12
 Atmósfera 22(1), 97- 108 (2009) Characterization of trafc-generated pollutants in Buchares t G. RADUCAN and S. STEFAN University of Bucharest, Faculty of Physics, Department of Atmospheric Physics,  P. O. Box MG-11, Magurele, Bucharest, Romania Corresponding author: G. Raducan; e-mail: [email protected] Received October 21, 2007; accepted September 22, 2008 RESUMEN La directiva 96/62/EC del Consejo de la Unión Europea sobre determinación y manejo de la calidad del aire ambiental establece que deben existir planes de acción para las zonas donde la concentración de contaminantes excede los valores límite. En las áreas urbanas dichos valores límite se rebasan en especial debido al tráco. En este trabajo analizamos la variabilidad temporal de los niveles de concentración de NO X , O 3 y SO 2 en dos cañones urbanos. La distribución de las concentraciones demuestra que el tráco es la fuente más importante de NO X , contaminante que se emite por la operación de los motores vehiculares. El nivel de contaminación en la calle U2 es 25% menor que el de la calle U1, aún cuando el tráco cuanticado en la calle U2 es 50% menor que el de la U1. Esto se debe a que la geometría y la ubicación de las calles es diferente. ABSTRACT European Union Council directive 96/62/EC on ambient air quality assessment and management requires the development of action plans for zones where the concentrations of pollutants in ambient air exceed limit values. In the urban areas the limit values are exceeded, especially due to the trafc. In this paper, we analyzed the temporal variability levels of concentration of NO X , O 3 and SO 2 in two street canyons. The distribution of concentrations proves that trafc is the most important source of NO X , this pollutant being emitted during running of the vehicle engines. The level of pollution within U2 street is 25% less than U1 street, even though the measured trafc within U2 street is 50% less than within U1 street. This happen  because the streets geometry and locations are different. Keywords: Pollutant concentrations, trafc, urban, meteorological conditions. 1. Introduction In urban areas, where the population is very numerous and the trafc is relatively high, the exposure of people to the concentrations related trafc is signicant (Morris et al., 1995; Fenger, 1999). Pollutant levels depend on trafc as well as on meteorological and topographic conditions that inuence pollutant dispersion or accumulation, in the studied area. For example, the background winds perpendicular to the street axis create a vortex in the street, which rallies the pollutants, increasing the pollutants levels upwind and decreasing the pollutants levels downwind (Louka et al., 2000). For reducing the pollutants emissions in the atmosphere, it is necessary to permanently monitor the air quality, which means high costs. Dispersion models are not so expensive to establish the

Raducan_Atmosfera

Embed Size (px)

Citation preview

Page 1: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 1/12

 Atmósfera 22(1), 97- 108 (2009)

Characterization of trafc-generated pollutants in Bucharest

G. RADUCAN and S. STEFAN

University of Bucharest, Faculty of Physics, Department of Atmospheric Physics,

 P. O. Box MG-11, Magurele, Bucharest, Romania

Corresponding author: G. Raducan; e-mail: [email protected]

Received October 21, 2007; accepted September 22, 2008

RESUMEN

La directiva 96/62/EC del Consejo de la Unión Europea sobre determinación y manejo de la calidad del aireambiental establece que deben existir planes de acción para las zonas donde la concentración de contaminantesexcede los valores límite. En las áreas urbanas dichos valores límite se rebasan en especial debido al tráco.En este trabajo analizamos la variabilidad temporal de los niveles de concentración de NOX, O3 y SO2 en doscañones urbanos. La distribución de las concentraciones demuestra que el tráco es la fuente más importantede NOX, contaminante que se emite por la operación de los motores vehiculares. El nivel de contaminaciónen la calle U2 es 25% menor que el de la calle U1, aún cuando el tráco cuanticado en la calle U2 es 50%menor que el de la U1. Esto se debe a que la geometría y la ubicación de las calles es diferente.

