27
Random network models and routing on weighted networks Remco van der Hofstad Mathematics and Neuroscience: A Dialogue, September 3-5, 2013 Joint work with: G. Hooghiemstra, P. Van Mieghem (Delft) S. Bhamidi (North Carolina).

Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Random network models androuting on weighted networks

Remco van der Hofstad

Mathematics and Neuroscience: A Dialogue,September 3-5, 2013

Joint work with:G. Hooghiemstra, P. Van Mieghem (Delft)S. Bhamidi (North Carolina).

Page 2: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Complex networks

Figure 2 |Yeast protein interaction network.A map of protein–protein interactions18

in

Yeast protein interaction network Internet topology in 2001

Page 3: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Scale-free paradigm

1

10

100

1000

10000

1 10 100

"971108.out"exp(7.68585) * x ** ( -2.15632 )

1

10

100

1000

10000

1 10 100

"980410.out"exp(7.89793) * x ** ( -2.16356 )

¾�¿�À�Á�Â�Ã�ÄÅÅ�Ä�Æ�Ç ¾�È[À�Á�Â�Ã�Ä�É�Ê�Ä�ÆË

Ì�Í ÎÏ�ÐÑ=Ò�Ó�Ô�Õ$Ñ7ÖÏ Ã5× Ñ-Î�ÐÑ-Ñ7Ø$Ù Ö ÃÚ Ó�Û/ÖÎ Ä Ù ÖÎXØ$Ù Ö Ã Ö�Ü�Ü ÐÑ@Ý�Ï$Ñ Â$Þ�ßJà@á=â Ñ�Ð Ú Ï Ú:à Õ$Ñ%ÖÏ Ã5× Ñ-Î�ÐÑ-Ñ7ãHä

1

10

100

1000

10000

1 10 100

"981205.out"exp(8.11393) * x ** ( -2.20288 )

1

10

100

1000

10000

1 10 100

"routes.out"exp(8.52124) * x ** ( -2.48626 )

¾�¿�À�Á�Â�Ã�ÄÅDå@Ä�ÆË ¾�È[À�æ ÖÏ Ã�Ä�Æ Ò

Ì�Í ÎÏ�ÐÑ�ç!Ó�Ô�Õ$Ñ7ÖÏ Ã5× Ñ-Î�ÐÑ-Ñ7Ø$Ù Ö ÃÚ Ó�Û/ÖÎ Ä Ù ÖÎXØ$Ù Ö Ã Ö�Ü�Ü ÐÑ@Ý�Ï$Ñ Â$Þ�ßJà@á=â Ñ�Ð Ú Ï Ú:à Õ$Ñ%ÖÏ Ã5× Ñ-Î�ÐÑ-Ñ7ãHä

ÚUÃ Ï ×!ß Ã Õ$Ñ Ú Í è-Ñ_Ö�Ü Ã Õ$Ñ Â Ñ-Í ÎÕ È Ö�ÐÕ$Ö�Ö ×¨é Í Ã Õ$Í ÂcÚ ÖêXÑ × Í ÚUÃ5¿�Â$Þ ÑëÍ Â$ÚUÃ Ñ ¿× Ö�Ü Ã Õ$Ñ × Í ÚUÃ5¿�Â$Þ Ñ:Í ÃÚ Ñ-Ù Ü�äZì ¿ êXÑ-Ù ß ë é ÑWÏ Ú Ñ Ã Õ$Ñ Ã Ö Ã5¿ Ù Â Ï$ê ÄÈ Ñ�Ð�Ö�Ü:Ø ¿ Í Ð Ú Ö�Ü Â Ö × Ñ Ú=íO¾�î[ÀWé Í Ã Õ$Í Â î Õ$ÖØ Ú ë é Õ$Í Þ Õ é Ñ × Ñ�ï  ѿ�Ú=à Õ$Ñ Ã Ö Ã5¿ Ù Â Ï$ê È Ñ�Ð�Ö�Ü1Ø ¿ Í Ð Ú Ö�Ü Â Ö × Ñ Ú=é Í Ã Õ$Í Â Ù Ñ Ú�Ú Ö�ÐOÑ@Ý�Ï ¿ ÙÃ Ö î Õ$ÖØ Ú ë[Í Â$Þ Ù Ï × Í Â Î Ú Ñ-Ù Ü Ä Ø ¿ Í Ð Ú ë ¿�ÂH×_Þ ÖÏ Â�Ã Í Â Î ¿ Ù Ù3Ö Ã Õ$Ñ�Ð;Ø ¿ Í Ð ÚÃ�é Í Þ ÑäÛ/Ñ Ã Ï ÚSÚ Ñ-Ñ Ã Õ$Ñ(Í Â�à Ï$Í Ã Í Ö ÂfÈ Ñ-Õ$Í ÂH×dà Õ$Ñ Â Ï$ê È Ñ�Ð=Ö�Ü;Ø ¿ Í Ð Ú Ö�Ü

