31

16h25 Biróetal.:PrehistoricPigmentsintheHungarianNationalMuseum 32

16h45 Cavalloetal.:ProvenanceandProcessingofUpperPalaeolithicOchreBasedonCompositionalandTexturalStudies 33

17h05 Heyesetal.:DidNeanderthalsExploittheMaterialPropertiesofColouredMinerals? 34

17h25 Zipkinetal.:TheEthno-ArchaeometryofModernOchreUseinKenya 35

17h45 Camenoetal.:GeochemicalandmineralogicalcharacterizationofMagdalenianAgeredpigmentsfromTitoBustillocave(Ribadesella,Asturias)

36

18h05 Lambert:PrehistoricCorsica:thesignificanceandprovenanceofitspigmentingmaterials 37

18h25 Nivens:AnEarlyAurignacianindustryofochres?Theactualisticstudyofferruginouscolorants’variablepolishingefficacy 38

18h45 Discussion

Posters–Friday,18h45

Alonsoetal.:Lasportillasformation:anewvarietyofchertusedbyprehistoricgroupsinthecantabrianmountains? 39

Becketetal.:Sources,ProductionandDistributionofPre-HispanicLithicMaterialsinAguascalientes,Mexico 40

Burkeetal.:Geoarchaeology,geochemistryandpetrographyofjaspersourcesintheAlentejoregionofPortugal 41

Queroetal.:VariabilityintheexploitationoflithicrawmaterialsfromMiddleNeolithictoLateChalcolithic,atRealmesesite(Calascibetta-Enna,centralSicily)

42

Friday,11March2015-9h00 43

OpenSession:PuttingDataIntoContext 43

OralPresentations 43

9h00 Catellaetal.:Discriminatingbetweenpotential/actualandmajor/minorlithicsourcesusinggeostatisticalmodelsofartifactdistributions:thechertsfromeast-centralArgentinaasacasestudy

44

9h20 Pétrequinetal.:Alpinejades:fromscientificanalysestoNeolithicknowhow 45

9h40 Herreroelal.:SitecatchmentanalysisandhumanbehaviourduringtheUpperPalaeolithicintheCantabrianRegion:Coímbrecave(Asturias,Spain)ascasestudy

46

10h00 Discussion

Posters–Friday,18h45

Herreroetal.:UnderstandinghumanbehaviourduringtheUpperPalaeolithicintheCantabrianRegion(Spain)bymeansoflithicrawmaterialsandSiteCatchmentAnalysis

47

Barrientosetal.:Understandingreciprocalrelationshipsbetweenrocksandsources:aspatialapproachtothestudyofcompetitionbetweenrawmaterialsinspecificregionalcontexts

48

Fadda:Impressionsfromthepast:basketryinBronzeAgeSardinia(Italy) 49

Alonsoetal.:ChaînesOpératoiresandlithicrawmaterialsprocurementoftheMousterianoccupationinAbrigodelMolino(Segovia,Spain)

50

10h15 COFFEEBREAK

Friday,11March2015–10h25 51

AdvancesInTracingTheOriginAndCirculationOfMineral-BasedPrestigeItemsInThePrehistoryOfTheMiddleEastAndItsAdjacentRegions 51

OralPresentations 52

10h25 Koesteretal.:ProvenanceAnalysisof‘Calcite-Alabaster’VesselsfromQatna,Syria,byNAA 52

10h45 Sereno:CompositionandoriginoffelsiteandamazoniteprestigeitemsinthecentralSaharaduringtheAfricanHumidPeriod 53

11h05 Alarashietal.:PreliminaryresultsofgeochemicalanalysesonbeadsfromthesiteofKadruka1(KDK1),NileValley,NorthernSudan

54

11h25 Bursalietal.:NeolithicBlueBeadsinNorthwestTurkey:theSocialSignificanceofSkeuomorphism 55

11h45 Campbelletal.:ThemultipleoriginsofsomeobsidianbeadsfoundinatombatKish,Iraq 56

12h05 Dumitruetal.:MappingEconomicNetworksofProductionandTrade:CopperinOmanandObsidianinEthiopia 57

12h25 Richardson:PrestigematerialsandmaterialityintheNeolithicEasternFertileCrescent 58

12h45 Discussion

13h00 Lunch

Page 11: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro vi

Posters–Friday,18h45

Alarashietal.:StonepersonaladornmentsfromTellMureybet(Euphratesvalley,Syria):mineralcompositionandpathwaysofcirculation

59

Khalidi:ThefabricationofobsidianprestigeitemsinLateChalcolithicnorthernMesopotamia 60

Lume-Pereira:Thebead-maker’stoolkit–Thecirculationofdrillingtechnologiesandgemstonesinthe“MiddleAsianInteractionSphere”

61

Méryetal.:2500CalBC:InduspottersinthePersianGulf 62

Mouralisetal.:Fieldevidencesinvolcanologyandgeomorphologyasatoolforobsidiansourcing 63

Mouralisetal.:GéObsprogram:IntegratedstudyoftheEasternAnatolianobsidians(Identification,characterizationanddiffusion) 64

Friday,11March2015-14h20 65

RawMaterialsForMakingPots 65

OralPresentations 66

14h20 Geheres&Querré:"Distinguishthesimilar":sourcingrawmaterialsofdifferentceramicschemicallyandpetrographicallyidentical,thecontributionofmicroanalysisbyLA-ICP-MS

66

14h40 Jorgeetal.:Pottinginthearctic:Ceramictechnologicalstrategiesamonghunter-fisher-gatherersatNunalleq,Alaska 67

15h00 Kulkovaetal.:Petro-mineralogicalandGeochemicalcharacterizationofNeolithicpotteryfromsettlementsofEasternEurope(Dvina-Lovat’basin)

68

15h20 Čatajetal.:Differenttemper,differentfunction:claypastesforlasinjaculturepotteryfromtwositesinnorthwesternCroatia 69

15h40 Kadrow&Rauba-Bukowska:CeramicrawmaterialsinLinearBandPotteryCulture(LBK)intheCarpathianregion,Poland 70

16h00 Tayloretal.:TechnologicaldiversityoftheEarlyNeolithicpotteryofMuge(Portugal):thecasestudyofCabeçodaAmoreira(excavationsfrom2008to2014)

71

16h20 CoffeBreak

16h30 Cubasetal.:Potteryforthedead:exploringtherawmaterialsexploitationinthepotteryofCanGambús-1(Sabadell,Cataluña) 72

16h50 Thacker:DistinguishingtheNon-LocalRatherthanMatchingtheExotics:CeramicSourcingMethodsandResearchDesignatCastrodeSãoMartinho,Portugal

73

17h10 Francés-Negroetal.:Archaeomagneticanalysisonarchaeologicalpotteryasamethodtoinferheatingtemperatures.AcasestudyfromElPortalonCave(SierradeAtapuerca,Burgos,Spain)

74

17h30 DeRosa:ThepotsfromtheNuragicsiteofSant’Imbenia(Sardinia,Italy):analysesoftherawmaterialsandthetechnologicalevolution

75

17h50 LópezdeHerediaetal.:Rawmaterialsandtheiruseinthemakingofpotteryfrombasagain(BasqueCountry,Spain),archaeologicalandexperimentalresearch

76

18h10 Sallumetal.:Chemicalanalysisofpigments,pasteandresiduesinTupiarchaeologicalceramicsfromSoutheasternBrazil 77

18h30 Discussion

POSTERSESSIONS 78

Posters–Friday,18h45

Fadda:Localresourcesandpotteryproduction:BronzeAgecookingpotsinCentralSardinia(Italy) 78

Francés-Negroetal.:Newtoolsandoldquestionsinarchaeometricanalysisofceramics 79

Amonti:Thejobofthearchaeologistandtheartofculturalmediation 80

Carlonietal.:Technologicalandfunctionalidentificationofcookingslabs:evidencesfromtheBronzeAgepiledwellingssettlementofGrottadiPertosa(Salerno,SouthernItaly)

81

Capeletal.:TechnologyofpotteryproductionoftheburialsArgaricGroup(2250-1550CalBC)byScanningElectronMicroscopyandX-RayDifraction.ThecaseofElCerrodelaEncina(Monachil,Granada,Spain)

82

Percan:NeolithicpotteryfromLjubićevacave(Istria,Croatia) 83

Inácio:RawmaterialsprocurementforpotterymanufatureinSouthwestIberianPeninsuladuringPrehistory 84

Saturday,12March2015-9h00 85

LongDistanceProvenanceAndDistributionOfRawMaterialsUsedInStoneToolsProduction:CaseStudies 85

OralPresentations

9h00 Doronichevaetal.:LongdistanceflintprocurementandtransportationintheSeaofAzovcoastandKubanbasinregionsintheMiddlePaleolithic

86

9h20 Moutsiou:LongdistanceobsidiandistributionandtheorganizationofPalaeolithicsocieties 87

9h40 Cánovasetal.:Thestonerawmaterialsinpirulejo(priegodecórdoba,córdoba,spain).Theexampleoflevel5 88

10h00 Oliva:Lithicrawmaterialreservoirsor“cache”recordintheáreaecotonalhúmedasecapampeana,Argentina,asanstrategyforsupplyandterritorialmarking

89

Page 12: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro vii

10h20 Boroneantetal.:ElementalCharacterizationofObsidianartifactsfromEpipaleolithicandNeolithicsitesintheIronGates,SoutheastEurope

90

10h40 COFFEEBREAK

10h50 Bogosavljević:ExploitationofRawMaterialsinBelovode(Serbia):Sourcing,ProcessingandDistribution 91

11h10 Terradasetal.:ExchangenetworksbetweentheRhoneandEbrovalleys:AviewfromthenortheastoftheIberianPeninsula 92

11h30 Querréetal.:LongdistanceprovenancesofthecallaïsadornmentsalongAtlanticEuropefromthefifthtothethirdmillennium 93

11h50 Bendőetal.:JadesandrelatedHPgreenstonepolishedstoneimplementsfromHungary 94

12h10 Szakmányetal.:ContactmetamorphicrocksaslongdistanceimportrawmaterialsofPrehistoricpolishedstonetoolsinHungary 95

12h30 Discussion

12h40 Tykot,Robert:ProblemsandPotentialSolutionsforInter-LaboratoryElementalCompositionDataComparisonandCombinationforGeologicalandArchaeologicalObsidian

101

13h00 LUNCHBREAK

Posters–Friday,18h45

Constans:TheflintacquisitionthroughfinalUpperPaleolithicandMesolithic:Aterritorycontraction 96

Gurova:HighqualityflintsourcinganddistributionintheHolocene:CasestudiesfromBulgaria 97

Cauxetal.:AnewmodelofmobilityfortheLateAurignacianinSouth-WesternFrance 98

Kaczanowskaetal.:RawmaterialextractionandcirculationaroundtheWesternCarpathiansintheEarlyNeolithic 99

Płonkaetal.:TheuseofstonerawmaterialsintheMesolithicoftheSudetenMountains,SWPoland 100

Saturday,12March2015-14h20 102

HeatTreatmentOfRawMaterials:Objectives,ChangesAndProcedures 102

OralPresentations 102

14h20 Delagnesetal.:Thehabitualheat-treatmentofsilcretebytheHowiesonsPoortgroupsfromsouthernAfrica 103

14h40 Schmidt:AnoverviewoverthetemporalandspatialvariationsandchangeofheattreatmentintheMiddleStoneAgeonSouthAfrica’swestcoast

104

15h00 Wojcieszaketal:ChemicalandphysicalevidenceofheatingtreatmentoftheMiddleStoneAgeochrefromRoseCottageandSibudu,SouthAfrica

105

15h20 Iriarteetal.:Tracingtheearlyproductionanduseoflime-plasterinKharaysinPPNBsite(Jordan) 106

15h40 Maeda:FlintheattreatmentpracticeatthePre-PotteryNeolithicAsiteofHasankeyfHöyük,southeastTurkey 107

Saturday,12March2015–16h00 108

ApproachesToMeasureLithicRawMaterialQuality 108

OralPresentations 109

16h00 Carvalhoetal.:Mechanicalpropertiesofstonesinfluencesselectiondecisioninchimpanzeesandhominins 109

16h20 Marreirosetal.:LinkingGeringonçaandSchmidthammerresultstoinferlithicrawmaterialquality 110

16h40 Discussion

16h55 COFFEEBREAK

Posters–Friday,18h45

Fariasetal.:Howthereboundvalueisqualityfactorofthechert? 111

Paixãoetal.:Testingraw-materialsuitabilityforGroundstones:ExperimentalprograminQuartziteandGreywacke 112

Saturday,17h05 113

QuarryingAndMiningDuringPrehistoricTimes 113

OralPresentations 114

17h05 Yaroshevichetal.:AMiddlePaleolithicworkshopatGiv’atRabiEast,LowerGalilee,Israel:preliminaryresultsofsalvageexcavations

114

17h25 Pereiraetal.:Rawmaterialdiversity,distributionandacquisitionintheRiverLisBasin,CentralPortugal 115

17h45 Nylandetal.:“QuarryingassocialandpoliticalstrategyduringtheMesolithic-Neolithictransition,insouthernNorway” 116

18h05 BeverlyA.Chiarulli:UseofMultipleQuarriesbyLatePrehistoricpeopleinwesternPennsylvania,USA 117

18h25 Lech:ExploitationofrawmaterialsinprehistoricEurope.Generalremarks 118

18h45 Discussion

19h00 Closingsession

Page 13: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro viii

Posters–Friday,18h45

Lechetal.:EnigmaoftheBorowniaprehistoricflintminesite(CentralPoland) 119

Dimuccioetal.:Theprehistoricexploitationofferruginousmineralizationsatgrottadellamonaca(Calabria,Italy):preliminarygeoarchaeologicaldata

120

Vuckovic:TheimportanceoftheGabbroformationfortheLateNeolithiccommunitiesintheMiddleMoravaValley 121

Terradasetal.:NeolithicflintquarriesofMontvell(CatalanPre-Pyrenees,Spain) 122

Péterdietal.:Domoszló:GrindingstoneandmillstoneproductioncenterinHungary 123

Mgeladze:HomininoccupationattheDmanisisite,Georgia,southernCaucausus:Rawmaterialsandtechnicalbehaviours 124

Timetable10,Thursday 11,Friday 12,Saturday

9h15-9h30 Registration 9h00-9h20 Context 9h00-9h20 LongDistance9h15-9h30 OPENING 9h20-9h40 Context 9h20-9h40 LongDistance9h30-9h50 Geochemical 9h40-10h00 Context 9h40-10h00 LongDistance9h50-10h10 Geochemical 10h00-10h15 Discussion 10h00-10h20 LongDistance10h10-10h30 Geochemical 10h15-10h25 Break 10h20-10h40 LongDistance10h30-10h50 Geochemical 10h25-10h45 Prestige 10h40-10h50 Break10h50-11h10 Geochemical 10h45-11h05 Prestige 10h50-11h10 LongDistance11h10-11h20 Break 11h05-11h25 Prestige 11h10-11h30 LongDistance11h20-11h40 Geochemical 11h25-11h45 Prestige 11h30-11h50 LongDistance11h40-12h00 Geochemical 11h45-12h05 Prestige 11h50-12h10 LongDistance12h00-12h20 Geochemical 12h05-12h25 Prestige 12h10-12h30 LongDistance12h20-12h40 Geochemical 12h25-12h45 Prestige 12h30-12h40 Discussion12h40-13h00 Geochemical 12h45-13h00 Discussion 12h40-13h00 INVITEDSPEAKER13h00-13h20 Lunch 13h00-13h20 Lunch 13h00-13h20 Lunch13h20-13h40 Lunch 13h20-13h40 Lunch 13h20-13h40 Lunch13h40-14h00 Lunch 13h40-14h00 Lunch 13h40-14h00 Lunch14h00-14h20 Lunch 14h00-14h20 Lunch 14h00-14h20 Lunch14h20-14h40 Geochemical 14h20-14h40 Pots 14h20-14h40 HeatTreatment14h40-15h00 Geochemical 14h40-15h00 Pots 14h40-15h00 HeatTreatment15h00-15h20 Geochemical 15h00-15h20 Pots 15h00-15h20 HeatTreatment15h20-15h40 Geochemical 15h20-15h40 Pots 15h20-15h40 HeatTreatment15h40-15h55 Discussion 15h40-16h00 Pots 15h40-16h00 HeatTreatment15h55-16h05 Break 16h00-16h20 Pots 16h00-16h20 Quality16h05-16h25 Colouring 16h20-16-30 Break 16h20-16h40 Quality16h25-16h45 Colouring 16h30-16h50 Pots 16h40-16h55 Discussion16h45-17h05 Colouring 16h50-17h10 Pots 16h55-17h05 Break17h05-17h25 Colouring 17h10-17h30 Pots 17h05-17h25 Quarring17h25-17h45 Colouring 17h30-17h50 Pots 17h25-17h45 Quarring17h45-18h05 Colouring 17h50-18h10 Pots 17h45-18h05 Quarring18h05-18h25 Colouring 18h10-18h30 Pots 18h05-18h25 Quarring18h25-18h45 Colouring 18h30-18h45 Discussion 18h25-18h45 Quarring18h45-19h00 Discussion 18h45-20h00 POSTERS 18h45-19h00 Discussion

19h00-19h20 CLOSING

Page 14: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro ix

ListofauthorsinalphabethicorderAlarashietal.:PreliminaryresultsofgeochemicalanalysesonbeadsfromthesiteofKadruka1(KDK1),NileValley,NorthernSudan

54

Alarashietal.:StonepersonaladornmentsfromTellMureybet(Euphratesvalley,Syria):mineralcompositionandpathwaysofcirculation

59

Alonsoetal.:ChaînesOpératoiresandlithicrawmaterialsprocurementoftheMousterianoccupationinAbrigodelMolino(Segovia,Spain)

50

Alonsoetal.:Lasportillasformation:anewvarietyofchertusedbyprehistoricgroupsinthecantabrianmountains? 39

Amonti:Thejobofthearchaeologistandtheartofculturalmediation 80

Barrientosetal.:Understandingreciprocalrelationshipsbetweenrocksandsources:aspatialapproachtothestudyofcompetitionbetweenrawmaterialsinspecificregionalcontexts

48

Becketetal.:Sources,ProductionandDistributionofPre-HispanicLithicMaterialsinAguascalientes,Mexico 40

Bendőetal.:JadesandrelatedHPgreenstonepolishedstoneimplementsfromHungary 94

BeverlyA.Chiarulli:UseofMultipleQuarriesbyLatePrehistoricpeopleinwesternPennsylvania,USA 117

Biróetal.:PrehistoricPigmentsintheHungarianNationalMuseum 32

Bogosavljević:ExploitationofRawMaterialsinBelovode(Serbia):Sourcing,ProcessingandDistribution 91

Boroneantetal.:ElementalCharacterizationofObsidianartifactsfromEpipaleolithicandNeolithicsitesintheIronGates,SoutheastEurope

90

Brandletal.:TheMultiLayeredChertSourcingApproach(MLA)usingLA-ICP-MSandCODA 8

Braunetal.:HomininstoneresourcesusealongtheWestCoastofSouthAfricaintheMid-Pleistocene:EvidencefromElandsfontein

5

Burkeetal.:Geoarchaeology,geochemistryandpetrographyofjaspersourcesintheAlentejoregionofPortugal 41

Bursalietal.:NeolithicBlueBeadsinNorthwestTurkey:theSocialSignificanceofSkeuomorphism 55

Camenoetal.:GeochemicalandmineralogicalcharacterizationofMagdalenianAgeredpigmentsfromTitoBustillocave(Ribadesella,Asturias)

36

Campbelletal.:ThemultipleoriginsofsomeobsidianbeadsfoundinatombatKish,Iraq 56

Cánovasetal.:Thestonerawmaterialsinpirulejo(priegodecórdoba,córdoba,spain).Theexampleoflevel5 88

Capeletal.:TechnologyofpotteryproductionoftheburialsArgaricGroup(2250-1550CalBC)byScanningElectronMicroscopyandX-RayDifraction.ThecaseofElCerrodelaEncina(Monachil,Granada,Spain)

82

Carlonietal.:Technologicalandfunctionalidentificationofcookingslabs:evidencesfromtheBronzeAgepiledwellingssettlementofGrottadiPertosa(Salerno,SouthernItaly)

81

Carvalhoetal.:Mechanicalpropertiesofstonesinfluencesselectiondecisioninchimpanzeesandhominins 109

Čatajetal.:Differenttemper,differentfunction:claypastesforlasinjaculturepotteryfromtwositesinnorthwesternCroatia 69

Catellaetal.:Discriminatingbetweenpotential/actualandmajor/minorlithicsourcesusinggeostatisticalmodelsofartifactdistributions:thechertsfromeast-centralArgentinaasacasestudy

44

Cauxetal.:AnewmodelofmobilityfortheLateAurignacianinSouth-WesternFrance 98

Cavalloetal.:ProvenanceandProcessingofUpperPalaeolithicOchreBasedonCompositionalandTexturalStudies 33

Constans:TheflintacquisitionthroughfinalUpperPaleolithicandMesolithic:Aterritorycontraction 96

Cubasetal.:Potteryforthedead:exploringtherawmaterialsexploitationinthepotteryofCanGambús-1(Sabadell,Cataluña) 72

DeRosa:ThepotsfromtheNuragicsiteofSant’Imbenia(Sardinia,Italy):analysesoftherawmaterialsandthetechnologicalevolution

75

Delagnesetal.:Thehabitualheat-treatmentofsilcretebytheHowiesonsPoortgroupsfromsouthernAfrica 103

Diasetal.:Non-invasivenucleartechniquesappliedtostoneidolscharacterization:mobilityandinteractionintherecentprehistoryofsouthPortugal

3

Dimuccioetal.:Theprehistoricexploitationofferruginousmineralizationsatgrottadellamonaca(Calabria,Italy):preliminarygeoarchaeologicaldata

120

Doronichevaetal.:LongdistanceflintprocurementandtransportationintheSeaofAzovcoastandKubanbasinregionsintheMiddlePaleolithic

86

Driscolletal.:TheIrishLithicLandscapesProject:arawmaterialprovenancingprojectintegratinggeochemical(ED-XRF)andpetrographicanalysesofmaterialfromprehistoricIreland

7

Dumitruetal.:MappingEconomicNetworksofProductionandTrade:CopperinOmanandObsidianinEthiopia 57

Espinosaetal.:SiliceousrawmaterialsourcesatlaSierritadeTicul,Yucatan,Mexico:afirstapproachoflithicprocurementduringlatePleistoceneandearlyHoloceneintheMayalowlands

6

Page 15: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro x

Fadda:Impressionsfromthepast:basketryinBronzeAgeSardinia(Italy) 49

Fadda:Localresourcesandpotteryproduction:BronzeAgecookingpotsinCentralSardinia(Italy) 78

Fantietal.:AnewWesternMediterraneanobsidiangroup?InpursuitoftheSXobsidiansourcefromMonteArci,Sardinia 17

Fariasetal.:Howthereboundvalueisqualityfactorofthechert? 111

Fernandesetal.:Goingfurtherinflintstudieswiththe“chaîneévolutive”concept 18

Finkeletal.:Preliminarygeochemicalresults(ICP-MS)offlintdebitagefromanewlydiscoveredmegaextractionandreductionareaintheEasternGalilee,Israel

14

Francés-Negroetal.:Archaeomagneticanalysisonarchaeologicalpotteryasamethodtoinferheatingtemperatures.AcasestudyfromElPortalonCave(SierradeAtapuerca,Burgos,Spain)

74

Francés-Negroetal.:Newtoolsandoldquestionsinarchaeometricanalysisofceramics 79

Gallelloetal.:CharacterizationofDoleritePrehistorictoolsinMediterraneanIberia:Anewmethodologicalapproach 19

Geheres&Querré:"Distinguishthesimilar":sourcingrawmaterialsofdifferentceramicschemicallyandpetrographicallyidentical,thecontributionofmicroanalysisbyLA-ICP-MS

66

Guiavarc'hetal.:CharacterizationbyPIXEelementalanalysisoffibrolite:applicationtothestudyofNeolithicpolishedaxesprovenance

20

Gurova:HighqualityflintsourcinganddistributionintheHolocene:CasestudiesfromBulgaria 97

Hartochetal.:“Wheredoesyoursaddlequerncomefrom?”GrindingintheactualprovinceofLimburg(BE)duringtheIronAge 21

Hawsetal.:GeochemicalsourcingofchertinPortugueseEstremadura 29

Herreroelal.:SitecatchmentanalysisandhumanbehaviourduringtheUpperPalaeolithicintheCantabrianRegion:Coímbrecave(Asturias,Spain)ascasestudy

46

Herreroetal.:UnderstandinghumanbehaviourduringtheUpperPalaeolithicintheCantabrianRegion(Spain)bymeansoflithicrawmaterialsandSiteCatchmentAnalysis

47

Heyesetal.:DidNeanderthalsExploittheMaterialPropertiesofColouredMinerals? 34

Hughesetal.:GeochemicalCharacterizationofPaleolithicObsidianArtifactsfromPoland 4

Inácio:RawmaterialsprocurementforpotterymanufatureinSouthwestIberianPeninsuladuringPrehistory 84

Iriarteetal.:Tracingtheearlyproductionanduseoflime-plasterinKharaysinPPNBsite(Jordan) 106

Jordãoetal.:TheZambujal’sarrowheads:apetroarchaeologicapproachtoflint’sprovenancedetermination 15

Jorgeetal.:Pottinginthearctic:Ceramictechnologicalstrategiesamonghunter-fisher-gatherersatNunalleq,Alaska 67

Kaczanowskaetal.:RawmaterialextractionandcirculationaroundtheWesternCarpathiansintheEarlyNeolithic 99

Kadrow&Rauba-Bukowska:CeramicrawmaterialsinLinearBandPotteryCulture(LBK)intheCarpathianregion,Poland 70

Khalidi:ThefabricationofobsidianprestigeitemsinLateChalcolithicnorthernMesopotamia 60

Koesteretal.:ProvenanceAnalysisof‘Calcite-Alabaster’VesselsfromQatna,Syria,byNAA 52

Kulkovaetal.:Petro-mineralogicalandGeochemicalcharacterizationofNeolithicpotteryfromsettlementsofEasternEurope(Dvina-Lovat’basin)

68

Lambert:PrehistoricCorsica:thesignificanceandprovenanceofitspigmentingmaterials 37

Lechetal.:EnigmaoftheBorowniaprehistoricflintminesite(CentralPoland) 119

Lech:ExploitationofrawmaterialsinprehistoricEurope.Generalremarks 118

LópezdeHerediaetal.:Rawmaterialsandtheiruseinthemakingofpotteryfrombasagain(BasqueCountry,Spain),archaeologicalandexperimentalresearch

76

Lume-Pereira:Thebead-maker’stoolkit–Thecirculationofdrillingtechnologiesandgemstonesinthe“MiddleAsianInteractionSphere”

61

Maeda:FlintheattreatmentpracticeatthePre-PotteryNeolithicAsiteofHasankeyfHöyük,southeastTurkey 107

Marreirosetal.:LinkingGeringonçaandSchmidthammerresultstoinferlithicrawmaterialquality 110

Melosuetal.:Whatfortheseblades?FlintbladesproductionandcirculationinLateNeolithicSardinia 22

Méryetal.:2500CalBC:InduspottersinthePersianGulf 62

Mgeladze:HomininoccupationattheDmanisisite,Georgia,southernCaucausus:Rawmaterialsandtechnicalbehaviours 124

Mills:trackingthehunters:geochemicalprovenancingofMiddle-PalaeolithicstonetoolsasameanstoreconstructNeanderthalbehaviourintheEnglishChannelregion

23

Moreauetal.:SourcingofflintartefactsfromwesternBelgiumandtheGermanRhineland:usingvisualandgeochemicalmethodsfollowingamulti-layeredapproach

9

Mouralisetal.:Fieldevidencesinvolcanologyandgeomorphologyasatoolforobsidiansourcing 63

Mouralisetal.:GéObsprogram:IntegratedstudyoftheEasternAnatolianobsidians(Identification,characterizationanddiffusion) 64

Page 16: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro xi

Moutsiou:LongdistanceobsidiandistributionandtheorganizationofPalaeolithicsocieties 87

Nivens:AnEarlyAurignacianindustryofochres?Theactualisticstudyofferruginouscolorants’variablepolishingefficacy 38

Nylandetal.:“QuarryingassocialandpoliticalstrategyduringtheMesolithic-Neolithictransition,insouthernNorway” 116

Oliva:Lithicrawmaterialreservoirsor“cache”recordintheáreaecotonalhúmedasecapampeana,Argentina,asanstrategyforsupplyandterritorialmarking

89

Paixãoetal.:Testingraw-materialsuitabilityforGroundstones:ExperimentalprograminQuartziteandGreywacke 112

Percan:NeolithicpotteryfromLjubićevacave(Istria,Croatia) 83

Pereiraetal.:Rawmaterialdiversity,distributionandacquisitionintheRiverLisBasin,CentralPortugal 115

Péterdietal.:Domoszló:GrindingstoneandmillstoneproductioncenterinHungary 123

Pétrequinetal.:Alpinejades:fromscientificanalysestoNeolithicknowhow 45

Płonkaetal.:TheuseofstonerawmaterialsintheMesolithicoftheSudetenMountains,SWPoland 100

Queroetal.:VariabilityintheexploitationoflithicrawmaterialsfromMiddleNeolithictoLateChalcolithic,atRealmesesite(Calascibetta-Enna,centralSicily)

42

Querréetal.:LongdistanceprovenancesofthecallaïsadornmentsalongAtlanticEuropefromthefifthtothethirdmillennium 93

Rey-Soléetal.:SiliceousrawmaterialsexploitationatHortdelaBoquerasite(MargalefdeMontsant,Tarragona,España):firstapproachesonICP-MS-LAanalysis

24

Richardson:PrestigematerialsandmaterialityintheNeolithicEasternFertileCrescent 58

Roldánetal.:Compositionalvariabilityofflintandimplicationsintheidentificationofrawmaterialssourcesofpre-historicalartefacts,EasternSpain

12

Sallumetal.:Chemicalanalysisofpigments,pasteandresiduesinTupiarchaeologicalceramicsfromSoutheasternBrazil 77

Salomonetal.:TheRoutesOfArchaeologicalColouringMaterials:FromTheSourcesToTheUses 31

SánchezdelaTorre:ThegeochemicalcharacterisationoftheHibarette-MontgaillardflyschchertsandMontsaunèschertsbyED-XRFandLA-ICP-MS.ArchaeologicalimplicationsfortheMagdalenianofSWEurope

16

Schmidt:AnoverviewoverthetemporalandspatialvariationsandchangeofheattreatmentintheMiddleStoneAgeonSouthAfrica’swestcoast

104

Sciutoetal.:NearInfraredimagingspectroscopyforlithicmaterialscharacterisation.FromquantitativedatatospatialanalysisonaMesolithicdwellingsiteinNorthernSweden.

2

Sereno:CompositionandoriginoffelsiteandamazoniteprestigeitemsinthecentralSaharaduringtheAfricanHumidPeriod 53

Silvestreetal.:Compositionalanalysisonlithicbeads.Thecaseofthelowparanáwetland,Argentina 25

Stewart:Thequintessenceofchert;therareearthelementsandtheiruseintheprovenancingofarchaeologicallithicmaterial 26

Szakmányetal.:ContactmetamorphicrocksaslongdistanceimportrawmaterialsofPrehistoricpolishedstonetoolsinHungary 95

Tarriñoetal.:FlintsoftheGravettianWorkshopofMugarduiaSur(SierradeUrbasa,westerPyrenees,Spain) 27

Tarriñoetal.:LithicrawmaterialprocurementatElHornoCave(Cantabria,NorthernSpain) 28

Tayloretal.:TechnologicaldiversityoftheEarlyNeolithicpotteryofMuge(Portugal):thecasestudyofCabeçodaAmoreira(excavationsfrom2008to2014)

71

Terradasetal.:ExchangenetworksbetweentheRhoneandEbrovalleys:AviewfromthenortheastoftheIberianPeninsula 92

Terradasetal.:NeolithicflintquarriesofMontvell(CatalanPre-Pyrenees,Spain) 122

Thacker:Amulti-methodapproachforcharacterizingchertgeochemicalvariabilityatAzinheira-RioMaior,Portugal:TheRMAROnlineDatabase

13

Thacker:DistinguishingtheNon-LocalRatherthanMatchingtheExotics:CeramicSourcingMethodsandResearchDesignatCastrodeSãoMartinho,Portugal

73

Tykot,Robert:ProblemsandPotentialSolutionsforInter-LaboratoryElementalCompositionDataComparisonandCombinationforGeologicalandArchaeologicalObsidian

101

Vuckovic:TheimportanceoftheGabbroformationfortheLateNeolithiccommunitiesintheMiddleMoravaValley 121

Werraetal.:HowusefularepetrologicalandgeochemicalmethodsinidentifyingUpperJurassic“chocolate”flintinCentralPoland? 10

Wojcieszaketal:ChemicalandphysicalevidenceofheatingtreatmentoftheMiddleStoneAgeochrefromRoseCottageandSibudu,SouthAfrica

105

Yaroshevichetal.:AMiddlePaleolithicworkshopatGiv’atRabiEast,LowerGalilee,Israel:preliminaryresultsofsalvageexcavations

114

Zarinaetal.:ResearchproceduresforsourcingrawmaterialsoftheStoneAgeflinttoolsfoundinLatvia 11

Zipkinetal.:TheEthno-ArchaeometryofModernOchreUseinKenya 35

Page 17: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 1

Abstracts-

Thursday,10March2015–9h30

Geochemical-MineralogicalProvenanceDeterminationOfStoneToolsAndTheirArchaeologicalImplications:ScientificMethods,Data

BackgroundAndDataEvaluationStefanieWEFERS-i3mainz–InstituteforSpatialInformationandSurveyingTechnology,MainzUniversityofAppliedSciences,GERMANY([email protected])

TatjanaMirjamGLUHAK-InstituteforGeosciences,JohannesGutenbergUniversityMainz,GERMANY([email protected])

The geochemical-mineralogical characterisation of rawmaterials used for stone tools togetherwiththedeterminationoftheirprovenanceplaysadecisiveroletopromoteourunderstandingofproduction,tradeanddistributionsystemsinthepast.Theanalysesofstonetoolsoftenbearthepotential to lead us to their rawmaterial sources, and the intensive study of the variability ofextractionsitesthroughintensivesamplingandtheirpetrologicalanalysesprovidethenecessarydatabackgroundtoreliablydetermineanartefact’sprovenance.Ingeneralspecificrocktypesarechosentoproducecertaintools,reflectingapreferencewhichliesinthequalityofthematerialsand various other technological-related characteristics, as e.g. durability, texture, hardness,weight, resistance to abrasion of the tools, or the possibility of a controlled raw materialextractioninthequarry.Sometimeshowever,theselectionofacertainrawmaterialliesbeyondthe functional requirement,which indicates traditions for theirmanufacture. Furthermore, thespecific raw material selection for specific tool types often means favouring non-local rawmaterial, which consequently implies complex procurement and distribution systems. Theuntanglingofthesesystemscanonlybeachievedbyreliablepetrologicalprovenanceanalysesoftherawmaterialsused.

Thesessionaimstobetheframeforpapersaddressingtheirchosengeochemical-mineralogicalmethodsforlithicrawmaterialcharacterisation,thecreationofdatabackgroundsforprovenanceanalyses,datatreatmentandevaluation(e.g.statisticapproaches,GISevaluationsetc.) linkedtoarchaeologicalresearchquestions.

Page 18: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 2

OralPresentations

-9h30:NearInfraredimagingspectroscopyforlithicmaterialscharacterisation.FromquantitativedatatospatialanalysisonaMesolithicdwellingsiteinNorthernSweden.ClaudiaSciuto1,PaulGeladi2,LorenzaLaRosa3,JohanLinderholm11-MAL_EnvironmentalArchaeologyLaboratory,UmeåUniversity,Sweden2-SwedishUniversityofAgriculturalsciences3-UniversityofPisa,[email protected]:Stonetools,Mesolithic,NearInfraredImagingspectroscopy,chemometricsMOBIMA is a research project carried out at Umeå University which aims to develop non-destructiveandimage-basedfieldtechniquesforchemicalanalysis.WithinMOBIMAwetesttheapplicationofNearInfraredimagingspectroscopyforlithicmaterialscharacterization.

Our paper will focus on the application of this technique on a dwelling site dated tomid-lateMesolithicatLillsjön,Ångermanland,Sweden.Thesettlementwasinvestigatedin2010-2012,theexcavation revealed a semi-subterranean house surrounded by at least three lithic productionactivity areas. All the lithic material collected was scanned using a sisuCHEMA pushbroomshortwave infrared hyperspectral imaging system (spectral Imaging Ltd, Oulu, Finland) foracquiring images from1000 to 2498 nm at intervals of 6-7 nm. The images obtainedwith theinstrumentweretransformedintopseudo-absorbanceusingEvinceimageanalysissoftware.Thedata were than processed by the standard normal variate and centred prior to principalcomponentanalysis.Thismethodallowedustoidentifyspectraldatafromquartz,quartziteandflintsmakingaquickquantitativeevaluationofthedifferentrawmaterialtypes.

HyperspectralNIRimagingenablesscanningofhugequantitiesoffindsinashorttimeframe.Ifthenassociatedwiththespatialcoordinatesofobjects,NIR-basedclassificationmaycontributetoa deeper understanding of the use of space in relation to different raw materials. Modellingtogether thedata from the excavationand thehyperspectral imagesof findswemay create anintegrated three dimensional platform on a software like ArcScene (Esri). The spectralinformation combinedwith intra-site spatial analysis, can show patterns in the distribution ofdifferenttypesoflithicswithinthesiteitself.

Page 19: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 3

-09h50:Non-invasivenucleartechniquesappliedtostoneidolscharacterization:mobilityandinteractionintherecentprehistoryofsouthPortugalM. Isabel Dias1, António Valera2, M. I. Prudêncio1, Boglárka Maróti3, Ildikó Harsányi3, ZsoltKasztovszky31-Centro de Ciências e Tecnologias Nucleares. Campus Tecnológico e Nuclear, Instituto Superior Técnico, EstradaNacional10,aoKm139,7-2695-066BobadelaLRS-Portugal.2-EraArqueologia,Núcleode InvestigaçãoArqueológica–NIA.Cç. de SantaCatarina, 9C, 1495-705CruzQuebrada–Dafundo – Portugal. Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArHEB,UniversidadedoAlgarve,CampodeGambelas,Faro,Portugal.3-CentreforEnergyResearch,HungarianAcademyofSciences,Budapest,[email protected]:PGAA,PIXE,NR,stoneidolsprovenance,Chalcolithic.The Perdigões site is one of the largest known Portuguese Chalcolithic ditched enclosures,occupiedduring the late4th -3rdmilleniumB.C (Valera, et al. 2014),ReguengosdeMonsaraz,South of Portugal. The burial remains are diversified comprising pottery, lithic artefacts, stoneand bone idols, pecten shells, etc. (Valera, 2012a, b). Stone idols have different typologies andapparently are mostly made of marble or limestone, suggesting different origins for theseartifacts,sincebothrocksdonotoccurlocally,butregionally.StoneidolsinChalcolithicwerealsofoundinsomearchaeologicalsitesfromEstremaduraandSouthernPortugal.

