Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

Embed Size (px)

Citation preview

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    1/60

    VLSI VSAT Program

    CoreEL University Program Team

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    2/60

    Contents

    Introduction to Physical Design- Layout

    ASIC Construction : Floorplanning, Placement &Routing ;

    Physical verification: DRC, LVS

    2 of X Confidential

    Basics of Digital CMOS Design

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    3/60

    Design flow in VLSI / FPGA

    Specifications

     Design Entry

     Functional Verification

    S nthesis

    Graphical 

    Simulation

    S nthesizer

     ASIC Specific

     Flow

    3 of X

     Post-Synthesis Verification

     PAR

     Post-PAR Verification

     Bit-Format

     Post-syn simulation

    Simulation

    Verification

     Layout

     Fabrication

    Verification

     Physical Verification

     Formal Verification

     Layout Editor

     Physical Verification

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    4/60

    Introduction to Physical Design

    Basics of Layout Designing : Design Kits,

    Standard Cells.

     

    4 of X

     

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    5/60

    Basics of Chip Designing

    Foundry

    Designer

    GDS II

    Design Kit

    5 of X

    (Fabricator)

    CoreEl confidential

    Chip

    GDS = Graphic Database SystemIts the de facto industry standard for data exchange of IC layout artwork.

    TSMC,UMC,Faraday, etc

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    6/60

    Transistors

    a) Circuit Symbol b) Physical Realization

    GateSource

    DrainGate

    SourceDrain

    Bulk

    Width

    Length

    6 of X

    c) Layout View

    Minimum Length=2λ

    Width=4λSource Drain

    Gate

    d) Simple RC Model

    Gate

    Drain

    Source

    Cdrain

    Csource

    Ron

    Cgate

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    7/60

    Files in Design Kit

    Library Database: Layout, schematic, symbol, abstract, andother logical or simulation views.

    Timing Abstract - provides functional definitions, timing,ower, and noise information for each cell

    7 of X

     

    DRC, LVS, PEX rule files.

    Technology files: Layer specifications

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    8/60

    Cell List in Digital Design Kit

    8 of X Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    9/60

    Comparison General definitionmodule mux1( select, d, q );

    input[1:0] select;

    input[3:0] d;

    output q;

     

    Synthesized Code

    // Verilog description for cell mux1,

    // LeonardoSpectrum Level 3,

    2010a.7

    module mux1 ( select, d, q ) ;

    input [1:0]select ;

     

    9 of X

    w re q;

    wire[1:0] select;

    wire[3:0] d;

    assign q = d[select];

    endmodule

     

    output q ;

    wire nx59, nx61;

    mux21 ix23 (.Y (q), .A0 (nx59),

    .A1 (nx61), .S0 (select[1])) ;

    mux21 ix60 (.Y (nx59), .A0 (d[0]),.A1 (d[1]), .S0 (select[0])) ;

    mux21 ix62 (.Y (nx61), .A0 (d[2]),

    .A1 (d[3]), .S0 (select[0])) ;

    endmodule

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    10/60

    Design Kit

    Digital Design Kit

    10 of X Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    11/60

    Standard Cells

    11 of X Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    12/60

    ASIC Backend Flow

    System Partitioning: Divide Large system intoASIC-sized Pieces

    12 of X

    Floorplan: Arrange the blocks of the netlist onthe chip

    Placement : Decide the location of cells in ablock

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    13/60

    Floorplan

    The input to a floorplanning tool is a hierarchical netlist thatdescribes the interconnection of the blocks

    The goals of floorplanning are to:

    arrange the blocks on a chip,

    13 of X

     

    decide the location and number of the power pads,

    decide the type of power distribution, and

    decide the location and type of clock distribution

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    14/60

    Placement

    The goal of a placement tool is to arrange all the logic cellswithin the flexible blocks on a chip

    Goals:

    r n h r r n m l h r in

    14 of X

     

    Minimize all the critical net delays

    Make the chip as dense as possible

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    15/60

    Placement Algorithms

    Two Types of Algorithms used:

    Min-cut algorithm

    Eigenvalue method

    -

    15 of X

     

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    16/60

    Algorithms

    Min-Cut Algorithm Cut the placement area into two pieces.