Â Ö × Ñ Ú;íO¾�î[À äZÌ$Ö�Ð î>ðñÉ ë é Ñ7Ö Â Ù ß Õ ¿@â Ñ Ã Õ$Ñ Ú Ñ-Ù Ü Ä Ø ¿ Í Ð Ú Ó íO¾�É�ÀZðò\äZÌ$Ö�Ð Ã Õ$Ñ × Í ¿ êXÑ Ã Ñ�Ð�Ö�Ü Ã Õ$Ñ1Î�Ð ¿ Ø$Õ(ó!ë î>ð ó!ë é Ñ1Õ ¿@â Ñ Ã Õ$Ñ Ú Ñ-Ù Ü ÄØ ¿ Í Ð Ú Ø$Ù Ï Ú1¿ Ù Ù Ã Õ$Ñ7Ö Ã Õ$Ñ�Ð;Ø[Ö Ú�Ú Í È Ù Ñ=Ø ¿ Í Ð Ú Ó íO¾ ó ÀZð ò_ô�ë é Õ$Í Þ Õ_Í Úà Õ$Ñ�ê ¿Dõ Í êSÏ$êöØ[Ö Ú�Ú Í È Ù Ñ Â Ï$ê È Ñ�Ð:Ö�ÜZØ ¿ Í Ð Ú äWÌ$Ö�Ð ¿ Õ ß Ø[Ö Ã Õ$Ñ Ã Í Þ@¿ ÙÐÍ Â Î Ã ÖØ[ÖÙ ÖÎ ß ë é Ñ7Õ ¿@â Ñ íO¾�î[ÀZ÷øî/ù ë ¿�ÂH× ë$ÜeÖ�Ð ¿(å@Ä�× Í êXÑ Â$Ú Í Ö ÂH¿ ÙÎ�ÐÍ × ë é ÑSÕ ¿@â Ñ íO¾�î[À1÷úî ô�ëxÜeÖ�Ð î\û ó!ä7ü©ÑSÑ õ$¿ êXÍ Â Ñ é Õ$Ñ Ã Õ$Ñ�Ðà Õ$Ñ Â Ï$ê È Ñ�Ð;Ö�Ü�Ø ¿ Í Ð Ú7íO¾�î[À ÜeÖ�Ð Ã Õ$Ñ Á�Â�à Ñ�Ð Â Ñ Ã ÜeÖÙ Ù Ö éWÚ=¿(Ú Í êXÍ Ù ¿ ÐØ[Ö é Ñ�Ð Ä Ù ¿-é äÁ� ïHÎÏ�ÐÑ Ú:Ç7¿�ÂH×XË ë é Ñ1Ø$Ù Ö Ã�à Õ$Ñ Â Ï$ê È Ñ�ÐBÖ�ÜQØ ¿ Í Ð Ú�íO¾�î[ÀB¿�Ú�¿