ABSTRACT

European Union Council directive 96/62/EC on ambient air quality assessment and management requiresthe development of action plans for zones where the concentrations of pollutants in ambient air exceedlimit values. In the urban areas the limit values are exceeded, especially due to the trafc. In this paper, weanalyzed the temporal variability levels of concentration of NOX, O3 and SO2 in two street canyons. Thedistribution of concentrations proves that trafc is the most important source of NOX , this pollutant beingemitted during running of the vehicle engines. The level of pollution within U2 street is 25% less than U1street, even though the measured trafc within U2 street is 50% less than within U1 street. This happen because the streets geometry and locations are different.

Keywords: Pollutant concentrations, trafc, urban, meteorological conditions.

1. Introduction

In urban areas, where the population is very numerous and the trafc is relatively high, the exposureof people to the concentrations related trafc is signicant (Morris et al., 1995; Fenger, 1999).

Pollutant levels depend on trafc as well as on meteorological and topographic conditions that

inuence pollutant dispersion or accumulation, in the studied area. For example, the background

winds perpendicular to the street axis create a vortex in the street, which rallies the pollutants,

increasing the pollutants levels upwind and decreasing the pollutants levels downwind (Louka et 

al., 2000).

For reducing the pollutants emissions in the atmosphere, it is necessary to permanently monitor 

the air quality, which means high costs. Dispersion models are not so expensive to establish the

Page 2: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 2/12

98 G. Raducan and S. Stefan

air quality, but they can be used only when both meteorological conditions and topography data

are available. In addition, emission sources have to be known.

Main goal of our research study was to assess both the causes and the factors enhancing the

 pollution in an urban area. We have evaluated the concentration levels of NO X, SO2 and O3 in streetcanyons in two crossing sites in Bucharest area. The chosen streets are similar with most of the

streets in the Bucharest center, considering the mean height of buildings along the street, the general

street topography and pollutant concentrations. Therefore, results of this study can be applied to

other streets. The characteristics of the sites and the trafc data used are presented in Section 2.

The results of the correlation between trafc and pollutant concentrations are shown in Section

3. Here we also introduced a normalized and non-dimensional parameter  K to characterize the air 

quality in this urban area. This parameter is more accessible for local authorities in the decisional

acts related to urban air quality. In the nal section of the paper, some conclusions are presented.

2. The streets and the trafc data2.1 Characteristics of the sites

The eld study was conducted for a year in two junctions which can be considered hot spots, con-

tinued with two streets, in this paper U1 (Carol I Street), located to 90° from North (Fig. 1) and U2

(Dacia Avenue) located to 135° from North (Fig. 2), in the city of Bucharest, Romania. The rst

 junction is wider than the second, but the street canyon U1 is shorter than U2 and the buildings

surrounding the street are of equal height. U2 is a street canyon with buildings of different heights

and different roof geometry. Consequently, the aspect ratio H/W of the streets is different (H is

the average height of the canyon walls and W is the canyon width) (Berkowicz et al ., 2002). The

measurements of pollutant concentrations were made in 2002 year.

Fig. 1 Nicolae Balcescu and Carol I Street.

Page 3: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 3/12

99Trafc pollution

2.2 Trafc measurements

Trafc measurements have been done using the devices from a mobile laboratory belonging to

Romanian Auto Register (RAR). For both areas chosen, we measured the trafc ow (number of 

vehicle/hour) and concentration of pollutants like NO2, O3 and SO2. The instruments used are an

automatic machine Horiba, which records the pollutants concentrations near the breathing level

(situated at 1.5 m height related to ground) (Tripathi et al., 2004) and a Vaisala weather station,

which records the meteorological parameters (temperature, humidity, solar radiation, wind speed

and wind direction).

Wind ow and pollutant dispersion within continuous street canyons essentially depend on theaspect ratio, the street length and building roof geometry (Theurer, 1999).

In Figure 3, it is shown the trafc ow in junction and crossing U1 for each day of the week.

The graph shows higher trafc in weekdays, and decrease by 50% in weekends when people

leave urban areas. Figure 3 points out the morning peak, around nine o’clock and the afternoon

 peak during weekdays.