This study aims to contribute toprovenance issues, bymeansof compositional studiesof bothartefactsandpotentialrawmaterials(regionalandtrans-regional).Inthecaseofcarbonaterichidols,weareawarethatmarblesandcarbonatedrocksderivingfromthemetamorphicevolutionof previous carbonates are difficult to identify, especially when only noninvasive analysis waspossible.ElementalcompositionwasobtainedbyPromptGammaActivationAnalysis(PGAA)andExternal Beam PIXE (particle induced X-ray emission); homogeneity of the stone idol and thepresence/absence of internal fractures were obtained by neutron radiography – all at theBudapestNeutronCentre(Zsoltanetal.,2015).

Obtainedresultsareverypromisingandusefulingeneralassessmentsofprovenance.Thestoneartefacts at Perdigões show signs of both nearby and long distance procurement, aswell as ofunknown attribution, like it was already found for the ceramic materials (Dias et al, 2005).Furthermore,different rawmaterialprovenances seemtobeassociatedwithdifferent contextsand rituals, deepening the contrasts that we can see between these funerary features inPerdigões.

ItshouldbenotedthatthenumberoftraceelementsthatcanbemeasuredbyPGAAisrestricted,thusrestrictingalso theconclusions,althoughtheyhavebeenrelevant,especiallywhendealingwithsuchheterogeneousgeologicalsources.

Aknowledgements: C2TN/IST authors gratefully acknowledge the FCT support through theUID/Multi/04349/2013project.SpecialthanksalsototheCHARISMAfundedprojectatBudapestNeutronCenter(BRR-345).

ReferencesDias,M.I., Prudêncio,M.I., Valera, A.C., Lago,M., Gouveia,M.A. (2005). Composition, Technology and functional features of Chalcolhitic pottery from Perdigões, Reguengos deMonsaraz(Portugal),apreliminaryreport.GeoarchaeologicalandBioarchaeologicalStudies,Vol.3,Amsterdam,Netherlands,p.161-164.Valera,AntónioCarlos(2012a),“Mindthegap”:NeolithicandChalcolithicenclosuresofSouthPortugal”,(AlexGibsoned.),EnclosingtheNeolithic.RecentstudiesinBritainandEurope,BAR,p.165-183.Valera,AntónioCarlos,(2012b),"Ditches,pitsandhypogea:newdataandnewproblemsinSouthPortugalLateNeolithicandChalcolithicfunerarypractices”,(noprelo)In(Gibaja,J.F;Carvalho,A.F.&Chambom,P.Eds.)FuneraryPracticesFromTheMesolithicToTheChalcolithicOfTheNorthwestMediterranean,BritishArchaeologicalReports,p.103-122.Valera,A.C.,Silva,A.M.andMárquezRomero,J.E.M.2014.“ThetemporalityofPerdigõesenclosures:absolutechronologyofthestructuresandsocialpractices”.SPAL.23:11-26.ZoltánKis,LászlóSzentmiklósi,TamásBelgya(2015).NIPS–NORMAstation—Acombinedfacilityforneutron-basednondestructiveelementanalysisandimagingattheBudapestNeutronCentre,NuclearInstrumentsandMethodsinPhysicsResearchA779(2015)116–123.

Page 20: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 4

-10h10:GeochemicalCharacterizationofPaleolithicObsidianArtifactsfromPolandRichardE.Hughes1,ZofiaSulgostowska2,DagmaraH.Werra,DagmaraH.Werra21-GeochemicalResearchLaboratory,20PortolaGreenCircle,PortolaValley,CA940282-Institute of Archaeology and Ethnology Polish Academy of Sciences, Warsaw, 105, Solidarności Avenue, 00-140Warszawa,[email protected]:geochemicalcharacterization–obsidianartifacts–LatePaleolithic–PolandUpland areas of Poland contain easily accessible outcrops and exposures of large nodules ofmacroscopicallyandchemicallydiverse,highquality,flintthatwascollectedfromthesurfaceandminedextensivelyduringallperiodsofprehistory.ThemobilelifestyleoftheLatePaleolithicandMesolithicsocieties,livinginwhatistodayPoland,facilitatedthebroaddistributionoftheseflintstoterritoriesseveralhundredkilometersfromtheoutcrops.

Despite the predominance of local flint, exotic (i.e., non-local) raw materials – among themradiolariteandobsidian-areoccasionallyfoundinPoland.Thesearemostcommonduringlaterprehistoric times, but obsidian has been recovered in small numbers beginning from the LatePaleolithicperiod.

Thenearestandmostimportantartifact-qualityobsidiansources(knownasCarpathian1and2)are located beyond southern border of Poland in southeastern Slovakia and northeasternHungary.Theprehistoricuseof thesesourceshasbeenwelldocumented inadjacentareas,butpracticallynothingisknownabouttheirprehistoricsignificanceduringdifferentperiodsofPolishprehistory.

To remedy this situation, we present here the results of non-destructive x-ray fluorescence(“source”)characterizationof85Paleolithicartifactsfrom17archaeologicalsitesinPoland.Theresults from these sites, located between 180 to 450 km from the obsidian sources, provide ageochemically documented baseline for Paleolithic obsidian use in Poland, which can becompared and contrastedwith the distribution, context, and frequency of obsidian use duringlaterarchaeologicalperiods.

Page 21: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 5

-10h30:HomininstoneresourcesusealongtheWestCoastofSouthAfricaintheMid-Pleistocene:EvidencefromElandsfonteinDavidR.Braun1,WilliamArcher2,NaomiE.Levin3,MatthewShaw4,JessicaPlasket41-GeorgeWashingtonUniversity,2-WilliamArcher,MaxPlanckInstituteforEvolutionaryAnthropologyRobynPickering,UniversityofCapeTown3-JohnsHopkinsUniversity4-UniversityofCapeTowndavid_braun@gwu.eduKeywords:Provenance,silcrete,granite,Acheulean,SouthAfricaAlthoughformalinvestigationofthesiteofElandsfonteinbeganover5decadesago,theartefactsfrom this 1million-600,000 year old locality have received little attention. Elandsfontein issituatedinalargedunefieldonthewesterncoastalplainofSouthAfricaandincludesarichfossilassemblage, including hominins. Recent excavations have documented the in situ associationbetweenstoneartifactsandfossils.Hereweprovidethefirstcomprehensivereviewofthestonerawmaterials thatwere used by hominins at this locality. A large-scale survey combinedwithgeochemicalprovenancestudiesallowsustodevelopamodelofrawmaterialavailabilityalongthewesterncoastalplainofSouthAfrica.WeemployXRFtoidentifythemajorsourceofplutonicandvolcanicrocksalongthewesterncoastalplain.Minorandtraceelementchemistrysuggeststhat hominins transported certain rock types from isolated volcanic outcrops in the adjacentSaldanha Bay region.We employ ICP-MS on silcretes to identify rare earth element profiles ofmajor groups of silcrete along the western coastal plain. Data suggest that silcretes can bedistinguishedbytheunderlyinggeologyuponwhichancientsoilsformed.Weconductintensivewithinoutcropstudiestoexplorethevariationinthesesignatures.Ourdatasuggestthatvirtuallynone of the rocks utilized by hominins at Elandsfontein were available locally and that thesourcesrangebetween9and15kms.awayfromarchaeologicalsites.Wecombinethisdatawitha variety of other contextual data about the archaeological collections to identify patterns oflandscapeuseamonghominincommunitiesthatlivedinthisareaover600,000yearsago.

Acknowledgements: This research was supported by an award from the National ScienceFoundationBCS-1219455.

Page 22: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 6

-10h50:SiliceousrawmaterialsourcesatlaSierritadeTicul,Yucatan,Mexico:afirstapproachoflithicprocurementduringlatePleistoceneandearlyHoloceneintheMayalowlandsMa.AlejandraEspinosa1,GabrielaArmentano21-FacultaddeCienciasAntropológicas,UniversidadAutónomadeYucatán,km.1carreteraMérida-Tizimín,Cholul,C.P.97305,Mérida,Yucatán,México.2-UMR7041ArScAn-AnTET,UniversitéParisOuest,Nanterre-LaDéfense,[email protected]:Geoarchaeology,LithicTechnology,QuarryIdentification,MayaLowlands,YucatánInthestateofYucatan,Mexico,geologicalstudiesthatidentifyanddeterminesiliceousrocksandotherlocalrawmaterialsemployedforknappingstonetoolsatarchaeologicalsitesarevirtuallynon-existent.Thegeologicaloriginofthearchaeologicalpieceshasbeenhypothesizedorinferredfrom nonsystematic studies that lackmacro- andmicroscopic descriptions of thematerials orgeomorphologicandpetrographicconsiderations.Recently,wecarriedoutinitialprospectionsinthe Sierrita de Ticul area and corroborated the presence of rock formations containing a highproportion of silica. During field investigations we collected geological samples and subjectedthemtopetrographic(thinsections)andchemicalanalysisaswellasX-raydiffractioninordertodetermine precise composition and genesis of the rocks. This paper presents our preliminaryresults, which can be summarized as follows:- Development of a regional lithic resource base(sensu Ericson 1984) for the state of Yucatan. Data of such resources were incorporatedcartographically through a Geographical Information System allowing location and accurateidentificationofthedifferentregionalsources.Accordingly,ithasbeenpossibleto:

-Estimatedephysicalcharacteristicsoftherockssuitableforknappingactivitiesandtoestablishanexperimentationprotocol.

- Information on the origin of some rocks represented in the archaeological collection of theLoltunCave.Sincepreservationoftheavailablearchaeologicalstonetoolsisessential,thesewereexclusively analyzed through non-invasive analytical techniques (macroscopy and visualrecognition).

Thisworkprovidesnewelements,nowadaysfundamentalsforanystudyonarchaeologicallithicmaterials, such as the application of geological techniques (macroscopy, petrographic, andgeochemical analysis), detailed descriptions of sources, estimates of mineral resources, andcomparisonofarchaeologicalmaterialswiththecollectedgeologicalsamples.

Page 23: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 7

-11h20:TheIrishLithicLandscapesProject:arawmaterialprovenancingprojectintegratinggeochemical(ED-XRF)andpetrographicanalysesofmaterialfromprehistoricIrelandKillianDriscoll1,AdrianBurke2,XavierMangado3,GraemeWarren1,GabrielCooney11-UniversityCollegeDublin.SchoolofArchaeology,NewmanBuilding,UCD,Belfield,Dublin4,Ireland2-UniversitédeMontréal.Départementd'anthropologie,UniversitédeMontréal,3150Jean-Brillant,Montréal,QCH3T1N8,Canada3-Universitat de Barcelona. Dept Prehistòria, Història Antiga i Arqueologia, Universitat de Barcelona, Montalegre, 6,08001Barcelona,[email protected]:Provenancing,geochemistry,petrography,chert,Ireland

The Irish Lithic Landscapes project is investigating the places where prehistoric communitiesobtainedtherawmaterialsfortheirflakedstonetoolsduringtheIrishMesolithic,Neolithic,andEarlyBronzeAge,whichdatestoc.8,000–2,000B.C.WhileIrelandhasaveryricharchaeologicalheritage,thereisasignificantgapintheisland'srawmaterialsourcingresearch.Thisproject isbeginningtofillthisgap,andthereforedeepenourunderstandingoftheprehistoriccommunitiesthere.Theanalysis isusingnon-destructiveenergydispersiveX-ray fluorescence(ED-XRF)asafirst-ordertechniquetodeterminechertwhole-rockgeochemistry,andpetrographicanalysis.

The first phase of the project (2013-2015) included geological prospection centred on thenorthwest of Ireland in an area dominated by Carboniferous chert, and includes case studyassemblagesfromdomesticsitesandritualsitessuchasmegalithictombcomplexes.Duringthe2014fieldseasonwecollectedover400geologicalsamplesfromover400surveypoints,whichincludedexaminingc.250outcropgroups.Theproject’ssecondphase(2015-2017)isfocusingontheCretaceouschertfromIreland,whichisfoundinsituprincipallyinthenortheastoftheisland;thisphasealso includesaseriesofbeachpebblesurveysaroundthe islandtoexaminesurficialdeposits. A significant part of this project is the creationof a lithoteque reference collectionofIrish cherts; this will be physically housed at the UCD School of Archaeology, Ireland andaccompaniedbyaweb-based,spatialdatabase,openforusebyotherresearchers.

Page 24: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 8

-11h40:TheMultiLayeredChertSourcingApproach(MLA)usingLA-ICP-MSandCODAMichaelBrandl¹,ChristophHauzenberger²,MariaM.Martinez³,PeterFilzmoser4¹-AustrianAcademyofSciences,Inst.OREA,Fleischmarkt22,1010Vienna,Austria²-UniversityofGraz,Dept.ofEarthSciences,Universitätsplatz2,8010Graz,Austria³-UniversityofTexasatAustin,DepartmentforAnthropology4-ViennaUniversityofTechnology,DepartmentofStatisticsandProbabilityTheory

[email protected]:Chertsourcing–MLA–microscopy–geochemistry–CompositionalDataAnalysisProvenance studies of chert and flint rawmaterials (silicites) are an important component ofarchaeological research. The identification of the sources of rocks used for the production ofchippedstonetoolsisthegatewaytoanyfurtherinvestigationsconcerningprehistoricresourcemanagement strategies. Chert source provenance studies thus play a significant role in theinterpretationof lithicassemblagesconcerningtheprocurement,processinganddistributionoflithic raw materials, e.g., revealing routes of migration, intercultural exchange and circulationnetworks.

Atransdisciplinaryconcept(theMultiLayeredChertSourcingApproach,shortMLA)presentsaclear possibility for successfully sourcing chert and flint. The proposed method consists of atripartiteanalyticalsystem:Visual(macroscopic),microscopicandpetrological/geochemical.Forgeochemical analysis, Laser Ablation-Inductively Coupled-Mass Spectrometry (LA-ICP-MS) isapplied. LA-ICP-MS allows for the detection of main-, trace- and ultra-trace elementconcentrations(-0,1ppm)inrockmaterialsandhasbeenwellestablishedinlithicrawmaterialresearch. The multivariate geochemical datasets are subsequently evaluated by applyingCompositionalDataAnalysis (CODA). SinceCODA is concernedwith the ratios betweenvalues,raw composition data (i.e. the absolute measured values) need to be transformed into theEuclidean geometry system where statistical methods can operate. After transformation,discriminant analysis (DA) is applied for classification. Fisher's linear discriminant analysis isbestsuitabletoachieveoptimalgroupseparationoftrainingdataderivedfromknowngeologicalsources.Thisanalytical stepgeneratespre-definedgroups fromthe trainingdata.Theresultingdiscriminant rules are used for classifying and assigning the test data (i.e. the investigatedarchaeologicalspecimens)tothesepre-definedgroups.

Wedemonstrate thepotentialof theMLAin twocasestudies:Sourcingofradiolarites fromtheLower Austrian Krems–Wachtberg site (Upper Palaeolithic) and the characterisation of HolyCrossMountain“chocolatesilicites”(Poland).Ourresultsillustratethatitisnotsufficienttorelyon a single analysis method for chert sourcing. A combination of the proposed techniquesproducesthemostrobustdatabaseforasecurecharacterisationandsourceseparation,includingthepossibilitytolayweightontheperformedmethod(s)thatproducedthebestresults,whichisnotinallcasesgeochemistryandstatisticalanalysis.

Page 25: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 9

-12h00:SourcingofflintartefactsfromwesternBelgiumandtheGermanRhineland:usingvisualandgeochemicalmethodsfollowingamulti-layeredapproachLucMoreau1,MichaelBrandl2,PeterFilzmoser3,ChristophHauzenberger4,ÉricGoemaere5, IvanJadin6,HélèneCollet7,AnneHauzeur8,RalfW.Schmitz91- LucMoreau,McDonald Institute forArchaeologicalResearch,UniversityofCambridge,DowningStreet,CambridgeCB23DZ,UnitedKingdom..2-OREA – Institute for Oriental and European Archaeology, Quaternary Archaeology, Austrian Academy of Sciences,Vienna,Austria.3-DepartmentofStatisticsandProbabilityTheory,ViennaUniversityofTechnology,Austria.4-DepartmentofEarthSciences,Karl-Franzens-UniversityofGraz,Austria.5-GeologicalSurveyofBelgium,RoyalBelgianInstituteofNaturalSciences,Brussels,Belgium.6-QuaternaryEnvironments&Humans,RoyalBelgianInstituteofNaturalSciences,Brussels,Belgium.7-ServicepublicdeWallonie,servicedel’ArchéologieenHainaut,Belgium.8-Paléotime,France,andcooperationpartneroftheRoyalBelgianInstituteofNaturalSciences,Belgium.9-LVR-LandesMuseum Bonn, Rheinisches Landesmuseum für Archäologie, Kunst- und Kulturgeschichte, Bonn,[email protected]:Flint;Sourcing;LA-ICP-MS;Gravettian;MobilityIdentifyingthegeologicalandgeographicaloriginof lithicrawmaterials iscritical toeffectivelyaddress prehistoric forager raw material economies and mobility strategies. Currently,Palaeolithic archaeology in Belgium lacks a systematic sourcing strategy to effectivelysubstantiate detailed interpretations of prehistoric hunter-gatherer behavioural change acrosstime and space. This paper evaluates the potential to “fingerprint” flint from the Mons Basin,western Belgium, applying the Multi Layered Chert Sourcing Approach (MLA). The lattercombines visual and geochemical analyses including the use of Laser Ablation-InductivelyCoupledPlasma-MassSpectrometry(LA-ICP-MS)inconcertwithmultivariatestatisticalanalyses.Through theanalysisofgeological samplesandGravettianperiod lithicartefactswereappraisetwohypotheses raisedbyprevious scholars basedon visual rawmaterial identification: 1) theGravettian occupants ofMaisières-Canal supplied themselveswith “black flint” fromone singlesource; 2) the sitesRhens andKoblenz-Metternich yielded artefacts indicative of long-distancetransferofwesternBelgianflintintotheGermanRhineland,ca.260kmfromtheprimarysourcearea.Our results demonstrate the validity of LA-ICP-MSdatawith flint and compositional dataanalysisforfingerprintingdiscretegeologicalformationsfromtheMonsBasin.

Page 26: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 10

-12h20:HowusefularePetrologicalandGeochemicalMethodsinIdentifyingUpperJurassic“Chocolate”FlintinCentralPoland?DagmaraH.Werra1,RichardE.Hughes2,RafałSiuda31-InstituteofArchaeologyandEthnologyPolishAcademyofSciences,Warsaw,105,SolidarnościAvenue,00-140Warszawa,Poland2-GeochemicalResearchLaboratory,20PortolaGreenCircle,PortolaValley,CA940283- Institute of Geochemistry,Mineralogy and Petrology, Faculty of Geology,WarsawUniversity,Warsaw, 93 Żwirki iWiguryAvenue,02-089Warszawa,[email protected]:petrology,geochemistry,siliceousrawmaterials,“chocolate”flint,PolandOneofthemoreimportantresearchavenuesinStoneAgearchaeologyinvolvesinvestigatingthesocialmechanismsresponsibleforthewidespreaddistributionofsiliceousrocks.Butbeforethiscan be done, replicablemethods need to be in place to allow for precise identification of suchrocks.Visual(macroscopic)methodsofdifferentiationhavemetwith limitedsuccess,andoftentendtobesubjective.Bycontrast,instrumentalmethodsprovidetheopportunityforindependentclassification based on geochemical and petrological criteria, and have the potential todiscriminateamongotherwisevisuallysimilarsilicicrocks.In2012,supportedbyfundsfromtheNationalScienceCentreinPoland(PRELUDIUM2;UMO-2011/03/N/HS3/03973),weundertooka project to apply various instrumental methods to distinguish different varieties of siliceousrocks, with emphasis on developing a more precise description of diagnostic features of“chocolate” flint.Our study focusedon theVistulaRiverbasinbecause several varieties of flint(“chocolate”flint,greywhite-spotted,striped, Jurassic-Cracowand,ontheeasternfringesoftheregion,Volhynian flint) used inprehistoric timesoccur in this area. In thepast three yearswehave analyzed more than three hundred samples using several different methods: ScanningElectron Microscope (SEM), analyses of molecular composition of organic compounds,Cathodoluminescence,energydispersiveX-rayfluorescence(EDXRF),LaserAblationInductivelyCoupled Plasma Mass Spectrometry (LA-ICP-MS), Electron Probe Micro Analysis (EPMA) andmicropaleontologicalanalysis.“Chocolate”flintwasusedbycommunitiesfromtheMiddlePaleolithicuptotheEarlyIronAge.Atpresentweknowof26exploitationpointsof this flint, forming themostnumerouscomplexofprehistoricminingfieldsinPoland.Thistalkpresentsasummary/overviewofourresultssofar,with attention to the advantages and disadvantages of different instrumental methods todistinguishamongvariousflintsinPoland.

Page 27: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 11

-12h40:ResearchproceduresforsourcingrawmaterialsoftheStoneAgeflinttoolsfoundinLatviaLigaZarina,ValdisSeglinsUniversityofLatvia,FacultyofGeographyandEarthSciences,Jelgavas1,Riga,[email protected]

Keywords:flintandchert,non-destructivemethods,ultravioletlight,XRFmethod

Previous studies indicate that most of the typical finds of Palaeolithic and Mesolithic tools interritoryofLatviaaremadeofnon-localrawmaterial,butso fartheclear indicationsofsourcematerialarenotknown.

InthestudywereusedgeologicalsamplesofflintandchertfromLatvia,andsamplesfromsitesinLithuania, Belarus, Poland,Denmark,UnitedKingdom, Sweden andRussia,where this valuablerawmaterial was obtained or used during the Stone Age. In addition, flint artifacts, collectedduring Instituteof LatvianHistory excavations in theSlocene settlement andLapini settlementwere studied. The largest share of attention was paid to development of methodology ofevaluation of macroscopic and microscopic properties of flint, and analysis of flint chemicalcompositiontodistinguishsampleswithdifferentgenesisandsamplesfromdifferentorthesamesamplingsite.Theresearchspecificsweredefinedbythearchaeological importanceofartifacts,andnon-destructiveresearchmethodswerechosenasthebasicmethods.

Macroscopic study of flintwas performed by expanding observations from spectrum of visiblelight to diapason of ultraviolet light, since it allows identification ofmany additional structureelements and heterogeneities of the material. Separate properties of flint were determined inultravioletlightalsomicroscopically.Initially,thisapproachallowsdistinguishingcharacteristicsof individual samples and it is possible to characterize these samplesmore fully. Further it ispossible to identify a set of several characteristic features inherent to the individual samples,including common features of a particular sampling site. It allows selecting typical parts of asample for further composition analysis in order to gain justified and comparable data. Thechemical composition analysis was carried out using X-ray fluorescence spectrometry (XRF)method.

The research confirms the variety of flint properties even within small surface area, and thattypical and comparatively heterogeneous sections can be established in ultraviolet light. Theresults obtained allow concluding that in order to gain comparable data on the physicalpropertiesandchemicalcompositionofflint, it isnecessaryfortheresearchestobecarriedoutsystematically and targeted, by following a pre-defined organization and procedure of theresearch.

Page 28: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 12

-14h20:Compositionalvariabilityofflintandimplicationsintheidentificationofrawmaterialssourcesofpre-historicalartefacts,EasternSpainC.Roldán1,A.Eixea2,V.Villaverde2,S.Murcia1,I.Prudêncio3,M.I.Dias3,R.Marques31- InstitutodeCienciadeMateriales(ICMUV).UniversitatdeValència.Spain2DepartamentodePrehistoriayArqueología.UniversitatdeValència.Spain3-CentrodeCiênciaseTecnologiasNucleares(C2TN).InstitutoSuperiorTécnico,UniversidadedeLisboa.PortugalKeywords:EDXRF,XRD,INAA,flintprovenance,Palaeolithic.

Flint isanabundantmaterial inPaleolithicarchaeologicalsitesespeciallydue to theirhardnessand the ease of producing conchoidal fractures with sharp edges, being a very suitable rawmaterial for making tools (scrapers, points, etc). In this paper flint samples from thearchaeological site "Quebrada shelter" (Chelva, Valencia - eastern Spain) and from geologicformations in the same area were analyzed. Macroscopic characterization has identifiedarchaeological flint similar toChelvaoutcrops (local flintDomeño type)and flintwithdifferentcharacteristics(allochthonousflint).Inordertofindpatternsofsimilaritythatmayrelatesourcesof rawmaterialsandmobilityofhumangroups, samplesof "Quebradashelter"werecomparedwiththoseofthedepositsof"CovaNegra"(Xativa,Valencia)and"CovadelesCendres"(Moraira,Alicante)andwiththeflintoutcropsSerretatypeofthegeographicareaofAlcoi(Alicante).

Macroscopic characterization techniqueswere first applied enabling to identify colour, texture,inclusions, grain size and other properties. Afterwards samples were analyzed by non-destructively methods by using energy dispersive X-rays fluorescence (EDXRF) for theidentificationofmajorandminorelements.Due to the limitationsofEDXRF fordetecting traceelements,sampleswerethananalysedbyamicro-invasivemethod-neutronactivationanalysis(INAA), allowing the determination of trace elements with a range of concentrations between0.01and100ppm.Finally,asetofgeologicalandarchaeologicalsampleswereanalyzedbyX-raysdiffraction(XRD)toidentifythecrystallinephasesandtodetermineitscrystallinityindex(CI).

Multivariate statistical analysis of data obtained by INAA and EDXRF and CI determination onquartz by XRD have proven to be suitable methods to discriminate samples of local andallochthonousflintconsistentwiththemacroscopicclassification.

Page 29: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 13

-14h40:AMulti-MethodApproachforCharacterizingChertGeochemicalVariabilityatAzinheira-RioMaior,Portugal:TheRMAROnlineDatabasePaulThackerWakeForestUniversity,Department ofAnthropology,Box7807,WakeForestUniversity,Winston Salem,[email protected]:chertgeology,rawmaterialsourcing,lithiceconomyThe chert deposits located near Azinheira and Rio Maior, Portugal, are among the most well-known flaked stone raw material sources in western Iberia. Plentiful and large-sized chertcobbles occur in secondary depositional context in cementedMiocene sand beds or reworkedwithin Plio/Pleistocene gravels. AzinheiraRidge chertwas knapped and transported over longdistancesbeginningintheUpperPaleolithic;AzinheiraalsowasthecenterofPortuguesegunflintand strike-a-light manufacturing until the 19th century. The geographic extent of the chertdepositswasmappedoverfiveseasonsoffieldworkwithsystematicsamplesofcobblesanalyzedtodetailvariabilityincolor,texture,luster,andweatheringrind/cortex.Over2,330cobbleswerestudiedinthefieldwithasubsampleofcobblessectionedforextensivelaboratoryinvestigationof allmajor variants. The remarkable textural and geochemical variabilitypresent atAzinheirastemsfrombothadiversechertformationanddiagenetichistoryandsignificantdisparityinlocalweathering conditions. High intra-source geochemical variability overlaps with that reportedfromchertdepositsinotherregionsofPortugal.TheRMARopen-accessdatabase,debutedattheRawMaterials-Faro2016conference,makesavailablemacroscopicimagery,textural,magnetic(κandχfd),andgeochemical(pXRFandXRD)dataonthefullrangeofAzinheira-RioMaiorcherts.Distribution of cobble sizes with both displacement volume and surface area data also areprovided,informationusefulformodelingarchaeologicallithiceconomyandtransportcosts.ThisintegratedapproachtosamplingandcharacterizingtheAzinheira-RioMaiorchertdepositsisanessentialstepforrobustandanthropologically-parsimonioussourcinginterpretations.

Page 30: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 14

-15h00:Preliminarygeochemicalresults(ICP-MS)offlintdebitagefromanewlydiscoveredmegaextractionandreductionareaintheEasternGalilee,IsraelMeirFinkel1,RanBarkai1,ErezBen-Yosef1,OfirTirosh2andAviGopher11DepartmentofArchaeologyandNearEasternCultures,TelAvivUniversity2TheInstituteofEarthSciences,[email protected]:Flint,ICP-MS,Eocene,Galilee,QuarriesRecentlyfoundopenairflintextractionandtoolmanufacturingsitesinEasternGalilee,Israel,arethe focus of this presentation. Lithic assemblages from these sites indicate late LowerPaleolithic/Middle Paleolithic and Neolithic/Chalcolithic activities. These discoveriessubstantially revise our knowledge on the scope of lithic extraction and reduction in northernIsraelattheseperiods.Thenewsitesare locatedalonga30kmoutcropof flint-bearingEocenelimestone indicating intensive extraction of large amounts of flint, possibly beyond immediatelocal consumption. Thus, a key question is the extent of the flint distribution area. Identifyingindicative geochemical markers of the flint found at the research area may enable cross-referencingwith flintartifactsexcavatedatPrehistoric sites in the region like thenearbyWadiAmudcaves,andbeyond.Whileitiscommontotryandmatchflintfindsfromprehistoricsitestopossible raw material sources around them, here we focus on the raw material sources andpresent preliminary results of a detailed geochemical study using ICP-MS. Samples of flintdebitage from thenorthernandmiddlepartsof theoutcrop (NahalDishon,n=30andAchbara,n=20, respectively) were analyzed at the Geochemical Laboratory of the Institute of EarthSciences,TheHebrewUniversityof Jerusalem.Theresults,whichinclude40differentelements,enable thegeochemicalcharacterizationof theEasternGalilee flintsource.Differencesbetweenthetwosamplegroupsin12rareearthelementsandCasuggestthepossibilityofdistinguishingbetweenspecificquarryingareaswithinthemega-extractionzone.Thus,thenewfindsencouragea detailed characterization of thewhole extraction strip and later on, an attempt tomatch theresultswithknownprehistoricsitesintheregion,andbeyond.

Page 31: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 15

-15h20:TheZambujal’sarrowheads:apetroarchaeologicapproachtoflint’sprovenancedetermination

PatríciaJordão1,NunoPimentel2

1-MuseuarqueológicodeS.MigueldeOdrinhas(Sintra)2-UniversidadedeLisboa

Keywords:Source-areas;Flint;Petroarchaeology;ChalcolithicofEstremadura;Zambujal

This contribution is part of a larger work in which the study of the siliceous resources’procurementandmanagementfromthechalcolithicenclosureofZambujalisbeingapproached.Apetroarchaeological methodology with comparative analysis between archaeological andgeologicalmaterialsisbeingpursued,aimingtheidentificationoftheflint´ssourceareasforthearchaeological artifacts. The techno-typological analysis of the arrowheads has been concludedand thiswill allow to determinate the rawmaterial’s strategies of procurement, used tomakemorethanonethousandsoftheseartefacts.

Amesoscopicpetrographic analysis, both fromgeological and archaeological sampleshasbeendevelopedandthroughtheidentificationofthesiliceousmicrofaciesandweatheringveneers,wetriedtorecognizethehistoryoftheflintandcharacterizethepotentialsource-areas, fromtheirprimarytosecondarysourcesandthentotheiruseinartifacts.

Aspreliminaryconclusions,itmaybestatedthatmostoftheartifactsareinterpretedasresultingfrom siliceousmaterials collected along the quaternary terraces of the SizandroRiver,West ofTorresVedras,wheredecimetric-sized flintcobblesarevisibleat the topographicsurfacec.2,5kmNWofZambujalsite.Thesecobblesseemtohaveresultedfromtheerosionandtransportofflint nodules mainly from the Paleogenic formations and also from the Cenomanian reefallimestonesoutcroppingc.7kmEofZambujalsite,closetoRuna.Fromtheabove,itissuggestedthat the main source for the silicieous materials used to produce arrowheadws has been theclosest, easiest and most abundant source, a quaternary secondary deposit with an increasedproportionofflintnodules,insteadofthosepotentiallyavailableatthePaleogenicandCretaceousprimarysources,whichwouldhaveneededintensequarryingworkandskills.

Page 32: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 16

Posters–Friday,18h45

Thegeochemical characterisationof theHibarette-Montgaillard flyschchertsandMontsaunèschertsbyED-XRFandLA-ICP-MS.Archaeological implications for theMagdalenianofSWEuropeSánchez de la Torre, M.1,2, Le Bourdonnec, F.-X.1, Dubernet, S.1, Gratuze, B.3, Mangado, X.2, Fullola, J.M.2

1IRAMAT-CRP2A(UMR5060).CNRS/UniversitéBordeauxMontaigne.Maisondel’archéologie.EsplanadedesAntilles. 33607 Pessac Cedex (France). [email protected]; [email protected];Stephan.Dubernet@u-bordeaux-montaigne.fr2SERP.UniversitatdeBarcelona.C/Montalegre6-8.08001Barcelona(Spain)[email protected];[email protected](UMR5060).CNRS/Universitéd’Orléans.3DruedelaFérollerie.45071Orléanscedex2(France)[email protected]: Chert, Pyrenees, human procurement, raw material characterisation, Upper Palaeolithic. Discovered in the 1980s by Barragué and colleagues, the Hibarette-Montgaillard flysch chertswereanimportantworkshopplaceusedduringthePalaeolithicintheFrenchPyrenees(Barraguéet al. 2001). Near the town of Hibarette (Hautes-Pyrénées, France) were found secondaryoutcrops as well as lithic remains of ancient knapping. Cherts were located in the flyschlimestones outcropping in primary position at the East of Montgaillard (Hautes- Pyrénées,France). These flyschs constitute an important turbiditic system from the Turonian to theSantonian.TheMontsaunès-Ausseingcherts,however,areinsertedintheNankinlimestonesdatingfromtheMiddle Maastrichtian and outcropping in the Ausseing Mountain and the ancient quarry ofMontsaunès(Haute-Garonne,France).Both chert types possess similar characteristics at the binocular and the petrographicmicroscope.Nevertheless,somedifferenceshavebeenobservedinseveralsamples.Thus,atthemacroscopiclevelbenthicforaminiferasuchasOrbitoidesandSideroliteshavebeenidentifiedinMontsaunèscherts.At thepetrographicscale, length-fastchalcedonyhasonlybeenobserved insome samples of Montgaillard cherts. But though some differences have been detected at themacroscopic and themicroscopic scale, the differentiation between both silicifications remainsdifficultwhenthesefossilsorquartzphasearenotpresent.Forthisreason,wehavedecidedtocharacterizegeochemicallytheMontgaillardchertsaswellastheMontsaunès chertswith the aim to obtain the elemental composition of both silicificationsandtodetectdifferences.Forthechemicalcharacterizationofbothgeologicalformationstwomaintechniquesofanalysishavebeenconsidered.First,wehavedevelopedageochemicalanalysisbyEnergyDispersiveX-RayFluorescence(ED-XRF).Afterthat,wehaveappliedtheanalysisbyLaserAblationInductivelyCoupled Plasma Mass Spectrometry (LA-ICP-MS). More than twenty samples for each type ofcherthavebeenconsidered.Afterthegeochemicalcharacterizationofbothgeologicalcherttypeswehavetriedtodefinetheprovenance of several archaeological samples from two Magdalenian sites from SW Europe:Parco Cave (Alòs de Balaguer, La Noguera, Spain) and Montlleó open air site (Prats i Sansor,Cerdanya, Spain). Results allow us to infer the provenance strategies carried out during theMagdalenian in SWEurope and the importance those cherts had in the procurement for thesehunter-gatherersgroups.

Page 33: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 17

AnewWesternMediterraneanobsidiangroup?InpursuitoftheSXobsidiansourcefromMonteArci,SardiniaLauraFanti1,François-XavierLeBourdonnec2,CarloLugliè11-LASP,DipartimentodiStoria,BeniCulturalieTerritorio,UniversitàdiCagliari,PiazzaArsenale1,09124Cagliari,Italy.2-IRAMAT-CRP2AUMR5060,CNRS-UniversitéBordeauxMontaigne,EsplanadedesAntilles,33607Pessac,[email protected]:Obsidianprovenance;MonteArci;SardiniaAftermorethan50yearsofprovenancestudies,theMonteArcivolcaniccomplexinSardinia,thewesternmost among the four western Mediterranean obsidian sources, is well-known for itsintra-source geo-chemical variability. Patterns of obsidian distribution revealed that since theEarlyNeolithicfourdifferentMonteArcigeo-chemicalgroups(namelySA,SB1,SB2andSC)hadbeenvariouslyexploitedandspreadinSardinia,Corsicaandoverseas.

Elemental characterization of thousands of obsidian artefacts from several WesternMediterraneanNeolithicsitesshowedthat,comparedtoanearlierheterogeneousdistributionofalmost all theMonte Arci geo-chemical families, out of Sardinia SB2 obsidianswere preferredand,overtime,replacedbySAandSCobsidiansinLateNeolithic.SomeyearsagooursurveyandgeologicalsamplingcarriedoutaroundtheSAobsidianoutcropsledustofindobsidiansbothinsub-primaryandsecondarydepositsbearingvisualandcompositionalfeaturesthatdonotmatchthe already established field of variability for this geo-chemical group. The interest of theseobservations, that led to suppose a new archaeologically relevant group (SX), was recentlyincreasedbytheidentificationofafewNeolithicartifactsmadeoutofthisobsidianquality.

Actually,weconsiderbeingofgreatinterestforstudiesonprehistoricobsidiansupplytobeableto identifygatheringandselection strategiesbymeanof theprecise localizationof theoriginaldeposits.Therefore,wewouldliketopresentherethecharacteristicsofthisunpublishedMonteArci obsidian group, describe its original availability and share with other analysts its maincompositional features. Since we recognized that local advanced Middle Neolithic groupsoccasionally exploited this minor(?) source, we found surprising this “expedient” selectionbehaviorespeciallyifcomparedtothe“regular”supplyfromtheSAandSCgroups.Asamatteroffact,fromthenontheselatterobsidiansweresystematicallyexploitedthroughawell-structuredorganization of the production that led to the appearance of wide workshops around therespectiveoutcropsand to therelatedexponential increaseofMonteArciobsidiansartifacts intheNorth-westernMediterraneanlands.