    Swap the logic cells to minimize the cut cost.

    16 of X

    epeat t e process rom step , cutt ng sma er p ecesuntil all the logic cells are placed.

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    17/60

    Routing

    Process of placing and connecting signal and powerpaths between the standard cells or blocks

    17 of X Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    18/60

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    19/60

    Global & Detailed Routing

    Global Routing A global router does not make any connections, it just

    plans them.

    The objectives of global routing are

    Minimize the total interconnect length.

     

    19 of X

     complete the routing.

    Minimize the critical path delay.

    Detailed Routing The detailed router decides the exact location and

    layers for each interconnect.

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    20/60

    Special Routing

    Clock Routing :

    Uses Higher metal Layer (has less resistance & capacitance )

    Power Routing:

     

    20 of X

    • Each of the power buses has to be sized according to thecurrent it will carry.

    • The required power-bus widths can be estimated

    automatically from library information.

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    21/60

    Design flow in VLSI / FPGA

    Specifications

     Design Entry

     Functional Verification

    S nthesis

    Graphical 

    Simulation

    S nthesizer

     ASIC Specific

     Flow

    21 of X

     Post-Synthesis Verification

     PAR

     Post-PAR Verification

     Bit-Format

     Post-syn simulation

    Simulation

    Verification

     Layout

     Fabrication

    Verification

     Physical Verification

     Formal Verification

     Layout Editor

     Physical Verification

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    22/60

    References

    Application Specific Integrated Circuits-- By Smith– Pearson Publication

    http://iroi.seu.edu.cn/books/asics/asics.htm#anchor11320

    Physical design essentials: an ASIC design implementation perspective-

    - By Khosrow Golshan– Springer Publication

    Algorithms for VLSI Design Automation-- By Gerez– Wiley India Edition

    22 of X

     

    VLSI physical design automation: theory and practice– By Sadiq M. Sait,

    Habib Youssef– World Scientific.

    Introduction to Place and Route Design in Vlsis-- By Patrick Lee

    CMOS: Circuit Design, Layout, and Simulation-- By R. Jacob Baker

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    23/60

    Physical Verification & PEX

    Physical Verification DRC

    LVS

     

    23 of X

     

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    24/60

    Physical Verification : DRC & LVS

    DRC : Design Rule CheckingInputs: Layout -- GDSII, OASIS, etc.

    Rule File

    OutputsDRC ResultsReport

     

    24 of X

     : ayou ersus c ema cInputsLayout -- GDSII, OASIS, etc.Logic (for LVS) i.e SPICE / Verilog

    Rule FileOutputs

    LVS ResultsReport

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    25/60

    DRC Errors

    Internal

    Width:INT oxide

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    26/60

    LVS (Layout Vs Schematic)

    RESET

    S

    D

    G

    Design View

    • Design Architect• Composer

    S

    RESET

    D

    G Layout View• DESIGNrev• Virtuoso• StreamView

    26 of X

    DeviceExtraction

    ConnectivityExtraction

    SchematicCompilation

    HDLCompilation

    VERIFICATIONRESULTS

    COMPARISONPHASE

    LAYOUT NETLIST SOURCE NETLIST

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    27/60

    LVS Rule File

    Device Statements

    E.g. device r(pl) rpoly ipoly ipoly [20000]

    Gate Recognition Statements LVS GROUND NAME VSS VSS1

    LVS POWER NAME VDD VCC

    27 of X

    LVS RECOGNIZE GATES ALL Connectivity Statements

    CONNECT metal1 metal2 BY via12

    VIRTUAL CONNECT NAME vdd

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    28/60

    Shorts and Opens

    Short circuits

    Occur when nets that should be isolated are connected

    Can lead to a difference between the number of nets:

    # layout nets < # source nets

    Open circuits

     

    28 of X

     

    entire length of a layout net Can lead to a difference between the number of nets:

    # layout nets > # source nets

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    29/60

    Device

    NET Y

    ELEMENT = MN

    M2

    S

    D

    G

    1. LVS defines the MNelement templatebased upon theDevice statement.

    // Device StatementDEVICE MN NGATE POLY NSD NSD PWELL [0]

    29 of X

    LAYER PWELL 1LAYER OXIDE 2LAYER POLY 4LAYER NPLUS 5

    PAREA = OXIDE AND PWELLNGATE = POLY AND PAREANOX = OXIDE AND NPLUSNSD = NOX NOT NGATE

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    30/60

    Parasitic Extraction

    Extracts the parasitic values of each interconnect, via, andcontact that will be on the silicon wafer

    Parasitic Formats: SPF, RPF and DSPF

     

    30 of X

     

    delay and loading due to parasitic resistance andcapacitance.

    RSPF– Reduced SPF.

    DSPF--- Detailed SPF , describes the actual parasiticresistance and capacitance components of a net.

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    31/60

    Physical Verification Flow using Calibre

    Calibre LVS-H

    LayoutGDSII

    Sourcenetlist

    Rule fileHcell list(optional)

    Netlist extraction

    31 of X

    Extractionreport

    Extractednetlist

    LVSreport svdb

    Locate errors usingCalibre RVE & Layout tool

    Fix layouterrors

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    32/60

    References

    Physical design essentials: an ASIC design implementationperspective-- By Khosrow Golshan– Springer Publication

    http://www.mentor.com/products/ic_nanometer_design/verification-signoff/physical-verification/ 

    32 of X

    IC mask design: essential layout techniques-- byChristopher Saint, Judy Saint

    CMOS: Circuit Design, Layout, and Simulation-- By R.Jacob Baker

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    33/60

    Basics of Digital CMOS Design

    Basic Working of CMOS logic

    Models of Digital Design

    Pass Gate

    Transmission Gate

    Inverter

     

    33 of X

     

    Switching Characteristics

    Sizing

    Logic Effort

    Types of Logic Circuits

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    34/60

    Complementary CMOS

    Complementary CMOS logic gates

    nMOS pull-down network 

    pMOS pull-up network 

    a.k.a. static CMOSpMOSpull-upnetwork

    output

    inputs

    34 of X

    nMOSpull-downnetworkPull-up OFF Pull-up ON

    Pull-down OFF Z (float) 1

    Pull-down ON 0 X (crowbar)

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    35/60

    Series and Parallel

    nMOS: 1 = ON

    pMOS: 0 = ON

    Series : both must be ON

    Parallel : either can be ON

    (a)

    a

    b

    a

    b

    g1

    g2

    0

    0

    a

    b

    0

    1

    a

    b

    1

    0

    a

    b

    1

    1

    OFF OFF OFF ON

    (b)

    a

    b

    a

    b

    g1

    g2

    0

    0

    a

    b

    0

    1

    a

    b

    1

    0

    a

    b

    1

    1

    ON OFF OFF OFF

    35 of X

    (c)

    a

    b

    a

    b

    g1 g2 0 0

    OFF ON ON ON

    (d) ON ON ON OFF

    a

    b

    0

    a

    b

    1

    a

    b

    11 0 1

    a

    b

    0 0

    a

    b

    0

    a

    b

    1

    a

    b

    11 0 1

    a

    b

    g1 g2

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    36/60

    Conduction Complement

    Complementary CMOS gates always produce 0 or 1

    Ex: NAND gate

    Series nMOS: Y=0 when both inputs are 1

    Thus Y=1 when either input is 0

    Requires parallel pMOSA

    Y

    36 of X

    Rule of Conduction Complements 

    Pull-up network is complement of pull-down

    Parallel -> series, series -> parallel

    B

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    37/60

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    38/60

    Signal Strength

    Strength of signal

    How close it approximates ideal voltage source

    VDD and GND rails are strongest 1 and 0 nMOS pass strong 0

    But degraded or weak 1

    38 of X

    pMOS pass strong 1 But degraded or weak 0

    Thus nMOS are best for pull-down network

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    39/60

    Why NMOS is week 1?