Fig. 2. Piata Romana junction, continued with Dacia Avenue.

Traffic-street canyon U1

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (h)

   T  o   t  a   l   t  r  a   f   f   i  c   f   l  o  w    (  v  e

   h   i  c   l  e  s   /   h   )

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Fig. 3. Trafc frequency in the street canyon called U1 for each day of the week, annual averages.

Page 4: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 4/12

100 G. Raducan and S. Stefan

The trafc ow is different for the selected streets (Fig. 4). In U2 street canyon, the measured

number of vehicles is 50% smaller than in U1. The daily trend of the trafc in both streets is similar.

In both streets the decreasing trend of trafc is also observed during the weekend.

3. Results and discussions

3.1 Air pollutants and trafc

Air pollution from trafc is a complex mixture of many chemicals, but nitrogen oxides (NO X)

 proved to be a good indicator of trafc pollution in urban areas (Briggs, 1997; Nieuwenhuijsen,

2004).The primary emission from trafc is mostly nitric oxide (NO), which is transformed to NO2 

 by atmospheric photochemical reactions, inuenced by ozone concentrations.

Traffic flow

0

1000

2000

3000

4000

5000

6000

7000

Mon Tue Wed Thur Fri Sat Sun

Time (week days)

   T  r  a   f   f   i  c   f   l  o  w    (  v

  e   h   i  c   l  e  s   /

   h   )

traffic(vehicle/h)-U1

traffic(vehicle/h)-U2

Fig. 4. Trafc frequency

for U1 and U2 for each

day of the week, annual

averages.

Correlation between traffic flow_U1 and traffic flow_U2y = 0.4057x - 220.73

R2 = 0.8486

-500

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000

Traffic flow_U1(vehicles/h)

   T  r  a   f   f   i  c   f   l  o  w_

   U   2   (  v  e   h   i  c   l  e  s   /   h   )

Fig. 5. Correlation between trafc ow_U1 and trafc ow_U2, annual mean values.

Page 5: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 5/12

101Trafc pollution

The correlation between trafc ow-U1 and trafc ow-U2, represented in Figure 5 is relatively

good, but it was inuenced by trafc congestions. Hourly average concentration data (O3 and NO),

measured for weekdays and weekend in U1 street are plotted in Figure 6. The variability of trafc

and the NO concentration is similar, emphasizing that the trafc is the most important source of  NO. The O3 concentration values are small when the NO concentration values are large due to the

 processes of NO2 generation (Fig. 6).

Hourly averages concentration data (NOX and SO2), measured for weekdays and weekend in

U1 street are plotted in Figure 7. The graphs show the temporal variability of the pollutants levels.

Therefore, we can see very high levels recorded for NOX (up to 1500 μg/m3), while for SO2 the

values are below 30 μg/m3.

Time series traffic flow

and concentrations (O3, NO),

mean values, U1

0

1000

2000

3000

4000

5000

6000

0 12 24 12 24 12 24 12 24 12 24 12 24 12 24

Time(h)

   T  r  a   f   f   i  c   f   l  o  w

   (  v  e   h   i  c   l  e  s   /   h   ) ,

  m  e  a  n  a  n  n  u  a   l  v  a   l  u  e  s ,

   U   1

-300

200

700

1200

1700

2200

   O   3 ,

   N   O   c

  o  n  c  e  n   t  r  a   t   i  o  n  s

   (  u  g   /  m   3   ) ,

  m  e  a  n  a  n  n  u  a   l  v  a   l  u  e  s ,

   U   1

Traffic flow (vehicle/h)-U1

 Annual_Averages_O3 _U1

 Annual_Averages_NO_U1

Fig. 6. Hourly average concentrations data (O3, NO) in the U1 street and trafc ow.