Page 34: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 18

Goingfurtherinflintstudieswiththe“chaîneévolutive”conceptPaulFernandes1,2,AlainTurq2,3,StéphanDubernet4,AndréMorala2,3,MédardThiry5,VincentDelvigne 2,François-Xavier Le Bourdonnec 4,Céline Leandri 6, Patrick Schmidt 7, Pascal Tallet 1,AlexisTaylor1,Jean-PaulRaynal2,8.1-Paléotime6173rueJeanSéraphinAchardPicard38250Villard-de-Lans2-UniversitédeBordeaux1,UMR5199PACEA,bâtimentB8,alléeGeoffroySaint-Hilaire,CS50023,33615Pessaccedex,3-MuséeNationaldePréhistoireLesEyzies-de-Tayac,1rueduMusée24620LesEyziesdeTayac,4- Université Bordeaux Montaigne IRAMAT-CRPAA, UMR 5060, Maison de l’Archéologie, Esplanade des Antilles 33607Pessac,5-Mines-Paris-Tech,Géosciences,35rueStHonoré,77305Fontainebleau,France6-Servicerégionaldel'archéologie,DRACdeCorse,VillaSanLazaro,1chemindelaPietrinaCS1000320704AjaccioCedex9,7- Eberhard Karls University of Tübingen, Department of Prehistory and Quaternary Ecology, Schloss Hohentübingen,72070Tübingen,Germany8- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103Leipzig,[email protected] on the origin of lithic raw materials became increasingly important since the 1980’s.Sourcingstudiesplayakeyroleinappreciatingterritoryexploitationandgroupmobility,whicharemajorissuesofprehistoricsocietiesunderstanding.

However,mostapproachesexploitedonlypartoftheinformationpotentiallycarriedbythelithicmaterial.Theimprovementofourunderstandingofflintnatureandformationprocessesallowedourinterdisciplinaryresearch-grouptorefinethemethodsusedforitscharacterization.Amajoraspect of this renewal is the “chaîne évolutive”concept. Our work opens up new researchdirections such as surface analysis of flint artefacts, which reinforces the taphonomic study ofarchaeologicalsitesandquestionstheirintegrity.

Wepresentseveraltypesofsurfaceanalysesconductedontwoarchaeologicalassemblagesfromsouth-western France: 1) a Mousterian and Chatelperronian assemblage from H. Delporte’sexcavationsatLaFerrassie(Dordogne)and2)aMousterianassemblagefromtheopenairsiteofDirac(Charente). In the firstcase, theanalysesallowedtodistinguish inasinglearchaeologicalunit twosetsof flints thathadnotbeenpreviouslyseparated. Inthesecondcase,ourapproachestablishedthegeologicalhistoryof flintspriortotheircollectionbyhumansandcharacterizedthesuccessiveeventswhichaffectedtheknappedobjectsaftertheywerediscarded.

Page 35: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 19

CharacterizationofDoleritePrehistorictoolsinMediterraneanIberia:AnewmethodologicalapproachGianniGallello1,TeresaOrozcob,AgustinPastora,MigueldelaGuardia2,JoanBernabeub1-DepartmentofAnalyticalChemistry,UniversityofValenciaC/Dr.Moliner50,46100Burjassot,Spain2-DepartmentofPrehistoryandArchaeology,UniversityofValenciaAvd.BlascoIbáñez28,46010Valencia,[email protected]:Dolerite,RareEarthElements(REE),MultivariateStatistics,PolishedAxes,Prehistory,ValenciaRegion.In this preliminary study we have tried to identify outcrops raw materials collected formanufacturing lithic objects during the Prehistoric period employing inductively ICP-MS toanalyze rare earth elements (REE) and trace elements. No destructive geochemical analysisconsistedontheuseofXRFwasalsoemployedfordeterminationofmajorelements.Theultimategoal was to develop a method to complete the reconstruction of transportation networks ofprehistoric tools already developed in a comprehensive study of thin section analysis withpolarizing microscope. Principal Component Analysis (PCA) was employed to interpret thedoleritegeologicalprovenance.Thesepreliminaryresultsshowthatstatisticalanalysispermitstodistinguish stone sampleorigins according to theirREEprofile at regional level and thatTi/Femaybeusedtodeterminedifferencesbetweendoleriteoutcrops.Therefore thismethodmaybeable todiscern theregionaloriginoflithic objects belonging to the same classes of rocks, bringing a new proposal in thereconstructionofdoleriterawmaterialandlithictoolscirculationinRecentPrehistory.

Page 36: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 20

CharacterizationbyPIXEelementalanalysisoffibrolite:applicationtothestudyofNeolithicpolishedaxesprovenanceMikaëlGuiavarc'h1,GuirecQuerré1,QuentinLemasson2

1-LaboratoireArchéosciencesUMR6566CReAAH.UniversitédeRennes1,CampusdeBeaulieu,35042Rennes,France.2-CentrederechercheetderestaurationdesmuséesdeFrance,C2RMF,PalaisduLouvre -PortedesLions,14QuaiFrançoisMitterrand,75001Paris,France.

[email protected]

Keywords:fibrolite,provenance,PIXE,Axes,Neolithic

Fibrolite isa rockused formakingextremelypolishedprestigeblades found inNeolithicburialmoundsaroundCarnacregionincombinationwithotherpreciousandrarematerialfromdistantsources such as alpine jadeite axes or variscite beads of the Iberian Peninsula. Fibrolite is arelative rare variety of massive fibrous sillimanite, an alumina-silicate mineral. The mineralappearslikeabunchoffiberstwistedtogetherthatformverytenaciousnodulesincludedinhighmetamorphic rocks, generally migmatites. Neolithic people should sawed the blocks to shapethesetools.

Theaimofthisstudyistodeterminetheoriginoftherawmaterialforfibrolitepolishedbladesfound in Neolithic sites from theWest of France. External-beam PIXE a rapid, direct and non-destructive method was used to know the geochemical composition of the fibrolite. Resultsprovide scientific basis to determine the provenance of fibrolite raw materials. We havedetermined major, minor and trace elements of fibrolite from 3 different known deposits inBrittany:Plouguin,LeConquetinFinistère,whichareknownNeolithicworkshopsandArzoninMorbihanand8polishedaxeblades;4fromBrittanylocalitiesand4fromBanvilleinNormandie,relatively far from known deposits. Comparison of chemical compositions of archaeologicalartifactsandfibrolitedepositallowustoproposeaprovenanceforeachaxes.Thesearethefirstresultsoftheresearchprogram"Fibrolite"whichaimstodeterminethebladeproductioncenter,thebroadcastnetworkandtheevolutionduringtheNeolithicinWesternEurope.

Page 37: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 21

“Wheredoesyoursaddlequerncomefrom?”GrindingintheactualprovinceofLimburg(BE)duringtheIronAgeHartochE.1,GluhakT.2,DreesenR.3,GoemaereE.4

1-Archaeologist,Collectionmanagementcoordinator/ResearchattheGallo-RomanMuseumofTongeren-Belgium2-ScientificcollaboratorattheGallo-RomanMuseumofTongeren-Belgium&theGeologicalSurveyofBelgium,,3-Dipl.-Geol.,Dipl.-Ing.(FH), JohannesGutenbergUniversityMainz- InstituteforGeosciences,TeamGeomaterialsandGemstoneResearch,Mainz-Germany,4-Geologist, Geological Survey of Belgium, Directorate Earth and History of life, Royal Belgian Institute of NaturalSciences,[email protected]

Keywords:Geo-archaeology,provenancestudy,querns,IronAge,Eifel,Belgium

Thisposterpresentstheresultsofarecentlypublishedresearchproject(*)onthetopicofquernsandmillstones.ThreesaddlequernshavebeendatedtotheIronAgeandonerotaryquernwastypologicallyinusefromthelateIronAgeon.ThoseProtohistoricquernsarepartofthesubjectofaresearchprojectdealingwithatotalofeighty-onequernsandmillstonesdatingfromtheIronAgeuntilModernTimes.ThesehavebeenexcavatedwithintheProvinceofLimburg–Belgium,andaremainlystoredintheGallo-RomanMuseumofTongeren.Themajorobjectiveofthisstudywas to identify thegeographicalprovenancesandgeologicaloriginsof the lithic rawmaterials.This has been achieved by means of comparative petrographical, geochemical and statisticalanalyses, based on reference collections of rock samples taken in the field. This resulted in abetterunderstandingoftheirtransportationandcirculationmodewithinthediffusionarea.Thisstudy highlights also the fruitful international collaboration between archaeologists andgeologists.Indeed,forthefirsttime,itwaspossibletolinkthequernsmadeofvolcanicrockstoparticular extraction sites, even to individual quarries or lava flowareas in the in theWesternEifelareaaswellasintheEasternEifelarea.

In thiswaythepetrographical-geochemicalanalysisof the lithicrawmaterialsandthestudyoftheirprovenance,providenewsupportforstressingtheimportanceoftheprovinceofLimburg,asanimporterandconsumerofquernsduringtheIronAge.

References(*)HartochE.(Ed.),DoperéF.,DreesenR.,GluhakT.M.,GoemaereE.,ManteleersI.,VanCampL.,&WefersS.2015:MoudreauPaysdesTungri,Atuatuca7.PublicationsoftheGallo-RomanMuseumofTongeren,Tongeren,416p.HartochE.,GluhakT.&DreesenR.2014,Verlorenbrood,gevondenstenen.TweeprotohistorischemaalstenenuitdecollectiesvanhetGallo-RomeinsMuseumTongeren(prov.Limburg,België),LUNULA.Archaeologiaprotohistorica22,191-196.

Page 38: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 22

Whatfortheseblades?FlintbladesproductionandcirculationinLateNeolithicSardiniaBarbaraMelosu1,CarloLugliè11-LASP,DipartimentodiStoria,BeniCulturalieTerritorio,UniversitàdiCagliari,PiazzaArsenale1,09124Cagliari,[email protected]:flintblades;pressuretechnique;Anglona;SardiniaAttheendofNeolithic(betweenthe5thand4thmillenniumBC),concurrentlywiththeoriginoftheOzieriCulture,obsidianwasthemostexploited lithicresource inSardinia.Duringthistime,theearlystagesoftheobsidianreductionsystemseemtohavebeenlocatedincloseproximitytothe primary outcrops in theMonte ArciMassif, where this rawmaterial is abundant. In theseareas,rawmatterreductionwasessentiallyaddressedtothecreationofpreformsofpolyhedralcores for a blade production trajectory; the end-products were after distributed throughorganizedexchangenetworks.

In the same period flint sources were exploitedmainly at a local level, besides some sources,identified in the North Sardinia Oligo-Miocene basin of Perfugas (Anglona region), that areexploitedona supra-local scale.Thisareaprovidesparticularlyabundantandhigh-quality flintoutcrops.

Thismaterialcirculatedintheformofartefactsproducedaccordingtohightechnicalinvestmentand skill: long blades obtained especially by (simple or by lever) pressure technique. Thesepieces, possibly coming from a single workshop, are found both in funerary and domesticcontexts,frequentlyfarawayfromthissourcearea.

Despite the wide availability of other good-quality raw materials, especially obsidian, thesebladesaremadeoutonlyof thisqualityof flint:multiple factorsmayexplain thisevidence,yetculturalandsocialexplanationsseemtobeamongthemostrelevant.

Theresultsobtained fromtheanalysisof this flintbladescirculationallowus toadvancesomehypothesesabouttheoriginofthisphenomenon,discussingitscharacteristicsandpossibleaims.

Page 39: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 23

TrackingtheHunters:GeochemicalProvenancingofMiddle-PalaeolithicStoneToolsasameanstoreconstructNeanderthalBehaviourintheEnglishChannelRegionJosephineMillsInstituteofArchaeology,[email protected]:Neanderthal,Flint,Provenance,Lithics,GeochemicalThis project aims to explore Middle Palaeolithic Neanderthal landscape use and raw materialacquisitionintheLaMancheregionoftheEnglishChannelthroughgeochemicalanalysisofflinttools and geological flint sources. Archaeologicalworkwill focus on artefacts from three stonetoolassemblagesintheregion;LaCottedeSt.Brelade(Jersey),LeRozel(Normandy),andMontDol (Brittany),which arewell dated to theWeichselian glacial (110,000 kya), thus temporallycomparable. It will observe these assemblageswithin their regional setting usingmacroscopicanalysisandgeochemicalprofilingtools,suchasportablex-rayfluorescence(pXRF),inordertoestablish an understanding of where raw materials were sourced. This will unlock keyinformationaboutNeanderthalrawmaterialacquisitionpatternspotentiallyrevealingaspectsoftheir social dynamics and interaction with the complex Channel landscape located at the farwestern reaches of their known world. Provenancing is particularly pertinent in this contextbecausemany of the flint outcrops thatwould have been used in theMiddle-Palaeolithic havenowbeensubmergedbymodernsealevel.Thereforethisproject’sartefact-centricapproachwillestablishpotentiallinksbetweentherawmaterialsbeingusedatsitesacrosstheGulfofSt.Malothusaddinginformationaboutflintoutcropsthatwouldbeotherwiseunreachable.Throughthiswork future opportunities for targeted coringwill be developed in order to acquire geologicalsamples fromtheCretaceousbedrockbetweenand to thenorthof theChannel Islands.Overallthisprojectpilots auniqueprovenance-led exploration intowhat flint geochemistry can revealabout the Neanderthals who inhabited the Armorican Massif during the Middle Palaeolithic –sheddinglightontheiradaptivestrategies,rawmaterialacquisition,andsocialbehaviour.

Page 40: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 24

SiliceousrawmaterialsexploitationatHortdelaBoquerasite(MargalefdeMontsant,Tarragona,España):firstapproachesonICP-MS-LAanalysisM.Rey-Solé¹,A.Scherstén²,D.Olausson³,X.Mangado¹Naeraa,T.41-Seminari d'Estudis i Recerques Prehistòriques, Dept. Prehistòria, Història Antiga i Arqueologia, Universitat deBarcelona,C/Montalegre,6,08001,Barcelona,Spain.2-DepartmentofGeology,UniversityofLund,Sölvegatan12,22362,Lund,Sweden.3-DepartmentofArchaeologyandAncientHistory,UniversityofLund,Helgonavägen3,22100,Lund,Sweden.4-DepartmentofGeology,UniversityofLund,Sölvegatan12,22362,Lund,[email protected]:ICP-MS-LA,SiliceousRawMaterials,HortDeLaBoquera,Sourcing,ArcheopetrologyResearchesonsourcingofsiliceousrawmaterialsinPrehistoryhastakenastepforwardwiththeaddition of geochemical techniques and elemental analysis to the archeopetrological method.Counter to the macroscopic techniques, which continue retaining an elevated subjectivepercentageintheirresults,geochemicaltechniquesandespeciallyICP-MS-LAanalysisgeneratesobjetive, quantifiable and playabe data, helping us to complete another previousmineralogicalanalysis.

Morethan85%ofthesiliceousrawmaterialfromHortdelaBoqueraarcheologicalsite(Margalefde Montsant, Tarragona, Spain) is manufactured from an evaporitic origin type of flint andpetrograficallyischaracterizedbyachalcedonicmatrixwithgypsumlenticulesasinclusions.

Multiple flint outcrops from an evaporitic origin (Eocene - Oligocene) and with very closedcharacteristicsasthelithicrawmaterialfromHortdelaBoqueraarelocatednearlythesite(ScalaDei Group -Montsant Fm- and Cornudella Group - Ulldemolins Complex,Morera delMontsantFm),makingtheyverysuitabletosupplytheinhabitantsofHortdelaBoquerasite.

Wehavetwodifferentbutcomplementarygoalsinthisresearch:ontheonehand,tocharacterize,describe and create a data base for all different types of flint recovered, emphasizing theirgeochemical marks. On the other hand, we have the aim to compare those results with thoseobtained from the raw material recovered at the site, that would provide a range ofcomplementarydatatodiscoverthepotentialcatchmentareasandwouldhelpustounderstandcertainbehavioursoftheprehistoriccommunitiesfromHortdelaBoquerasite.

Page 41: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 25

Compositionalanalysisonlithicbeads.Thecaseofthelowparanáwetland,ArgentinaRominaSilvestre1,NatachaBuc2,AlejandroA.Acosta2DanielLoponte21-InstitutoNacionaldeAntropologíayPensamientoLatinoamericano-UniversidaddeBuenosAires;2-InstitutoNacionaldeAntropologíayPensamientoLatinoamericano–CONICET3deFebrero1378-CiudadAutónomadeBuenosAires(1426),[email protected]:beads,lithic,EDX,Paranábasin,LateHolocene.LithicbeadswererecoveredfromdifferentarchaeologicalsitesofLowParanáwetlandmadebyLateHolocenehunter-gatherergroups.Sincemostofthemaremadeongreenrocks,traditionallywere referred asmineral variants of copper such as chrysocolla, turquoise andmalachite. TheLowParanáwetlandhasnolithicprimaryquarries,andthenearestonearethosefromRepúblicaOrientaldelUruguay.Therefore, theaimof thispaper is tomake the compositional analysisofraw material beads and test if they come from this near sources. For this purpose, energy-dispersive X-raymicroanalysis (EDX) was used in beads from six archaeological sites and thenearlithicquarries.Intheactuallisticsamples,resultsshowthepresenceofcopperinthevariantofchrysocolla.Intheotherhand,archaeologicalbeadsweremadefromdifferentlithicquarries,mostofthem,withoutcopper.Therefore,newactualquarriesshouldbeanalyzedtodiscovertherealsourcesofarchaeologicalassemblage.

Page 42: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 26

Thequintessenceofchert;therareearthelementsandtheiruseintheprovenancingofarchaeologicallithicmaterialRosemaryStewartUniversityofReading,England.BridgeParkNewAbbeyDumfriesDG64ESU.K.pebble@freeuk.comKeywords:Chert,geochemistry,rareearthelements.Cretaceous flint was the most commonly used lithic raw material in British prehistory withwidespreadprimaryanddriftgeologicaldepositsreadilyavailable.Theextensivecoastlinemeantthatbeachflintwasalsoaccessibleforuseinmostregionsofthecountry.However,thecomplexgeologicalhistoryoftheBritishland-masshasresultedinthedepositionofanumberofdifferentchert-bearingstrata.Peopleinprehistoryknewofandexploitedthesematerialsalongsideflintinchert-richareastomaketoolsforuseintheireverydaylives.Themainchertvarietiesavailableformedinvariousgeologicalconditionsandareofwidelydifferingage.Thesecharacteristicshavethepotential tocontributetoprovenanceanalysisofarchaeological lithicmaterial.Geochemicalstudieshavebeen carriedouton chert in the fieldof geologyand in a recently completedPhDproject Ihaveattemptedtouse these techniques inarchaeological research.Themainmethodsemployed were X-ray fluorescence (XRF) and Inductively Coupled Plasma Mass Spectroscopy(ICP-MS). Cherts are particularly silica-rich, a feature that masks their unique geochemicalsignaturemakingchertanalysismoredifficultthanthatofmorechemicallycomplexrocktypes.Therefore,thisgeochemicalresearchhasfocussedontherareearthelements(REE).Thissuiteofclosely related elements has specific properties and occurrences that allow insights into thedepositional environments of cherts. Differences in the values and patterns of the rare earthelementscanassistwithlinkinggeologicalsourcestoarchaeologicallithicassemblages.

Page 43: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 27

FlintsoftheGravettianWorkshopofMugarduiaSur(SierradeUrbasa,WesterPyrenees,Spain)Antonio Tarriño-Vinagre1, Mikel Aguirre-Ruiz-De-Gopegui2, Fernando Jiménez-Barredo1, ÍñigoOrúe-Beltrán-De-Heredia2,AnaCava-Almuzara3,IgnacioBarandiarán-Maestu41-CentroNacionaldeInvestigaciónsobrelaEvoluciónHumana(CENIEH).PaseoSierraAtapuerca,3.E-09002Burgos,Spain.2-UNED,CABergara.SanMartínPlaza4,Bergara.E-20570-Bergara(Gipuzkoa),Spain.IrantzuELORRIETA-BAIGORRIDepartamento de Geografía, Prehistoria y Arqueología. Universidad del País Vasco / Euskal Herriko Unibertsitatea(UPV/EHU).C/TomásyValiente,s/n.E-01006Vitoria-Gasteiz,Spain.3-C/Florida78,8ºD.E-01004Vitoria-Gasteiz,Spain.4-MiembroHonoríficodelInstitutodeCienciasdelaAntigüedad.EuskalHerrikoUnibertsitatea(UPV/EHU).C/TomásyValiente,s/n.E-01006Vitoria-Gasteiz,[email protected]:RawMaterials,Urbasaflint,Gravettian,Workshop,WesternPyreneesNodular silicificationswhichwere exploitedduringPrehistoric times canbe found in SierradeUrbasaplateau(Navarra).Theseflints,hostedinmarls,marl-limestoneandbioclasticcalcarenitesoftheThanetian(Paleocene,Cenozoic),containbenthonicforaminifera(NummuliteshebertiandDiscocyclinaseunesi),pertainingtomarineenvironmentsofshallowexternalplatform.

The outcrops are arranged along a 100-300m thick and around 10 km long. The flints,whichariseindiscontinuouslayersparalleltothestratification,presentnodularmorphologiesindarkcolours (usually 5-20 cm). They are fine grain flints composed of micro and cryptocrystallinequartzwithcarbonaterelictsandadistinctivemicrodolomitization.

Although the existence of flint outcrops has not been cited in the geological literature untilpresent,therelationbetweenarchaeologicalsitesandtheoutcropshasbeendescribedforusinrecent investigations about Mugarduia. The prehistoric flint workshop is installed above thestratumitselforinitsvicinity.

We analyzed the lithic material that came from an intact archaeological deposit stratifieddiscovered in theworkshop, carried out in the fieldworks of the 80’s by I. Barandiarán andA.Cava. There were collected 995 retouched artefacts, around 400 cores and around 53,000residuesfromtheworkshop.

The analysis of the retouched artefacts of thementioned collection allows the identification ofseven flint types:Urbasa(local,mostlymassiveandshowingavariableexternalaspect),Flysch,Treviño,Gaintxurizketa,SaliesdeBéarn,Urgonian,Loza(allochthonousallthem).

Allochthonousflintrepresents7.8%oftheretouchedindustry.ThisisahugequantitytakingintoaccounttheflintsampleswerecollectedfromworkshopcontextinthesurroundingsofUrbasa’snaturaloutcrops.

We aim to study the nature and variability of the identified flints through geochemical andmineralogical methods and themanagement of the resources considering aspects of typology,typometryandtechnology.

Page 44: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 28

LithicrawmaterialprocurementatElHornoCave(Cantabria,NorthernSpain)AntonioTarriño1,AdrianaChauvín2,IrantzuElorrieta-Baigorri3,MiguelÁngelFano41-CentroNacionaldelaInvestigaciónsobrelaEvoluciónHumana(CENIEH).PaseoSierraAtapuerca,3.E-09002Burgos,Spain.2-Museo de Prehistoria y Arqueología de Cantabria (MUPAC). C/ Ruiz de Alda, 19. E-39009 Santander (Cantabria),Spain.3-Departamento deGeografía, Prehistoria yArqueología. Universidad del País Vasco / EuskalHerrikoUnibertsitatea(UPV/EHU).C/TomásyValiente,s/n.E-01006Vitoria-Gasteiz,Spain.4-UniversidaddeLaRioja.DepartamentodeCienciasHumanas.EdificioVivesC/LuisdeUlloa,2.E-26004Logroño(LaRioja),[email protected]:LateMagdalenian,CantabrianSpain,Flint,Outcrops,ChaînesOperatoiresEl Horno Cave is located in the middle Asón valley, Northern Spain. From 1999 to 2007, sixfieldworkseasonsexcavatedasurfaceareaof3.5m2.The intactpartof thedepositatElHorno(Levels1,2and3)hasyieldedaseriesofremainswhichcanbeassignedtoupperMagdalenianoccupations, an attribution supported by the radiocarbon dates. Lithics are coherent with theattributionofLevels1and2tothisphase. InthecaseofLevel2, theculturalattributionisalsosupportedbyaparticularlydiagnosticosseousassemblage,includingharpoonsandportableart.ThefewlithicsinLevel3areequallycompatiblewiththeattributiontotherecentMagdalenian.

Asampleof503piecesfromlevels1,2and3(meaning29%ofthecollectedlithicremains)hasbeenconsideredtostudythelithicrawmaterials.Thestudiedsampleincludesalltheretouchedpiecesandthelargerknappingdebris.Acollectionwiththemostrepresentativeexamplesofeachflint type has been made, to reflect the variability in the raw materials used at the site. Themethodusedwas the textural analysisof the flintbyobserving themwitha stereomicroscopeOlympusSZ61,normallyatmagnificationsofx10orx20,althoughsomeobservationsrequiredasmuchasx100magnification.

Flint is themain rawmaterial representing 98% of the studied sample. Other lithic resourceshave been identified: quartzite, rock crystal and radiolarite. Among determined flint pieces isremarkablethepresenceofFlyschflinttype(>80%),MontePicota/Lozaflint(around10%)andflints fromTreviño andUrbasa outcropswhich represent less than 5%of the assemblage. Themanagementofthedifferentrawmaterialsinthecontextofthechaînesoperatoiresisanalyzed,aswellasthevariabilityoftheflintsprocurementalongthearchaeologicalsequence.

Page 45: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 29

GeochemicalsourcingofchertinPortugueseEstremaduraJonathanHaws,[email protected]:Chert,Paleolithic,LA-ICPMS,GeochemistryMacroscopicattemptstoestablishprovenanceof lithicartifactshaveprovenunreliableinmanyareasduetothewidevariationsfoundwithinsinglenodulesandgeographicsources.Despitethis,relatively few geochemical studies have been undertaken to establish provenance based ongeochemical fingerprinting. In the present study, we analyzed 4 primary chert sources inPortugueseEstremadurausingLA-ICPMS.Herewepresentthedataonrareearthelementsandstable isotope ratiosmeasured from the different chert samples.We then use these results tointerpretUpperPaleolithicrawmaterialprocurementintheregion.

Page 46: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 30

Thursday,10March2015-16h05

TheRoutesOfArchaeologicalColouringMaterials:FromTheSourcesToTheUses

Jean-VictorPRADEAU-CEPAM/UMR7264CNRS,UniversitéNice-SophiaAntipolis,FRANCE([email protected])

LaureDAYET-InstitutFrançaisd’AfriqueduSud,Johannesburg,SOUTHAFRICA([email protected])HélèneSALOMON-F.R.S.-FNRS,ServicedePréhistoireUniversityofLiège,Liège,FRANCE([email protected])

Raw material provenance and selection are key features for the understanding of the socialstructure of prehistoric societies. The reconstruction of raw material supply strategies bringsinformation on the socio-economical framework, mobility patterns, as well as technical,symbolical and cultural orientations at the origin of the processing sequences. Despite theirinformative potential to address these issues, colouringmaterials (iron andmanganese oxides,cinnabar,coppersalts,etc.)havereceivedscantattentionincomparisonwithgeomaterialsusedin tool,beadorpotterymanufacturesuchasobsidian, flint,ceramicmaterialsor igneousrocks.Becausetheyarecommonlyregardedasmediumforornamentation,nonverbalcommunicationand symbolic representations, colouring rawmaterialsmay not consistently obey to the sameeconomicsystemsthanstonetoolorceramicrawmaterials.Provenanceresearchesofcolouringmaterialsandpaintingsarethencrucialtoenlargeourunderstandingofthesocialorganizationofprehistorichunter-gathererandagro-pastoralsocieties.

Sincethe2000’s,traceelement(PIXE,XRF,INAA,ICP-MS)petrographicandmineralogical(X-ray-diffraction, Raman spectrometry) studies havewidely contributed to collect data on colouringgeomaterials’sources.Anumberofgeologicalreferencecollectionshavebeenstudiedandthereisnodoubt thatsignificantdifferencesbetweensources fromthesameregioncanbe identifiedwhen proper methods are used. The field is now open to archaeological applications andcomprehensive studies of procurement strategies within a region or a cultural tradition.ConsistentprocurementpatternshavealreadybeenidentifiedatsomeMiddle,UpperPaleolithicandNeolithicsites,fromexclusivelocalsupplytosignificantlongdistancesupply,includingmorecomplex situations where both local and non local materials were collected. Whether theseeconomical choices are determined by the geological background, the status of the colouringmaterials, the function of the sites, the social organization of the groups, or by pure socialconventionsasobservedinculturallydeterminedtraditionsremainstobeclarified.

Twomaintopicswill livenupthissession:(i) fruitfulcontributionsondifferentmethodologicalimprovements proposed to outpace the context dependent situation in provenance researchesappliedtocolouringmaterialsand(ii)diachronicrevueoftheirprocurementstrategiesthroughthelensofculturalcontextsandsitefunctionstatus.

Page 47: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 31

OralPresentations

16h05:TheRoutesOfArchaeologicalColouringMaterials:FromTheSourcesToTheUses

HélèneSalomon1,Jean-VictorPradeau2,LaureDayetBouillot3

1-F.R.S.-FNRS,ServicedePréhistoireUniversityofLiège,Liège,FRANCE(2-CEPAM/UMR7264CNRS,UniversitéNice-SophiaAntipolis,FRANCE([email protected])3-LaureDAYET-InstitutFrançaisd’AfriqueduSud,Johannesburg,SOUTHAFRICA([email protected])

[email protected]

Raw material provenance and selection are key features for the understanding of the socialstructure of prehistoric societies. The reconstruction of raw material supply strategies bringsinformation on the socio-economical framework, mobility patterns, as well as technical,symbolical and cultural orientations at the origin of the processing sequences. Despite theirinformative potential to address these issues, colouringmaterials (iron andmanganese oxides,cinnabar,coppersalts,etc.)havereceivedscantattentionincomparisonwithgeomaterialsusedin tool,beadorpotterymanufacturesuchasobsidian, flint,ceramicmaterialsor igneousrocks.Becausetheyarecommonlyregardedasmediumforornamentation,nonverbalcommunicationand symbolic representations, colouring rawmaterialsmay not consistently obey to the sameeconomicsystemsthanstonetoolorceramicrawmaterials.Provenanceresearchesofcolouringmaterialsandpaintingsarethencrucialtoenlargeourunderstandingofthesocialorganizationofprehistorichunter-gathererandagro-pastoralsocieties.

Sincethe2000’s,traceelement(PIXE,XRF,INAA,ICP-MS)petrographicandmineralogical(X-ray-diffraction, Raman spectrometry) studies havewidely contributed to collect data on colouringgeomaterials’sources.Anumberofgeologicalreferencecollectionshavebeenstudiedandthereisnodoubt thatsignificantdifferencesbetweensources fromthesameregioncanbe identifiedwhen proper methods are used. The field is now open to archaeological applications andcomprehensive studies of procurement strategies within a region or a cultural tradition.ConsistentprocurementpatternshavealreadybeenidentifiedatsomeMiddle,UpperPaleolithicandNeolithicsites,fromexclusivelocalsupplytosignificantlongdistancesupply,includingmorecomplex situations where both local and non local materials were collected. Whether theseeconomical choices are determined by the geological background, the status of the colouringmaterials, the function of the sites, the social organization of the groups, or by pure socialconventionsasobservedinculturallydeterminedtraditionsremainstobeclarified.

Twomaintopicswill livenupthissession:(i) fruitfulcontributionsondifferentmethodologicalimprovements proposed to outpace the context dependent situation in provenance researchesappliedtocolouringmaterialsand(ii)diachronicrevueoftheirprocurementstrategiesthroughthelensofculturalcontextsandsitefunctionstatus.

Page 48: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 32

-16h25:PrehistoricPigmentsintheHungarianNationalMuseumKatalinT.Biró1;TamásVáczi21-HungarianNationalMuseum,Múzeumkörút14-16,1088Budapest,Hungary2-DepartmentofMineralogy,EötvösLórándUniversity,PázmányP.sétány1/c,1117Budapest,[email protected]:pigments,prehistory,HungaryPrehistoric rawmaterials typically served forbasicneedsof subsistence:productionoftoolsforfood,clothing,housing,etc.Thereis,however,a‘humansurplus’beyondsimpleneedsforaesthetic,culticorprestigeitemsthatmayleavedetectabletracesinthefossilrecordaswell.

Part of the colorants are lost forever due to decomposition, deficient excavationtechniquesorover-zealouscleaning.Thecontextinwhichwearereadytofindpigmentsareexploitation (‘paintmine’), graves (bothon thedeceasedandasgravegoods,moretypicallyontheobjectsfoundinthegrave),innormaldomesticcontext(pits,houses)orspecificcontainers(crucibles).

The analytical approach to prehistoric pigments is relatively new;mainly non-invasivetechniques can be used like mXRD, IR, EDS and Raman spectroscopy. The results,however,arestillafarcryfromprovenancing;atthebest,theycanserveasidentifyingorfingerprinting the pigments. We are generally at a loss for preparation techniques,potential binders and all too often, the conservationmethods used encumber or evenpreventtheanalysisofpaintedware.ThispaperwillpresentvarietyofpigmentsidentifiedonHungarianprehistoricsites,withthe focus on lumps of mineral pigment matter and their archaeological context andidentification.

Page 49: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 33

-16h45:ProvenanceandProcessingofUpperPalaeolithicOchreBasedonCompositionalandTexturalStudiesGiovanniCavallo1,2,FedericaFontana3,MarcoPeresani3,MariaPiaRiccardi1,RobertoZorzin41-Dept.ofEarthandEnvironmentalSciences,UniversityofPavia,Italy2-InstituteofMaterialsandConstructions,Univ.ofAppliedSciencesandArts-Supsi,Switzerland3-DipartimentodiStudiUmanistici,UniversityofFerrara,(Italy)4CivicMuseumofNaturalHistory,Verona,Italygiovanni.cavallo01@universitadipavia.itProvenancestudiesofarchaeologicalochreareroutinelycarriedout throughelementalanalysis [1-5] whilst the use of ancillary analytical techniques is rather limited [6-7].Polarizing Light Microscopy (PLM) on thin sections supported by X-Ray PowderDiffraction (XRPD) was used to analyse and group ochre fragments (weight averageabout 0.5 g) recovered in the Aurignacian layers of Fumane cave [8] and in the LateEpigravettian stratigraphic sequence of Tagliente rock-shelter [9] in the LessiniMountains(Verona,NEItaly).Depositsofgoethite(mostly)andhematite-basednaturalgeomaterials occurring in a radius of about 20 Km from the archaeological siteswereconsideredaspotentialsourcingareasandstudiedbyadoptingthesamemethodologicalapproach [10-11]. Natural Fe-based geomaterials occur in palaeokarst caves in EoceneandMesozoiccarbonateformationsandarealsoassociatedwithEocenevolcanicterrains(basaltsandvolcanoclastites).Theresultswereenthusiasticasthecharacteristicmineralassemblages [12], the presence versus absence of bioclasts and their association, thetexture (layered,micro-laminations,massive, homogeneous vs heterogeneous) allowedthepossiblesourcesofarchaeologicalochretobeidentifiedandotherpotentialsourcesexcluded. In addition, archaeological ochre fragments whose composition and texturewas not compatible with the geological potential sources were not included in thestatisticalelaborationoftheelementalanalysiscarriedoutthroughInductivelyCoupledPlasma Mass Spectrometry (ICP-MS). The great availability of goethite-based naturalgeomaterials,thelargenumberofredarchaeologicalochrefragments,thesimilartextureof yellow and red ochre, the presence of disordered hematite, were clear clues of thethermaltreatmentwhichwashighlightedthankstothepresenceofmaghemite(γ-Fe2O3)in a few samples [12]. In conclusion the methodology demonstrated to be valid forestablishingpossiblesourcingareasandunderstandingprocessingmethods;inaddition,thepotentialsourcingareaswerenarroweddownandselectivestatisticalelaborationofthegeochemicaldatawaspossible.References:[1]BuK,CizdzielJV(2013).Thesourceofiron-oxidepigmentsusedinPecosriverstylerockpaints.Archaeometry,55,6,1088-1100.[2]MacDonaldBL,HancockRGV,CannonA,McneillF,ReimerR,PidrucznyA(2013).ElementalanalysisofocheroutcropsinSouthernBritishColumbia,Canada.Archaeometry,55,6,1020-1033.[3]SundayEiseltB,,Popelka-FilcoffRS,DarlingJA,GlascockMD(2011).HematitesourcesandarchaeologicalochresfromHohokamandO’odhamsitesincentralArizona:anexperimentintype identification and characterization. Journal of Archaeological Science, 38, 3019-3028. [4] Popelka-Filcoff R S,Miksa E J, Robertson J D, GlascockMD,WallaceH (2008).ElementalanalysisandcharacterizationofochresourcesfromSouthernArizona.JournalofArchaeologicalScience,35,752-762.[5]GreenRL,WatlingRJ(2007).Traceelementfingerprint of Australian ocher using Laser Ablation Inductively Coupled Plasm Mass Spectrometry (LA-ICP-MS) for the provenance establishment and Authentication ofIndigenousArt.JourForensicSci,42,4,851-859.[6]DayetL,TexierP-J,DanielF,PorrazG(2013)OchreresourcesfromtheMiddleStoneAgesequenceofDiepkloofRockShelter,WesternCape,SouthAfrica. JournalofArchaeologicalScience,40,3492-3505.[7]Eriarteetal.(2009).TheoriginandgeochemicalcharacterizationofredochersfromtheTitoBustilloandMonteCastillocaves(NorthernSpain).Archaeometry,51,2,231-251.[8]BroglioA.,DeStefaniM.,GurioliF.,PallecchiP.,GiachiG.,HighamTh.,BrockF.,(2009).L’artaurignaciendansladécorationdelaGrottedeFumane.L’Anthropologie113,753–761.[9]FontanaF.,CilliC.,CremonaM.G.,GiacobiniG.,GurioliF.,LiagreJ.,MalerbaG.,RocciRisA.,VeroneseC.,GuerreschiA., (2009).Recentdataon theLateEpigravettianoccupationatRiparoTagliente,MontiLessini (Grezzana,Verona):amultidisciplinaryperspective.Proceedingsofthe49thHugoObermeierSocietyMeeting,Trento,10-14April2007,PreistoriaAlpina,44,51-59.[10]CavalloG.,RiccardiM.P.,ZorzinR.(2015).Powderdiffractionof yellow and red natural earths from Lessini Mountains in NE Italy. Powder Diffraction Journal, 30(2), 122-129. [11] Cavallo G., Zorzin R. (2014) Geology, Mineralogy andGeochemistry of Natural Fe-based Pigments from Verona Province (Italy). Proceedings 39th International Symposium on Archaeometry (ed. R. B. Scott, D. Braekmans, M.Carremans,P.Degryse),Louven,9-15.[12]CavalloG.,FontanaF.,GonzatoF.,GuerreschiA.,RiccardiM.P.,SardelliG.,ZorzinR.(submitted).ProcurementandProcessingofOchreDuringtheLateUpperPalaeolithicatTaglienteRock-shelter(NEItaly)BasedonConventionalX-RayPowderDiffractionAnalysis.JournalofArchaeologicalandAnthropologicalSciences.