    The nMOS transistor will stop conducting if VGS < VT.Let VT = 0.7V,

    39 of X Confidential

    As source goes from 0V 5V, VGS goes from 5V 0V.

    When VS > 4.3V, then VGS < VT, so switch stopsconducting.VD left at 5V - VT = 5V - 0.7V = 4.3V or Vdd - VT.

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    40/60

    Pass Transistors

    Transistors can be used as switches

    g

    s d

    g = 0s d

    g = 1

    0 strong 0Input Output

     

    g = 1

    g = 1

    40 of X

    s 1 degraded 1

    g

    s d

    g = 0

    s d

    g = 1s d

    0 degraded 0

    Input Output

    strong 1

    g = 0

    g = 0

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    41/60

    Transmission Gates

    Pass transistors produce degraded outputs

    Transmission gates pass both 0 and 1 well

    41 of X Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    42/60

    Transmission Gates

    Pass transistors produce degraded outputs

    Transmission gates pass both 0 and 1 well

    g = 0, gb = 1

     

    Input Output

    g g = 1, gb = 0

    42 of X

    g = 1, gb = 0

    a b

    s rong

    1 strong 1gb

    a b

    a b

    g

    gb

    a b

    g

    gb

    a b

    g

    gb

    g = 1, gb = 0

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    43/60

    CMOS Inverter

    VDD

    PMOS2λλλλ

    V DD 

    PMOS Contacts

    N Well

    43 of X

    Polysilicon

    InOut

    GND

    Metal 1

    NMOS

    NMOS 

    Confidential

    V I Ch i i C

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    44/60

    V-I Characteristic Curve

     I  Dn

    V in = 2.5

    V in

     = 2

    V in

     = 0

    V in

     = 0.5 NMOSPMOS

    44 of X Confidential

    V out 

    V in

     = 1.5V in

     = 1

    V in

     = 0

    V in = 0.5

    V in

     = 1V in  = 1.5

    V in  = 2

    V in

     = 2.5

    V in = 1V 

    in = 1.5

    CMOS I VTC C

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    45/60

    CMOS Inverter VTC Curve

    V out 

            1  .

            5

            2

            2  .

            5

    NMOS sat

     

    NMOS off 

    PMOS res

    NMOS sat

    PMOS res

    45 of X Confidential

    V in0.5 1 1.5 2 2.5

            0  .

            5

            1

    NMOS resPMOS off 

     

    NMOS res

    PMOS sat

    S it hi Ch t i ti

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    46/60

    Switching Characteristics

    Define: Rise time tr = time required for a node to charge from the 10% point to 90% point

    Fall time tf = time required for a node to discharge from 90% to 10% point

    Delay time td = delay from the 50% point on the input to the 50% point on theoutput

    Falling delay tdf = delay time with output falling Rising delay tdr = delay time with output rising

    46 of X Confidential

    N i M i

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    47/60

    Noise Margin

    Noise margin = voltage difference between output of onegate and input of next. Noise must exceed noise margin tomake second gate produce wrong output.

    47 of X Confidential

    I t Si i

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    48/60

    Inverter Sizing

    48 of X Confidential

    In each case, the rise or fall time depends on the channelresistance, which in-turn, depends on the devicedimensions.

    Gate Delay Components

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    49/60

    Gate Delay Components

    Split delay of logic gate into three componentsDelay = Logical Effort x Electrical Effort + Parasitic Delay

     

    Logic Gate

    Cin

    Cout

    49 of X

     

    Complexity of logic function (Invert, NAND, NOR, etc) Define inverter has logical effort = 1 Depends only on topology not transistor sizing

    Electrical Effort Ratio of output capacitance to input capacitance Cout /Cin

    Parasitic Delay Intrinsic self-loading of gate Independent of transistor sizes and output load

    Confidential

    Method of Logical Effort

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    50/60

    Method of Logical Effort

    Easy way to estimate delays in CMOS process Indicates correct number of logic stages to use and

    transistor sizes

    Characterize process speed with single delay parameter: ττ, delay of inverter driving same-sized inverter (no parasitic)

    50 of X Confidential

    Logical Effort for Simple Gates

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    51/60

    Logical Effort for Simple Gates Define Logical Effort of Inverter = 1

    For other gates, size to give same current drive as inverter

    Logical Effort is ratio of logic gate’s input cap. to inverter’s input cap.