NOX, SO2 concentrations and traffic flow U1 street,

hourly average concentrations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

   0  :   0   0

   1   2  :   0   0

   0  :   0   0

   1   2  :   0   0

   0  :   0   0

   1   2  :   0   0

   0  :   0   0

   1   2  :   0   0

   0  :   0   0

   1   2  :   0   0

   0  :   0   0

   1   2  :   0   0

   0  :   0   0

   1   2  :   0   0

Time(h)

   N   O   X

  c  o  n  c  e  n   t  r  a

   t   i  o  n  s   (  u  g   /  m   3   )

   T  r  a   f   f   i  c   f   l  o  w   (  v  e   h   i  c   l  e  s   /   h   )

0

5

10

15

20

25

30

35

   S   O   2  c  o  n  c  e  n   t  r  a   t   i  o  n  s

   (  u  g

   /  m   3   )

 Annual_Averages_NOX

Traffic(vehicle/h)-U1

 Annual_Averages_SO2

Fig. 7. Hourly average concentrations data (NOX, SO2) in the U1 street and trafc ow.

Page 6: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 6/12

102 G. Raducan and S. Stefan

Figures 8 (U1) and 9 (U2) show a very good correlation between trafc ow and nitrogen

oxides (NO and NO2) concentrations in the street. Such distribution of concentrations proves that

trafc is the most important source of NOX, this pollutant being emitted by the vehicle engines

during their running.The different shapes of the graphs for the U1 and U2 streets (Figs. 8 and 9) is due to the in-

uence of the trafc ow and the topographic characteristics on the NO and NO2 concentrations

in the street.

Figure 10 (U1 street) shows anti-correlation between trafc ow and O3. This is because the

trafc determines NO emissions and NO uses ozone in the photochemical processes.

The correlation between trafc ow and SO2 concentrations was plotted in Figure 11. The

weak correlation proves that trafc is not a source of this pollutant and the streets are not next to

an industrial area.

Correlation between traffic flow

and NO, NO2 concentrations,

mean values _U1

y = 0.2081x + 52.515

R2 = 0.9983

y = 0.2063x + 20.744

R2 = 0.9979

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000

 

   N   O ,

   N   O   2  m  e  a  n

  c  o  n  c  e  n   t  r  a   t   i  o  n  s   (  u  g   /  m   3   )

 Annual_Averages_NO

 Annual_Averages_NO2

Linear (Annual_Averages_NO2)

Linear (Annual_Averages_NO)

Fig. 8. Correlation between trafc ow (U1) - NO and NO2 concentrations, annual mean values.

Correlation between traffic flow

and NO, NO2 concentrations,

mean values_U2

y = 0.0435x - 22.025

R2 = 0.9662

y = 0.0543x + 25.472

R2

= 0.973

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500

Traffic flow (vehicles/h)

   N   O ,

   N   O   2  m  e  a

  n

  c  o  n  c  e  n   t  r  a   t   i  o  n  s   (  u  g   /  m   3   )

 Annual_Averages_NO_U2

 Annual_Averages_NO2 _U2

Linear (Annual_Averages_NO_U2)

Linear (Annual_Averages_NO2 _U2)

Fig. 9. Correlation between trafc ow (U2) - NO and NO2 concentrations, annual mean values.

Page 7: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 7/12

103Trafc pollution

Fig. 10. Correlation between trafc ow (U1) and O3 concentrations, annual mean values.

Correlation between traffic flow

and O3 concentrations

mean values_U1

y = -0.2017x + 1266.3

R2 = 0.9994

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000

Traffic flow (vehicles/h)

   O   3  m  e  a  n  c  o  n  c  e  n   t  r  a   t   i  o  n  s

   (  u  g   /  m   3   )

 Annual_Averages_O 3 _U1

Linear (Annual_Averages_O3 _U1)

Fig. 11. Correlation between trafc ow (U1) and SO2 concentrations, annual mean values.

Correlation between traffic flow

and SO2 concentrations, mean values _U1

y = 0.0009x + 14.595

R2 = 0.1261

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000

Traffic flow(vehicles/h)

   S   O   2  m  e  a  n  c  o  n  c  e  n   t  r  a   t   i  o  n  s   (  u  g   /  m   3   )

Fig.12. NOX concentrations, hourly annual mean values, from Monday to Sunday, for U1 and U2.