Page 50: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 34

-17h05:DidNeanderthalsExploittheMaterialPropertiesofColouredMinerals?PeterHeyes,MarieSoressietal.LeidenUniversity,FacultyofArchaeology.Einsteinweg2,2333CCLeiden,[email protected]

Whether the Neanderthal archaeological record testifies to the kind of symbolicbehaviors that are considered typical for 'modern' humans is a highly debated topicwithin paleoanthropology, with the use of colored materials such as ochres andmanganeseoxidesoneof thepossible indicatorsof suchbehaviors. SeveralMousterianand Châtelperronian sites in France have yielded significant numbers of small black'blocs'.Theusual interpretationisthatthesemanganeseoxideswerecollectedfortheircolouring properties and used in body decoration, potentially for symbolic expression.Neanderthalshabituallyusedfireandiftheyneededblackmaterial fordecoration,sootand charcoal were readily available, whereas obtainingmanganese oxideswould haveincurred considerably higher costs. Colour is just one of the physical properties ofmanganese oxides and in this paperwe explore the chemical properties ofmanganesedioxide(β-MnO2),thepredominantblackmineralmaterialfoundattheMousteriansiteof Pech-de-l'Azé I and at some Châtelperronian sites. Manganese dioxide has a widevarietyofusestodayderivedfromthechemicalpropertiesofmanganeseasacatalystandin oxidation-reduction reactions. Thermal imaging, thermo-gravimetric analysis,scanning electron microscope, x-ray diffraction and statistically designed experimentsbased on an impact test methodology have been used to characterise manganesedioxide's interactionwith othermaterials.Manganese dioxide had significant potentialsubsistence benefits forNeanderthal foragers and the archaeological evidence at Pech-de-l'AzéI isconsistentwithaspecificandimportantfunctionalrole.Interestinglyit isaprocessunknownfromtheethnographicrecordofrecenthunter-gatherers.

Page 51: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 35

-17h25:TheEthno-ArchaeometryofModernOchreUseinKenya

AndrewM.Zipkin1,StanleyH.Ambrose1,CraigC.Lundstro1,MercyGakii2,MatthewW.Magnani3

1-UniversityofIllinoisatUrbana-Champaign,109DavenportHall,607S.MathewsAve.,UrbanaIL,61801,U.S.A.)

2-NationalMuseumsofKenya,P.O.Box40658-00100,Nairobi,Kenya)

3-HarvardUniversity,16PrescottStreet,CambridgeMA,02138,U.S.A.

[email protected]

Keywords:OchreProvenance,Ethnography,RockArt,MassSpectrometry,StableIsotopes

OchrepigmentsoccurinAfricanarchaeologicalsitesfromtheMiddlePleistocenethroughhistoric times. Ochre is usedworldwide for diverse symbolic and functional purposes,andisfrequentlyconsideredtobeevidenceforsymbolicbehaviorbycognitivelymodernPaleolithic humans. However, determining whether ochre use is specifically symbolicratherthanfunctionalisproblematic.Ethnographicstudiesofochresourceexploitation,transportandprocessing,andsymbolic,aesthetic,andfunctionalusescanhelptestthesealternativehypothesesbydeterminingwhetherculturallymediatedsourceexploitationpreferencesdiffersignificantlyfromaleast-costenergetics(closestsource)null-modelofsourceuse.

Inour2012pilotstudyofochresourcegeochemicalfingerprintinginthesouthernKenyaRift Valley,Maasai and Samburu informants led us to seven of the 12 sources thatwecollected. Geochemical analysis of these sources demonstrated that it is possible tochemicallydistinguishamongthemonthebasisofminorandtraceelementcomposition.We realized that undertaking systematic ethnographic investigations of modern ochreusewouldenableustoidentifymostsourcesusedbyMaasaiandSamburupastoralists.In2015,informantsledusto41previouslyunrecordedochresourcesusedforsymbolicrockart,self-adornment,anddomesticpurposes.Someinformantswereabletoidentifyimages that they had painted, and the sources of their pigments. Redundancy ofinformation among informants suggests that we have collected most of the currentlyexploitedochresourcesintheKenyaRiftValley.Modernsourcepreferencesdescribedbyinformants seem incompatible with least-cost models; this will be verified throughprovenienceanalysisofrockartpigmentsamples.

Ochre pigment sampleswere also collected from recent rock art sites, andMiddle andLaterStoneAgeandNeolithicarchaeologicalsites.Elementalandisotopic(iron,lead,andstrontium)fingerprintingofrockartsamplesofknownauthorshipbylaserablationandconventionalmass spectrometrywill allowus to corroborate ethnographic accounts ofsourceexploitationpractices,and independentlydeterminesourcepreferencepatterns.Ethnographicpatternsofmodernsourceuseforsymbolicpurposescanprovideapointofreference for provenience studies of archaeological ochre, and for tests of least-costversusculturalpreferencemodelsinprehistory.

Page 52: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 36

17h45:GeochemicalandmineralogicalcharacterizationofMagdalenianAgeredpigmentsfromTitoBustillocave(Ribadesella,Asturias)

DiegoCameno1,EnekoIriarte1,SusanaE.Jorge-Villar2,EstebanÁlvarez-Fernández3

1-LaboratoriodeEvoluciónHumana,DepartamentodeCienciasHistóricasyGeografía,UniversidaddeBurgos,EdificioI+D+i,PlazadeMisaelBañueloss/n,09001,Burgos.2-ÁreadeGeodinámicaInterna,FacultaddeEducación,UniversidaddeBurgos.3-DepartamentodePrehistoria.UniversidaddeSalamanca.

[email protected]:colouringmaterials,geochemistry,mineralogy,TitoBustillocave,Magdalenian.

Archaeological excavations in Tito Bustillo cave recovered numerous remains of redcolouringmaterials,bothasrawmaterialclastsorprocessedclayeymixturesembeddedin Magdalenian age layers. It is noteworthy the presence of various red coloured anddecoratedPatellavulgatashellsusedascolouringmaterialrecipients.

In this work we present the mineralogical and geochemical characterization of thedifferentcolouringmaterials.X-raydiffraction(XRD),ScanningelectronmicroscopyandEnergy-dispersive X-ray spectroscopy (SEM-EDS), Raman Spectroscopy and X-rayfluorescence(XRF)analysiswereperformedinstudiedsamples.Theobtainedresultsshowup thediversityofcolouringrawmaterials,differentsupplystrategiesandprobablyusesofthosecolouringmaterials.Thesedataareveryusefulforraw material procurement strategies and mobility pattern reconstruction, as well astechnical,symbolicalandculturalorientationsattheoriginoftheprocessingsequences.

Page 53: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 37

18h05:PrehistoricCorsica:thesignificanceandprovenanceofitspigmentingmaterialsMarylineLambertPhDStudent,DeptofArchaeology,DurhamUniversity,UnitedKingdomThenumberofdiscoveriesofironoxiderichpigmentingmaterialsinprehistoricCorsicahas increased significantly in the recent archaeological records. Often overlooked as ameaningfulartefactintheCorsicanliterature,itisnowrecognisedasapotentialwitnessof the technico-cultural choicesmadebyprehistoric communities aswell as amean toevaluatetheextentoftheexchangenetworksintheTyrrhenianbasin.A first examination of several pieces of iron oxide found at the well preserved lateBronze Age/early Iron Age dwelling site of Cuciurpula, in South Corsica, has indeedreveledcharacteristicuse-weartraceswhichmotivatetheconductionoffurtheranalysesandaquestionningregarding theirrole for theprehistoriccorsicanpeople.Taking intoaccount the scarcity of sources for this material on the island, analytical techniquespermit elemental and structural characterisationswhich open new horizons about theprocurementpatternsandthepotentialcirculationintheCentralMediterranean.In this paper, we present preliminary results covering several sites from prehistoricSouthCorsica.Thevariability,both intraand intersites,of thechemicalcompositionofthe iron oxide pieces is assessed. Through a comparison with the existingcharacterisations in this area, especially Elba and Sardinia, we explore the possibleprocurement sources.We also discuss the evidencewith regard to a probable heatingwhichmayhavebeenusedtoobtainpigmentpowderofadesiredcolour.Wethereforeaimtoprovideamorecompleteportraitoftheplaceoccupiedbymineralresourcesintheculturalsphereofthesecommunities.This work is done in collaboration with the archaeometry laboratory at Bordeaux-Montaigne,France.

Page 54: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 38

18h25:AnEarlyAurignacianindustryofochres?Theactualisticstudyofferruginouscolorants’variablepolishingefficacyJoelleNivensNewYorkUniversityjoelle.nivens@gmail.comThe Aurignacian technocomplex (40-28 kya)with its systematic traditions of personalornamentation and the earliest figurative art represents a crucial if enigmaticsociotechnical transformation during the Early Upper Paleolithic. Whereas Proto-Aurignacians,likepreviousTransitionalIndustries,conscriptednaturalobjectsintotheirsymbolic systems with minimal manipulation (i.e. perforation), Early Aurignacianornaments are characterized by three degrees of raw material transformation. Theselater bead assemblages expand beyond pierced tooth and shell to include shaped,perforated,andpolishedrocksandminerals.Redcoloranttracesfoundintoolstriaeandperforations of the soft stone and ivory objects have been commonly interpreted asprehistoric jeweler’s rouge, hematite-rich powders used as a fine metallic abrasive(Walter,1995;White,1995;Buissonetal.,2015).Thoughrecentactualisticstudieshavetested a number of the iron oxides’ utilitarian properties (Wadley, 2005; Rifkin, 2011,2015; Rifkin et al., 2015), these materials’ role in ornament production remainedunderexplored. This paper reports the results of an experiment testing the polishingefficacyofdifferentironoxide-richrocksonsteatiteandlignitebeadsupports.Goethitepowders were found to be less effective polishing agents than hematite powders. Inaddition,themosteffectivepolishingagentsforsoftandhardbeadsupportsdiffer.ThesefindingssuggestthevarietyofcolorantsfoundinAurignaciansitesmayreflectamineralraw material economy related to the variety of activities taking place at the site,particularlyinbeadproductionlocales.

Buisson,D.,Menu,M.,Pinçon,G.,Walter,P.,2015.LesobjetscolorésduPaléoilthiquesupérieur:casdelagrottadeLaVache(Ariège).BulletindelaSociétépréhistoriquefrançaise.86,183–191.

Rifkin, R.F., 2011. Assessing the Efficacy of Red Ochre as a Prehistoric Hide Tanning Ingredient. Journal of AfricanArchaeology.9,131–158.

Rifkin,R.F.,2015.Ethnographicandexperimentalperspectivesontheefficacyofredochreasamosquitorepellent.TheSouthAfricanArchaeologicalBulletin.20,64–75.

Rifkin, R.F., D’Errico, F., Dayet-Boulliot, L., Summers, B., 2015. Assessing the photoprotective effects of red ochre onhumanskinbyinvitrolaboratoryexperiments.SouthAfricanJournalofScience.111,1–8.

Tartar,E.,Teyssandier,N.,Bon,F., Liolios,D., 2006.Equipementde chasse, équipementdomestique :unedistinctionefficace ? Réflexion sur la notion d’investissement technique dans les industries aurignaciennes. In: Astruc, L.,Bon,F., Léa,V.,Milcent,P.-Y.,Philibert, S. (Eds.),Normes techniquesetpratiques sociales :de la simplicitédesoutillagespré-etprotohistoriques.EditionsAPDCA,Antibes,pp.107–117.

Wadley,L.,2005.Puttingochretothetest:replicationstudiesofadhesivesthatmayhavebeenusedforhaftingtoolsintheMiddleStoneAge.JournalofHumanEvolution.49,587–601.

Walter, P., 1995. La Peinture des Femmes Prehistoriques. In: La Dame de Brassempouy, Actes Du Colloque deBrassempouy(juillet1994).ERAUL,Liège,pp.259–271.

White,R.,1995.IvoryPersonalOrnamentsofAurignacianAge:Technological,Social,andSymbolicPerspectives.In:LeTravailetL’usagedeL'ivoirAuPaléeolithiqueSupérieur:ActesdeLaTableRondeMai1992.pp.29–62.

White,R.,1997.SubstantialActs:FromMaterialstoMeaninginUpperPaleolithicRepresentation.In:Conkey,M.,Soffer,O.,Stratman,D.,Jablonski,N.G.(Eds.),BeyondArt:PleistoceneImageandSymbol.UniversityofCaliforniaPress,pp.93–121.

Page 55: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 39

Posters–Friday,18h45

LasPortillasFormation:anewvarietyofchertusedbyprehistoricgroupsinthecantabrianmountains?

DiegoHerreroAlonso1,AntonioTarriñoVinagre2,NatividadFuertesPrieto3,AnaNeira31-UniversityofSalamanca2-CENIEH3-UniversityofLeondherreroalonso@usal.esKeywords:Rawmaterialsmanagement,CantabrianMountains,Mesolithic,PaleozoicChertStudies developed in order to characterize lithic rawmaterials in the prehistoric sitesWestCentral section of the Cantabrian Mountains (NW Spain),near Picos de Europa,highlight the importance of locating geological formations containing nodules of chert.LasPortillasisalimestoneFormationwherenodulesofchertappear.Itispoorlyknownbecauseofitsgeographicaldistribution,quiterestrictedinthesouthernslopeofPicosdeEuropa Unit, near to Espinama and Jou de los Boches (Naranjo del Bulnes, Cabrales,Asturias).The macroscopic features of this chert, presenting a very shiny black colour withabundant fractures filling (by quartz, possibly) are macroscopically consistent withcertain samples of the so-called 'black chert' inMesolithic sites of the region, such asthosefoundinElEspertínandLaUñacaves(León,Spain).Therefore,wethinksuitabletomakeamoreaccurateapproachofthissilicifications.The age of Las Portillas Formation is from Famenian (Late Devonian) to Tournaisian(Early Carboniferous). According to the bibliography, it is a bioclastic limestone withabundant fragments of crinoids, coarsed grain and lighter colours, sometimes pinkish.Insidethislimestoneappearsthenodulesofcherts(between5-20cm).The aim of this work is to define this type of rawmaterial. For this purpose, wewillprovideacharacterizationfromvariouspointsofview,suchastexturalandmineralogic,throughX-RayDiffraction(XRD).Thermogravimetricandgeochemistryanalyses,suchasX-Ray Fluorescence,will be carried out. Theywill be applied to samples fromgeologicoutcropsand, subsequently, contrastedwith similaranalysesof archaeological samplesfromLaUñaandElEspertinsites.Thiswillallowustochecktheexploitationofthiskindof rawmaterial during Prehistory in the southern CantabrianMountains, although theresultscanbeextrapolatedtothenorthernarea.

Page 56: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 40

Sources,ProductionandDistributionofPre-HispanicLithicMaterialsinAguascalientes,MexicoLailsonBecket1,CarettaNicolás1,CabadasHéctor2,SedovSergey3,PelzAna4,SchulzeNiklas11- Facultad de Ciencias Sociales y Humanidades, Universidad Autónoma de San Luis Potosí. Av. Industrias 101-A,Talleres,SLP,C.P.78494,México.2-FacultaddeGeografía,UniversidadAutónomadelEstadodeMéxico.PaseoUniversidad,TolucadeLerdo,C.P.50110,México.3-Instituto de Geología, UniversidadNacional Autónoma deMéxico. Ciudad universitaria, Coyoacán,México, D.F. C.P.04510,México.4-InstitutoNacionaldeAntropologíaeHistoria.JuandeMontoro226,Centro,Aguascalientes,C.P.20000,Mé[email protected]:Production,lithic,MesoamericaThisisasummaryofthegeoarcheologicalanalysisof lithicmaterialsfromElOcoteandCerro Santiago, pre-Hispanic sites located in Aguascalientes, Mexico, in the northernborder ofMesoamerica. Thematerials includepolished lithic artifacts such as grindingstones (metates), hand stones, axes, and polishers, among others. They also includeworked lithic tools such as projectile points, scrapers, and gravers. In parallel, weanalyzed the processes of production, considering the flint-knapping waste related tothat industry (hammerstones,masses of tool stone, cores and various types of flakes).The information obtained reflects the diversified production of tools used in buildingactivitiesandintheproductionoffood,handicraftsandornaments.Ourmainpurposeofthisdiscussion is topresent this informationasacontributiontoregional lithicstudiesand thereby strengthen the research and comparison of lithic materials found inarcheologicalsitesinAguascalientesandthesurroundingareas.

Page 57: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 41

Geoarchaeology,geochemistryandpetrographyofjaspersourcesintheAlentejoregionofPortugalAdrianL.Burke,GillesGauthier&ArianeBurkeDépartementd'anthropologie.UniversitédeMontréal

[email protected]:geoarchaeology,jasper,XRFgeochemistry,Alentejo,MiddlePalaeolithicDuring the summers of 2006 and 2007, the first author carried out geoarchaeologicalfieldwork in theAlentejo region of Portugal. This researchwas done in support of thelarger Sado River Drainage Survey (SRDS) project directed by Dr. Ariane Burkewhichfocussed on the Middle Palaeolithic landscape of that part of Portugal. The primaryobjective of the geoarchaeological fieldwork was to identify potential sources ofknappablesiliceousmaterialsforthemanufactureofstonetoolsbyNeanderthalgroups.MostofAlentejo,andinparticulartheSadoRiverdrainage,ispoorinflint.Asaresult,ourresearch focused mostly on the jasper and quartz that was available in the region toprehistorictoolmakers.TheSRDSsurveydemonstratedthatjasperwasclearlyusedbyMiddlePaleolithicgroups.Weconcentratedourgeologicalfieldworkonbedrocksourcesofjasper,asthequartzsourceswerepoorlymappedandquartzcobblesareubiquitousintheSadoRiverarea.VeinsofjasperarenotuncommonintherocksoftheIberianPyriteBelt and are mostly related to volcanogenic massive sulfide ore deposits (VMS). WellknownhistoricdepositsexistnearAljustrel,inBaixoAlentejoforexample.Thisjasperisfine-grained,conchoidalandcanbemassive.Itsknappingqualitycanbequitegoodbasedon our knapping experiments.We sampled 15 bedrock outcrops of jasper, locating allsamplesusingGPS.Thewhole-rockgeochemical analysiswasdoneusingaPANalyticalEpsilon5X-rayspectrometer(ED-XRF)onbothflakestakenfromgeologicalsamplesaswellascutandpolishedsamples.Wealsomade thinsectionsof jaspersamples from6sources of jasper. In this poster we present the geoarchaeological, geochemical andpetrographicdatathatcharacterizesthesejaspers.Thejaspersarerelativelypurebeingveryhigh insilica (>90%),and it isnoteasy todistinguish thembasedongeochemicaland petrographic data. This suggests that it will not be a simple task to connectarchaeological flakes and tools to a specific jasper outcrop in the Alentejo region.However,thisworkisonlyafirststepinthecharacterizationofthesenumerousjaspersourcesandmoregeoarchaeologicalworkisneededintheregion.

Page 58: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 42

VariabilityintheexploitationoflithicrawmaterialsfromMiddleNeolithictoLateChalcolithic,atRealmesesite(Calascibetta-Enna,centralSicily)TaniaQuero1,RosaMariaAlbanese2,EnricoProcelli†31-SpecialisationSchoolinArchaeology-UniversityofTrieste.ViaA.DeVivo28–80010Italy2-UniversityofCatania-Dep.SAFISTViaBiblioteca4,95124CataniaItaly3-UniversityofCatania-Dep.SAFISTViaBiblioteca4,[email protected]:CentralSicily,Neo-Chalcolithic,localvsexoticmaterialsWe present the results of a preliminary study on lithicmaterials from the prehistoricsettlement of Realmese - Calascibetta (Enna, central Sicily), investigated by L. BernabòBrea in 1950-52. The excavation was carried out in four trenches, with cuts made ataboutevery20cm.FineandcoarsewaredatesbetweentheMiddleNeolithicandtheLateChalcolithic.Theimportantamountoflithicartefactsrevealsdifferedproductionsoflamellar,laminarand flakesblanksandawiderangeof localandexoticrawmaterials(quartz/quartziticrocks,fine-grainedflintandobsidian),duringthedifferentperiods.

Page 59: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 43

Friday,11March2015-09h00

OpenSession:PuttingDataIntoContextPierrePETREQUIN-Laboratoiredechrono-écologie,CNRS,FRANCE([email protected])AlisonSHERIDAN-NationalMuseumsScotland,SCOTLAND([email protected])

In this congress, sessions, presentations and posters will be mostly oriented toward thearchaeometrical approaches. Archaeometrical approaches are essential for the acquisition ofdetailed information that allows us to describe accurately each rawmaterial and to link thembetweenthearchaeologicalsite,itsnaturalsourceandthewayshowtheywereprocessed.

However,thedatagatheredbythesehigh-resolutionmethodsisofteninsufficienttounderstandprehistoric human behavior if it is not merged with accurate informations gathered from thearchaeologicalcontextandcomparedwithhypothesisandmodels fromactualisticstudies,suchasethnographyandethno-archaeology.

Therefore,weproposeanopensessionwherewewouldliketobringtogetherthesetwodifferentbutcomplementaryavenuesofapproachingrawmaterialsourcing,processinganddistribution.Our goal is to reach closer the point of view of ancient populations, their ecological behavior,socialnetworkandidealfunctioningoftheirsocieties.

Wewill accept case studies of complex situationswhere different archaeometrical approacheswere mixed together with archaeological or (and) actualistic studies in order to reach moreanthropological interpretations about somegeneral questionsof shared interest, such as:whatcriteriawerepeopleusingtoselecttheirrawmaterials?Whyandhowwasanartifactmoving(ornot) ina transfer system?Forwhatpurposewere the rawmaterialsused in the contextof thesocialandidealpointsofview?Whatcouldhavebeenthesocialconditionstosuchlongdistancecirculations?Havewetodealonlywithtechnicalartifactsoralsowith"object-signifiers”,sociallyover-valuedmaterials,andsoon…?

Page 60: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 44

OralPresentations

-09h00:Discriminatingbetweenpotential/actualandmajor/minorlithicsourcesusinggeostatisticalmodelsofartifactdistributions:thechertsfromeast-centralArgentinaasacasestudyLucianaCatella1,GustavoBarrientos2andFernandoOliva31-DivisiónArqueología,FacultaddeCienciasNaturalesyMuseo,UniversidadNacionaldeLaPlata.CEAR,FacultaddeHumanidadesyArtes,UniversidadNacionaldeRosario.2-DivisiónAntropología, FacultaddeCienciasNaturalesyMuseo,UniversidadNacionaldeLaPlata.CONICET.CEAR,FacultaddeHumanidadesyArtes,UniversidadNacionaldeRosario.3-CEAR,FacultaddeHumanidadesyArtes,[email protected]:Lithiclandscapes;GIS;interpolation;chert;lithicsourcesThe lithic landscapes of East-Central Argentina (35.5°—41.5° S; 56.5°—67.5° W) arecurrently being modeled using geostatistical interpolation (i.e. kriging) of relativefrequencydatafromregionallydistributedartifactassemblages.ThisGIS-basedapproachallows,amongotherthings,forthediscriminationbetweenpotentialvs.actualandmajorvs. minor sources of rawmaterials. The rationale behind this assertion is the generalexpectation that, around an actual source of a given raw material, a definite peak offrequencyofthesamerockwillbedetectedintheresultingspatialmodel.Allotherthingsbeingequal,thestrongerthepeak,thehigherthelikelyimportanceofthesourceinthatspecificregionalcontext.Moreover,totheextentthatpeaksoffrequencyareexpectedtohappenatornearthesources,itsoccurrenceinzonesseeminglydevoidofsourcesmayalert about the presence of an undetected supply area. This helps to plan problem-oriented surveys and to implement more analytical sourcing activities. In thispresentation we will exemplify the approach with a case study concerning thedistribution of a silicified limestone locally called “siliceous chert”. The main, welldescribedsourcesofthisrockarelocatedattheMesetadelFresco,aplateauplacedinthewesternportionofthestudyarea.Someotheroutcropsofthistoolstonearealsopresent(ElCaranchoandValleDaza),buttheyhavebeengenerallyoverlookedbyarchaeologistasactualsourcesoflithicmaterialsfortoolmaking,despitethepaucityofbothextensiveand intensive sourcing studies. Kriging models for this raw material are clearlyinconsistent with a single-source hypothesis. They show at least two robust peaks offrequency—onearoundMesetadelFrescoandonearoundElCaranchoandValleDaza—aswellassomelessconspicuouspeaks(e.g.LagunaChasicó),whichsuggeststhatseveralsourceswereexploitedat theregional level,someof themvery intensively.Ourresultsunderscore theneedof deploymentof amultiple approach to sourcing, particularlybyincorporatingtechniquesthatintegratescatterinformationandtakeadvantageofwidelyandreadilyavailabledatalikerelativefrequenciesorpercentages.

Page 61: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 45

-09h20:Alpinejades:fromscientificanalysestoNeolithicknowhowPierrePétrequin1,AlisonSheridan21-MSHEC.N.Ledoux,CNRSetUniversitédeFranche-Comté,32,rueMégevand,F25030BesançonCedex,France.2-DepartmentofScottishHistoryandArchaeology,NationalMuseumsScotland,ChambersStreet,EdinburghEH11JF,[email protected]:Alpinejades,Neolithic,sourcing,exchanges,stoneaxeheadsFrom5300BC,axeheadsof‘Alpinejades’(jadeitites,omphacitites,fine-grainedeclogitesandcertainamphibolites)circulatedacrossthewholeofEurope,upto1800kmfromtherawmaterialsourcesintheMontVisoandMontBeiguamassifs.

Thepresentationcoversfourthemes:1) Analyses of the axeheads, using increasingly sophisticated methods – but which,withoutareferencecollection,donotallowonetosourcetherawmaterial.

2) The creation of a raw material reference collection which allows one, throughspectroradiometric analysis, tomake comparisonswith Neolithic jadeitite axeheads tosuggestanorigin.However,thismethodisnotidealforsourcingomphacititeandeclogiteaxeheads.

3)Researchintothemacroscopiccharacteristicsofthejades,tocharacterisethevariousoutcropsandtocomparethesewiththeaxeheads.4)Theidentificationofcriteriawhich,duringtheNeolithic,wouldhavepermittedpeopletoidentifythejadesattheoutcropsandtoselectaxeheadsmadeofjadeititeduringlong-distancetransfers.

Thislastpoint–theidentificationofjadesbyNeolithicpeople,thereproducibilityofthecriteria used to recognise thematerials and the transmission of this knowledge acrossdistances of over 1000 km as the crow flies – will be comparedwith the practices ofmodernscience.

Page 62: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 46

-09h40:SitecatchmentanalysisandhumanbehaviourduringtheUpperPalaeolithicintheCantabrianRegion:Coímbrecave(Asturias,Spain)ascasestudyMaría de Andrés-Herrero1-2, David Álvarez-Alonso3, Daniel Becker4, Gerd-Christian Weniger1-2,JoséYravedra5.1-NeanderthalMuseum.Talstraße300,40822Mettmann,Germany.2-InstituteofPrehistoricArchaeology.UniversityofCologne.Albertus-Magnus-Platz,50923Köln,Germany3-DepartmentofPrehistory&Archaeology.UNED/C.A.Asturias.Avda.JardínBotánico13454-InstituteofGeography,UniversityofCologne,Albertus-Magnus-Platz,50923Köln,Germany.d5-DepartmentofPrehistory.ComplutenseUniversityofMadrid.mdeandres@neanderthal.deKeywords: Geographic Information Systems (GIS), catchment area, Least Cost Paths (LCPs),mobility,territoriality.This paper analyses the territoriality and mobility of hunter-gatherer groups thatinhabited in Coímbre in its different occupationperiods (Magdalenian andGravettian).WiththeobjectiveofdevelopingthisstudyaGeographic InformationSystemwasused,allowingustogetnewinformationofCoímbrecaveinrelationtothelithicrawmaterialsunearthedintheexcavationdevelopedbetween2008and2012:wehavecalculatedthecostofthemovementintheterritory,andusingLeastCostPathsinordertocalculatethedistancesinkilometersandhourstodifferentoutcropsoflithicrawmaterialsandtotheareas in which the archaeological record reveals the existence of movements as, forexample,thecoastalarea.Moreover,thecreationofaLeastCostPathnetworkallowedusto make an approach to the mobility patterns between Sella and Deva rivers. All theabove-mentioned analysis provide very useful information to analyze the humanbehaviorinCoímbrebetweenMagdalenianandGravettian.

Page 63: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 47

Posters–Friday,18h45

UnderstandinghumanbehaviourduringtheUpperPalaeolithicintheCantabrianRegion(Spain)bymeansoflithicrawmaterialsandSiteCatchmentAnalysisMaríadeAndrés-Herrero1-2,DanielBecker3,Gerd-ChristianWeniger1-21-NeanderthalMuseum.Talstraße300,40822Mettmann,Germany.2-InstituteofPrehistoricArchaeology.UniversityofCologne.Albertus-Magnus-Platz,50923Köln,Germany3-InstituteofGeography,UniversityofCologne,Albertus-Magnus-Platz,50923Köln,[email protected]:GeographicInformationSystem(GIS),LeastCostPaths(LCPs),Accessibility;Mobility;Outcrop.Theaimofthisresearchistoenlightenthehumanbehaviourofhunter-gatherergroupsduringtheUpperPalaeolithicintheCantabrianRegionbymeansofthedataprovidedbylithic raw materials. We analyze if it is possible to establish links between theaccessibilityoftheoutcropsandthedensityandtypesofrawmaterialsinarchaeologicalsites to understand the criteria used by hunter-gatherer groups to select the rawmaterials. To perform this study we use Site Catchment Analysis (SCA) (Vita-Finzi &Higgs,1970)andLeastCostPaths(LCPs).Thegeographicalandgeologicalconditionsofthe area support the use of SCA since the relief has not been affected by substantialchanges since the end of the Pleistocene, taking into account that most of the knownUpperPalaeolithicsitesarelocatedincaves,andmostofthem,innarrowkarsticvalleys(Risetto,2012).TheLCPsarebasedonwalkingtimeandcostdistancemodelling(Tobler1993;White&Barber,2012;Whitley&Hicks,2003)andwetestifthereisarelationshipbetween the LCPs generated from random starting and end points, as well as thedistributionofknownoutcrops.GeneratinganetworkofLCPsallowsus to identify themostsuitableroutestotransportthelithicrawmaterials(Lloberaetal,2011;Verhagen,2010).Wewill also test the hypothesis of the “valley-territory” (Binford, 1977, 1980),which was applied to the Cantabrian area especially during the 1980s and 1990s inseveralcasesasinthesitesofElRascaňo(González-Echegaray&Barandiarán,1981)andEl Juyo (Barandiarán et al., 1987) in Cantabria or La Riera (Straus & Clark, 1986) inAsturias.References

Barandiarán, I.; Freeman, L.; González-Echegaray, J.; Klein, R. (1987): Excavaciones en la Cueva del Juyo, Monografías del Centro de Investigación y Museo de Altamira, 14,Santander.Binford,L. (1977): “Forty-seven trips: a case study in the characterof archaeological formationprocesses” InStonetoolsasculturalmarkers:change,evolutionandcomplexity,AustralianInstituteofAboriginalStudies,Canberra,pp.24-36.Binford,L.(1980):“Willowsmokeanddog´stails:hunter-gatherersettlementssystemsandarchaeologicalsiteformation”,AmericanAntiquity,45,pp.4-20.González-Echegaray,J.;Barandiarán,I.(1981):ElPaleolíticosuperiordelaCuevadeRascaňo,MonografíadelCentrodeInvestigaciónyMuseodeAltamiraa,3,Santander.Llobera,M.;Fábrega-Alvarez,P.;Parcero-Oubiňa,C.(2011):“Orderinmovement:aGISapproachtoaccessibility”.JournalofArchaeologicalScience38,843–851.Risetto, J.D. (2012): “UsingLeastcostpathanalysis toreinterpretLateUpperPalaeolithicProcurement inNorthernSpain” inWhite,D.A.&Surface-Evans,L (eds.)LeastCostAnalysisofSocialLandscapes.Archaeologicalcasestudies,11-31.Straus,L.;Clark,G.(1986):LaRieracave.StoneAgehunter-gathereradaptationsinNorthernSpain,Anthropologicalresearchpapers,36,ArizonaStateUniversity,Tempe.Tobler,W., (1993):Threepresentationsongeographicalanalysisandmodeling. Technical Report,National Center forGeographic Information andAnalysis, SantaBarbara undCalifornia.Verhagen,P.(2010):“Ontheroadtonowhere?Leastcostpaths,accessibilityandthepredictivemodellingperspective”,inContreras,F.;Farjas,M.;Melero,F.J.(eds.),Proceedingsonthe38thAnnualConferenceonComputerApplicationsandQuantitativeMethodsinArchaeology,383-387.Vita-Finzi,C.;Higgs,E.S.(1970):PrehistoriceconomyintheMountCarmelareaofPalestine:sitecatchmentanalysis,36,1–37.White,D.A.,Barber,S.B.,(2012):“Geospatialmodelingofpedestriantransportationnetworks:acasestudyfromprecolumbianOaxaca,Mexico”.JournalofArchaeologicalScience39,2684–2696.Whitley,T.G.;Hicks,L.M.(2003):“AGeographicInformationSystemsapproachtounderstandingpotentialprehistoricandhistorictravelcorridors”.SoutheasternArchaeology22,77–91.

Page 64: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 48

Understandingreciprocalrelationshipsbetweenrocksandsources:aspatialapproachtothestudyofcompetitionbetweenrawmaterialsinspecificregionalcontextsGustavoBarrientos1andLucianaCatella21-DivisiónAntropología, Facultad de CienciasNaturales yMuseo, UniversidadNacional de La Plata. CONICET. CEAR,FacultaddeHumanidadesyArtes,UniversidadNacionaldeRosario.2-DivisiónArqueología,FacultaddeCienciasNaturalesyMuseo,UniversidadNacionaldeLaPlata.CEAR,FacultaddeHumanidadesyArtes,[email protected]:Lithiclandscapes;GIS;kriging;quartzites;lithicsourcesHunter-gatherer populations usually exploit, simultaneously, different lithic rawmaterials and sources. On the long run, the cumulative effects of spatiotemporalbehaviors (i.e., individual and collective actions that manifest at different successivepoints in space and time) involving the procurement,manufacture, transport, use, anddiscardof lithicmaterials fromdifferentsources tend toproduce,atanygivenpoint inspace, a differential representation of each toolstone. The analysis of the spatialdistribution of frequency data, particularly of relative frequencies, regarding the rawmaterialsrepresentedinregionallydistributedartifactassemblagesallowsforthestudyof long-term trends in the reciprocal relationships between rocks and/or sources. Aparticularkindofreciprocalrelationshipiscompetition.Whenwespeakof“competition”betweenrocks,weareusingafigurativeexpressiontodepictasituationinwhichtwoormoretoolstonesorsourceshaveadifferentialprobabilityofbeingusedbyhumans.Suchaprobabilitydependson the intrinsicpropertiesof the rocks andof their sourcesbut,above all, on the cultural preferences and strategic/tactical/operational decision rulesappliedbypeople indifferent situations.Ourapproach to thisproblem isbasedon theconcept of “lithic landscape”, which refers to the co-occurrence, in a given geographicspace,ofdifferentstructuralunitscomposedbytwoprincipalelements:arawmaterialsource,eitherprimaryorsecondary,andanassociatedscatterorstrewnarea.Thelattercomprisethespatialdistributionofbothunmodifiedandhuman-modifiedpiecesofrocksprocured from that source. An important property of a scatter area is the overalldecrement in spatial density, size,weight, or frequency of lithic artifacts from the rawmaterial source to the outer limits of the strewn area. The resulting fall-off curves—modeledwithGIS—canbesmoothorsteepdependingonfactorslikemobilitypatterns,the quality of the rawmaterial, and the spatial proximity and/or competition betweentwoormore rawmaterial sources. In thispresentationwewill illustrate theproposedapproach to the study of competition between rocks and/or sources by discussingselectedexamplesfromEast-CentralArgentina(35.5°—41.5°S;56.5°—67.5°W).

Page 65: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 49

Impressionsfromthepast:basketryinBronzeAgeSardinia(Italy)NoemiFaddaDipartimentodiStoria,Scienzedell’UomoeDellaFormazione–Università[email protected]:craftsactivities,BronzeAge,rawmaterialselection,basketry,ethno-archaeology.Thecloserelationshipbetweenmanandnaturehasledhimtobeabletomanipulateandmodify the rawmaterial for themanufactureofobjects. Investigate theplantsused forcrafts activities is important to understand the environment of the past and the socialdynamicsinvolvedinthecreationanduseofplantsobjects.The bind technique necessarily involves knowledge of the physical properties of theplantsused(flexibility,strength,elasticity)andoftheirlifecycle.

It is very difficult to find baskets remains in archaeological excavation because thematerial isperishable, butwe can identify somedirect evidence inBronzeAgepotteryfromSardinia(Italy).Oftenwefoundimpressionofbasketryonpotsbases,becausethebasket was used to rest wet pots during the manifacture process. The analysis ofimpressionshasidentifiedtheplantusedtoproducebaskets:theasphodel.Weknowthatthebasketsweremanufacturedbyanarmatureformedbyabundleoffiberswoundinaspiralandstitchedwitharibbonofgrass.Thismethodallowstoproducecontainersofvarioussizes.

TheasphodelbasketsarestillproducedinsomeareasofSardinia.Theaimofthisstudyistoreconstructthestagesofwork,fromextractionoftheplanttothecreationof thebasket,withanethnographicandexperimentalapproach.Thestudywill be also supported by archaeological data, with the observation under astereomicroscopeofsamplesofpotsbaseswithimpressionsfromtheBronzeAgesiteofNuragheOla,locatedincentralSardinia.

Page 66: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 50

ChaînesOpératoiresandlithicrawmaterialsprocurementoftheMousterianoccupationinAbrigodelMolino(Segovia,Spain)David Álvarez-Alonso1, María de Andrés Herrero2, Andrés Díez-Herrero3, Oscar FuenteFernández1,JulioA.RojoHernández11-Department of Prehistory & Archaeology. UNED/C.A. Asturias. Avda. Jardín Botánico 1345 (Calle interior), 33203(Spain);2-InstituteofPrehistoricArchaeology.UniversityofCologne(Germany)/NeanderthalMuseum3-GeologicalSurveyofSpain(IGME),Madrid(Spain)[email protected]:LithicTechnology,Flint,MiddlePalaeolithicIn thispaperwepresent thestateof theArtsof theresearchonthe lithicrawmaterialprocurementanditsuseinspecificChaînesOpératoiresinthissite.AbrigodelMolinoislocatedintheupperpartofEresmarivervalley(Segovia,Spain),inthenorthernslopeofCentralSystemmountainrange.Thesite isbeingexcavatedsince2013and it contains awide stratrigraphy inwhich threeMousterianoccupation levelshavebeenfound,withachronologybetween40and60Ka.

ThelithologicalvarietyoftheupperbasinofEresmafavorsthepresenceofaremarkablevarietyofrocksandmineralsinitsbed,whichhavebeenusedfordifferentpurposesinthe ChaînesOpératoires developed by differentNeanderthal groups in the rockshelter.Morphology,hardness, sizeor the facility tobeknappedofeveryoneof thesematerialshavemadethedifferentrawmaterialsappropriatefordifferentobjectives.