    Relative2 2 4

    51 of X

     Widths

    InverterInput Cap = 3 units

    L.E.=1 (definition)

    NANDInput Cap = 4 units

    L.E.=4/3

    NORInput Cap = 5 units

    L.E.=5/3

    2

    1

    2

    2 1

    4

    1

    Confidential

    (n+2)/3

    Logic Blocks

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    52/60

    Logic Blocks

    52 of X Confidential

    F = AB (C +D )

    N-block implementation of a Boolean functionA series of N connection P(A,B)= AB;A parallel of N Connection P(A,B)= A+B;

    CMOS Tristate & Buffer

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    53/60

    CMOS Tristate & BufferTristate CMOS Buffer

    53 of X Confidential

    X C output

    0 0 High Z0 1 1

    1 0 High Z

    1 1 0

    When long lines or chip outputsmust be driven buffer circuits,

    which have the advantage thatthe output driving transistors aredirectly connected to the outputand ground or respectively

    Types of Logic Circuits

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    54/60

    Types of Logic Circuits

    Static CMOS

    Dynamic CMOS

    Pseudo NMOS

     

    54 of X

    Pass Transistor Logic

    Confidential

    Static CMOS

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    55/60

    Static CMOS

    55 of X Confidential

    Characteristics•At every point in time, each gate output is connected to either Vdd or Vss via alow-resistance path•It have rail-to-rail swing , no static power dissipation•Speed depends on the transistor sizing and parasitic that are involved with it.Disadvantage

    •The problem with this type of implementation is that for N fan-in gate 2N number of transistors are required, ie, more area required to implement logic.This has an impact on the capacitance and thus the speed of the gate.

    Dynamic CMOS

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    56/60

    Dynamic CMOS

    56 of X Confidential

    Characteristics•Dynamic CMOS circuits rely on the temporary storage of signal values on thecapacitance of high-impedance circuit nodes.•no static power dissipation.

    •Disadvantage•the need for repeated charging and discharging even when the inputs do notchange their state.

    Buffered dynamic CMOS (domino) logic

    Pseudo NMOS

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    57/60

    Pseudo NMOS

    57 of X Confidential

    Characteristics•The advantage of pseudo-NMOS logic are its high speed and low transistorcount.

    Disadvantage

    •Static power consumption of the pull-up transistor as well as the reducedoutput voltage swing and gain, which makes the gate more susceptible tonoise.

    Pass Transistor Logic

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    58/60

    Pass Transistor Logic

    58 of X Confidential

    Characteristics•The advantages of pass-transistor logic are

    the simple design, the reuse of alreadyavailable signals.•Low contribution to static power.

    Disadvantage•Output levels can be no higher than the input

    level

    Four-to-one multiplexer in pass-transistor logic

    References

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    59/60

    References

    CMOS: Circuit Design, Layout, and Simulation-- By R. Jacob Baker

    CMOS Digital Integrated Circuits-- By Sung-Mo Kang, Yusuf Leblebici

    CMOS logic circuit design-- By John Paul Uyemura Cmos Vlsi Design: A Circuits And Systems Perspective, 3/E-- By Weste,

    Weste Neil H.E.

    59 of X

     

    Douglas A. Pucknell and Kamran Eshraghian, Basic VLSI Design, Third

    Edition

    http://www.iue.tuwien.ac.at/phd/schrom/node93.html

    Confidential

  • 8/16/2019 Ramesh CoreEL VLSI VSAT Module1 2 [Compatibility Mode]

    60/60

    Thank You

    60 of X Confidential

    [email protected]