ÜeÏ Â$Þ�Ã Í Ö Â Ö�Ü Ã Õ$Ñ Â Ï$ê È Ñ�Ð�Ö�ÜBÕ$ÖØ ÚWî Í Â Ù ÖÎ Ä Ù ÖÎ Ú�Þ@¿ Ù Ñä�Ô�Õ$Ñ ×$¿DÃ5¿Í Ú ÐÑ-Ø�ÐÑ Ú Ñ Â�Ã Ñ ×aÈ�ßa× Í ¿ êXÖ ÂH×�Ú ë ¿�ÂH×_à Õ$Ñ × Ö Ã�Ã Ñ × Õ$Ö�ÐÍ è-Ö Â�Ã5¿ ÙBÙ Í Â ÑÐÑ-Ø�ÐÑ Ú Ñ Â�ÃÚ:à Õ$Ñ%ê ¿Dõ Í êSÏ$ê  Ï$ê È Ñ�Ð�Ö�ÜBØ ¿ Í Ð Ú ë é Õ$Í Þ ÕKÍ Ú ò ô ä3ü©Ñé:¿�Â�Ã�Ã Ö × Ñ Ú�Þ ÐÍ È Ñ Ã Õ$ÑOØ$Ù Ö Ã=È�ß\¿ Ù Í Â ÑXÍ Â Ù Ñ ¿�ÚUÃ�Ä0Ú Ý�Ï ¿ ÐÑ Ú ï à ëQÜeÖ�Ðîaû ó!ë Ú Õ$Ö éWÂd¿�Ú%¿(Ú ÖÙ Í × Ù Í Â ÑSÍ Â_à Õ$Ñ�Ø$Ù Ö ÃÚ ä%ü©Ñ ¿ Ø$Ø�ÐÖ õ Í ê ¿Dà Ñà Õ$Ñ;ï$Ð ÚUÃWÊ Õ$ÖØ Ú Í Â>à Õ$Ñ%Í Â�à Ñ�Ð Ä�× Öê ¿ Í Â Î�Ð ¿ Ø$Õ Ú ë ¿�ÂH×(à Õ$Ñ;ï$Ð ÚUÃ7ÅDåÕ$ÖØ Ú Í Â>à Õ$Ñ æ ÖÏ Ã�Ä�Æ Ò�äZÔ�Õ$Ñ Þ Ö�Ð�ÐÑ-Ù ¿DÃ Í Ö Â_Þ Ö�Ñ�ý Þ Í Ñ Â�ÃÚ1¿ ÐÑ%Í ÚWÉ!þ ÆË

ÜeÖ�Ð>Í Â�à Ñ�Ð Ä�× Öê ¿ Í Â Î�Ð ¿ Ø$Õ Ú>¿�ÂH×cÉ!þ Æ ç!ë:ÜeÖ�Ð Ã Õ$Ñ æ ÖÏ Ã�Ä�Æ Ò�ë ¿�ÚXé ÑÚ Ñ-Ñ(Í Âfÿ Ø$Ø[Ñ ÂH× Í õ�� ä��  ÜeÖ�Ð Ã Ï ÂH¿Dà Ñ-Ù ß ëQÜeÖÏ�ÐSØ[ÖÍ Â�ÃÚ Í ÚS¿ Ð ¿Dà Õ$Ñ�ÐÚ ê ¿ Ù Ù Â Ï$ê È Ñ�Ð Ã Ö â Ñ�ÐÍ Ü ß Ö�Ð × Í Ú Ø�ÐÖ â Ñ ¿ Ù Í Â Ñ ¿ ÐÍ Ã�ß Õ ß Ø[Ö Ã Õ$Ñ Ú Í Ú Ñ õ!ÄØ[Ñ�ÐÍ êXÑ Â�Ã5¿ Ù Ù ß ä��;Ö é Ñ â Ñ�Ð@ë/Ñ â Ñ Â_à Õ$Í Ú ÐÖÏ$ÎÕ ¿ Ø$Ø�ÐÖ õ Í ê ¿DÃ Í Ö Â Õ ¿�ÚÚ Ñ â Ñ�Ð ¿ Ù/Ï Ú Ñ�ÜeÏ$Ù ¿ Ø$Ø$Ù Í Þ@¿DÃ Í Ö Â$Ú;¿�Ú:é Ñ Ú Õ$Ö é Ù ¿Dà Ñ�Ð;Í Â>à Õ$Í ÚWÚ Ñ Þ�Ã Í Ö Â ä

������� ���������� ����������� ��!"�$# � ��%& '�(����%��)�+*-,�.�/�021430254687�9&:<;=/=>�1�?A@�5+BC>=DE1�?F7�1�GH/=DJI íO¾�î[À IAK(BC0C.HBC7 î .�1=@ DJIBCDL@ >"1=@�1+>=0�BM1+7�546�021<0C.�/�7�9&:<;=/=>N1�?O.�1=@ DP021Q0C.�/R@�1+KS/=>N1�?5�TJ1+7�DJ025+7�0�I$U�VíO¾�î[ÀB÷ñî�WYX î>û ó