The presence of endogenous and exogenous materials, together with the selection ofthem,accordingtotheircharacteristics,showsahighdegreeofselectionandplanningoftheactivitiescarriedoutinAbrigodelMolino.

Page 67: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 51

Friday,10h25

AdvancesInTracingTheOriginAndCirculationOfMineral-BasedPrestigeItemsInThePrehistoryOfTheMiddleEastAndItsAdjacent

RegionsHalaALARASHI-Archéorient-CNRSLyon,FRANCE

Marie-LaureCHAMBRADE-Archéorient-CNRSLyon,FRANCE

LamyaKHALIDI-CEPAM-CNRSNice,FRANCE

[email protected]

Prehistoricgroupshavebenefitedfromalargediversityofmineraloutcropslikethoseofquartz,obsidian,carnelian,agate,jade,schist,turquoise,chlorite,serpentine,feldspar,amazonite,copper,marble, limestone, clay, etc. for the production of adornments, figurines, statues, vessels, axes,andotherartefactsofprestigeandhighsymbolicvalue.

Symbolicvaluesofobjectsarebestunderstoodinthecontextofareadingofthechaineoperatoireas well as the socio-cultural and environmental contextswithinwhich the human groups thatmade or owned them operated. The first step in decorticating the meaning of such items islocatingtheirgeologicalorigininspace,andinrelationtowheretheyweredeposited.

A number of non-destructive physical, chemical and optical methods that allow fingerprintingmaterials are available to us today. However, save for advances in obsidian provenance, theidentificationofsourceoutcropsformostoftheserawmaterialsremainslimitedasaresultofadearthofgeologicalsurveysandsourcinganalysis.

Identification of the origins of such raw materials could provide information on circulationnetworks and on socio-cultural interactions between human groups, complementing existingobsidiandata. Inthissessionweinvitecontributionsonnewanalyticalmethodsusedtosourcemineralrawmaterialsusedtomakeobjectsofprestigewiththeaimofansweringthefollowingquestions: Which materials or objects circulated in prehistory, in what form (raw material,preforms, finished products) and overwhat distances?Were thesematerials circulating in thesamenetworksasobsidianorindifferentones?Whatwastheroleofhumancommunitiessettlednear sources regarding the exploitation, transformation and distribution of raw materials orfinishedobjects?

InthissessionweaimtodiscusstheoriginofthevariedmineralmaterialsfoundintheformofitemsofprestigeintheNearEast,northeastAfrica,AnatoliaandtheCaucasus,IranandtheGulf,andtheircirculationnetworks.Wefocusonnewmethodsusedfortheir identification,sourcingandtechnologicalstudy.Paperspresentingnewfieldorremotesensingmethods,newmethodsinGISandmodelling,geologicalsurveysanddatabases(“lithotheques”)areespeciallywelcome.

Page 68: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 52

OralPresentations

-10h25:ProvenanceAnalysisof‘Calcite-Alabaster’VesselsfromQatna,Syria,byNAATinaKoester1,ErnstPernicka21-InstituteforAncientNearEasternStudies,UniversityofTuebingen,72070Tuebingen,Germany2-CurtEngelhornZentrumArchaeometriegGmbH,68159Mannheim,[email protected]:provenanceanalysis;calcite-alabaster;travertine

Vesselsmadefrom‘calcite-alabaster’(alsoknownas‘EgyptianAlabaster’or‘travertine’)wereatangiblepartofexchangesystemslinkingkingdomsoftheEasternMediterraneantoMesopotamiainthe2ndmillenniumBC.Itiswidelyassumedthatthosevesselswhichwere found in the Levant, mostly in elite Bronze Age context, were manufactured inEgyptianworkshops.Thisassumptionismainlybasedontheproductionoftypologicallyvery similar vessel shapes in Egypt since the 4thmillenniumBC and on the ancientexploitationof‘calcite-alabaster’quarriesinEgypt.However,alimitednumberofvesselsdiscovered at Levantine sites have a Levantine shape or display slight, but markeddistinctionsfromthebulkofvesselsknownfromEgyptitself.SincedepositsoftravertinearealsoknownoutsideofEgypt,thearchaeometricanalysisof‘calcitealabaster’vesselsmayclarifywhetheronlyEgyptianrawmaterialwasused.

An initial result of this study was the development of a procedure to differentiatebetween ‘calcite-alabaster’deposits.This involved theapplicationofneutronactivationanalysis(NAA)todeterminetheconcentrationof25traceelements,whichwereselectedongeochemicalreasoning.Furthermorediscriminatingelementsandelementratioswereidentifiedbyprincipalcomponentanalysisanddiscriminantanalysis,resultinginamulti-stepinterpretationproceduretodifferentiatebetweenvariousdeposits.This routine was subsequently implemented to study the provenance of 68‘calcite-alabaster’vessels,discoveredintwoBronzeAgegravecontextsatQatna,Syria.

ForthemajorityofthevesselsstudiedanEgyptianprovenanceoftherawmaterialcouldnot be excluded, but several vessels are distinguished by marked difference in traceelement concentrations from the Egyptian sources. Interestingly, not all of theseanomalous vessels can be typologically classified as ‘non-Egyptian’, neither are theychemically homogenous. Furthermore, not all typologically ‘Levantine’ vessels arechemicallydifferentfromtheEgyptianrawmaterial.Thisindicatesthatthetypologyofa‘calcite-alabaster’ vessel cannot be used as the only criterion for the origin of the rawmaterial.Inthepresentedcase,thechemicallyanomalousvesselsindicatethatEgyptwasnot theonlysource for ‘calcitealabaster’,but rather thatdeposits inotherregionsalsoneedtobeconsidered.

Page 69: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 53

-10h45:CompositionandoriginoffelsiteandamazoniteprestigeitemsinthecentralSaharaduringtheAfricanHumidPeriodPaulSerenoDepartmentofOrganismalBiologyandAnatomy,[email protected]:felsite,amazonite,AfricanHumidPeriod,Gobero,NigerThe Gobero site complex in the central Sahara (Niger) records a sustained semi-sedentary occupation of to the Early and Middle Holocene (10,000-5,000 BP) thatpreservesarichassemblageofmineralogicallydistinctprestigeitems.Prominentamongthem are “ceremonial disks” composed of opaque green microcrystalline feldspar(felsite), a lithic material long misidentified as either “jasper” or “vitric tuff”, andamazonite ornaments sometimes posited as evidence of trans-Saharan trade fromfarawaysources.Gobero,however, is situatedonlyapproximately100kmdistant fromtheflanksoftheAïruplift,alocalprovinceofhotspotTertiaryvolcanism.Recentlyasuiteoffelsitequarriesandgeologicconditionsfavorabletotheformationofamazonitewerediscovered on the eastern flank of the uplift. Neutron activation and trace elementanalysesandpetrographicimagingofartifactandquarrysamplesbegintofingerprintthevariation and origin of felsite and amazonite materials, which are among the mostdistinctivelithicmaterialsatarchaeologicalsitesinthecentralSahara.

Page 70: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 54

-11h05:PreliminaryresultsofgeochemicalanalysesonbeadsfromthesiteofKadruka1(KDK1),NileValley,NorthernSudanHalaAlarashi1,LamyaKhalidi2,SandrineBonnardin21-Archéorient–UMR5133CNRS,Maisondel’OrientetdelaMéditerranée7RueRaulin,69365LyonCedex7,France.2-CEPAM–UMR7264CNRS,UniversitéNiceSophiaAntipolis,PôleUniversitaireSaintJeand'Angély3.24,avenuedesDiablesBleus,F-06357NiceCedex4,[email protected]:Stonebeads,XRD,SEM-EDS,Kadruka,NeolithicKadruka 1 is a Nubian late-Neolithic (end of the 5thmillennium BC) funerarymoundlocated between the third and fourth cataract of the Nile River. 104 excavated burialspertainingtobothadultsandchildrencontainarichassemblageofpersonaladornmentsthatincludesmorethan11,500beads,pendants,labrets,andbraceletsmadefromstone,clay,glass(?),resin(?),bone,shellandivory.Thelargevarietyofmineralrawmaterialsincludesstonesthatwereeasilyrecognizable(e.g.white/milkyopaquequartz,carnelian,agate) andmaterials thatwere uncertain (e.g. amazonite, chlorite, glazed talc, glass orresins). 22 samples from the uncertain categorywere analyzed using X-ray diffraction(XRD) and scanning electron microscopy coupled with energy dispersive X-rayspectroscopysound(SEM-EDS).Someoftheresultswereconclusiveandhaveconfirmedthe use of amazonite, talc and clinochlore while the results of other analyses requiremore investigation,as in thecaseofsyntheticenstatite(heatedand“glazed”talc?).Thelatterisidentifiedforaseriesofmicro-beadsforwhichtheprocessoffabricationisquitecomplex andwhich are known from awidespread area that stretched from the IndusValley to the Near East during the fifth millennium BC. In addition to discussing themicro-beadprocessof fabricationand itsage,wediscuss in thispaper thereliabilityoftheresultsandtheadaptabilityofthearchaeometrictechniquesusedforthiscategoryofobjects.

Page 71: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 55

-11h25:NeolithicBlueBeadsinNorthwestTurkey:theSocialSignificanceofSkeuomorphismAyseBursali1,HadiÖzbal2,EmmaBaysal3,RanaÖzbal1,BarısYagci11-KoçUniversity2-Bogaziç[email protected]:beads,personalornamentation,Neolithic,turquoise,NorthwestAnatoliaTurquoise-blue colored beads found at the seventhmillenniumNeolithic site of BarcınHöyük in NWAnatolia,make up the largest group of the bead assemblage at the site.Manufacturedfrominitiallyawhitematerialandtreatedtoresembleturquoiseincolorandform,thesebeadsaresurprisinglyreminiscentofthispreciousstone.Asturquoiseisrarely found inAnatolian sites in theNeolithic given that its closest sources are in theSinai,thedesiretocopyitwouldnotbesurprising.Initialevidencesuggeststhatideasofimitationandskeuomorphismmaybeatplayinthesociety.BasedonFTIR,SEMandEDXanalysestherawmaterialofthebeadsappearstobefluorapatite.FurtheranalyseswithRAMAN are ongoing to ascertain how the blue color was achieved. The wider socialimplicationsof thedesire forbluebeads, including thenetworks that carriedboth realand imitation materials and the restricted access of some settlements to beads areconsideredinrelationtotheresultsofanalyses.

Findsofthesefluorapatitebeadsinotherlocations,sometimesalongsiderealturquoise,helptracethisnetworkofskeuomorphsinthewiderlandscapeofAnatoliaandtheNearEast, at locations differing in proximity to turquoise sources. This paper looks both athow the materials have been identified, and the way in which the social desire forownership of the color blue in the seemingly egalitarian and homogenous Neolithicperiodmayhavefunctioned.

Page 72: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 56

-11h45:ThemultipleoriginsofsomeobsidianbeadsfoundinatombatKish,IraqStuartCampbell,ElizabethHealeyUniversityofManchester,[email protected]:Obsidian;Obsidiansourcing;pXRF;networks;prestigeitemsInthispaperweconsiderthesomewhatunexpectedresultsoftheprovenanceanalysis,usingpXRF,of105beads found ina tombexcavated in1929 inKish, in southern Iraq.TheyaredatedtotheEarlyDynasticperiod(c.2700BC)andarenowintheAshmoleanMuseum,Oxford.ThisspecificstudyispartofawiderprojectanalysingobsidianinlaterprehistoricandhistoricMesopotamia.

Although technological analysis suggests that the beads were made locally and havelimited stylistic variation, our analysis showed that the beads were in fact made ofobsidian that originated from four different and diverse sources. That adds a newdimension to our knowledge of which sources were exploited as well as the form inwhichtheobsidianfromthemmighthavecirculated.Thisalsoenablesustoinvestigatethemeaningbehind thechoiceofexoticmaterials tomakeprestigeobjects, and in thiscasetheiruseintheconstructionofidentitiesinburialcontexts.Aswellasdiscussingtheoriginsof theobsidianwewillbrieflyreviewtheevidencefortheuseof other exotic rawmaterials suchas carnelianand lapis lazuli.Wehope tobeable to tease out the social, technological and economicmeanings constructed throughdifferentexchangenetworksandmechanisms.

Page 73: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 57

-12h05:MappingEconomicNetworksofProductionandTrade:CopperinOmanandObsidianinEthiopiaIoanaA.Dumitru,MichaelJ.HarrowerJohnsHopkinsUniversityidumitr1@manchester.ac.ukKeywords:SocialNetworkAnalysis⋅satelliteimageryOur research pioneers the joint applications of hyperspectral imagery analysis, SocialNetworkAnalysis,andGeographicInformationSystems(GIS)toaddressgeographiesofrawmaterialexploitationandsocio-economicinteractionthatareofwideimportancetoanthropological archaeology. Through a comparison of two very different commercialcontexts,ofcopperproductioninOmanandobsidianexploitationinEthiopia,weseektounderstand how the mutually reinforcing feedback loops of raw material availability,technological skill, consumer demand, and economic outputmanifest geographically. Along-distance trade network developed in the Persian Gulf beginning in the thirdmillenniumBCE, connectingproducersof copper inOmanwith consumers in southernMesopotamia.Thefirstevidence forthecirculationofobsidian inthesouthernRedSeadatestothesixthmillenniumBCE.Ourevaluationofcopperandobsidianproductionandconsumptionnuseshyperspectralsatellite imagery and archaeological surveydata tomap interactionsbetweendifferenteconomicnodeswithintherespectivesocialnetworks,ofcopperproductioninOmanandobsidianexploitation inEthiopia.Wearemapping theseeconomic interactionsat threespatialscales:themicro-scaleofindividualnodes(archaeologicalsites),themeso-scaleofour specific researchareas (in theAd-DhabirahgovernorateofOmanand in theTigrairegion of Ethiopia), and the macro-scale of the wider socio-economic networks ofnorthernOmanandnorthernEthiopia.Analyzingsocioeconomic interactionsatvaryingscales will lead to developing complementary interpretations of the relationshipsbetweenarchaeologicalsettlements.Methodologically,our investigationsmapnaturalcopperandobsidianavailabilityusingcommercial remote sensing software, ERDAS Imagine and ENVI, to analyze Hyperionhyperspectral satellite imagery.Using the spectral signatures of eightdifferent copper-bearingminerals,wedetectedcoppersources,includingthewell-knownIronAgecoppermining sites, al-Raki and ʿArja. Similarly, two obsidian signatures were used to rundetectiononHyperionimagesofEthiopia,coveringareasofvolcanicactivitywithknownobsidianoutcroppings.AnalysisrunonanimageofanareacontainingthevolcanoErtaAledetectedobsidianinanarcarounditscaldera.DetectionrunonHyperionimagesoftheareasurroundingtheexploitationsiteofHumboBaantuproducedamapofobsidiansources,identifyingareaswithknownobsidianoutcropping.

Page 74: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 58

-12h25:PrestigematerialsandmaterialityintheNeolithicEasternFertileCrescentDrAmyRichardsonUniversityofOxford.InstituteofArchaeology,36BeaumontStreet,Oxford,[email protected]:Neolithic;Iraq;Iran;pXRF;materialsThroughout the Neolithic, people, things, skills and technologies moved betweensettlements, weaving together cultural meshworks that connected widely spreadcommunities.Across theEasternFertileCrescent, thesenetworks coveredhundredsofkilometres,bringingexoticmaterialsfromfarandwide,totheremotestsiteshighintheZagrosMountainsofIraqandIran.Intermittentinvestigationsintothesitesoftheregionhaverevealedearlysettlementsconnectedthroughsharedtechnologies,ideologies,foodpracticesandmaterialities.Theearliestsettlementswerewelllocatedforaccesstowater,tohuntinggrounds,togoodsourcesoflimestone,chert,andclay.Therichoutcropsofthemountains providedmarble and alabaster; seams yielding serpentine, quartz and highquality cherts in the tectonic suture zone; bitumen seeps are known throughout theregion. Yet, regardless of this abundance of materials, prestige objects from far afieldweredepositedatmanyofitssettlements.Theextenttowhichcommunitiesengagedinnetworksofexchangevariedfromsettlementtosettlement,butintensifyingpatternsofthe movement of materials highlights the crucial role that exotic materials played inconnectingcommunities.ThetransmissionofobsidianfromtheEasternAnatoliansourceshasbeendocumented,demonstrating clear, statistically quantifiable route ways of dispersal. However, theregular deposition of sea shell at inland sites, such as cowries and dentalium, and therarer appearance of minerals such as carnelian and sard, turquoise and variscite, aremuch more difficult to quantify. Non-destructive methods such as portable X-rayfluorescence have great potential to trace the patterns of dispersal, although theacquisitionofmuchlargerdatasetsisvital.Throughmappingtheoccurrenceofmaterials,identifying not just techno-typological but also geochemical similarities, it becomespossible to establish models beyond the obsidian networks (ones which incorporatedplants,animals,andpeople,aswellasthings),inordertoshedlightonthemorecomplexinteractions operating across the landscape and the role these played in thetransformation of Neolithic societies. This paper highlights key themes in ongoingresearchthataimstoexaminethesenetworksacrosstheEasternFertileCrescentsitesinIraqandIran,fromtheendoftheEpipalaeolithictotheearlyChalcolithic.

Page 75: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 59

Posters–Friday,18h45

StonepersonaladornmentsfromTellMureybet(Euphratesvalley,Syria):mineralcompositionandpathwaysofcirculationHalaAlarashi,Marie-LaureChambradeArchéorient–UMR5133,MaisondelÓrientetdelaMéditerranée,Lyon,[email protected]:Stoneornaments,X-raydiffraction,GIS,pathways,NeolithicTheNeolithicsiteofMureybethasdeliveredawidevarietyofmainlystoneornaments.ThemineralcompositionofmorethanhalfoftheseartefactswasanalyzedusingtheX-raydiffractionmethod.The identificationof the stonematerialsdemonstrated that theallochthonous rocks (phosphates, ophiolites and other metamorphic rocks) werepredominant compared to local ones (carbonates, gypsum, clay). The presence ofallochtonousrocks,combinedwiththoseofMediterraneanshells,attestthepresenceoflong-distance circulation networks during the Khiamian and the PPNA periods.Wheredid these materials come from and how did they arrive on the site? What role didcontemporary sites play in the control, distribution and circulation of thesematerials?These issueshave raisedmethodologicalquestions,oneofwhich is thepurposeof thispaper:howtotreatthequestionofcirculationofpeopleandgoodsduringperiodslackingtextsormarkersofsuchmovementinthelandscape?

We have started to answer those questions thanks to a pluridisciplinary approachcombining the circulation of other rawmaterials used for prestige items like obsidian,culturalcontexts,andleastcostpathanalysis.Thefirstresultsofourworkhaveallowedus to present hypotheses on the modes of circulation of raw materials (e.g. favouredpathways, possible distribution places). However, we face two obstacles: theimpossibility of identifying the exact exploited sources and the limitations of GISapplications.Howcanweenhancethetechnicalapproach?Whatkindofnewparameterscanwe take into account and how? In this paper,we propose improvements of certainmethodsanddiscussthelimitsandcompatibilityofthemethodsandtoolswehaveused(X-raydiffractionanalysisandGISapplication).

Page 76: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 60

ThefabricationofobsidianprestigeitemsinLateChalcolithicnorthernMesopotamiaLamyaKhalidiCEPAM-CNRSNice,[email protected]:obsidiancirculation;obsidianprestigeitems;LateChalcolithic;TellBrak;SyriaAnatolianandCaucasianobsidiancirculatedatlongdistancesacrosstheNearEastduringthelateprehistoricperiods,reachingnorthernArabiainthePPNB,andtheArabianGulfin the Ubaid period. Like most unavailable materials, it was valuable to populations.Nonetheless itwasprimarilyused for the fabricationof utilitarian tools.However, lessdiscussed is the fabrication of obsidian vessels and personal adornment, often foundalongsidethefabricationofobsidiantools.Usingatechnologicalreading,andpreliminaryexperimentation, I discuss a seriesof obsidianbeads anda vessel recovered fromLateChalcolithic contexts at the sites of Tell Brak and TellMajnuna in northeast Syria andcompare this production to that of the obsidian tool assemblage recovered. Thetechnologicalstudy,confirmedbyLA-ICP-MSanalysesofdebitageandtools,showsthatthesametwotypesofobsidianwereusedtoproducetoolsandobjectswhichwerepartofasinglechaîneopératoire.

Page 77: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 61

Thebead-maker’stoolkit–Thecirculationofdrillingtechnologiesandgemstonesinthe“MiddleAsianInteractionSphere”FedericaLumePereiraM.A.Graduate Programme for Transcultural Studies – Cluster of Excellence “Asia and Europe in a Global Context” –HeidelbergUniversityVoßstraße2–Building4400–Office017–69115Heidelberg–GERMANYfederica.lume-pereira@asia-europe.uni-heidelberg.deKeywords:Drillbits–carnelian–GonurDepe–3rdMillenniumBCThefollowingpaperaddressesthequestionoftechnologicaltransmissioninthecontextofnewlyestablishedexchangemechanismsoftheEarlyBronzeAgeintheNearEastandSouth Asia. During the second half of the 3rd millennium BC long range exchangenetworksmerged connecting urban landscapes in the Near East with other centers inCentral and South Asia. This phenomenon is mainly attested by the circulation of“prestigeitems”andthewideincorporationofexoticmaterialsintoritualandeverydaypractices.

Ofthecirculatedmaterials,gemstonesareamongstthemoreprominent.Theprovenanceandspecificmineralcompositionofthesestoneshavebothlongbeensubjectofresearchandstillremaincontended.Quiterecentlythestudyoftheelaboratetechnologybehindthemanufactureofbeadshasmovedintofocus.InspiredbyexperimentsfirstconductedbyL.Gorelickandfurtherrefinedby J.M.KenoyerandM.Vidale,multiplestudiesusingsilicone moulds and SEM photography have opened up new possibilities of analyzingaspectsofbeadproductionandthusshedlightontothediversetechnologicaltraditionsoftenconnectedthroughexchange.

Drawing frommy ongoing Ph.D. project Iwill present such a case study focusing on anumberofbeadsfromGonurDepe(Turkmenistan)–thebestknownurbancenteroftheso-called Oxus civilization (BMAC). Through its unique position at the crossroads ofseveralinterconnectedlandscapesinAfghanistan,PakistanandEasternIran,GonurDepewith its distinct BMAC features makes for a particularly interesting example of thedynamicsinvolvedinthecirculationofmineral-basedprestigeitems.PertinentLiterature(selection):Gorelick,Leonrad(Ed.),AncientsealsandtheBible.Vol.2,1.OccasionalpapersontheNearEast(Malibu,Calif1983).Kenoyer,JonathanM./Vidale,Massimo,AnewlookatstonedrillsoftheIndusValleyTradition:Vandiver,PamelaB.(Ed.),MaterialsIssuesinArtandArchaeology3.SymposiumheldApril27-May1,1992(SanFrancisco1992)495-518.

Page 78: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 62

2500CalBC:InduspottersinthePersianGulfSophieMéry1,MicheleDegliEsposito2,DennysFrenez3,JonathanM.Kenoyer41-CNRS,UMR6566,Rennes,France2-IMTO–ItalianMissiontoOman.UniversityofPisa.Pisa,Italy3-Dept.ofHistoryandCultures.UniversityofBologna.Bologna,Italy4-Dept.ofAnthropology.UniversityofWisconsin.Madison,[email protected]:Archaeometry,Poterytechnology,BronzeAge,IndusCivilization,MaganCivilization.Inthesecondhalfofthe3rdMillenniumCalBCE,thevarietyoftheprestigeobjectsfromthe IndusCivilization(PakistanandNO.of India)reflects functionalspecializationsandsocial hierarchy. It is the case of the black stoneware bangles, found exclusively in thebiggestcitiesof the Indus.Figurativerepresentationsshowthat theywerewornbytheindividualsatthesummitofthesocialhierarchyandtheirproductionwasunderastrictadministrative control. Some categories of objects reflect other forms of specializationand varied prestigious forms. It is the case of the Indus stone ornaments - the mostfamousexampleofwhich is theoneof theheatedcornelianbeads.Small Induspaintedceramicjarsrepresentsadifferentcase.TheywerefoundinthecollectivelocalgravesoftheUmman-NarperiodintheMaganCivilization(UnitedArabEmiratesandSultanateofOman). We shall present here a state of a recent archaeometry program and thetechnologicaldatawhoallowarebuildingoftheeconomyoftheseobjects.WethinkmostprobableaninstallationofsmallIndusgroups(includingpotters)intheE.A.U.andOman.They integrated Umm an-Nar communities, as shown as the local production of someIndusdomestictypesforfoodpreparationandcooking,andalsoconsiderthepresenceofpaintedceramictheIndusinthecollectivegravesasnotfortuitous.

Page 79: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 63

FieldevidencesinvolcanologyandgeomorphologyasatoolforobsidiansourcingD.Mouralis1,A-K.Robin2,E.Akköprü3,K.Erturaç4,C.Kuzucuoğlu51-UniversitédeRouen&CNRS(LaboratoireIDEES,UMR6266).RueLavoisier,76831MontSaint-Aignan(France)2- Université Paris 1 Panthéon-Sorbonne, & CNRS (LGP, UMR 8591). 1 Place Aristide Briand, 92195Meudon cedex(France).3-VanUniversity,EdebiyatFakültesi,CografiaBölümü,65080CampusVan-Turkey.4-SakaryaUniversity,Fen-EdebiyatFakultesi,GografiaBölümü,EsentepeCampus54187Serdivan,Sakarya.5- Université Paris 1 Panthéon-Sorbonne, & CNRS (LGP, UMR 8591). 1 Place Aristide Briand, 92195Meudon cedex(France)[email protected] Prehistoric times, the obsidians of Eastern Anatolia have been intensivelyexploited and exported all around the Middle East. In the framework of the GeObsscientific project, we propose to intensively and systematically study the geologicaloutcrops of Eastern Anatolia in order to process a complete database of the obsidiansourcesinthisarea.Inthistalk,wewanttodemonstratehowfieldevidences(includinggeomorphologyandvolcanology)interestthecharacterizationandthesourcingofobsidian.Indeed,themaincharacteristics of obsidian, the abundance of raw material and their availability arecontrolledbyvolcanicandgeomorphologicprocesses.

1)Themainchemicalandphysicalcharacteristicsoftheobsidianoutcropsarecontrolledby the volcanology, including magmatic processes (differentiation), mode ofemplacement(flow,dyke,etc.)andtypeofoutcrops(largeandmassive“banks”orsmallnodulesofobsidian)associatedwithrheologyofthelavas.2)Theabundanceofobsidianwithinavolcanicmassif isalsocontrolledbythevolcanichistory(ageoftheeruptions,modesofemplacementandtypesofoutcrops)aswellastheerosionalprocesses.

3)Theavailabilityoftherawmaterialisconstrainedbytheevolutionandhistoryofthelandscapes.Latervolcanicactivityandgeomorphologicprocessesmayberesponsibleofdestruction or fossilization (both by volcanic activity and/or erosional processes).Moreover,theseevolutionsalsocontroltheabundanceandavailabilityofthesecondarysourcesofobsidianwithincolluvialandalluvial(terraces)deposits.ThedifferentexamplestakenallaroundEasternAnatoliawillillustratetheimportanceoffieldevidencesfortheunderstandingoftheobsidiansourcing.

Page 80: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 64

GéObsprogram:IntegratedstudyoftheEasternAnatolianobsidians(Identification,characterizationanddiffusion)D.,Mouralis1,C.Kuzucuoğlu2,L.Astruc3,E.Akköprü4andalltheteamoftheGéObsProject1-UniversitédeRouen&CNRS(LaboratoireIDEES,UMR6266).RueLavoisier,76831Mont-Saint-Aignan(France).2-Université Paris 1 Panthéon-Sorbonne, & CNRS (LGP, UMR 8591). 1 Place Aristide Briand, 92195 Meudon cedex(France).3-CNRS(ArScAn,UMR7041).M.A.E.,21,alléedel’Université,92023NanterreCedex(France).4-AkköprüE.–VanUniversity,EdebiyatFakültesi,Cografibölümü,[email protected]:EasternAnatolia;Obsidian;Geologicalsources;Characterization;DiffusionTheGeObsprojectproposesan integratedandmulti-disciplinaryapproachtostudytheexploitationoftheEasternAnatolianobsidianbyancientgroupsforthemanufactureoftools and prestige objects, and its spatial diffusion through exchange networks amongcommunitiesacrosstheancientNear-East(includingAnatoliaandCaucasus).

Until now, the obsidian geological sources in Eastern Anatolia are still impreciselyidentifiedandcharacterized.Itisthusdifficulttoproperlyunderstandthediffusionoftheobsidianitemsfromtheiroriginstotheirdiscards;i.e.fromthegeologicalsourcestotheNear-Easternarchaeologicalsites.The aim of the GéObs project is to establish a detailed database and geographicalinformation system of the obsidian sources in eastern Anatolia togetherwith the newanalysis of some archaeological collections. We thus propose an integrated and pluri-disciplinaryapproachforobsidiansourcingbasedon:

-Intensivefieldinvestigationinordertoprecisethemorphologicalandgeologicsettingsofthestudiedobsidiansources,togetherwithasystematicsampling,bothinprimaryandsecondarycontext;

-Multi-methodscharacterizationusingchemical(usingLA-ICP-MS,XRFmethods)aswellasphysicalproperties(especiallypetrographyandmineralogy).

Thecharacterizationofthegeologicalsourceswillbeinterpretedinlinkwiththeresultsof the field investigation. The characterization of archaeological collections will beprocessedtogetherwithtypologicalandtechnologicalinterpretations.

- Using themethods of spatial analysis, wewill try to understand the diffusion of theobsidian during prehistoric times, from its geological origin to its deposition inarchaeologicalsites.

AllthedataproducedduringthisprogramwillbeimplementedwithinadatabaseandanassociatedGIS.

Page 81: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 65

Friday,14h20

RawMaterialsForMakingPotsMiriamCUBAS-BioArch.UniversityofYork,UK([email protected])

Technology and provenance studies of pottery allow researchers to better understand aspectssuch as the production organisation, distribution and use patterns of these products. Howceramics were produced, exchanged and used are key elements to elaborate interpretationsabout important archaeological topics, related to strategies of environmental exploitation,mechanisms of knowledge transfer, technological innovation, labour distribution and exchangenetworks, all of them basic for our understanding of the development of social processes, likecraftspecializationandthearisenofhierarchicalandcomplexsocialsystems.

Theapplicationofmethodologiesrelatedtotheanalysisofrawmaterialsprocurementandclaycompositionoffersgreatopportunities in thedevelopmentof those technologyandprovenancestudies. A great variety of techniques can be applied in these analyses, focused on thecompositional, mineralogical and textural characteristics of these productsto explain thedifferent socioeconomic conditions of the pottery production and its role in the prehistoricsocieties.

The session welcomes papers focusing on raw materials for making pots in relation to workwithanalysisand contextualizationof prehistoric pottery ensembles in different chronologiesand geographical areas of the world.The session hope to assemble archaeologists,anthropologists, archaeometrists and ethnographers who are working on raw materialprocurementandprovenancestudiesofprehistoricpottery.

Page 82: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 66

OralPresentations

-14h20:"Distinguishthesimilar":sourcingrawmaterialsofdifferentceramicschemicallyandpetrographicallyidentical,thecontributionofmicroanalysisbyLA-ICP-MSB.Gehres1,G.Querré21-Laboratoired’archéologieetd’histoireMerlat(LAHM),UMR6566CReAAH,UniversityofRennes2.Laboratoired’Archéologieetd’HistoireMerlat(LAHM),UMR6566,CReAAH,UniversitéRennes2,bâtimentA,salleA118,PlaceduRecteurHenriLeMoal,CS24307,35043RennesCedex,FRANCE2-MinistèredelaCultureetdelaCommunication,LaboratoireArchéosciences,UMR6566CReAAH.UMR 6566 CReAAH, 263, Avenue du général Leclerc, Campus de Beaulieu, bâtiment 24-25, Université de Rennes 1,CS74205,35042RennesCedex,[email protected]:LA-ICP-MS,microanalysis,minerals,sourcing,archaeologicalceramicsAnalysis of archaeological ceramics can be realized in a variety ofways: there are thepetrographicanalysiswithpolarizingmicroscopeonthinsectionorbyX-raydiffraction(XRD), and the global chemical analysis of paste generally by spectrometric methods(XRF,INAA,ICP-OES...).Theseanalysisaremostlyperformedtodeterminemanufacturingtechniquesororiginofpotteries.

However, in some cases, the cross-referencing data of this analysis don’t allow us todeterminethegeographicaloriginoftherawmaterialusedtoshapethepotteries.Thisisparticularly the case for potsmountedwith clays from theweathering of granitic andgranito-gneissicrocks(eg.granites,gneiss,gabbros...).Indeed,thenaturalinclusionsandtheglobalchemicalcompositionsofthistypeofceramicsareoftensimilar.

Asaconsequence,wehavedevelopedamethodbasedontheanalysisoftypicalmineralinclusions (eg. biotite, opaqueminerals, amphibole)present in ceramicpastesbymassspectrometrycoupledplasmasourceandalaserablationsystem(LA-ICP-MS).Therefore,itispossibletomakeaconnectionbetweenceramicsandrockmineralsand,asaresult,discriminatethedifferentrawmaterialssources.

Inthiscommunication,wewillpresentthelatestadvanceswehavemadeinthefieldofceramic sourcing, thanks to the analysis by LA-ICP-MS, through several case studiesdistributedoveralargeperiod(fromtheNeolithictotheAntiquity),locatedondifferentislandsofBrittanyinthewesternFrance.Thanks to this method, we are able to distinguish the productions of gabbro-graniticpotteries during Vth to Ith century B.C. from two different workshops in Brittany(France), through the analysis of amphibole grains. Moreover, the investigations onbiotitecrystalsallowedustoidentifysourcesofclaysissuefromweatheringofdifferentgraniticrocks.Finally,wewill talkabout theanalysisofopaqueminerals todistinguishthesourceofceramicsmadewithultra-basicrocksalteration.

Page 83: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 67

-14h40:Pottinginthearctic:Ceramictechnologicalstrategiesamonghunter-fisher-gatherersatNunalleq,AlaskaA.Jorge1,N.S.Müller2,R.Knecht31-Department of Archaeology, University of Aberdeen, St Mary’s Building, Elphinstone Rd, Aberdeen AB24 3UF,Scotland,UK2-FitchLaboratory,BritishSchoolatAthens,52SouediasStreet,10676Athens,Greece,3-Department of Archaeology, University of Aberdeen, St Mary’s Building, Elphinstone Rd, Aberdeen AB24 3UF,[email protected]:technology,arctic,hunter-gatherers,petrography,organictemperPottery production and use among hunter-gatherers has received increasing attentionover the last few years. Given the much greater residential mobility and potentiallyspecific food processing requirements of these communities, this new line of researchraises interesting questions regarding both ceramic provenance and technology.However, the focus on the origins and spread of early pottery has side-lined its roleamongmorerecenthunter-gatherers.InfarnorthernregionslikeAlaska,wherepotterywasmadeandused foraround2500years, it remainsunderstudiedbeyondtraditionalclassificationandculturalsequencing.Duringthelaterprehistoric‘Thule’period(fromc.800BP), the two main categories of ceramics are vessels and lamps. Limited vesselmorphologicalanddecorationvariationandoverallpaste ‘coarseness’havecontributedtoanimageofpotteryashomogenous,crude,poorlyfiredorunfired,andunchangeable.Yet,theseassumptionsaboutmanufactureandfunctionremaineduntested.

Thispaperwillpresentthefirstsystematictechnologicalstudyoflateprehistorichunter-gathererpotteryfromAlaska,whichconsidersrawmaterialsourcing,pastepreparation,and firing regimes using an integrated approach, by combining a suite of analyticaltechniques, including thin-section petrography, FT-IR and SEM with a detailedmacroscopicstudy.ItfocusesontheprehistoricvillageofNunalleq,thelargestexcavatedsiteintheregion.Theceramicassemblageofthesiteshowsawidermorphologicalanddecorative range than expected, raising questions about uniformity of design and use.Analytical results indicate very specific manufacturing strategies, including clearlydistinctive choices for vessels and lamps both in terms of paste recipes and firingregimes.Wewilldiscussthesestrategiesinviewofthesocialandpracticalfunctionsofpotteryaswellastherelationshipbetweenmaterialproductionandlandscapeamongarctichunter-gatherers. The information gained will ultimately help to address issues of tradition,culturalchangeandsocialinteractionamongtheselateprehistoriccommunities.

Page 84: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 68

-15h00:Petro-mineralogicalandGeochemicalcharacterizationofNeolithicpotteryfromsettlementsofEasternEurope(Dvina-Lovat’basin)MariannaKulkova,AlexanderKulkov,NataljaVlasenkoHerzenStateUniversity,St.Petersburg,Russia,191186St.Petersburg,nab.Moyki,48/[email protected]: Neolithic pottery, Eastern Europe, petrography, X-ray microtomography, ScanningElectronMicroscope(SEM).Themasscharacterofpotterydistributionisanindicatorofcultural-historicalprocessesand therefore pottery is the most important information source about Neolithizationprocess on territory of Eastern Europe. The mineralogical and geochemical methods(petrography,X-raymicrotomography,ScanningElectronMicroscope(SEM))wereusedfordeterminationofthecomposition,themanufacturingtechnologyandsourcesofrawmaterialofNeolithicpottery(4ka.BC)fromarchaeologicalsitesinDvina-Lovat’region.Whenapotterytechnologyisreconstructeditisadvisabletoknowsomuchtechnologicalcharacteristicsasispossible.Thecomplexofthesefeaturesisanimportantcriterionforstudyofancientceramics,becausesometime justsmall fragmentsofpotteryaresaved.Theycan’tbeclassifiedonlyaccordingtomorphologicalandtypologicalprinciples.Oneof the most significant features in technological reconstructions of pottery is theinvestigationofceramicpastes,thatismineralcompositionandamountofclay,temper,porosity, ect. The visualization of pore shapes and reconstruction of organic inclusiondistributioninsideofsherdcanbeusedforunderstandingoftechnicsofpotterymolding.The application of combination of petrography, X-ray microtomography and SEMmethods allow to reconstruct the ceramic past composition more detail, to establishnaturalandartificialadditives inceramicsand todiffer theceramic typesaswellas toestablishrowmaterialsources.X-raymicrotomographycanbeappliedalsotodefinethereplica of organic inclusions,whichwere burnt out during the firing process and theirtypesinsideofsherd.Inthesomecasesatypeofplantcanbeidentifiedonthebaseof3Dporevisualization.Themostofceramicwaresunderinvestigationweremadewithusingof local clay and sandmaterials from lake andmoraine deposits ofQuaternary period.There are variations in the temper composition and firing temperatures which areconnectedbothwithculturaltradition,andwithqualityoflocalsourcesofrawmaterials.