Time series NOX concentrations

hourly annual mean values

0

100

200

300

400

500

600

700

800900

1000

1100

1200

1300

1400

1500

   0   1   2

   2   4

   1   2

   2   4

   1   2

   2   4

   1   2

   2   4

   1   2

   2   4

   1   2

   2   4

   1   2

   2   4

Time (h)

    N   O   X

  c  o  n  c  e  n   t  r  a   t   i  o  n  s   (  u  g   /  m   3   )

 Annual_Averages_NOX _U1

 Annual_Averages_NOX _U2

Page 8: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 8/12

104 G. Raducan and S. Stefan

The graphs presented in Figure 12 show that the level of pollution within U2 street is 25% less

than within U1 street, even though the trafc within U2 street is 50% less than within U1 street

(Fig. 4). The streets geometry and locations are different and they have a great inuence on the

 pollution level.

3.2 The wind inuence

Direction and intensity of the wind signicantly inuence the state of the atmosphere in urban areas,

especially in canyon streets and consequently dispersion of pollutants (Kim and Baik, 2004).

To analyze the inuence of the wind on the behaviour of pollutants in the street canyons, we

have selected a short period with higher pollutant concentration, January 19-25 (Fig. 13).

19-25 January 2002

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

   1   9  -   0   1  -   0   2

   2   0  -   0   1  -   0   2

   2   1  -   0   1  -   0   2

   2   2  -   0   1  -   0   2

   2   3  -   0   1  -   0   2

   2   4  -   0   1  -   0   2

   2   5  -   0   1  -   0   2

time(days)

   N   O   2  c  o  n  c  e  n   t  r  a   t   i  o  n   (  u  g   /  m   3   )

   w   i  n   d  s  p  e  e   d   *   1   0   (  m   /  s   )

0

50

100

150

200

250

300

350

400

   W   i  n   d   d   i  r  e  c   t   i  o  n   (   d  e  g  r  e  e  s   )

NO2_U1NO2_U2wind speed*10wind direction

Fig. 13. Hourly variation of NO2 concentrations and wind characteristics for U1 and

U2 on 19-25 January 2002.

Generally, the behaviour of the concentration values is known: when the wind speed is higher,

the dispersion, due to increased turbulence, is more active and the pollutants dilution is better,

resulting in low levels of pollution (Kim and Baik, 2004); when the wind speed is lower, elevated

levels of pollutants are measured.Wind rose shows that the wind blows especially in sector 60° to 90° and the higher wind speed

was recorded from 60° (Fig. 14). The direction of U1 street canyon is similar with the dominant

wind direction for this period and NO2 concentration values are smaller than those for U2 street,

however the trafc is less in U2 street (Fig. 4, selected area). It means that the wind enhances the

turbulence and consequently the pollutant dispersion within U1 street.

Generally, the annual wind rose (Fig. 15) shows that the wind blows, over 16%, on the direction

of 110°, 16% on 35°, 16% on 285° toward the north. It means that the wind is neither perpendicular 

to nor parallel with the streets (Figs. 1 and 2 for streets location). In this situation, in the street, a

Page 9: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 9/12

105Trafc pollution

Fig.15. Wind rose average for 2002.

helical vortex rises, which advances along the street, carrying on the pollutants. The highest wind

speed was recorded from 240° (11.7m/s).

3.3 The K parameter to characterize the air quality

To characterize the air quality in an urban area we have introduced the normalized non-dimensional

 parameter K, because is more accessible for local authorities in the decisional acts related to urban

air quality. This is dened as:

Q

 HLCU  K 

ref  =

Fig. 14. Wind rose on 19-25 January 2002.

Page 10: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 10/12

106 G. Raducan and S. Stefan

where C is the raw concentration of NO (μg/m3 converted from ppb), Uref (m/s) is the wind speed

measured at the mast, H (m) is the height of the canyon and Q/L (mg/s/m) is the NO emission per 

unit length along the canyon (Fig. 16a and b) (Meroney et al., 1996).