Z %H[(�� ��� ���]\�^/=0�9&D)@�6 1+0�0C.�/_7�9&:<;=/=>R1�?)@�5+BC>=D_1�?L7�1�GH/=DJI íO¾�î[À IK(BC0C.HBC7 î .�1=@ DR`4/=>=DJ9&DR0C.�/R7�9&:<;=/=>O1�?_.�1=@ DRBC7�6 1Ja4326 1Ja�DbTJ546 /�c_d�1+>î�û ó I�KS/eGH/Cf(7)/g0C.�/FD=6 1=@�/e1�?�0C.HBCDY@�6 1+0�021h;=/F0C.�/ Õ$ÖØ Ä Ø$Ù Ö ÃÑ õ Ø[Ö Â Ñ Â�à I U�ci È$Ú Ñ�Ð â Ñ Ã Õ ¿DÃ�à Õ$Ñ Ã Õ�ÐÑ-Ñ;Í Â�à Ñ�Ð Ä�× Öê ¿ Í Â>×$¿DÃ5¿�Ú Ñ ÃÚ Õ ¿@â Ñ;Ø�Ð ¿�Þ�ÄÃ Í Þ@¿ Ù Ù ß Ñ@Ý�Ï ¿ ÙÕ$ÖØ Ä Ø$Ù Ö Ã Ñ õ Ø[Ö Â Ñ Â�ÃÚkj�Ê�þ ç XÊ�þ Ç ë ¿�ÂH×%Ê�þ Ë çWÍ Â�Þ Õ�ÐÖ Â Ö ÄÙ ÖÎÍ Þ@¿ Ù/Ö�Ð × Ñ�Ð@ë ¿�Ú�é Ñ Ú Ñ-Ñ;Í ÂKÿ Ø$Ø[Ñ ÂH× Í õ<� äZÔ�Õ$Í Ú�Ú Õ$Ö éWÚ�Ã Õ ¿DÃ�à Õ$ÑÕ$ÖØ Ä Ø$Ù Ö Ã Ñ õ Ø[Ö Â Ñ Â�Ã�× Ñ Ú�Þ ÐÍ È Ñ Ú�¿�ÂX¿�Ú Ø[Ñ Þ�à Ö�Ü Ã Õ$Ñ Þ Ö Â$Â Ñ Þ�Ã Í â Í Ã�ß Ö�Üà Õ$Ñ%Î�Ð ¿ Ø$ÕKÍ ÂK¿=Ú Í Â ÎÙ Ñ Â Ï$ê È Ñ�Ð@äBÔ�Õ$Ñ æ ÖÏ Ã�Ä�Æ Ò7Ø$Ù Ö Ã ë$Í Â ïHÎ�ä Ë ä È ë

Loglog plot of degree sequences in Internet Movie Data Base (2007)and in the AS graph (FFF97)

Page 4: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Small-world paradigm

0 2 4 6 8 10 12Distance

0

1

2

3

4

5

6

7

8

Frequency

1e8Gay.eu histogram for user distance in 200812 (1656328424 values)

0 5 10 15 20Distance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Densi

ty

LiveJournal histogram for user distance in 2007 (8279218338 values)

Distances in social networks gay.eu on December 2008 andlivejournal in 2007.

Page 5: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Network statistics I

B Clustering:

C =3× number of triangles

number of connected triplets.

Proportion of friends that are friends of one another.

B Assortativity:

ρ =

1|En|∑

ij∈En didj −(

1|En|∑

ij∈En di

)21|En|∑

ij∈En d2i −

(1|En|∑

ij∈En di

)2 .Correlation between degrees at either end of edge.

[Recent work vdH-Litvak (2013): assortivity coefficient flawed.Proposes rank correlations instead.]

Page 6: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Network statistics II

B Closeness centrality:

`i =1

n

∑j∈[n]

dist(i, j).

Vertices with low closeness centrality are central in network.

B Betweenness centrality:

bi =1

n2

∑s,t∈[n]

nistnst,

where nst is number of shortest paths between s, t, and nist is num-ber of shortest paths between s, t that pass through i.Betweenness large for bottlenecks.

Page 7: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Modeling complex networks

Use random graphs to model uncertainty in how

connections between elements are formed.

Two settings:

B Static models:Graph has fixed number of elements.

B Dynamic models:Graph has evolving number of elements.

Universality??

Page 8: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Configuration model

B Invented by Bollobás (1980), EJC: 441 cit. (19-5-2013)

to study number of graphs with given degree sequence.Inspired by Bender+Canfield (1978), JCT(A): 493 cit. (19-5-2013)

Giant component: Molloy, Reed (1995), RSA: 1208 cit. (19-5-2013)

Popularized by Newman, Strogatz, Watts (2001), Psys. Rev. E:2074 cit. (19-5-2013).

B n number of vertices;B d = (d1, d2, . . . , dn) sequence of degrees.Often take (di)i∈[n] to be sequence of independent and identicallydistributed (i.i.d.) random variables with certain distribution.