Page 85: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 69

-15h20:Differenttemper,differentfunction:claypastesforlasinjaculturepotteryfromtwositesinnorthwesternCroatiaLeaČataj1,HrvojePosilović21-CroatianConservationInstitute.DivisionforArchaeologicalHeritage.DepartmentforArchaeology.Croatia2-CroatianGeologicalSurveyDepartmentofGeologySachsova2.Croatialcataj@h-r-z.hrKeywords:Lasinjaculture,CopperAge,northwesternCroatia,claypaste,claytemperLasinja culture spread from westernmost part of Vojvodina, throughout continentalCroatia and northern Bosnia, Slovenia, Austria and western Hungary in the middleCopperage(4300–3900BC).Althoughitoccupiedratherlargearea,potterywasshapedanddecoratedinasimilarway.

Thispaperaimstoshowtheclaycompositionofvariouspotterytypesandexplainhowdifferentclaypastesdependonvesselfunction.Inaddition,potteryfromtworegionsincontinentalCroatiawillbecomparedinordertoseethedifference inthemineralogicalcomposition of clay. One of the sites (Črečan) is situated in the Međimurje region(northernmost part of Croatia) and the other one (Barilović) in the Kordun region(centralCroatia).

There are two main functional vessel types. Vessels made to be exposed to highertemperatureduringthecookingandvesselswithstorageordecorativefunction.

Vessels intentionally made to be used as a cooking ware have coarse texture withsignificantadditionofcoarsesandandfinegravel.Finetexturedpotteryismainlymadefromverypureorpurifiedclaymaterial,orwithsmalladditionoffinesandandsilt.Onbothsitesthebasetechnologyofceramicproductionisessentiallythesame.Thereisnodifference in the base claymaterial compositionbetween the sites or functional vesselgroups. The difference between two sites can be found in the coarser (grit) materialadded to the base clay material in the cooking ware vessel group. The grit mineralcompositionconsistentlyreflectslocalgeologicalcomposition.

PotteryfromBarilovićcontainssignificantamountofcarbonatesintheformofcrushedlimestone or sparite calcite crystals. This area is situated on the carbonate base, suchmaterialwaslocallyavailableandhencethelogicalchoice.PotteryfromČrečancontainslargeamountofsandandfinegravelreflectingpetrologicandmineralcompositionofthearea. The grit fraction is composed from grains of quartz (more than 90 percent) andgrains of metamorphic or magmatic rocks (gneiss, granitoids). This sand and gravelmaterial is alluvial and could be taken from the river or creek bank or from the oldPleistoceneandHolocenedeposits.

Page 86: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 70

-15h40:CeramicrawmaterialsinLinearBandPotteryCulture(LBK)intheCarpathianregion,PolandSławomirKadrow,AnnaRauba-Bukowska1-InstituteofArchaeologyandEthnologyPolishAcademyofSciences,CentreforMountainsandUplandsArchaeologyslawekkadrow@gmail.comKeywords:Pottery,technology,rawmaterials,LinearBandPotteryA technological analysiswas carriedoutonpotteryand rawmaterial samples - almost400thinsections.Different featureswereexamined includingsourcingandselectionofmaterials,preparationandcompositionofthepotterypaste,manufacturingmethods,andfiring. The results revealed that there were subtle changes in technology betweensuccessive phases of LBK and of post-LBK Malice culture evolution. In the early andclassic phase, the potters willingly used heavy clay as starting material. A substantialchangewasobservedforthelastŽeliezovcephaseandthencontinuedinyoungertimes.Heavyandgreasyclaywasreplacedbyfinegrainedsiltyclayofalluvialorigin–chosenespeciallyforfinevessels.ThismodificationwasprobablytheresultoffrequentcontactwiththeEasternLinearPotteryCulture.TheanalysisofpotteryfromtheEasternLinearCircle shows that such claywaswidely used in pottery production. In the light of thisdata, we can infer that intercultural contacts also resulted in the transfer of newtechnological ideas and brought a new approach to pottery production. An additionalexplanationofuseofdifferentrawmaterialswastheiraccessibilityinthelocaloutcrops.

Page 87: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 71

-16h00:TechnologicaldiversityoftheEarlyNeolithicpotteryofMuge(Portugal):thecasestudyofCabeçodaAmoreira(excavationsfrom2008to2014)RuthTaylor1,DanielGarcíaRivero1,JoãoCascalheira2,NunoBicho21-DepartmentofPrehistoryandArchaeology,UniversityofSeville2-ICAEHB,UniversityofAlgarveKeywords:Neolithicpottery,Technology,Petrography,Chemistry,Taxonomy.The shellmidden of Cabeço da Amoreira (Salvaterra deMagos, Ribatejo) is one of themost important internationally renowned Portuguese archaeological sites. It has beenexcavated since the middle of the 19th century and it has become one of the keysettlementsfortheunderstandingoftheMesolithic-Neolithictransition.

TherecentarchaeologicalexcavationscarriedoutbytheUniversityofAlgarveatthissitefrom2008to2014haveprovidedagreatamountofnewdata,notonlyinrelationtotheMesolithicshellmiddenbutalsotothefirstNeolithicpopulationsofCentralPortugal.

Averydetailedandsystematicdocumentationandanalysisoftherecoveredpotteryhasprovided a largedatasetwithmanydifferent classes of information formore thanonethousand individual pottery records belonging to the upper stratigraphic levels of theshellmiddenaswellasfromthesurroundingarea.Basedon thevisualanalysisof thedifferentmorphometricand technological traits, thepotterydatasethasbeenapproachedwithdifferenttaxonomicaltechniquesandmethodsinordertoshedlightonthediversityofthetechnologiesinvolvedinpotteryproduction.This analysis has suggested the existence of several different technological groups.Samplesbelongingtoeachgrouphavebeenanalyzedwiththin-sectionpetrographyandscanningelectronmicroscopy (SEM-EDS) techniques that allowus toknowabout theirtextural, mineralogical and compositional characteristics. In this way we assess thediversityofthepotteryassemblageandwefinallyexplainthemainphysicaldifferencesbetween the technological groups aswell as the possible practical and cultural factorsbehindthem.

Page 88: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 72

-16h30:Potteryforthedead:exploringtherawmaterialsexploitationinthepotteryofCanGambús-1(Sabadell,Cataluña)

MiriamCubas1,MiguelÁngelSánchezCarro2,JordiRoig3,JoanManuelCollRiera4,JuanGibaja5

1-BioArCh-UniversityofYork.2-Dpto.deCienciaeIng.DelTerrenoydelosMateriales-InstitutoInternacionaldeInvestigacionesPrehistóricas-UniversidaddeCantabria.3-UniversidaddelPaísVasco(UPV-EHU)4-ArragoS.L.5-CSIC-IMF.DepartamentodeArqueologiayAntropologia.

[email protected]

Keywords:petrography,thinsection,pottery,technologicalchoices,MiddleNeolithic

The development of studies focused on pottery in Cataluña has increased since thebeginning of this century. Most of these studies consider pottery as the result of atechnologicalprocessandtheyarefocusedonrawmaterialprocurement,modificationsof clay and technological aspects of its manufacture. The application of this kind ofstudies allows us to distinguish the different technological choices used in themanufacturing process and to propose new interpretations about the productiveorganization.Inthisstudywepresentthemethodologyandfirstresultsoftheanalysisofthepotteryensemble from Can Gambús-1 (Sabadell, Cataluña). It is a complex archaeological sitewithevidenceofdifferentchronologies,amongthemwehavetohighlightthenecropolisattributed to the Middle Neolithic due to its relevance and to the quality of thearchaeologicalmaterials recovered.Radiocarbondatesavailableallowsus toproposeachronologyfocusedontheendofthe5thandbeginningofthe4thmillenniumcalBC.Thisnecropolis iscomposedbydifferent funerarystructures forwhichtheconstructionandthecompositionofthegravegoodsmayindicatesomesocialdifferentiationbetweentheindividuals buried. The grave goods include different kind of vessels of differentmorphologiesanddecoration.Thiscontributionisfocusedonthemineralogicalanalysisthroughthinsectionofsamplesselectedbytheirmorphologicalanddecorativecharacteristics.Thepetrographicstudyinthinsectionhasallowedasystematicdescriptionoftexturalandmineralogicalaspectsofthesamples.Basedonthepetrographicdescription,weproposedifferentmanufacturinggroupswithsimilartexturalandmineralogicalcharacteristics.Theanalysisallowedustoproposedifferentareasofrawmaterialprocurementbasedonthegeologicalcoherencewith geological environment and to stablish different methods of manufacture,suggestingdifferenttechnologicalchoicesinthepreparationofclays.

Page 89: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 73

-16h50:DistinguishingtheNon-LocalRatherthanMatchingtheExotics:CeramicSourcingMethodsandResearchDesignatCastrodeSãoMartinho,PortugalPaulThackerWakeForestUniversity,DepartmentofAnthropology,Box7807,WakeForestUniversity,Winston Salem,[email protected]:claygeology,rawmaterialsourcing,ceramicanalysis,archaeologicalresearchdesignMany geochemical sourcing studies attempt archaeological interpretations with onlycompositional data from artifacts, an approach that often leads to erroneous resultsbecauseofgeologicaldecontextualization.Otherstudiessignificantlyundersampleintra-source variability of clay deposits in geological formations, focusing instead on inter-source comparison. This project illustrates the utility of research design founded on acomprehensive investigation of clays in the local region of the archaeological site ofCastro de São Martinho near Alcobertas, Portugal. The study region is ideal fordeveloping clay sourcing methods because of the unusual proximity of very differentgeologicalformationsinwhichworkableclaysarepresent.Claysamplesweretakenfrom34differentdeposits,withtheoriginoftheclaysrangingfromthelimestonebedrockoftheSerradosCandeeiros,tothemagnetite-richprismaticbasaltsoftheAlcobertasridge,tothecementedalluvialbedsoftheuppertributariesoftheRioMaiordrainage.Rawclaysamples were analyzed through integrating a minimally-destructive X-ray diffractiontechnique with pXF elemental data, complementary studies of iron mineralogy usingmagnetic susceptibility instrumentation, and microscopic characterization of pasteinclusions.Allofthemajorgeological formationsintheproximityofSãoMartinhohavebeen sampled and our integrated methodology has successfully characterized the lowrangeofintra-formationalvariability.Claytesttilesandarchaeologicalsherdsubsampleswere fired to 950°C in a precision laboratory furnace. About two-thirds of thearchaeological sherds sampled from SãoMartinhowere likelymade of clays procuredfrom beds formed in reworked Jurassic fluvial sediments. Multiple lines of evidenceindicate that themagnetite-richclaysderived fromtheAlcobertas ridge, themarl claysfromPedeSerra,andthe limestone-derivedclayswerenotusedtoproduceanyof thearchaeological samples. A small but significant fraction of our archaeological ceramicsamplehaschemicalcompositionsignificantlydifferent fromallof themajorgeologicalformations in the proximity of São Martinho. The comprehensive, local-scaleinvestigation of clay source deposits provides foundational support for theanthropological conclusion that these ceramic vessels were produced outside of theimmediatevicinity.

Page 90: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 74

-17h10:Archaeomagneticanalysisonarchaeologicalpotteryasamethodtoinferheatingtemperatures.AcasestudyfromElPortalonCave(SierradeAtapuerca,Burgos,Spain)

M.Francés-Negro1,Á.Carrancho2,E.Iriarte3,A.Pérez-Romero3,J.M.Carretero31-EdificioI+D+i.LaboratoriodeEvoluciónHumana.PlazaMisaelBañueloss/n.09001BurgosUniversidaddeBurgos.2-EdificioI+D+i.ÁreadePrehistoria.PlazaMisaelBañueloss/n.09001BurgosUniversidaddeBurgos.3-EdificioI+D+i.LaboratoriodeEvoluciónHumana.PlazaMisaelBañueloss/[email protected]:Archaeomagnetism,thermoremanence,ironoxides,prehistoricpottery.TheuseofpalaeomagnetictechniquestothestudytheancientrecordofEarth´smagneticfieldinarchaeologicalsamplesisknownasarchaeomagnetism.Archaeomagneticdatingis probably themost knownapplicationofmagneticmethods to archaeologybut thereare others still underutilized and of great interest to prehistoric archaeology. Herewereport a novel application of archaeomagnetism to determine the last heatingtemperature undergone by archaeological ceramics. The method is tested in a set ofNeolithicandChalcolithicpotsherdsfromElPortalónCave(SierradeAtapuerca,Burgos,Spain).

Mostarchaeologicalpotteriescontainsmallamountsofironoxidessuchasmagnetiteorhaematite.Whenheatedtohightemperatures(>500–600ºC)andsubsequentlycooledtheseminerals acquire a remanent (permanent)magnetization parallel to the ambientmagneticfieldthroughamechanismknownasthermalremanentmagnetizationorTRM.Ifheating temperaturesdonotexceedtheCurie temperature(TC)of the ferromagneticmineralpresent(e.g.,TCofmagnetite:580ºC), thematerialmayacquireapartialTRM(pTRM), partially overprinting any previous magnetization. Progressive thermaldemagnetizationofthenaturalremanentmagnetization(NRM)wasusedtoidentifythemaximumunblockingtemperatureofpTRMs.ThisisthetemperatureatwhichthepTRMvector switches its direction, defining the last heating temperature. Two types ofbehaviour were observed: (i) specimens showing a single stable palaeomagneticcomponent,relatedtotheirelaborationandfiring>600-700ºCand(ii)othersshowingtwo paleomagnetic components: a high-temperature (HT) component relatedwith thepotsherds’ manufacture and an intermediate temperature component or pTRM withmaximum unblocking temperatures mostly comprised between 400 – 450 ºC,representingthelastheatingtemperaturesexperiencedbytheseceramicsmostprobablyduetocookingactivities.In order to demonstrate the suitability of archaeomagnetism to infer heatingtemperatures,preliminaryarchaeomagneticresultsobtainedfromasetofexperimentallymanufactured pottery are reported. Both archaeological and experimental results arecompared and discussed, highlighting the potential and limits of themethod. Althoughstillpreliminary,thisinformationmayhelptoinfertheuseandthetechnologicalprocessforpotterymanufactureinthepast.

Page 91: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 75

-17h30:ThepotsfromtheNuragicsiteofSant’Imbenia(Sardinia,Italy):analysesoftherawmaterialsandthetechnologicalevolutionBeatriceDeRosaARS.Lab,UniversitàdegliStudidiSassari,VialeUmberto51,07100,[email protected]:nuragic,pots,rawmaterials,Sardinia,technologicalevolution.FiveclayeyrawmaterialscollectedinthePortoFerro,LagoBaratz,CalaViola,Porticciolo,Palmadula and Calabona areas of Alghero in northwest Sardinia (Italy) were used toprepare handmade bricks samples that were fired under oxidizing conditions attemperatures ranging between 750 and 1000 ˚C to evaluate their possible use in thearchaeological pottery production. The samples have been compared with samearchaeological ceramics from theNuragic siteof Sant’Imbenia, in thePortoContearea,Alghero, that have already been studied with archaeometrical analysis. The site wasinhabited between approximately the 14th and the 7th century BC. During the lastcenturiesof its life,Sant’Imbenia livedapopulationof localsandforeigners,Levantinesand, probably, Greeks. It is obvious that as well as goods and raw materials theyexchanged ideas, knowledge and technologies. Some of the pottery artefacts producedduringthisperioddonotseemtobelongtotheNuragictraditionbecauseoftheirshapeandtype,whichsuggestthatlocalcraftsmenwereinfluencedbythecontactswithforeigncultures.Themineralogyof therawmaterialsandtheclay-size fractionwasstudiedbyXRD diffraction; bulk chemical analyses were performed by means of the X-rayFluorescence technique; the textureof thesampleswasobserved in thinsectionwithapolarizingopticalmicroscope.Then,thesampleswerestudiedtakingintoaccounttheircolourusingaportablespectrophotometer.Ourresultsrevealthatallthisrawmaterialsare compatiblewith the archaeological production, butwe observed that the differenttypesof clayswereused forproductswithdifferent functionality.Thisaspect requiredspecific characteristic of the rawmaterials tomake, for example, ceramics for cookingfood or pottery to conserve them. This shows a clear strategic choice in productiontechnology. It ispossible toobservea technologicalevolution thatbegan in theBronzeAgeandfinishesduringtheIronAge.Throughthiswork,infact,westudiedtechnologicalaspects in the production process that demonstrate a high degree of specialization,knowledgeofrawmaterials,expertiseinthecookingofthepotteriesthaninearliertimeswerenotfound.

Page 92: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 76

-17h50:Rawmaterialsandtheiruseinthemakingofpotteryfrombasagain(BasqueCountry,Spain),archaeologicalandexperimentalresearchJuditLópezDeHeredia1,JavierPeñaPoza2,JuanFélixCondeMoreno2,FernandoAguaMartínez2,ManuelGarcíaHeras21-AranzadiSocietyofSciences2-InstituteofHistory,CCHS-CSICjlzdeheredia@gmail.comBasagainisanIronAgefortifiedsiteintheBasqueCountry(Spain).AscommoninIronAge, evidence has been found of the coexistence and complementarity of two types ofpotteryproduction,whichcanbedifferentiatedbyitsownmodesofproductionanduseeventhoughbothweremadewiththesamerawmaterials.Thiscontributionpresentstheresultsderivedfromanarchaeometricstudycarriedouttodeterminetheclaysedimentsand the non-plastic materials possibly used in the making of the pottery recipientscoming from Basagain. Product acquisition and selection of raw materials and theirpreparation are some of the most important variables that influence the making of aceramic.With the aim to understand the production processes, a representative set ofrawmaterials obtained in the surroundings of this sitewas prepared and fired in thelaboratory, following the same sequence of production than that determined for thearchaeological ceramic materials, which had been previously assessed. Samples wereprepared with different association of sediments and non-plastics materials (calcite).Same research techniques used with archaeological items were applied: petrographicanalysis by thin section and X ray diffraction (XRD). This study has been useful todeterminethetypeofclaysandnon-plasticmaterialsusedbytheIronAgecommunitieswhoinhabitedthesesettlementstomakeitspottery,aswellasthetechnologyemployedtoproduceit.Keywords:Pottery;IronAge;Archaeometry;Rawmaterials;Clay.

Page 93: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 77

-18h10:Chemicalanalysisofpigments,pasteandresiduesinTupiarchaeologicalceramicsfromSoutheasternBrazilMarianneSallum1,CarlosRobertoAppoloni2,MarisaCoutinhoAfonso31-PhDstudent,MuseudeArqueologiaeEtnologia,UniversidadedeSãoPaulo.AvenidaProfessorAlmeidaPrado,1466,05508-070,SãoPaulo-SP,Brasil.2-DepartamentodeFísica–CCE,UniversidadeEstadualdeLondrina–UEL,CaixaPostal10.011,86057-970,Londrina–PR,Brasil3-MuseudeArqueologiaeEtnologia,UniversidadedeSãoPaulo.AvenidaProfessorAlmeidaPrado,1466,05508-070,SãoPaulo–SP,[email protected]:chemicalanalysisofceramics,archaeometry,pottery,BrazilX-ray fluorescence has been used to analyze chemical elements from archaeologicalceramicpastesandpigments.Inothercontexts,chemicalresidueanalysishasbeenusedtoexamine the functionofpotteryvessels.However, it isunusual toemploy these twoanalyticalapproachestogether.ThispaperpresentsbothresidueandenergydispersiveX-ray fluorescence (EDRXF) analyses results, identifying chemical elements present inTupi pottery fragments collected at Gramado archaeological site (Brotas, State of SãoPaulo,SoutheasternBrazil)andaimingtounderstandaspectsrelatedtothecompositionof the ceramic paste, chemical residues and possible functions for the vessels. Resultsshowed the presence of key element Fe, indicating the use of raw material with ironoxides, both in pigments and paste. The key element for black pigments was Mn,revealingitspresenceintherawmaterial’scomposition.Chemicalanalysesindicatedthepresence of phosphate in pottery with painted and plastic surface treatments withanother common characteristic, a high level of protein residues in small vessels,suggestiveof some functions.Oneof thevesselswasdifferent fromallothers, showingcarbonate.We also noted that some fragments presented different pastes, a sign that,though living in thesameenvironment, thegroupmadedifferentchoicesregarding theraw material (clay). Pigments used in painting were from mineral origin and fireresistant,confirmingtheideathatthepaintingfabricationprecededburning.Astovesselfunctions,weobserveddifferentusesbetweenpotterieswithplasticandpaintedsurfacetreatments,inferredfromdifferentchemicalresiduesfoundineachtype.

Page 94: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 78

Posters–Friday,18h45

Localresourcesandpotteryproduction:BronzeAgecookingpotsinCentralSardinia(Italy)NoemiFaddaDipartimentodiStoria,Scienzedell’UomoeDellaFormazione–Università[email protected]:pottery technology,BronzeAge, rawmaterial selection,cookingpots,archaeometricanalysis.Identifyandcharacterizetherawmaterialsusedinceramicproductionisfundamentaltounderstandtheceramicprocessandthepeoplewhofabricatedandusedthevessel.Itisdirectlylinkedtodifferentaspectsofthenaturalandthesocialreality.

Wemustconsidertheecologicalpossibilitythattheareaoffersandalsotheinfluenceofsocial,economicandideologicaldynamics.The tipical repertoire of Nuragic community sees, from the Middle Bronze Age, thepresence of ceramic containers, defined trays or pans, that for their morphologicalfeaturesandtechnologyseemtobesuitableforpreparingandcookingfood.ThematerialsanalyzedinthisstudycomefromthesiteofNuragheOla,asmallnuragicvillage,locatedincentralSardinia,wherethecookingpotsrepresentsmorethan70%ofthe ceramic repertoire. The context is inserted in a region characterized by a geologymostlygraniteand trachyte, rich inwater ,where itwaspossible tohaveclaydepositslocatedafewkilometersfromthevillage.The aim of this study is to clarify the relatioship between the natural resourses andBronze Age pottery production in orden to obtain information on the selection andtreatmentofrawmaterialand,aswell,oftheymanifacturingtechnology.Ceramic fabric variability was analysed, first at macroscopic level, considering theamount and the presence of inclusion; the color variation on the surface, which isdepends from the composition and granulometry of the clay and from the atmosphereandthefiringtemperature,andthesurfacetreatment.

AfterwehavestartedwiththearchaeometricanalysisofthecollectedsampleswiththeuseofXRF,XRDandthinsectionpetrology.

Theresultsshowedtheuseof localrawmaterials fortheproductionof thevesselsandthepeculiarityofthefabrics,astheheatresistance,demonstratesaselectivechoiceoftherawmaterialsmadebythepotters.

Page 95: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 79

NewtoolsandoldquestionsinarchaeometricanalysisofceramicsM.Francés-Negro1,E.Iriarte2,Á.Carrancho3,A.Pérez-Romero2,J.MCarretero21-EdificioI+D+i.LaboratoriodeEvoluciónHumana.PlazaMisaelBañueloss/n.09001BurgosUniversidaddeBurgos.2-EdificioI+D+i.LaboratoriodeEvoluciónHumana.PlazaMisaelBañueloss/n.09001BurgosUniversidaddeBurgos.3-EdificioI+D+i.ÁreadePrehistoria.PlazaMisaelBañueloss/[email protected]: Archaeometry, ceramic, mineralogy (XRD), geochemistry (FRX), computerized axialtomography(CAT).

Since the 80's, the incorporation of compositional analysis helped to make a betterdescriptionofceramicpotsprovidingasystematicandscientificbasetothetypologicaldescription.Thecompositionalstudies fromtools likeX-Raydiffraction(XRD)orX-Rayfluorescence(XRF),alongwithpetrographicanalysisprovidemeaningfulinformationtoknow the raw material and de pottery elaboration process. This type of analysiscompletesthetypologicalstudies,givesinformationaboutthetechnologicalprocessandhelpstodefinepossibleareasofsupplyoftherawmaterialsused.

In this communication the study of theNeolithic and Chalcolithic potsherds recoveredfrom El Portalón de Cueva Mayor (Atapuerca, Burgos) is shown. In addition to thetechniques described above, the use of Computerized Axial Tomography (CAT) ispresentedasanon-destructivetechnique,anditcompletestheinformationprovidedbytheotheranalysis.Thevariationsobservedinthecomponentsandthemanufacturingofceramic pottery can reflect moments of stability or technological innovations withinsocialgroups,changesintheuseoftheceramicsorchangesinlandoccupationbygroupswithdifferenttechnologicaltraditions.

Page 96: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 80

ThejobofthearchaeologistandtheartofculturalmediationValentinaAmontiIndipendentresearch.Address:ViaGiulioRomano,946043Castiglionedellestiviere(MN)Keywords:pottery,BronzeAge,clay,experimentalmethodologyThepreliminaryresultsofaresearchprojectonceramicproductionofthePile-dwellingsofLakeLedroduringtheBronzeAgearesummarizedhereinafter.

Since the pottery found in the site is characterized by a dark grey color, we tried toreproducethisresultthroughexperimentalmethodology.

Istartedwithgatheringoflocalclay(fromCretegn,alocationnearMolinaofLedro)andIde-stoning and soaking it.When the claywas ready to bemolded, Imadepottery in arangeofsizeandIcompareditwiththearchaeologicalrecord.

After thedrying I put thepots into a kiln in earthpit and after the cooling I extractedpottery:thesurfaceandthekneadingshowndarkgraycolor.

Theresultsofthefiringseemstoconfirm:

-Thedarkgreycolorhasbeenobtainedwithfiringinacompletereducingatmosphere;- In theearthkiln the temperaturedoesn’t exceed850°, this is thecorrect sequence toavoid the transformation of calcium bicarbonate inclusion in quicklime that coulddamagetheartifacts;

-TheclayfoundinCretegnwasbetterforpottingthanotherlocalclaysthatIfound;

Thesuccessfulexperimentallowedtoaddthepotteryamongthespecimenshowcasedinreconstructedhut,asapartof theexhibition itinerarydeveloped into thePile-dwellingMuseumofLakeLedro.

Thehutwasmadeto“enhancetheinvisible”sovisitorscouldseeanddirectlyexperiencetheresultsofthestudiesonthearchaeologicalexcavationinthearchaeologicalsite.

The next step will be to compared the chemical analyzes on mixtures of thearchaeologicalrecordwithexperimentationtotrytogetusefulresultsforthepurposeofexperimentation.

Page 97: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 81

Technologicalandfunctionalidentificationofcookingslabs:evidencesfromtheBronzeAgepiledwellingssettlementofGrottadiPertosa(Salerno,SouthernItaly)DeliaCarloni1,Felice.Larocca2,SaraTizianaLevi3,ValentinaCannavò41-CentroRegionalediSpeleologia“EnzodeiMedici”,ViaLucania,3-87070RosetoCapoSpulico(CS)2-Università degli Studi di Bari, Gruppo di ricerca speleo-archeologico, Piazza Umberto I, 1 - 70121 Bari. CentroRegionalediSpeleologia“EnzodeiMedici”,ViaLucania,3-87070RosetoCapoSpulico(CS)3-UniversitàdegliStudidiModenaeReggioEmilia,DipartimentodiScienzeChimicheeGeologiche,ViaG.Campi,103–41125Modena(MO)4-UniversitàdegliStudidiModenaeReggioEmilia,DipartimentodiScienzeChimicheeGeologiche,ViaG.Campi,103–41125Modena(MO)[email protected]:Italy,Grottadipertosa,Protohistory,Pottery,TechnologyCooking devices as hearts and slabs are relatively common in archaeological records,mainly in settlements, since they are relatedwithdailydomestic activities. Conversely,it’softenhardto identify thepresenceofcookingstructureswhentheyare fragmentedandinsecondarycontext.RecentresearchesintheBronzeAgepiledwellingssettlementof Grotta di Pertosa (Salerno, Southern Italy) returned 138 ceramic flat pieces ofunknown function, found in a circumscribed zone of the entrance chamber. Wesuccessfully tested an integrated approach combining morphology, macroscopicobservationandanalytical investigation(minero-petrographicandchemical–XRF).Wepresentbothtechnologicalfunctionalevidencesthatallowedustoidentifythoseceramicflatpiecesascookingslabs.

Page 98: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 82

TechnologyofpotteryproductionoftheburialsArgaricGroup(2250-1550CalBC)byScanningElectronMicroscopyandX-RayDifraction.ThecaseofElCerrodelaEncina(Monachil,Granada,Spain)JosefaCapel1,ElenaMolina-Muñoz2,GonzaloAranda3,RocioMárquez41-Department of Prehistory and Archaeology. University of Granada (Spain). Departamento de Prehistoria yArqueología.FacultaddeFilosofíayLetras.CampusdeCartuja.C.P.18071.Granada,Spain.2-Department of Prehistory. Autonomous University of Barcelona (Spain). Mòdul de Recerca A. Edificio MRA -106.AutonomousUniversityofBarcelona.C.P.08193.Bellaterra(Barcelona,Spain).3-Department of Prehistory and Archaeology. University of Granada (Spain). Departamento de Prehistoria yArqueología.FacultaddeFilosofíayLetras.CampusdeCartuja.C.P.18071.Granada(Spain).4-CentrodeInstrumentaciónCientífica(SEM-FF).UniversityofGranada.FacultaddeFarmacia.CampusdeCartuja.C.P.18071,Granada(Spain)[email protected]:BronzeAge,ArgaricCulture,funeraryceramics,crafttechnology.RecentexcavationsatElCerrodelaEncinainsouthwesthaverevealedalargenumberofhabitation areas and burials located withtin the settlement area under the floors ofdwellings.ThisarchaeologicalsitewereoneofthemaineconomicandpoliticalcentresofArgaricBronzeAgeSociety (c.2200-1550BC), a classical “culture”of theEarlyBronzeAgeinWesternEurope.

Early excavationshad revealed a continuedoccupationof the sitebetween2000/1950and 1450 cal BC, characterizing the Argaric occupation. The current research hascompletedthestudyofthewesternsectorofthesite.Thefocusofthispaperwillinvolvetheanalysisofmaterialculture,technologiesandrawmaterials related to Argaric ceramic production used as grave goods. The study havecarried out by SEM-EDX and XRD. The main goal is characterize production distinctpatterns.Weareselected19ceramicpiecesbelongsto4Argaricburials.Weareselectedsamplesacordingtosex,ageandchronology.

Page 99: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 83

NeolithicpotteryfromLjubićevacave(Istria,Croatia)TihomirPercanCroatianConservationInstitute,Juršići7,52342Svetvincenat,Istria,[email protected]:Ljubićevacave,pottery,decoration,production,analysesDue to its exceptional geographical position on the crossroads of ancient paths, theIstrianpeninsulawasan important linkbetweeneast,west,northandsoutheversincetheprehistorictimes.TheLjubićevacaveissituatedinsouthernIstria(Croatia),only15kilometerseastofPula, thepennisula's largest city.Thecave itself ispositionedon thebottomof a large sinkhole,making itself almost unnoticable in the peaceful landscape.Sinkholes are very common in a karst region such as Istria. In the area around theLjubićeva cave there are many other recorded caves and pits. From 2008 to 2011archaeological excavations were carried out in cooperation between Museed'Anthropologie prehistorique de Monaco (Principality of Monaco) and The CroatianConservation Institute (Croatia). Recorded findings, specially ones from the Neolithicperiod,impliedthatthecavewasitnensivelyinuseduringthisperiod.Alargenumberofpottery fragments were nicely decorated with different motives and ornamentscharacteristic for the cultural phenomenons from Early (Impresso culture), Middle(Daniloculture)andLate(Hvarculture)Neolithic thereforemaking it theperiodof themost intense usage of the cave.With this poster we will put the focus on the MiddleNeolithic (Danilo culture) pottery and its ornaments (S shaped decoration, differentspiral motifs, incrustation) including mineralogical and textural characteristics andanalyses.WewilltrytocomparethefoundmaterialwithsimilarceramicsfromNorthernAdriaticandtheMediterranean.Ouraimistoexplainhowceramicswereproducedandwhat kind of technologies were used for decorating pottery during this period.Furthermore,laboratoryanalyzedpotteryandornamentsareshowingthesignificanceofthis multidisciplinary kind of approach to archaeology and pottery. With this kind ofexperiments, interesting results were collected. It wouldn’t be possible without goodcooperation of archaeologists and the laboratorywhere the analisyswas held (Metris,Pula,Croatia).Wealsoemphasizethesignificanceofthemoderntechnologyandmethodsto improveandadvanceknowledgeconnected to technologyandproductionofpotteryduringthearchaeologicalperiods.

Page 100: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 84

RawmaterialsprocurementforpotterymanufatureinSouthwestIberianPeninsuladuringPrehistoryNunoInácioUniversityofHuelva(Spain)[email protected]:Clay,RawMaterials,PotteryManufacture,Prehistory,SouthwestIberianPeninsula.Thestudyofthestrategiesofrawmaterialsprocurementforthemanufactureofceramicvessels provides information on the economic and social context of the productionprocess.Theselectingofrawmaterials for themanufactureofceramicvessels involvestechnological choices and behaviour that cannot be determined only by cost / benefitprinciples.

Theselectionofrawmaterialsisanactivityembeddedinbroadsocialstrategiesandinalarger cultural context. In fact, ethnographic studies have revealed the existence ofseveralmechanismsthatinfluencetheprocurementandselectionofpotteryresources.FromthedataprovidedbyownarchaeometricresearchinseveralarchaeologicalsitesoftheThirdMillenniumB.C.E. and the bibliometric study, the strategies of rawmaterialsprocurement for pottery manufacture in the South of the Iberian Peninsula from theNeolithictotheBronzeAgeareevaluated.

Page 101: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 85

Saturday,9h00

LongDistanceProvenanceAndDistributionOfRawMaterialsUsedInStoneToolsProduction:CaseStudies

Juan F. GIBAJA -CSIC-IMF. Archaeology of SocialDynamics.Egipciaques, 15. 08001Barcelona,SPAIN;ICArEHB–UniversityofAlgarve,PORTUGAL([email protected])XavierTERRADAS-CSIC-IMF.ArchaeologyofSocialDynamics.Egipciaques,15.08001Barcelona,SPAIN([email protected])

StudiesabouttheprovenanceoflithicrawmaterialsalongPrehistorictimeshavebeenreceivingincreased interest and attention from the archaeological community for a long time. Amongothers,thetypeofstonesused,theirsources,themethodsandtechniquesimplementedintheirexploitation,theconditioninwhichtheyweretransportedandarrivedtotheconsumptionplaces,the existing links among lithic tools producers and consumers, have been some of the mostrelevantissuesapproachedintheseinvestigations.

In this session, we will focus the long distance origin, exploitation and distribution of rawmaterials used in the production of stone tools in any chronology or region prior themetallurgy.Wewillespeciallyacceptpapersandposterswherespecificcasestudiesattestedtheexistence of a long distance between the original natural sources and the place of discard. Alltypes of raw materials will be considered as long as they were used to produce stone-tools,knapped or polished. We would like to discuss issues such as the routs of raw materialscirculation, the morphology of the transported products, the possible existence of exchangenetworks, thusthe presentations should stress how the analysis of the rawmaterials was themeantoallowtoproposeinterpretationsabouttheeconomyandsocialorganizationofthepre-metallurgicPrehistoricsocieties.

Page 102: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 86

OralPresentations

-9h00:LongdistanceflintprocurementandtransportationintheSeaofAzovcoastandKubanbasinregionsintheMiddlePaleolithicDr.EkaterinaV.Doronicheva1,Dr.MariannaA.Kulkova21-PetertheGreatMuseumofAnthropologyandEthnography,RussianAcademyofSciences,St.Petersburg,Russia2-HerzenStatePedagogicalUniversity,St.Petersburg,Russia

[email protected]

Keywords: flint outcrops, long distance provenance, petrography analysis, Eastern Micoquian,NorthernCaucasus.

Increasing data indicate that long distance raw material procurement and transportationrepresent the important feature of the Neanderthal subsistence (Slimak, Giraud 2007; LeBourdonnecetal.2012;Spinapolice2012;Doronicheva,Shackley2014).WereportpreliminaryresultsaboutlongdistancerawmaterialprocurementbasedondatafromMezmaiskayacaveintheKubanRiverbasin(NorthernCaucasus;Golovanovaetal.1999;2010)andtheopen-airsiteofRojok-1(Praslov1968)locatedinthesteppeareaoftheeasterncoastoftheSeaofAzov.ThesesitesareassignedtotheEasternMicoquiantraditionthatwaspresentduringMiddlePaleolithicinbothregionsandwascloselyrelatedtoindustriesofCentralandEasternEurope.

Rawmaterialsources(54intotal)werestudiedduringfieldsurveysconductedin2007-2015inthe Northern Caucasus and the Azov sea coast region (data on some of them was published:Doronicheva, Kulkova 2011; Doronicheva, Kulkova, and Shackley 2013).We obtained series ofpetrography and geochemical data for each source, aswell as for archaeological samples fromMezmaiskayaandMatuzkacaves,Baranakha-4,Besleneevskaya1andHadjoh-2open-airsitesintheNorthernCaucasusandRojok-1site.

Ourpreliminaryresultsshowthatineacharchaeologicalsamplethenumberofartifactsmadeofhigh-qualityflintsprocuredfromsourceslocatedmorethan300kmfromthesiteisinsignificant(< 1%). These types of flints are represented usually among tools, chips, and small fragments;however, no cores from long distance rawmaterialswere identified in the studied collections.Basedon the results,we conclude that thedataon flint transport fromdistant sourcesmaybeservedasanadditionalconfirmationofculturalcontactsamongdifferentNeanderthalgroupsandpotential intra-regional migrations of Neanderthal groups within a huge area from the Sea ofAzovcoast,inthenorth,totheLargeCaucasusRidge,inthesouth,andfromtheBlackSeacoast,inthewest,totheCentralCaucasus,intheeast.

Page 103: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 87

-9h20:LongdistanceobsidiandistributionandtheorganizationofPalaeolithicsocietiesDrTheodoraMoutsiouArchaeologicalResearchUnit,DepartmentofHistoryandArchaeology,[email protected]:obsidian,Palaeolithic,stonetools,longdistancemovement,socialnetworksArecentstudyonthePalaeolithicuseofobsidianhasdemonstratedthatobsidianwasawidelycirculatedmaterial for stone toolmanufacturemuchearlier thanpreviously thought (Moutsiou2011). The investigation, which encompassed Africa, Europe and the Near East, demonstratedthatobsidianwaschoseninallthreeregionsthroughoutthePalaeolithicforthemakingofawidevarietyoftooltypes.Mostimportantly,theworkshowedthatobsidianwasutilisednotonlywhenlocallyavailablebutalsoatgreatdistancesfromsource.Thispaperdiscussestheseoccasionsoflongdistanceobsidiancirculation in threedistinctpartsof theOldWorldat theearliestpartofPrehistoryasameansofelucidatingpasthumansocialbehaviourandmodesofcommunication.