B Special attention to power-law degrees, i.e., for τ > 1 and cτ

P(D1 ≥ k) = cτk−τ+1(1 + o(1)).

Page 9: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Configuration model: graph construction

B Assign dj half-edges to vertex j. Asume total degree

`n =∑i∈[n]

di

is even.

B Pair half-edges to create edges as follows:Number half-edges from 1 to `n in any order.First connect first half-edge at random with one of other `n − 1 half-edges.

B Continue with second half-edge (when not connected to first)and so on, until all half-edges are connected.

B Resulting graph is denoted by CMn(d).

Page 10: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Graph distances in CM

Hn is graph distance between uniform pair of vertices in graph.

Theorem 1. (vdHHVM03). When ν = E[D(D − 1)]/E[D] ∈ (1,∞)

and E[D2n]→ E[D2], conditionally on Hn <∞,

Hn

logν n

P−→ 1.

For i.i.d. degrees having power-law tails, fluctuations are bounded.

Theorem 2. (vdHHZ07, Norros+Reittu 04). When τ ∈ (2, 3), condi-tionally on Hn <∞,

Hn

log log n

P−→ 2

| log (τ − 2)|.

For i.i.d. degrees having power-law tails, fluctuations are bounded.

Page 11: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

x 7→ log log x grows extremely slowly

0 2.´109 4.´109 6.´109 8.´109 1.´1010

5

10

15

20

25

Plot of x 7→ log x and x 7→ log log x.

Page 12: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Preferential attachment models

Albert-Barabási (1999):Emergence of scaling in random networks (Science).16850 cit. (19-5-2013).

Bollobás, Riordan, Spencer, Tusnády (2001):The degree sequence of a scale-free random graph process (RSA)506 cit. (19-5-2013).

[In fact, Yule 25 and Simon 55 already introduced similar models.]

In preferential attachment models, network is growing in time, insuch a way that new vertices are more likely to be connected tovertices that already have high degree.

Rich-get-richer model.

Page 13: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Preferential attachment models

At time n, single vertex is added with m edges emanating from it.Probability that edge connects to ith vertex is proportional to

Di(n− 1) + δ,

where Di(n) is degree vertex i at time n, δ > −m is parameter.

Yields power-law degreesequence with exponentτ = 3 + δ/m > 2.

BRST01 δ = 0,

DvdEvdHH09,... 1 10 100 10001

10

100

1000

10000

100000

m = 2, δ = 0, τ = 3, n = 106

Page 14: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Distances PA models

Theorem 3 (Bol-Rio 04). For all m ≥ 2 and τ = 3,

Hn =log n

log log n(1 + oP(1)).

Theorem 4 (Dommers-vdH-Hoo 10). For all m ≥ 2 and τ ∈ (3,∞),

Hn = Θ(log n).

Theorem 5 (Dommers-vdH-Hoo 10, DerMonMor 11). For all m ≥ 2

and τ ∈ (2, 3),Hn

log log n

P−→ 4

| log (τ − 2)|.

Page 15: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Network modeling mayhem

Models:

B Configuration ModelB Inhomogeneous Random GraphsB Preferential Attachment Model

What is bad about these models?

B Low clustering and few short cycles (unlike social networks);B No communities (unlike collaboration networks and WWW);B No attributes (geometry, gender,...);

Models are caricature of reality!

Page 16: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Network models I

B Small-world model:Start with d-dimensional torus (=circle d = 1, donut d = 2, etc).Put in nearest-neighbor edges. Add few edges between uniformvertices, either by rewiring or by simply adding.

Result: Spatial random graph with high clustering, but degree dis-tribution with thin tails.

Application: None?

B Configuration model with clustering:Input per vertex i is number of simple edges, number of triangles,number of squares, etc. Then connect uniformly at random.

Result: Random graph with (roughly) specified degree, triangle,square, etc distribution over graph.Application: Social networks?

Page 17: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Network models II

B Random intersection graph:Specify collection of groups. Vertices choose group memberships.Put edge between any pairs of vertices in same group.

Result: Flexible collection of random graphs, with high clustering,communities by groups, tunable degree distribution.

Application: Collaboration graphs?

B Spatial preferential attachment model:First give vertex uniform location. Let it connect to close by verticeswith probability proportionally to degree.

Result: Spatial random graph with scale-free degrees and highclustering.Application: Social networks, WWW?