ReferenceMoutsiou,Th.(2011).TheobsidianevidenceforthescaleofsociallifeduringthePalaeolithic.PhDthesis.RoyalHolloway,UniversityofLondon,UK.

Page 104: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 88

-9h40:Thestonerawmaterialsinpirulejo(priegodecórdoba,córdoba,spain).Theexampleoflevel5IsabelCánovasCalle,AndoniTarriño,MaríaD.SimónVallejo,VictoriaArandaSánchez,LydiaCalleRományMiguelCortésUniversidaddeSevilla/GrupoTellusHUM-HUM-949ProyectoHAR2013-44269-P.MinisteriodeEconomíayCompetitividadKeywords:LateGlacial,microblades,stoneresources.In thisworkwepresent a revision about the stone rawmaterials usedby the hunter-gatherersocietiesinthecaveofPirulejo,focusedaboveallforthemanufacturingoflithicindustriesandinparticulartheonesdocumentedintheP5levelthatcorrespondstoaLateGlacialchronology.

Thisworkwillbecomposedbythefollowingmethodologicalsteps:

1.Prospectingandsamplingsiliceousformation.

2.Macroscopicandpetrographicanalysisofthegeologicalsampleandarchaeologicalmaterial.

3.Comparationofthepetrographicanalysisbetweenthearchaeologicalandgeologicalset,beingabletoassignthearchaeologicalsamplestothesiliceousoutcrops,anddescribethemobilityandsiliceoussourcescatchmentareas.

Results.

Theabsenceof informationabout thesiliceousoutcrops in thepeninsularSouthwest leadus topresent a petrographic characterization, as well as the location and extention of the mainsiliceousoutcropsinthisarea.

Oncetheclosestoutcropstothesitewerecharacterized,andcharacterizedpetrographically,wecanassignthe70%ofthearchaeologicalmaterialtolocalsiliceousformations.

However, themacroscopic characteristics show that this exploitation of formations exceed thelocalareal(20km),duetothelocalformationscontainadiaclasedflintthatalsomakeimpossibleaconchoidalfracture,thereforethisflintisnotsuitableforknappingactivities.

Thus,weproposeotherareassourcesthatexceedthe20kilometersfromthesiteandwhicharestillinapreliminaryphasetodeterminetheseareassources.

Another lineof study thatwepresent is thewayof exploitationof these flint, according to theChaîneOpératoireofthelithicknappingrepresentedonthesite.

The absence of cortical flakes and the presence of flakes Jano, leads us to propose a firsthypothesis, in which these hunter-gatherers groups carried out the grinding tasks and a firstpreparation of cores outside the site, developing in this area of the site works related to theproduction,use,restorationandamortization.

Thegeneralcharacteristicsoftheindustrywouldbedefinedbysmallsizebladesproductionandlargenumberofmicrobladeindustry.

Likewise,wefindinthislevelotherlithologiesusedassupportfordevelopingpropergraphicsinpalaeolithicmobiliaryart,aswellaspassiveelements(hammerstones,anvils,etc.) thatarealsointotheprocessofcharacterizationstudy.

Page 105: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 89

-10h00:Lithicrawmaterialreservoirsor“cache”recordintheáreaecotonalhúmedasecapampeana,Argentina,asanstrategyforsupplyandterritorialmarkingFernandoOliva

CEAR,FacultaddeHumanidadesyArtes,[email protected]:Lithiclandscapes;GIS;caches;lithicsourcesTheoretical and methodological approaches related to the regional record of "caches orreservoirs lithic" are presented. This is a particular type of archaeological evidence of hunter-gatherer societies of the Late Holocene recorded in the Area Eecotonal Humid Pampa Seca(AEHSP)ofArgentina.

ThePampasofArgentinaisavastplainwherethelithicresourcesarelimitedtopunctualsurfaceoutcropsandisolatedhillssystems.Thisregionissubdividedinto:HumidPampasubregion,eastofthe600mmisohieta,andDrywest.Theconvergenceofthesetworegionsischaracterizedbyan "ecotonal area", a place where phytogeographic provinces with shrub and grasslandcharacteristics.This allows the concentrationof resourceswhicharedistributed in the formofconcavearc,locatedinnearbyMeridian62°totheeast,andfromtheparallel32°to38°.

Therecordof"caches"indifferentsectorsAEHSPwouldindicateaspecificcharacteristicstrategyofthisareaofresearch,whichwouldbeconditionedfirstbythespecialenvironmentalandsocialcomplexityincapturinggoodqualitystonematerialsbyhunter-gatherersocieties.Thissituationreflects a decision in the landscape lithification, signaling,maintenance and standardization inartifact composition, and allows us to propose the existence of space management socialnetworks, share of common codes in the use of lithic resources to broader regional level. Thisrecord assigned to hunter-gatherer societies seeks to discuss the material manifestations ofcertain strategies of use of space and time, as they would be implying a planning of groupactivities taking place in the near future. The appearance of these "caches" in different distantlatitudes, allows the proposal of a specific approach in terms of sourcing, conservation and"lithificationstrategies"inabroadregionallandscape.The"caches"presentedcorrespondtosetsofstandardizedlithicartifactsproducedinavarietyofgoodlithicmaterial(egrhyolite,quartzite,chalcedony).The"lithification"ofthelandscapethroughthedevelopmentof"caches"representsstrategies that correspond to consensual decisions that express aspects of economic, social,ideological, and technological type. This situation results in decision-making, planning the use,conservationandstorageofstonecriticalresources.

Page 106: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 90

-10h20:ElementalCharacterizationofObsidianartifactsfromEpipaleolithicandNeolithicsitesintheIronGates,SoutheastEurope

AdinaBoroneant1,CliveBonsall21-RomanianAcademyInstituteofArchaeology,Bucharest2-Archaeology,UniversityofEdinburgh

[email protected]:obsidianprovenancing,IronGates,Epipaleolithic,NeolithicArtifacts made from obsidian were recovered from Epipaleolithic and Early Neolithicsites in the Iron Gates section of the Lower Danube Valley, during excavations in the1960s.Archaeologistsof the timedisagreedover the likelyprovenanceof theobsidian,variously attributing it to Carpathian, Aegean, or even ‘local’ sources. We present theresultsofnon-destructivepXRFanalysesofmuseum-curatedobsidianfromthreesitesontheRomanianbankoftheDanube.Theobsidianisshowntooriginatefromatleasttwodistinct sources.Comparison ismadewithgeologicalobsidiansamples fromsources intheAegean,Anatolia,CarpathiansandCentralMediterranean.

Page 107: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 91

-10h50:ExploitationofRawMaterialsinBelovode(Serbia):Sourcing,ProcessingandDistributionVeraBogosavljevićPetrović[email protected]:sourcing,distribution,stonerawmaterials,localacquisition,provenance,archaeopetrologicalstudies.BelovodeisoneofthemostimportantsettlementsoftheVinčaculture,whichhasbeenexcavatedinthelasttwodecadesinSerbia.Itsdevelopmentlastedover650years(5400-4600 calBC).Themain reasonwhyBelovodewaspositioned there couldbe explainedfroman archaeometallurgical point of view, since there is a huge amount ofmetal oredepositswhoseextractionwashighlydevelopedandcontinuouslyperformed.Also,otheraspectsofcommunityprocessesatBelovodeindicateahighlevelinallspheresoflife.

Theoriginanduseofsiliceousmineralsandsedimentswasconsideredincidentaltothegeneral remarks on the suitability of the environment for local exploitation untilextensive research of resources, production and distribution of chipped artefacts hasrecently been undertaken. General characteristics of Belovode production are thereductionprocessof tools, theexistenceof agroupof typologicallyand technologicallydefinedbladesofwhitecherts,aswellasmultifunctionaltoolsandahighpercentageofrecycledartefacts.On the other hand, correlation of the structure of rawmaterials from the village andsystematic"covering"oftheterritorybysamplinggeologicaldepositswithinaradiusof50kmhavequestionedanumberofpreviousstatements,suchas: localacquisition, theimportanceofmakingstoneartefactsforthecommunityinfavourofprimaryactivitiesofmetal crafts specialization, the extent of land use and the effect of people on theirenvironment.Thebasicanalysesappliedare:macroscopicpetrologicalexaminationandsystematizationofdataobtainedbymicroscopicanalyses.Themainresultofthestudyofstoneresourcesboilsdowntothefactthatonly10%oflocallithicrawmaterialswereinuseatthesite.Also, it is importanttomentionthattherewasanextensivelydevelopedconceptofexchangeandacquisitionfromcommunitiesofthewiderenvironment,whichincludedvarioustypesofsiliceousrocks,aswellasothergoods.

Page 108: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 92

-11h10:ExchangenetworksbetweentheRhoneandEbrovalleys:AviewfromthenortheastoftheIberianPeninsulaXavierTerradas,JuanF.GibajaCSIC-IMF,[email protected] the middle of the fifth millenary cal BC and for a thousand years, the so-called«Sepulcrosdefosa»cultureisattestedinthenortheasternpartoftheIberianPeninsula,approximately in parallel with the French Chassey culture. Only a few habitats werediscovered and excavated so far, preventing a better knowledge of the subsistencepatterns, of the organisation of inhabited spaces and of the economic strategiesimplementedbythesepopulations.

However, the funeraryexpressionsof theses societiesareabundant: todatemore than600 graveswere identified. These funerarymanifestations are characterised by largesnecropolisgatheringmanyburials,mostlyindividuals.Theseburialsprovidednumerousgrave goods including elements manufactured elsewhere from exotic raw materials,whosepresence in thegraves indicatea typeof exploitationoverstepping the frameofregionalresources.Sincethefourthmillenarycal.BC,asignificantincreaseofthenumberofgravegoodsandof the distance from the origin of the products is noticeable, amongst them flint fromProvence,polishedstoneaxes fromseveral sourcesandSardinianobsidianblades.Thediffusion of these elements all along theMediterranean axe connecting the Rhone andEbro valleys, across distances over several hundred kilometres and under shapesresultingfromspecificmanufacturesaccordingtoconstrictivetechnicalnorms,allowsusto highlight the circulation of these productions, but also of the ideas and populationsacross an extended territory. Therefore, these burial contexts constitute a privilegedframe to the study not only of funerary practices, but also of the relationshipswithinthesegroupsandwiththeneighbouringcommunities.

Page 109: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 93

-11h30:LongdistanceprovenancesofthecallaïsadornmentsalongAtlanticEuropefromthefifthtothethirdmillenniumGuirecQuerré1,ThomasCalligaro2,SergeCassen3,SalvadorDominguez-Bella4

1-LaboratoireArchéosciencesUMR6566CReAAH.UniversitédeRennes1,CampusdeBeaulieu,35042Rennes,France.2-CentrederechercheetderestaurationdesmuséesdeFrance,C2RMF,PalaisduLouvre -PortedesLions,14QuaiFrançoisMitterrand,75001Paris,France.3- Laboratoire de recherches archéologiques (LARA) - UMR CNRS 6566 CReAAH. Université de Nantes, BP 81227 ,44312NANTEScedex3.4- Earth Sciences Department. Faculty of Sciences. Cádiz University. Campus del Río San Pedro. 11510. Puerto Real,Cádiz.Spain.

[email protected]

Keywords:variscite,provenance,chemometrics,Neolithic,Europe

ThelargegravemoundsfromBrittanyareamongthemostimpressivefuneralarchitectureoftheNeolithic period in France. The exceptional quality of the adornments such as polished stones,axes and beads necklaces deposited in burial chambers, reflects the high status of the buriedpersons.Amongthesefunerarydeposits,callaïsjewelrywiththehighestdensityisintheregionofCarnac:morethan800artifacts,beadsandpendants,werefoundin33Neolithicsiteslocatedonanarrowcoastalstripoffewkilometerswideandthirtylong.

AresearchprogrambasedonchemicalanalysisbyPIXEofarchaeologicalartifactswasconductedover10yearstodeterminetheirprovenance.Toaddressthisquestion,thestudyhasrequiredtoset-upa referentialdatasetofphosphateswith samplingofalldeposits inWesternEuropeandtheiranalysisbyPIXE.Onthebasisofthisgeochemicaldatabaseandtraceelementfingerprintofeach potential sources, we have established a chemometric model allowed to assign ageographicaloriginforeachsetofcallaïsobjectsfromaNeolithicsite.

Weconcludethatmostofpendantsandbeadsareinvariscitebutveryfewareinturquoise.Oftheoldest objects from themiddle of fifthmillennium until about 4000 years BC, variscite comesfrom theEncinasoladeposit (Huelva).A change seems tooccurearly in the fourthmillennium:most of the objects are from the Palazuelo de las Cuevas deposit (Zamora). Then, varisciteimported from the Iberian Peninsula stop in themiddle of the thirdmillennium. No Neolithicobject fromBrittany appears tobe fromGavà (Barcelona)where, however, themines varisciteworkedduringthisperiod.Long-distanceexchangesofvarisciteisthereforemadeonlyalongtheAtlanticseaboardduringtheNeolithic.

Page 110: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 94

-11h50:JadesandrelatedHPgreenstonepolishedstoneimplementsfromHungaryZsoltBendő1,GyörgySzakmány1,ZsoltKasztovszky2,KatalinT.Biró3,IstvánOláh3,AnettOsztás4,IldikóHarsányi21-EötvösL.University,DepartmentofPetrologyandGeochemistry,PázmányP.sétány1/c,1117Budapest,Hungary,2-HungarianAcademyofSciences,CentreforEnergyResearch,KonkolyThegeM.út29-33,1121Budapest,Hungary3-HungarianNationalMuseum,Múzeumkörút14-16,1088Budapest,Hungary4- Hungarian Academy of Sciences, Research Centre for the Humanities, Institute of Archaeology, Úri u. 49, 1014Budapest,[email protected]:polishedstonetool,jade,eclogite,provenance,non-destructiveanalysesGoodqualityhighpressure(HP)metaophioliterocktypessuitableformakingstoneimplements,like jade and eclogite, are absent from the geological formations of Carpathian Basin and itssurroundings. Therefore this rawmaterial typewas unknown amongHungarian findings for along time, and henceforward this is one of the rarest type of raw material of polished stoneimplements in Hungary. Their investigation is very important because of their scarcity anddistant origin. The nearest geological locality where these rawmaterials can be found is over1000kmsaway.Thespecificformandintegrityofthesestoneimplementsindicatethattheyweretransportedascompleteartefacts.

After the first mention of these stone tools detailed petrological investigations of large stoneimplement collections (MiháldyandEbenhöchcollections) revealed theirpresence in relativelylarge number. According to our current knowledge 25HPmetaophiolite stone implements areknown from Hungary. Unfortunately most of them are stray finds, but 11 pieces have knownarchaeological context from four localities (Alsónyék (5), Zengővárkony (3), Szombathely,Oladplateau(2),Hódmezővásárhely-Gorzsa(1)).MostsampleswerefoundinTransdanubia,onlyonepiece turned up in Eastern Hungary. All of them are connected to Late Neolithic cultures,prevailinglyLengyelCulture.

Only non-destructive analytical methods were used in this study. SEM-EDX investigation wasusedtomineralchemicalanalysesandtexturalinvestigation.PromptGammaActivationAnalysiswasusedtodeterminetheaveragebulkconcentrationsofmajorandsometraceelementsoffewcm3volume.Basedonthesedatastoneimplementsweredividedintorawmaterialtypegroups.Ourresultsarecorresponding to resultsonHPmetaophiolitesofNorth-western Italy,obtainedboth on geological and archaeological samples. Based upon these facts, the HP metaophiolitestoneimplementsinHungaryprobablyoriginatedfromthesamerawmaterialsourcesasItalian(and otherWestern European)HPmetaophiolite stone tools. According to technical literature,theseprimarysourcescanbetheMonviso,theVoltriMassifandsecondaryintheresedimentedOligoceneconglomeratesinQuaternaryofRiverPo,StafforaandCuroneequally.

This research is supported by the Hungarian Scientific Research Fund (OTKA) K 100385 andJADE2program.

Page 111: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 95

-12h10:ContactmetamorphicrocksaslongdistanceimportrawmaterialsofPrehistoricpolishedstonetoolsinHungaryGyörgy Szakmány 1, Zsolt Bendő 1, Zsolt Kasztovszky 2, Ildikó Harsányi 2, Katalin T. Biró 3, F.Horváth41-DepartmentofPetrologyandGeochemistry,EötvösL.University,PázmányP.sétány1/c,1117Budapest,Hungary.2- Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklós út 29-33, 1121 Budapest,Hungary.3-HungarianNationalMuseum,Múzeumkörút14-16,1088Budapest,Hungary.4-MóraFerencMuseum,H-6720Szeged,Rooseveltté[email protected]: polished stone tool, contact metabasite, hornfels, provenance, non-destructiveanalysesFine grained contact metamorphic rock types were widely used as raw material for polishedstone artefacts in Prehistory. They were also used in large amount in the Carpathian Basin.Basically,tworocktypescanbeassignedtothisgroup:contactmetabasitesandhornfels.Bothofthemarevery finegrained,massive,hardbut tenaciousrawmaterials,veryuseful forpolishedstone tools which should be resistant to mechanical stress. The main aim of our study is thecharacterizationoftheseartefactsbasedontheirpetrographicandgeochemicalproperties.Otherimportantgoalistodeterminetheirprovenanceanddistribution.

Several of these finds are complete and exhibitionquality artefacts, therefore they canonly beanalysedbynon-destructivemethods.Aftermacroscopicdescriptionandmagneticsusceptibilitymeasurements, we used two non-destructive analytical methods, the “original surfaceinvestigation”, which is a type of SEM-EDX investigation, used in order to determine chemicalcomposition of rock forming minerals and characterize the texture of the rock types. PromptGamma Activation Analyses, have been used for determination of major elements in the bulk.More than one hundred polished stone artefacts moreover several geological samples frompotentialrawmaterialsourceshavebeeninvestigated.

Theprovenanceof thecontactmetabasitesaredominantly theKrkonoše-JizerskéMountains, intheNorthern BohemianMassif (Czech Republic),which is one of themost important and bestknown locality of this rawmaterial, however subordinately other localities (Želešice and LittleCarpathians,CzechRepublic)werealsoused.TheprovenanceofhornfelsartefactswasidentifiedintheSouthwesternRuscaMts.,andtheSouthernApuseniMts.(Romania).

Both contact metabasite and hornfels stone tools distribute on the whole territory of theCarpathianbasinbuttheirpatternofdistributionisdifferent.Contactmetabasiteartefactsoccurmainly in Transdanubian area, while hornfels artefacts dominate in the Eastern part ofCarpathian basinwith increasing amount to SE direction. The two different source areaswereconnectedbycommercialconnectionsmainlyduringtheLateNeolithicandtheCopperAge.

This research is supported by the Hungarian Scientific Research Fund (OTKA) K100385 andK84151.

Page 112: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 96

Posters–Friday,18h45

TheflintacquisitionthroughfinalUpperPaleolithicandMesolithic:AterritorycontractionGuilhemConstansUniversitéToulouseIIJeanJaurèsUMR5608–[email protected]:Mesolithic,UpperPaleolithic,Territory,Contraction,MobilityThestudyoflithictoolkitsprovidesarealmeansofinvestigatingthelifewaysofdifferentprehistoricpopulations.Throughananalysisofthegeographicoriginofthedifferentrawmaterialsusedforstonetoolproduction,thespatialaspectofprehistoriclifewayscanbeinterrogated, allowing us to reflect upon the territory andmobility strategies of thesesocieties.DuringtheUpperPaleolithic,thespatialscopeofrawmaterialacquisitionandexchangespacesisquitevast,andthusemphasizesquitecomplexmobilitystrategies.Onthe other hand, at the Pleistocene-Holocene transition, raw material acquisitionstrategies change, logically reflecting significant changes in the life ways andmobilitystrategies of these hunter-gatherer populations. During the last 20 years, severalresearchershaverevealedareductioninthesizeofacquisitionterritoriesafterthiskeytransition in human prehistory. Rawmaterials studied fromMesolithic sites in Francehighlighttheuseofexclusivelylocalmaterials,whichdifferssignificantlyfromprecedingperiods. It is thusnecessary to investigate thenatureofsuchareduction inacquisitionandexchangeterritoriesthroughouttheentirePleistocene-Holocenetransition,fromtheMagdaleniantotheearlyMesolithic,includingtheEpipalaeolithic,whichwillallowforanunderstand of the principle mechanisms of such a reorganization. The study of lithicassemblagesfromseveralsitesintheQuercyregionofsouthernFrance(Murat,Peyrazet,Mirande 2, Cuzoul de Gramat and Fontfaurès) for these periods (Badegoulian,Magdalenian,Azilian,LaborianandMesolithic)highlightsseveralkeyaspectsregardingthe size and exploitation of territories in the long time by different Late Glacial andMesolithicculturalgroups.Thespatialscaleofrawmaterialacquisitiondoesshrinkovertime,but this longtermandgradual trendcannotbeconceivedofas linearandsteady.Thus, for the Mesolithic in southern France, there is a notable absence of exotic rawmaterial across multiple sites in Quercy (Cuzoul de Gramat, Fontfaurès), indicating amajor difference with Late Glacial sites (Murat, Peyrazet, Mirande 2). It is thereforepossibletoinvestigatetheconceptoflongdistanceacquisitionbasedonvaryingculturalandgeographicalcontexts.

Page 113: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 97

HighqualityflintsourcinganddistributionintheHolocene:CasestudiesfromBulgariaMariaGurovaNationalinstituteofArchaeologywithMuseum,BulgarianAcademyofSciences2SabornaStr.1000Sofia

[email protected]:BalkanFlint,LudogorieFlint,Neolithic,Chalcolithic,toolkitsThispaper contributesnewdataon the sourcing and long-distancedistributionof twotypesofhighquality flint fromnorthernBulgariawith intensiveandwidespreaduse inthePrehistory.Thefirsttypeistheso-calledBalkanflint(yellow,waxy,white-spottedflint)originatingfrom the Moesian Platform. Its outcrops are localized in chalky Upper CretaceousdepositsofMezdraformationlimestones inthePleven-Nikopolregion.Manysecondaryplacer deposits of this rawmaterial are identified along the Danube bank (Bulgarian-Romanian section). Balkan Flint is used for manufacturing the most diagnostic EarlyNeolithic toolkits consisting of bladeswith (bi)lateral semi-steep to steep retouch andsometimespointedor rounded (end-scraper-like) ends.Thebladesareproducedusingindirectpercussion(punch)technique.Sickleinsertsmadeonbladesandwithevidenceof multiple posterior re-sharpening are also included in the toolkit. The tools of theabove-mentioned types, as well as the blanks (rarely nodules) of Balkan flint alsorepresentoneofthedefiningcharacteristicsofthesupra-regionaltechno-complexoftheKaranovoI–Starčevo–Criş-Körösculture.

Thesecondtypeistheso-calledLudogorie(Dobrudzha)flint,hostedinLowerCretaceousmicrite limestoneswithmany different types of secondary (placer) deposits. This flintpossesses optimal parameters for knapping and was extensively used during theChalcolithicwhenbladeproductionreacheditspeakintheformofsuper-bladesfoundincemeteriesandhoards.Avarietyofknappingtechniqueswereusedforremovalofbladeswith different proportions and purposes. Apart fromdomestic use of blades there is adistinctdomainofproductionof superbladeswith strictlynon-utilitarian symbolicuse.The distribution of Ludogorie flint during the Chalcolithic is well documented beyondpresent-dayBulgaria–innorthernGreece,MoldaviaandUkraine.It is still debatable how early in prehistory the exploitation of both Balkan flint andLudogorie flint took place. The large scale distribution and use of these rawmaterialssuggests a highly developed procurement strategy, workshops for knapping and toolmanufacturingaswellasextensivenetworksofrawmaterialexchange.

Page 114: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 98

AnewmodelofmobilityfortheLateAurignacianinSouth-WesternFranceSolèneCaux,AlexandreMichel,Jean-GuillaumeBordesUniversitéBordeaux.UMR5199-PACEAPréhistoire,Paléoenvironnement,Patrimoine.B8alléeGeoffroySt-Hilaire.CS50023-33615PESSACCEDEXsolene.caux@gmail.comKeywords:Graindemilflint;territory;rawmaterial;Aurignacian;petroarchaeology;techno-economyCharacterising lithic raw materials is an important means of studying palaeolithicterritories, allowing modes of mobility and the organization of human groups to bededuced. The Aquitaine Basin is one of the best-documented archaeological regions ofEurope. However, certain materials have long been recognised within archaeologicalcollections without their geographic origin or even their uniqueness being clearlydemonstrated.Therecentcharacterizationofthe‘Graindemil’flint,amaterialfromtheextreme north-west part of this Basin, allowed a revision of territories and modes ofmobility during the Late Aurignacian. Based on the study of three north-aquitainearchaeological sites (Caminade, Abri Pataud and Roc-de-combe), we proposed thatregular provisioning territories are centre to the north of the Aquitaine Basin, butsometimes open to awilder territory threw thewest and also the north (Paris Basin).‘Graindemil’thenappearstobeattheheartoflarge-scalenetworksofcirculations.

Page 115: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 99

RawmaterialextractionandcirculationaroundtheWesternCarpathiansintheEarlyNeolithicMałgorzataKaczanowska,JanuszK.KozlowskiInstituteofArchaeology,JagiellonianUniversity,Kraków,[email protected]:EarlyNeolithic,rawmaterials,WesternLinearPotteryCulture(LBK),EasternLinearPotteryCulture(ALP).InlastyearsarealprogresshasbeenrealizedintheidentificationofrawmaterialsintheCarpathianbasinandnorthoftheWesternCarpathianrange.RawmaterialcirculationintheEarlyNeolithicwas analyzed in the frameof two taxonomic units (Western LinearPottery Culture – LBK and Eastern Linear Pottery Culture – ALP) and severalchronological horizons. Systems of supplying in rawmaterials were presented on thelevelofextractionpointsincludingassociatedworkshopsandsettlementsorhouseholds.InthewesternCarpathianzoneinsomeregionsextralocalmaterialswerepreferredandinsomeareasmostlylocalsourceswereexploited.

Page 116: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 100

TheuseofstonerawmaterialsintheMesolithicoftheSudetenMountains,SWPolandTomaszPłonka,JarosławBronowickiTheSudetesmountainrangerunsSEEtoNWWinsouth-westernPoland,north-easternCzechRepublic)andsouth-easternGermany.Thesearemountainsofmediumelevation,gentle relief, their highest peak, the Śnieżka, rising to 1602 m a.s.l. The Sudetes areaccompaniedby a foreland and a foothills region,with a characteristic hilly landscape,and elevations rising to a few hundred metres. During the Pleistocene the northernregionoftheSudetesandtheirforelandzonewerecoveredtwicebytheicesheetoftheElsterandof theSaaleglaciations.Postglacialsediments found in theregionarerich inlithicresourcesofnorthernorigin,e.g.,erratic flints,erodedbythe ice-sheet fromtheirprimarydeposits,presumablyintheBalticSeabasin.The flint found in theglacialdepositswasmodifiedheavilyduring the transportof thesediments.Theflintnodulesbecamedamaged:fragmentedandfissured;asaresult,theflint discovered in the glacial sediments in the Sudetes region occurs in the form offragments that range from a few to a dozen-odd centimetres. Many of them are alsofissured internally. Despite these unfavourable parameters erratic flints were usedwidelybytheMesolithicpopulationsettlingtheSudetes.InmanyMesolithiccampsitwastheonlystonerawmaterial.

Single artefacts struck from other varieties of flint, e.g., chocolate flint from easternPoland,hadanegligibleeconomic significance–more likely toplaya role in the socialrelationshipsbetweenthegroups.Alithicresourcesusedmuchmorefrequentlythantheexotic flints were the local raw materials available in the Sudetes which often haveoutcrops found in the vicinity of archaeological sites in which these flint finds wererecorded,i.e.chert,hornstone,chalcedony,rockcrystalandothers.Fromthisperspectivewe can identify two zones ofMesolithic settlement: zone A (areawith glacial depositscontainingerraticflint)andzoneB(outsidethezoneaffectedbyglaciations). InzoneAthemainresourceinusewaserraticflint,withthelocalSudetesrawmaterialvaryinginsignificance.InzoneBwecanidentifytwogroupsofsites:I.withadominationoferraticflint and of other imported stone rawmaterials; II.with an obvious domination of thelocalSudetenlithics.Differences in the sourcing of the stone raw materials in the two zones are both areflectionofthemobilityofthegroupsandtheirmembersandevidenceoftheexistenceofcomplexexchangenetworkswithinthehunter-gatherersocieties.

Page 117: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 101

Saturday,12h40ENVITEDSPEAKER

ProblemsandPotentialSolutionsforInter-LaboratoryElementalCompositionDataComparisonandCombinationforGeologicaland

ArchaeologicalObsidian

RobertH.TYKOT-DepartmentofAnthropology,UniversityofSouthFlorida,Tampa,USA

([email protected])

Successful chemical analysis on obsidian to distinguish different geological sources was firstaccomplished more than 50 years ago, and since then much has been accomplished in theMediterranean,NearEast,andotherpartsof theworld, regarding tradeand thesocioeconomiccharacteristics of prehistoric cultures. Many analytical methods have been used, includinginstrumental neutron activation analysis (INAA), X-ray fluorescence (XRF), laser ablationinductively coupled plasma mass spectrometry (LA-ICP-MS), scanning electron microscopy(SEM),andelectronprobemicroanalysis(EPMA).Inrecentyears,non-destructive,portableXRFinstruments have allowed analyses of large assemblages within museums and storage areas,providing statistically significant data sets for interpretation. Many studies clearly showdifferencesbetweencontemporarysites,variationbetweencontextsatasinglesite,andchangesover time. Yet some of the same fundamental issues still remain for such studies, especiallycomparisonoftheanalyticalresultsonartifactswiththoseforgeologicalsamplesanalyzedwithdifferent instruments and/or in different labs,which is necessary for assigning the artifacts tospecificsourcesandsubsources.Thesharingofobsidianstandardsandofopen-accesscalibrationsoftwarewillbepresented,alongwithexamplesfrommyownstudiesintheMediterraneanusingalloftheseanalyticalinstruments.

Page 118: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 102

Saturday,14h20

HeatTreatmentOfRawMaterials:Objectives,ChangesAndProceduresXavierTERRADAS-CSIC-IMF.ArchaeologyofSocialDynamics.Egipciaques,15.08001Barcelona,SPAIN([email protected])

Handlingrawmaterialsbymeansofexperimentationhasbecomeacontinuousexperiencefromthebeginningofmankind.So,humansocietieshavebeentryingtomodifytheoriginalconditionsofseveralmattersinordertotakeadvantageofthenewgotphysicalandmechanicalproperties.The aimwas toproducematerialsmore suitable for thehumanpurposes than thoseoriginallyoffered by nature. Regarding the archaeological record examples can be found everywhere.Perhaps the most evident and widespread is the heat treatment of rocks and minerals. Thepursuedobjectivesbyheatingmaterials,blanksorproductscanbediverse:eithertochange itspropertiesforknappingorretouchingprocesses,tofavourobtainingofstandardisedproducts,toimproveitseffectivenessinsomeproductiveprocesses,tomodifyitscolouringorother.

Proposalsfocussingintentionalchangespromotedbyhumanswiththeintentiontoimprovetheoriginal conditions of any type of rawmaterial arewelcomed. The topic of the Session can befaced by means of communications taking into account the nature of changes, processesimplemented,objectivespursued,archaeometricalapproachestoattestthem,etc.Contributionscanfacethesetopicsstartingfromspecificarchaeologicalcases,interrogatingaboutitscausality,fromthepointofviewofexperimentalresearch,reproducingtheproceduresfollowedortestingtheireffectiveness,orbyproposalsmixingbothapproaches.

Page 119: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 103

OralPresentations

-14h20:Thehabitualheat-treatmentofsilcretebytheHowiesonsPoortgroupsfromsouthernAfricaA.Delagnes1,2,K.Douze1,2,S.Wurz2,3,P.Schmidt4,K.vanNiekerk2,3,C.Henshilwood2,31-CNRS-universitédeBordeaux,PACEA,alléeGeoffroyStHilaire,CS50023,33615PessacCEDEX,France2- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000,Johannesburg,SouthAfrica.3-InstituteforArchaeology,History,CultureandReligiousStudies,UniversityofBergen,Øysteinsgate3,N-5007Bergen,Norway.4-EberhardKarlsUniversityofTübingen,DepartmentofPrehistoryandQuaternaryEcology,SchlossHohentübingen,72070Tübingen,Germany.

[email protected]:MiddleStoneAge,SouthAfrica,silcrete,heat-treatment,lithictechnoloy.Heating stone in order to enhance its flaking qualities lists among the multiple innovativeadaptationsintroducedbytheearlymodernhumangroupsfromsouthernAfrica,inparticulartheStill Bay and Howiesons Poort groups. Very little is known about the role and impact of thistechnology on the early modern human behaviours and cultural expressions.We address thisissue through the technological analysis of a lithic assemblage from a recently discovered andexcavated MSA site: Klipdrift Shelter (Southern Cape region, South Africa), that evidences theextensiveuseoffirefortheheattreatmentofsilcreteblocks.TheheattreatmentofsilcreteatKDSwasperformed in anearly stageof thechaîneopératoire and it has thus impactedall stagesofcorereductionandallsubsequentoperationsoftoolmanufacturing.Fortheartisans,thebenefitsof a heat treatmentweremultiple. Beyond transforming and improving the quality of silcrete,heat treatment limits the risk of core fragmentation at an advanced stage of production. TheHowiesonsPoortgroupshavethereforeconsiderablydevelopedandoptimizedatechnologythatemerged before, maybe as early as 164 Ka but still restricted to specific tools and to specificmanufacturingstages.

Page 120: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 104

-14h40:AnoverviewoverthetemporalandspatialvariationsandchangeofheattreatmentintheMiddleStoneAgeonSouthAfrica’swestcoastPatrickSchmidtEberhard Karls University of Tübingen, Department of Prehistory and Quaternary Ecology, Schloss Hohentübingen,72070Tübingen,[email protected]:Silcreteheattreatment;Modernbehaviour;Transformativetechnology;MiddleStoneAgeTheearliestknownevidenceofheattreatmentofstonedatesbacktotheMiddleStoneAge(MSA)ofSouthernAfrica.Silcrete,acontinentalsilicarockofrathergoodknappingquality,washeatedfortoolproductionfrom164kaon.ThepublishedsourcesonMSAheattreatmentindicatethat,inatleastsomeofthesites,thephenomenonbecamebroadscalefrom~80kaon(intheHowiesonsPoort,HP),whenalmostallsilcretewasheatedbeforeknapping.TheexactspatialandtemporalvariationsthroughouttheMSAremainpoorlyunderstood.Theheatingtechniquesusedandtheinvestmentnecessaryforthemalsoremainsubjecttodebate.Ipresentheretheresultsofathreeyearslastingresearchprojectonthesequestions.Itwaspossibletoassessthespatialvariationsofheattreatment-relatedbehavioursintheHPthroughoutthewestcoastofSouthAfricaandtocompare it to the post-HP. The frequencies of heat treated silcrete artefacts strongly vary indifferent sites and at different times. The heating technique used appears to have been morestable throughout the studied timeperiods and area, consisting indirect heat treatment in theembersoffires.Thesefindingsopenupnewresearchperspectivesonthecostandbenefitofheattreatmentorthemotivationstoconductit.

Page 121: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 105

-15h00:PreliminaryresultsofchemicalandphysicalevidenceofheatingtreatmentoftheMiddleStoneAgeochrefromRoseCottageandSibudu,SouthAfricaMarineWojcieszak,TammyHodgskiss,LynWadleyEvolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg,2000,[email protected]:Ochre,Heattreatment,MiddleStoneAge,Multi-analyticalApproachRoseCottageandSibuduCavesyieldedalargequantityofochrepieceswitharangeofuse-traces.Someattributesoftheochrehavealreadybeenstudiedpurelyfromavisualpointofview.Visualcomparisons have beenmade between sites to understand the use of ochre during theMiddleStone Age in South Africa, but physico-chemical evidences needed to complete thework. Thisproject aims touse amulti-analytical approach (includingRaman spectroscopy, FTIR, XRDandXRF)tocharacteriseochrepiecesfrombotharchaeologicalsites.Physico-chemicalinvestigationsonthearchaeologicalochrewillhelpustogainadeeperunderstandingofchangingpatterns inochre collection, preparation, and use through time. Part of the preparation phase may haveinvolved heat treatment to alter the colour and mechanical properties of the ochre. Twoexperimentalmethodsofheatingwereused.Heatinginanopenfire,witheachpiecebeingheatedtoparticulartemperatures,atthesoilsurface(thereforedirectlybelowthefire)andalsoburiedinthesand5cmunderneaththefire.Temperaturesaredifficulttocontrolexactly,especiallyforprolonged periods. Heating ‘control’ samples in a muffle furnace create a useful control.Observations made during heating experiments inform our understanding of the physical andphysico-chemical changes when ochre is heated. Investigating this is important because heattreatmenthassignificantcognitiveimplicationsforthepeoplewhowerepracticingit.

Page 122: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 106

-15h20:Tracingtheearlyproductionanduseoflime-plasterinKharaysinPPNBsite(Jordan)EnekoIriarte1,SusanaJorge-Villar2,JonathanSantana3,LuisTeira4,JuanRamónMuñiz-Álvarez5,JuanJoséIbañez61-LaboratoriodeEvoluciónHumana,DepartamentodeCienciasHistóricasyGeografía,UniversidaddeBurgos,EdificioI+D+i,PlazadeMisaelBañueloss/n,09001,Burgos,Spain.2-ÁreadeGeodinámicaInterna,FacultaddeEducación,UniversidaddeBurgos,Spain.3-InstitutodeCienciayArqueología,UniversidadEstataldelaPenínsuladeSantaElena,Ecuador.4-InstitutoInternacionaldeInvestigacionesPrehistóricasdeCantabria.luis.teira@unican.es5-PontificiaFacultaddeSanEstebandeSalamanca.6-DepartamentodeArqueologíayAntropología,InstituciónMilàiFontanals-CSIC,[email protected]:limeproductionanduse,petrology,geochemistry,KharaysinPPNBsite,JordanAlthoughtheextensiveuseoflimeplasterforarchitecturalandotherpurposesisacharacteristichallmark of the Pre-Pottery Neolithic B (PPNB) in the southern Levant, no obvious kilns havebeen identified inarchaeological contextsyet. In thisworkwepresentdetailsofarchaeologicalpit-kiln structures used to lime-plaster production found in the Kharaysin PPNB site (Jordan).Geochemical,mineralogicalandpetrologicalcharacterizationoftheassociatedrawmaterialsandproducts, lime-plaster floor and mortars, from the same site allowed the tracing of the earlyproductionanduseoflime.