Page 18: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Network models III

B Scale-free percolation:Vertex set Zd. Each vertex x has a weight Wx, which form a collec-tion of independent and identically distributed random variables.

Put edge between x and y with probability, conditionally on weights,equal to

pxy = 1− e−WxWy/‖x−y‖α,

where α > 0 is parameter model.

Result: Spatial random graph with scale-free degrees whenweights obey power-law, high clustering and small-world.

Application: Social networks, WWW, brain?

Page 19: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Distances other models

Similar results (though often weaker) proved for related models:B Random intersection graphs;B Small-world model;B Scale-free percolation.

Full extent of universality paradigm still unclear.

Work in progress!

Page 20: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Weighted graphs

B In many applications, edge weights represent cost structuregraph, such as economic or congestion costs across edges.

B Time delay experienced by vertices in network is given by hop-count Hn, which is number of edges on shortest-weight path.

How does weight structure influence hopcount and weight SWP?

B Assume that

edge weights are i.i.d. random variables.

Graph distances: weights = 1.

Page 21: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Setting

B Central objects of study:Cn is smallest-weight two uniform connected vertices, i.e.,

Cn = minπ : V1→V2

∑e∈π

Xe,

where Xe is edge-weight of edge e, V1, V2 ∈ [n] chosen uniformly.Hopcount Hn is number of edges in smallest-weight path |π∗|,where π∗ is unique minimizing path.

B Restrict ourselves to complete graph Kn or configuration model,weights are i.i.d. with continuous distribution.

B Problem on complete graph received tremendous attention intheoretical physics community in works by Havlin, Braunstein,Stanley, et al.

Page 22: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Weighted sparse random graph

Hn number of edges in shortest-weight path two uniform connectedvertices, Cn its weight.

Theorem 6. (BvdHH 12). Let configuration model satisfyDn

d−→ D, and

limn→∞

E[D2n log(Dn ∨ 1)] = E[D2 log(D ∨ 1)].

Then, there exist αn, β, γn > 0 with αn → α, γn → γ s.t.

Hn − αn log n√β log n

d−→ Z, Cn − γn log nd−→ C∞,

where Z is standard normal, C∞ is some limiting random variable.

Page 23: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Weighted complete graphs

Consider complete graph Kn = ([n], En) with edge weights Ese ,

where (Ee)e∈En are i.i.d. exponentials.Janson (1999): Scaling weight, flooding, diameter for s = 1.

Theorem 7. (BvdH10). Let Cn and Hn be weight and number ofedges of shortest path between two uniformly chosen vertices inKn. Then, with

λ = λ(s) = Γ(1 + 1/s)s,

there exists a limiting random variable C∞, such that

Hn − s log n√s2 log n

d−→ Z, Cn −1

λlog n

d−→ C∞,

where Z is standard normal.

Page 24: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Weights matter: s < 0

Not always CLT, even when weights have density:Consider complete graph Kn = ([n], En) with edge weights Es

e ,

where (Ee)e∈En are i.i.d. exponentials and s < 0.

Theorem 8. (BvdHH10b). Hn converges in distribution. Limit isconstant k = k(s) for most s...

Page 25: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Minimal spanning tree

Recent interest in minimal spanning tree on complete graph:

Theorem 9. (AB-B-G13). Minimal spanning tree is no small-world:

Hn/n1/3 d−→ H∞.

MST on graph is closely related to critical percolation on graph.

Explains n1/3 behavior as this also appears for critical Erdos-Rényirandom graphs. Are such distances observed in brain networks?

B Clustering: Tree is poor network. For example, tree has zeroclustering.

Page 26: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Networks of the brain

Several levels:B Neuronal level: 1011 vertices of average degree 104;B Functional level: much smaller, modular structure.What is meaning network?

Features:B Short time scales: stochastic process on network (non-linear?);B Long time scales: network is changed by functionality brain(learning, pruning,...);B Strong dependence between different regions network.

Big question:

What is a good network model for brain functionality?

Page 27: Random network models and routing on weighted networksferna107/meetings/files... · 2013. 9. 18. · Random network models and routing on weighted networks Remco van der Hofstad Mathematics

Weighted brain graphs

B Brain: data has weight (e.g., correlation between data signals)between any pair of vertices. Yields weighted complete graph.

Big question:

How to obtain informative network data from collection of weights?

Thresholding?Comparing networks with different average edge weights?Union of smallest-weight paths?

B Weight distribution: Edge weights are likely dependent.How robust are results to dependencies?

B Application to brain: Interpretation edge weights?Negative edge weights?