Page 123: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 107

-15h40:FlintheattreatmentpracticeatthePre-PotteryNeolithicAsiteofHasankeyfHöyük,southeastTurkeyOsamuMaedaUniversityofTsukuba,Japan1-1-1Tennoudai,Tsukuba,Ibaraki305-8572,[email protected]:AncientTechnology,Technologicalfailure,Experimentalstudy,Neolithic,AnatoliaTherecentexcavationsatHasankeyfHöyük,asedentaryhunter-gatherersettlementof thePre-PotteryNeolithicAperiodontheupperTigrisinsoutheasternTurkey,haveyieldedhundredsofflint artefacts showing signs of heat treatment. At this site, heat treatment technique wasintroducedinthelastphaseoftheoccupationalsequenceinthelate10thmillenniumcal.BCandapplied to various types of locally acquired rawmaterial, fromwhichmany blades and flakeswereproduced.Thistechniqueenabledtheproductionoflargertools,butthelocaltraditionsofthelithicindustrywerenotmarkedlychangedbyitsintroduction.Itissignificantandinterestingtonotethattherearemanyflintbladesandflakeswhichwereseeminglyoverheated,sometimescracked, and thereforenot usable as tool blanks. It appears likely that people at this site oftenfailedtoachievethebestpossibleresultsfromheattreatment.However,myexperimentalstudyusinganelectricalfurnaceandbonfirehasdemonstratedthattheapplicationofheattreatmenttothe local flint used atHasankeyfHöyük does not necessarily require high skill levels, once thefactors of heating time and temperature are learned. This suggests that improving the successrateofheattreatmentwasnotaprimaryconcernforthepeopleatthissite,whoratherpreferredflexibleandoptimisticuseofthisancienttechnology.

Page 124: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 108

Saturday,16h00

ApproachesToMeasureLithicRawMaterialQualityTelmoPEREIRA-ICArEHB–UniversityofAlgarve,PORTUGAL([email protected])JoãoMARREIROS-ICArEHB–UniversityofAlgarve,PORTUGAL([email protected])EduardoPAIXÃO-ICArEHB–UniversityofAlgarve,PORTUGAL([email protected])

Formillionsofyears,onemajorreasonforrawmaterialselectionwas,mostprobably,itsqualityand suitability for the different intended tasks. Actualistic studies developed inmany differentparts of the world show that hunter-gatherer communities from present days usually haverelativelyrestrictedsetsofempiricalcriteriathatallowsthemtoclassifyarawmaterialasgoodorbad.However,thisimmaterialinformationisnotclearlyavailableinthearchaeologicalrecordandmight have been different not only from region to region but also through time. Thus, inarchaeologicalandanthropologicalsciencestheinferenceoflithicrawmaterialsqualityhasbeenoftensubjectiveandbasedoncriteriamorerelatedwithknappingabilities thanusesuitability,whichistheoppositeoftheusualcriteriaofthosepresent-daycommunities.

In this sessionwe intend to gather a set of presentations approaching the quality of lithic rawmaterials through multiple angles and based on high-accurate analysis and measurable data,namely those approaching density, hardness, toughness, resiliency, abrasion, uniformity,elasticity and stiffness using mechanical testing such as Schmidt Hammer, Young’s Modulus,TaberAbrasion,LosAngelesAbrasionTestorothers.Withthis,weexpecttobringaconsiderableinputfortheconstructionofaframeworkfortheclassificationoflithicrawmaterialqualitybasedonabsolutecriteriaand,consequently,reduceinaveryconsiderablyamountthesubjectivitythatpresentlyrulesthedefinitionofsuchrelevantfeatureoflithicrawmaterials.

Intheend,thisframeworkmightalsobeusefultoreachthesameobjectiveinotherrawmaterialssuchasdifferentboneswithinasamespecies,orbonebetweenspecies.

Page 125: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 109

OralPresentations

-16h00:MechanicalpropertiesofstonesinfluencesselectiondecisioninchimpanzeesandhomininsSusanaCarvalho1,2,DavidR.Braun3,4,R.S.Kaplan3,DoraBiro5,TetsuroMatsuzawa61-InstituteofCognitiveandEvolutionaryAnthropology,UniversityofOxford,U.K.2-ICArEHB-InterdisciplinaryCenterforArchaeologyandtheEvolutionofHumanBehaviour,Algarve,Portugal3-DepartmentofAnthropology,GeorgeWashingtonUniversity,USA4-MaxPlanckInstituteforEvolutionaryAnthropology,Leipzig,Germany5-DepartmentofZoology,UniversityofOxford,Oxford,U.K.6-PrimateResearchinstitute,KyotoUniversity,[email protected]:Mechanicalproperties,elasticity,hardness,Oldowan,selectionOneofthefewconsistentfeaturesofearlyhomininstonetoolbehavioristheselectionofcertainrocktypesforartifactmanufacture.Untilrecentlytherehavebeenfewsystematicinvestigationsof the exact mechanical properties that hominins selected for. Furthermore there is littleunderstandingofhowandwhytheseselectionpatternsmanifestedinhominins.Unlikehomininbehavior,chimpanzeebehaviorcanbeobserved.HerewepresentdataontheselectionofcertainrocktypesbychimpanzeesatthesiteofBossouinGuinea,Conakry.Variablessuchasrockshapeandsizeaffecttoolselectiondecisionsofwildchimpanzeesduringpercussivetooluse.However,very little is known about how chimpanzees discriminate between different rock types. At theoutdoor laboratory, in Bossou, Guinea, we investigated tool selection among a group of wildchimpanzees.Weprovidedthemwithrocktypespreferredbyhominins tomakechippedstoneartefacts at the site of Kanjera South, Kenya, which are not available in the modern Bossouhabitat.We investigated chimpanzee selectivityby calculating indicesof selectionbasedon theuseofdifferentrocktypes.Testsonrockelasticityandmicro-hardnessallowustolinkselectiontomaterial properties. Results show that decisions on tool selection by chimpanzees correlatewith mechanical properties of rocks. Not only do mechanical properties influence selectiondecisionbychimpanzeesbutalsotheseselectiondecisionsdifferdependingontooluse(hammervs.anvil).Thispatternismoreevidentamongstolderindividualswithgreaterefficiencyandskillinnutcracking.

Page 126: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 110

-16h20:LinkingGeringonçaandSchmidthammerresultstoinferlithicrawmaterialquality

JoãoMarreiros1-3,EduardoPaixão1-2,AnneFarias2,CatarinaAndrade2,DavidNora2,RuiMartins2,TelmoPereira1

1-ICArEHB-CampusGambelas,UniversidadedoAlgarve,8005-139FaroPORTUGAL2-NAP-CampusGambelas,UniversidadedoAlgarve,8005-139FaroPORTUGAL3-ConsejoSuperiordeInvestigacionesCientíficaseIMF,Egipciaques,15,08001Barcelona,[email protected]

Keywords:Rawmaterials;mechanicaltests;mechanicalproperties.

Formillionsofyears,qualitymusthavebeenoneofthemostrelevantfeaturesatthemomentofselection of lithic raw materials. That assumption is supported by ethnographic studies withmodernhunter-gatherercommunities.However,thisaspecthasbeenhighlyneglectedandlithicraw materials quality is often considered in what concerns knapping aptitude and usingsubjective criteria. Recently, we started a new and ongoing experimental program that uses amechanicalprototypetoteststone-toolperformancewithhighcontrolofthevariablesinactionthat aims to reduce the subjectivity during the acquisition the data related with rawmaterialperformanceandaptitude,e.g.,quality.

Inthispresentationwecompareedgeperformanceofsomeofthemostusedlithicrawmaterialsacross theworld: quartzite, quartz, chert and basalt. Thenwe cross that informationwith theresultsobtainedwithSchmidthammertests.Ourresultsshowthatcoarserawmaterialstendtoperformworstwhenusedtocutalthoughitdoesnotnecessarymeanthattheyarethesoftest.Onthe contrary, some coarser specimens showhigher reboundvalues, clearly indicating that theyare, in fact, the hardest. Thus, edge performance and edge effectiveness seems to be alsodependent,atsomedegree,onothertraitsofeachrawmaterialsuchastheedgethicknessandedgedurabilitythataredirectlyrelatedwiththephysicalstructure.

Page 127: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 111

Posters–Friday,18h45

Howthereboundvalueisqualityfactorofthechert?AnneFarias1,CatarinaAndrade1,TelmoPereira21-NAP –Núcleo dosAlunos deArqueologia e Paleoecologia, Universidade doAlgarve, CampusGambelas 8005-139 -Faro–Portugal.2-ICArEHB - Interdisciplinary Center for Archaeology and Evolution of Human Behavior, Universidade do Algarve,CampusGambelas8005-139-Faro–[email protected]:quality;SchmidtHammer;chert;Portugal.During the last decades has been produced a vast methodological re-examination of rawmaterials sources. This news allows define and describe with some precision the mobilitynetworks in Prehistory. Viewing raw material sourcing activities like early point of chaînesopératoiresprovidesinformationintohumanbehavior.However,theirqualityisanissuewhichisstillunderexploredand,whenitis,itisusuallybysubjectivemeans.

Theaimofourongoinginvestigationistosystematicallytestgeologicalchertsamplesinordertodeterminethevariationintheirmechanicalpropertiesand,ultimately,quantifytheseproperties.Thedatawillallowustounderstand,forinstance,possiblediscretevariationsbetweengeologicalformationswithinthesameregion.ToreachourobjectivesweusedthereboundvaluetakenwithaSchmidtHammerandconverttoaqualityscale.

Theexperimentcomprehends50specimensfrom,mainly,West-CentralPortugueseterritory.Theacquisition of these geological samples was made within the ambit of the project LusoLit(lithotheque the University of the Algarve). All samples have similar densities and wereperformed in using the vise as press and base attached to a wooden board. Each sample wastested 30 times on the most regular surface. Due to a broad range that may occur for smalldifferences in the Schmidt Hammer position, the 10 values that were further off range wereexcludedtogeneratethehardnessaverageandconvertedingradequality.

This studywillhelpus tobetterunderstand thepreferencesobserved in lithiccollections, theyare conditional on the quality of the source. Recreating the possible mobility routes of rawmaterial procurement. In order tobetterunderstand thebehavioral patternsof theprehistoricmanthatdependedontheefficiencyofhisstrategiestosurvive.

Page 128: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 112

Testingraw-materialsuitabilityforGroundstones:ExperimentalprograminQuartziteandGreywackeEduardo Paixão1, João Marreiros1, Juan Gibaja2, Telmo Pereira1, João Cascalheira1and NunoBicho11-ICArEHB-InterdisciplinaryCenterforArchaeologyandEvolutionHumanBehavior,UniversityofAlgarve

2-CSIC(ConsejoSuperiordeInvestigacionesCientífica)

[email protected]

Keywords:Raw-materials;Experimental;Groundstones;Paleolithic.GroundstonetechnologyispresentinvariousUpperPaleolithicchronologiesofPortuguesesitescoveringmostofthecountry.Althoughtheprematurestateofresearchdoesnotallowadetailedcharacterization,thistypeofartifactsispresentbothinthesouth,mostlymadeingreywackeandincentralPortugalmainlymadeinquartzite.

Inorderto identify,characterizeandcompareuseweartraces, thisprojectseekstodevelopanexperimental program, based in the application of pressure and impact with several types oforganic and lithic elements, in greywacke and quartzite blockswithmetric andmorphologicalfeatures similar to the archeological materials. The marks will be macro and microscopicanalyzedinordertoidentify,describe,quantifyandrecognizetheirdistributionpatterns,inordertorelate themwiththedifferenthumanactivities.Themaingoal is to inferhumanbehaviorbyunderstandingthedifferencesamongraw-materialsfromause-wearperspective.

This studywillbeessential to recognizehowdifferent raw-materialspreserveusewearmarksandwhichpreservesbetterandworstsomespecificmarksthatarecausedbydifferentactivities.In theend,we intend tocontribute to theunderstandingofwhichrawmaterials representedabettercanvasforsomespecificpasthumantasksandwhy.

Page 129: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 113

Saturday,17h05

QuarryingAndMiningDuringPrehistoricTimesJacekLECH-InstituteofArchaeologyandEthnology,WarsawPolishAcademyofSciences,Poland([email protected])

Fromthecollectionofcoarsevolcanicblocks inLomekwitotheoutstandingflintminessuchasKrzemionki Opatowskie, Grime's Graves or Spiennes, rawmaterial acquisition was always thefirststepofanartifactchaîneopératoire.However,themethods,techniquesandtoolsemployedin their extraction changed, not only through timebut also from region to region. At the sametime, the continuous or intermittent use of a specific source had different reasons related todifferent factors such as the existence of human occupation itself in the region, and to theknowledge and visibility of, and access to, the source. The combination of these archaeologicalfactors can be combined with paleoenvironmental and paleoscape data and converted intoinferences on territoriality, behavior ecology, settlement patterns, technology, cognition andsocialcomplexityofpasthumanpopulations.

In this open session we would like to invite researchers to present their results on recent orcurrent research projects focusing on prehistoric quarries and mines, regardless of the rawmaterial studied. Among other questions we would like to focus issues such as: from whichsources, and for what purpose, were people exploiting specific rawmaterials?What were thetimespansoftheirexploitation?Whatwastherangeofdistributionofthoserawmaterials?Whatistherelationshipbetweentheexploitationofcertainsourcesandglobalandlocalenvironmentalshifts,thecognitiveabilities,orthesocialcomplexityofthehumanpopulations?

Page 130: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 114

OralPresentations

-17h05:AMiddlePaleolithicworkshopatGiv’atRabiEast,LowerGalilee,Israel:preliminaryresultsofsalvageexcavationsAllaYaroshevich,MaayanShemer,[email protected] flint quarries and workshop sites recently discovered in the Galilee, Israel,comprise an excellent opportunity to investigate issues related to Paleolithic flinteconomy, the scale of resource exploitation, social organization and site formationprocesses. The sites comprise complexes of hundreds of large piles containing quarrywastes and knapped flints still visible on the sloping hilly landscape, as well asaccumulationsrichinflintartefactscoveredbydarkclaysedimentsincolluvialdepositsorinvalleys.Theimmensescaleofthephenomenonandthesheeramountsofflintitemsallowed only limited test excavations of selected complexes and distinct sites. TheprominentuseofLevalloistechniqueandthepresenceofbifacialtoolsaffiliatethesitestotheMiddleandthelateLowerPaleolithic.Sofar,however,noabsolutedateshavebeenobtainedtoclarifytheirchronologicalandculturalassociation.

Recent development of the industrial area of the city of Nazareth necessitated salvageexcavationsattheMiddlePaleolithicworkshopofGiv'atRabiEast.Theexcavationstookplace in the winter of 2013-2014 and exposed an extensive area of dense flintaccumulationsaswellasseveralroundcupmarkscutinthesoftlimestonebedrockatthebaseofthearchaeologicaldeposits.Thesecompriseauniquefeaturewhichmightreflectattempts to extract flint nodules from the bedrock and indicating actual in situaccumulation of the flint artefacts. The assemblage contains knappingwaste includinghundredsofitemsmadethroughtheLevalloistechniquealongsidescoresofbifacialtoolssuchashandaxes.ThesequenceofpreliminaryOSLagesobtainedsofarfromoneofthesections indicates that the accumulations of the flint artefacts are associated with thesecondandthethirdphaseoftheLevantineMousterianthuscorroboratingthelikelihoodofaconnectionbetweenthisworkshopandtheQafzehCavelocatedca5kmtoitssouth.However,thebeginningofthesiteuseassociatedwiththecupmarkscouldhavestartedattheearlyphaseoftheperiod.Thedetailedinvestigationofthetechno-typologicalandphysical characteristics of the assemblages derived from different spatial andchronological units alongside geomorphological analysis, and the absolute ages allowbetter understanding of the underlying behavior related to procurement and primaryreduction of raw materials, site formation processes and its connection with MiddlePaleolithicoccupationsknownelsewhereinthearea.

Page 131: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 115

-17h25:Rawmaterialdiversity,distributionandacquisitionintheRiverLisBasin,CentralPortugal

Telmo Pereira1, Eduardo Paixão1-2, Anne Farias2, Catarina Andrade2, Vânia Carvalho3, SusanaCarvalho1,41-ICArEHB-CampusGambelas,UniversidadedoAlgarve,8005-139FaroPORTUGAL2-NAP-CampusGambelas,UniversidadedoAlgarve,8005-139FaroPORTUGAL3-DivisãodeAçãoCultural,MuseuseTurismoMuseudeLeiria-ConventodeSantoAgostinho,Leiria,Portugal4-SchoolofAnthropology,InstituteofCognitiveandEvolutionaryAnthropology,UniversityofOxford,Fellow,UK

The project EcoPLis - HumanOccupations in the Pleistocene Ecotones of the River Lisstarted in centralPortugal in2015.Thisproject aims tounderstand the ecologyof thebehaviorofhumansduringthePleistocene inaregionwheresub-rectilinearrivers linkthecoasttotheinlandmountains,throughopenriverineandcanyonenvironments.ThisprojectisdeeplyrelatedwithLeiria’smappingproject–CARQLEI–managedbytheCityCouncil of Leiria, that has beenmapping archaeological sites and off-sites since 2004,includingsomefoundbyCulturalResourceManagementprojects.

OneofthemostimportantaimsoftheEcoPLisisthesystematicmappingandmeasuringofrawmaterialsources.TheLisbasinhasalargediversityofrockssuitableforknappingand multiple sources of these materials can be found both in primary and secondarysources.However,somerockswerepreferredandselectivelyused intheproductionofstone-tools,namelychert,quartziteandquartz.Thelasttwoarealoctonous,showgreatdiversityandarehighlyabundantinriverandmarinegravels.Ontheotherhand,chertisautochthonous,thusitcanbeobtainedfromsecondary,sub-primary,andextractedfromprimary outcrops that are considerably limited in space, such as those of Ribeira dasChitasvalley.

Thissystematicmappingallowsus toreliably link,each lithicartifact recoveredduringsurveyswiththeknownsourcesinthebasin.Moreover,becausetheEcoPLisalsoaimstocreateaPortugueseLithotequeforknappablerawmaterials(LusoLit)wearealsoable,insomecases,tolinksomeartifactswithsourceslocatedoutsideofthebasin.

Page 132: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 116

-17h45:“QuarryingassocialandpoliticalstrategyduringtheMesolithic-Neolithictransition,insouthernNorway”AstridJ.NylandDepartmentofArchaeology,ConservationandHistory,[email protected]:Neolithicquarrying,Socialpractices,RegionalityToquarry, to exploit certain extraction sites, and the acquisitionof specific rawmaterials,wasstrategically undertaken to mark cultural affinity and social relations during the Stone Age insouthernNorway.InmyPhD-work,Ihaveanalysed21extractionsitesofdifferenttypesofrockand demonstrated chronological and spatial variations in lithic procurement which cannot beexplainedbynaturalpreconditions,availability,orthequalityofthequarriedrockalone.Indeed,whenquarryingandextractionsiteshavebeeninterpretedinawidermaterialandsocialcontext,ithasbecomeapparentthatsometimesitwasnotthetypeofrockprocured,butthecharacterofprocurement thatmattered, including the importanceofplaceoforigin,andthegrouptherockcouldbeassociatedwith.Basedonachaînéopératoireanalysisofthetaskofdirectprocurementofrock,Iarguethatthepracticesofquarryingandlithicprocurementcanreflectsocial-politicalstrategies.Key featuresareknowledgeof thescaleofextraction, thedegreeofdistributionandthetime-depthofactivity.As a case study, I will discuss the lithic procurement during the Early Neolithic in SouthernNorway. In this phase, there was an increase in interactions between groups of local hunter-gatherers and immigrating farmers from southern Scandinavia. Based on the archaeologicalrecord,thecharacterofthisinteractionandincipientprocessofneolithisationisdifferentinthewesternandeasternpartofsouthernNorway.Thisisalsoreflectedinlithicprocurement.Thatis,alongthewesterncoast, thereisanincreaseintheregionalexpressionsofculturalaffinity.ThetransitiontotheEarlyNeolithicisdemarcatedbyasuddenandmassifexploitationofaparticularsourceofrhyolite formakingflakeandbladetools.Therhyolitewasquarriedfromthetopofamountainonthewestcoastanddistributedtoawidegeographicalarea,even intoareaswheresimilarly high quality rock was available. Moreover, Hespriholmen, a large adze quarry forgreenstone which had been in use from the Middle Mesolithic was continually employed.WhereasineasternNorway,therewasashiftinrawmaterialpreferencestoo,buttherelocalrockfor adzes was collected frommoraines, not quarried. Furthermore, even if there is no flint inNorwegian bedrock, flint appears to be the preferred rock type, imported as complete groundadzesandnodulesfromsouthernScandinavia.

Page 133: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 117

-18h05: AnAnalysisoftheuseofQuarriesandWorkshopsbyLatePrehistoricPeopleinWesternPennsylvaniaChiarulliBeverlyIndianaUniversityofPennsylvania(retired)[email protected]:Quarries;Workshops;Stonetools;LatePrehistoric;Pennsylvania During the Late Prehistoric period in the central Allegheny Valley of WesternPennsylvania,atleastfourmajorlithicrawmaterialtypeswereusedforthemanufactureofa limitedvarietyof tool types.Themajortool formsweresmall triangularprojectilepoints and flake tools. The major raw material types used in this region includeOnondaga,Loyalhanna,andShriverchertsandVanportSiliceousShale.Workshopsandquarrieshavebeenidentifiedhavebeenidentifiedforthesematerialsandarefoundonthenorth,south,eastandwestsidesofthisregion.Ananalysisofthelithicassemblagesfromseveralvillagesinvestigatedbyourfieldschoolsandotherprojectshasfoundthattheserawmaterialswereusedthroughoutthearea.Additionalinvestigationoftherawmaterialsusedinthevillagessuggeststhatalthoughthefrequencyofrawmaterialsusedin any particular village generally reflects the distance to sources, there are somematerialsthatarepresentingreaterthanexpectedquantities.Forexample,thesourceofthemostusedrawmaterialatonesite(theJohnstonsit)eisnotLoyalhannawhichistheclosest source less than 10 miles from the site, but is Onondaga chert brought fromquarry and workshops at least 25 miles from the site. Analysis of the assemblagessuggests that theuseof rawmaterialsmayreflectbothproximity to sourcesandsomeperceivedqualitativedifferencesinthematerials.While there is no expectation that native groups in western Pennsylvania weretransporting the quarry products in great quantities, it is possible that some rawmaterials could have been moved either overland or through canoe transport on theregionalrivers.ChertfromamoredistanttypeliketheOnondagacouldveryeasilybeenbrought to some of the sites by canoe while the Loyalhanna chert would have beentransportedoverlandorbyhandtohandtradefromvillagetovillage.Inthepast,IhavearguedthatOnondagachertwascommonatthesite,becauseitwaspreferred.However,it may instead be common because its transport by water was easier than thetransportation methods for other chert types. This analysis looks at the role thesedifferent factor might have played in the choice of raw materials used by these pre-Europeanknappers.

Page 134: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 118

18h25:ExploitationofrawmaterialsinprehistoricEurope.GeneralremarksJacekLech

InstituteofArchaeologyandEthnology,WarsawPolishAcademyofSciences,[email protected] the numerous fields of research into the distant past is the archaeology ofprehistoric flint mining, which focuses on the systematic exploitation, working anddistributionof flintandotherssiliceousrockssuchaschert,hornstone,radiolarite,andobsidian.

Siliceous rocks played an important role in the culture of the StoneAge and the EarlyBronzeAgecommunitiesinmanyregionsofEurope,andtheminingofsiliceousrocksintheOldWorldbeganasearlyastheMiddlePalaeolithicandonlyendedatthecloseoftheBronzeAge,about1000BC.Researchintoflintminesoffersanimportantglimpseintothepracticalknowledgeandskillsofhumancommunitiesinthoseancienttimes,showingtheorganization and scale of the activities undertaken. Flint mining took various forms,ranging from the systematic gathering of nodules from seashore beaches and rivergravels to the exploitationofweathering clays, to sinkingof shafts throughCretaceousandCalcareousrockstoreachundergroundseamsofflintorchertnodules.Foralongtimenow,therehasbeenaconsiderablediscrepancybetweenwhatisknownabout shafts and galleries,mining techniques and tools, andwhat is known about flintworking, and chaîne opératoire at prehistoric flint mines, what is known of chippingfloorsandtheflintwastefromminingfields.Chippingfloorsshouldbeamongthemostimportant mine features studied, yet are one of the least well known. At the bestpreservedminingsitestheyare foundunderashallowcoveringofsoil. Investigationofsuch workshops yields a host of information about the flint blanks and preformsproduced,theorganization,techniquesandscaleoftheoperations,andthebehaviourofprehistoriccommunitiesinconnectionwiththesupplyingofrawmaterials.

In prehistoric Europe the significance of different raw materials varied. Only a smallnumber of siliceous rocks were of interregional importance. The fact that only a fewkindsofsiliceousrockwereofparticular importancemakes itpossibletostudymutualcontactsbetweenprehistoricvillagesanddifferentcommunities.

Page 135: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 119

Posters–Friday,18h45

EnigmaoftheBorowniaprehistoricflintminesite(CentralPoland)JacekLech1,DagmaraH.Werra21-CardinalStefanWyszyńskiUniversityinWarsaw,InstituteofArchaeology,Warsaw,WójcickiegoStreet,bud.23,01-938Warszawa,Poland2- Institute of Archaeology and Ethnology Polish Academy of Sciences, Warsaw, 105, Solidarności Avenue, 00-140Warszawa,[email protected]:flintmining,stripedflint,Poland,Borownia,NeolithicOneofthebestknowntypesofsiliceousrockexploitedincentralEuropeinprehistorictimeswas striped flint from the Krzemionki Opatowskiemine lying on the north eastfringeoftheHolyCrossMountains. IntheEneolithicAgestripedflintwasavaluedrawmaterialforproducinghighlyratedaxeblades,distributeduptosixhundredkilometresfromdepositsandfound,amongotherplaces,inmegalithicgraves.

TheKrzemionkiOpatowskieminewasthelargestmineofstripedflint,butnottheonlyone.Inthevicinity,severalmuchsmallermineswithdepositsofthesamerawmaterialhave been discovered. The most interesting is Borownia in Ostrowiec Świetokrzyskidistrict,discoveredin1921.Thisminingfield,considerablysmallerthanKrzemionki,liesat the easternedgeof theKamiennaRivervalley and covers anareaof about240-270ares.Theprehistoricreliefof the landhasbeenwellpreserved.Theshaftsstretchfromtheedgeofthevalleyinasoutheasterlydirectionforabout700m,forminganarrowbelt30-50mwide.Thesitehasstilltobeexcavatedunderground,butmaterialcollectedfromthesurfaceindicatedthattheminewasexploitedbycommunitiesoftheEarlyBronzeAge(J.Budziszewski1980).RecentlycollectedmaterialsuggeststhatflintminingatBorowniamayhavebegunearlier,intheMiddleNeolithicoratthebeginningoftheLateNeolithicAge,soatthesametimeasinKrzemionki.Theareawheretheremainsoftheprehistoricmininglandscapehavebeenpreservedisprotected,butmanyflintartefactscanalsobefoundontheneighbouringfarmlands.Tothenorthoftheminingfield,inthewesternpart,thereareremainsofwhatwasprobablyasettlement/campconnectedwiththemine.

In recent years in Poland striped flint has become a much desired gemstone used byjewelers.Asaresult,theBorowniamineandthenearbyprehistoricmineatKoryciznaarebeing devastated by looters digging for material. Numerous chipping floors and shaftdepressionshavebeenirretrievablydestroyed.References

Budziszewski J. 1980. PL 8 Borownia, Ćmielów, Ruda Kościelna,Wojw. Tanobrzeg. In. G.Weisgerber, 5000 Jahre Feuersteinbergbau. Die Suche nach dem Stahl der Steinzeit,Bochum,597-598.

Page 136: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 120

Theprehistoricexploitationofferruginousmineralizationsatgrottadellamonaca(Calabria,Italy):preliminarygeoarchaeologicaldataLucaAntonioDimuccio1,3,FeliceLarocca2,3,NelsonRodrigues4,JoãoPratas4,51-CEGOT-CentreofStudiesonGeographyandSpatialPlanning,UniversityofCoimbra,Portugal2-UNIBA-Gruppodiricercaspeleo-archeologica,UniversitàdegliStudidiBariAldoMoro,Italy3-CRSEM-CentroRegionalediSpeleologia“EnzodeiMedici”,RosetoCapoSpulico,Italy4-DCT-DepartmentofEarthSciences,FacultyofSciencesandTechnology,UniversityofCoimbra,Portugal5-MARE-MarineandEnvironmentalSciencesCentre,UniversityofCoimbra,[email protected]:GrottadellaMonaca,Prehistoricironmine-cave,Massiveferruginousmineralizations,Geochemicalcharacterization,handheld-XRF.Thepresenceanduseofironmineralsincertainarchaeologicalcontexts,includingkarsticcaves,with wide range of exploitation chronologies, is well known in literature. Geochemicalcharacterization of these minerals has become increasingly common practice forgeoarchaeological interpretations, particularly to support the identification of ancient miningstrategiesandtheconstructionoftheresourceuse-trade-exchangemodels.

Located in themunicipalitydistrictofSant’AgatadiEsaro (Calabria, Italy),GrottadellaMonacarepresentsoneofthemoststrikingandknownexamplesofancientironmine-cavefromsouthernApennines.Frequentedforminingpurposes,althoughsporadically,sinceUpperPalaeolithic,thecave becomes the seat of an intense exploitation of ferruginous mineralizations at the end ofNeolithic,betweenlateVandearlyIVmillenniumBC.

Inaddition to the commonmineralsofundergroundkarst environment, significantoutcropsofgeochemically heterogeneous massive dyke/stratiform ferruginous mineralizations wereobserved inside Grotta dellaMonaca, along inclined bedding planes,where themost abundantphases are goethite [α-FeO(OH)], its polymorph lepidocrocite [γ-FeO(OH)] and limonite[FeO(OH)·nH2O].Itseemsplausibletoassumethatthesemassiveferruginousmineralizationsarethe result of the oxidation (in oxygen-rich environment) of scattered primary iron sulfide (e.g.pyrite)containedinthecarbonatesubstrateinwhichthecavedevelops.Nearsomefireplacesofhistoricalage,goethite-hematite[α-Fe2O3]thermaltransformationalsooccurred.

SelectedsamplesofferruginousmineralizationswerecollectedinthemainarchaeologicalsectorsofGrottadellaMonacaandtheywerestudiedbyhandheldX-RayFluorescence(XRF), tohaveaquick selectionof all thematerialsbasedonmajor elements trends, andbyAtomicAbsorptionSpectrophotometric analyses for trace-elements. In addition, structural and mineralogicalinspectionsweremadeusingbinocular/petrographicmicroscopesandX-RayDiffraction (XRD).Multivariateanddiscriminantstatisticaltreatmentofelementalconcentrationdatawereusedtodifferentiategeochemicalgroupswithinsamplesets.

As expected, the identified geochemical groups permit to construct an identity-card of theferruginous mineralizations of Grotta della Monaca, which can be compared with similar rawmaterials discovered in other neighbor archaeological contexts, with obvious implications inunderstandingthelocalexploitationstrategiesthroughtime,aswellastheexchangeandkinshipnetworksofthesematerials.

Page 137: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 121

TheimportanceoftheGabbroformationfortheLateNeolithiccommunitiesintheMiddleMoravaValley

VesnaVuckovicHometownMuseum‘‘Paracin’’,Paracin,Serbia,PhDcandidate,UniversitatAutònomadeBarcelona,Barcelona,SpainKeywords: archeopetrological investigation, gabbro, the Late Neolithic, The Middle MoravaValley,CentralBalkans.During theolderPalaeozoic, thegabbro formationoccurred,whichnowrepresents thehinterlandofplainarea,onMiddleMoravaValley.DuringtheLateNeolithicaroundthiselevation, two settlements were founded, where, the right bank of the Velika MoravaRiver, in the southern part of the by the archaeological excavations,macro-lithic toolsmadeofthisplutonicrockwerefound.Basedonthiswork,wehavetriedtoexplaintheimpactofgeomorphologicalprocesseson morphological and petrological characteristics of the gabbro rock on this location,which,duringtheLateNeolithic,determineditsusevalueasarawmaterialandtherawmaterial transformed in an object.Geomorphological and petrological characteristicsinfluence the simplicity and efficiency in gabbro processing, and its mechanicalproperties classify it into different technological processes, by which it gains a socialsignificance on the level of the Late Neolithic communities in this part of the MiddleMoravaValley.As for data on mechanical properties, which had been previously tested by anexperiment, we supplemented them with the topographical, geological andgeomorphologicaldatacollectedduringthesurveysconductedin2015.

Page 138: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 122

NeolithicflintquarriesofMontvell(CatalanPre-Pyrenees,Spain)XavierTerradas1,DavidOrtega2,DioscóridesMarín3,AlbaMasclans4,CarlesRoqué51-CSIC–IMF,DepartmentofArchaeologyandAnthropology.Egipcíaques,15.08001Barcelona(Spain)2-CSIC–IMF,DepartmentofArchaeologyandAnthropology.Egipcíaques,15.08001Barcelona(Spain)3-UniversitatdeLleida,DepartmentofHistory.Pl.VictorSiurana,1.25003Lleida(Spain)4-UniversityofGirona.DepartmentofHistoryandHistoryofArt.Pl.FerraterMora,1.17071Girona(Spain)5-UniversityofGirona.DepartmentofEnvironmentalSciences.CampusdeMontilivis/n,17071Girona(Spain)[email protected] societieshaveminedandquarried flint formany thousandsofyearsacrossEurope. Nevertheless, this kind of activity has remained unrecognized in the IberianPeninsula until the discovery these last fifteen years of the Casa Montero (Vicálvaro,Madrid) and Sierra de Araico (Treviño, Alava) Neolithic mining complexes. The flintquarriesofMontvell(CastellódeFarfanya,Lleida),recentlyexcavated,configurethefirstexampleofa flintextractionspecializedsite in theNorthEastof the IberianPeninsula.Therefore, it grants a unique opportunity to make an accurate approximation to thisphenomenon.

Nodularbrownflinthasbeenattested inside the lacustrineOligocene limestones in theareaofMontvell.ThisparticularrawmaterialcanbeconsideredasoneofthebestfittedforknappingactivitiesintheNorthEastoftheIberianPeninsula.Evidencesofextractionactivitieswere locatedsteppedalongthehillslopesandwerecarriedoutremovingthelayers containing thebigger flintnodules.The flint exploitationwaseasy thanks to thefact that the pursued layers outcrop vertically and are quite accessible. This situationallowedtheopeningofsuccessiveextractionfrontswithoutbeingnecessarytowithdrawhugequantitiesofresidues.

In2004thelateNeolithic-ChalcolithicsiteoflesAuvelleswasexcavated.GiventhatitislocatedneartheMontvellquarries, itwasthensuggestedthat itcouldberelatedtothelocal flintmanagement. Itwas also proposed that the processing techniquesmay haveincluded heat treatment of flint nodules, although for the time being it has not beenproved. The on-going investigationwill lead us to establish not only the chronologicaldurationandthescopeoftheextractionactivities,butalsothepossiblecontemporaneitybetweenthetwosites.

Page 139: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 123

Domoszló:GrindingstoneandmillstoneproductioncenterinHungaryBálintPéterdi1;KatalinT.Biró2;ZoltánTóth31-GeologicalandGeophysicalInstituteofHungary,Stefániaút14,1143Budapest2-HungarianNationalMuseum,Múzeumkörút14-16,1088Budapest,Hungary3-UniversityofMiskolc,SámuelMikovinyDoctoralSchoolofEarthSciencespeterdi.balint@gmail.comKeywords:grindingstone,millstone,andesite,quarry,workshopTypological and petroarchaeological characterisation of chipped stone artefacts andpolishedstonetoolshaveconsiderable traditionandconsequently, importantresults inprehistoric archaeology. Other artefacts made of lithic materials, however, are oftenneglected and only recently studied systematically. Themost characteristic type groupamongthese‘otherstoneutensils’aretoolsforgrindingandmillingdifferentsubstances,mainly cereal grains but also various pigments. The production and transport of theseobjectsisrarelydocumentedandinadequatelystudied.

Thiscommunicationispresentingamulti-periodexploitationsiteforbothmillstonesandgrinding stones. Located in the Mátra Mountains, in the village of Domoszló, andesitebombswere locally processed for this purpose. Traces ofmillstone and grinding stoneproduction were systematically studied by non-invasive documentation techniques.Current work on petrographical characterisation and distribution studies onarchaeological sites will be presented. The most important and still open questionsconcerndatingandtransportoftheproductsoftheDomoszlóworkshop.

ThisresearchissupportedbytheHungarianScientificResearchFund(OTKA)K100385programandtheGeologicalandGeophysicalInstituteofHungaryandthemunicipalityofthevillageDomoszló.

Page 140: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,

Rawmaterials2016,Faro 124

HomininoccupationattheDmanisisite,Georgia,southernCaucausus:RawmaterialsandtechnicalbehavioursAnaMgeladzeFreeUniversityofTbilisi,KakhaBendukidzeUniversityCampus240,DavidAgmashenebelialley,0159,Tbilisi,[email protected]:Georgia,Dmanisi,EarlyPleistocene,Rawmaterials,TechnicalbehavioursDmanisi is the oldest site outside of Africa that records unquestioned homininoccupationsaswellasthedispersalofhomininsinEuropeandAsia.Thesitehasyieldedlarge numbers of artefacts from several periods of hominin occupation. The lithicassemblage gives insights into the hominin behavior at 1.7-1.8Ma in Eurasia. Dmanisihomininsexploitedlocalerocksderivedfromeithernearbyriverbedsouroutcrops,andpetrographic study provides data on patterns of stone procurement. Recent geologicalsurveys and technological studies of the artefacts illustrate the roles of hominins incomposing the assemblage. Dmanisi hominins selected two types of blanks, includingcobblesandangularblocks,ofbasalt,andesite,andtuffs.Manycompletecobbles,pebbles,androlledblocksinbasaltwereunmodified.Cores,flakesanddebrisshowthatallstagesofflakingactivitytookplaceatthesite.Knappingwasinfluencedbytheblankshapeandnaturalangles.TheDmanisilithicassemblageiscomparabletoOldowansitesinAfricaintermsofreductionssequence,organizationoftheremovals,platformtypes,andthelackofretouchedflakes.

Page 141: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,
Page 142: Raw materials - Laboratoire Archéorient · Xavier Terradas (CSIC-IMF – Barcelona, Spain) – terradas@imf.csic.es Nuno Bicho (UAlg, Portugal) – nbicho@ualg.pt Raw materials 2016,