The actual emissions along the streets during this experiment were not possible to be directly

measured, so an estimate from the RAR (Romanian Auto Register) has been used.

For simplicity, a linear relationship between the emissions and the total trafc ow is assumed, i.e.,

eT  L

Q≈

where T is the total trafc ow in vehicles/h and e is an averaged emission factor for vehicles

emission in the street. A value of 7.81 μg/m/veh was derived for e on U1 and U2 during peak 

ows, which is based on the vehicle classications of mean trafc ow in U1 and U2, from a large

Normalized concentrations K1 (U1)

0

10

20

30

40

50

60

70

80

90

100

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

time(s)

   N  o  r  m  a   l   i  z  e   d  c  o  n  c  e  n   t  r  a   t   i  o  n  s

   K   1

K1(U1)

Fig.16a. Temporal variation of the normalized concentration, K1

(on time axis 0:00 means zero hour each 30 days)

Normalized concentrations K2 (U2)

0

10

20

30

40

50

60

70

80

90

100

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

   0  :   0   0

time(s)

   N  o  r  m  a   l   i  z  e   d  c  o  n  c  e  n   t  r  a   t   i  o  n  s

   K   2

K2(U2)

Fig. 16b Temporal variation of the normalized concentration, K2

(on time axis 0:00 means zero each at 30 days)

Page 11: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 11/12

107Trafc pollution

number of trafc counts and the emissions database from the RAR. Using such a simple model for 

the emissions will exclude any effects due to idling or acceleration within the trafc ow.

The normalized concentrations K (non-dimensional), for U1 (K1) and U2 (K2) were plotted in

Figure 16a and b. These graphs show a very strong temporal variability especially for K2. All thevalues, especially the extreme values for K2 are higher than for K1 because the trafc congestions

and the characteristic stop-start trafc ows, within U2 provide substantial variability to the con-

centrations. This means that the uidization within U1 is better than within U2.

4. Summary and conclusions

In this paper, the inuence of trafc and wind speed and direction on the temporal variability of 

 NOX, NO, NO2, O3 and SO2 have been investigated.

The results show relatively high levels of nitrogen oxides and trafc ow, around two times a

day: in the morning between 7:00 and 10:00 local time, when people go to work, and in the after -

noon, between 16:00 and 19:00 local time, when people go back home.

We have noticed a good correlation between pollutants concentrations in the street (NO, NO2)

and trafc ow, despite the fact that the nitrogen oxides participate in photochemical reactions.

These results prove that trafc is the most important source of NOX, emitted by running engines.

The inuence of trafc ow characteristics on nitrogen oxides concentrations varied for different

street canyon geometries. Therefore, the level of pollution within U2 street is reduced to 25% than

within U1 street, even if the trafc within U2 street is reduced to 50% than within U1 street.

The wind inuence is also observed in our analysis (Fig. 13). So, wind has a signicant, but

local effect on air pollution concentrations.

The trafc congestions and the stop-start trafc ows lead to high pollution and strong tempo-

ral variability (Fig. 16a and b), because they enhanced emission rates from vehicle engines. Thismeans that the uidization of the trafc is very necessary.

Acknowledgements

The authors gratefully acknowledge the data provided by Dipl. Eng. Octavian-Valeriu Datculescu,

Romanian Auto Register, Bucharest, Romania, and for various discussions on trafc. The authors

thank the two reviewers for their observations and suggestions, which helped us to improve the

 paper. The work of author S. Stefan was supported, in part, by the contract CEEX 734/2006.

References

Berkowicz M. K., G. Vachon, Pl. Louka, J.-M. Rosant, P. G. Mestayer and J.-F. Sini, 2002. Exa-mination of trafc pollution distribution in a street canyon using the Nantes’99 experimentaldata and comparison with model results. Water Air Soil Pollution Focus 2, 311-324.

Briggs D. J., 1997. Mapping urban air pollution using GIS: a regression-based approach.  Int.Geographical Information Science 11, 699-718.

Fenger J., 1999. Urban air quality. Atmos. Environ. 33, 4877-4900.

Kim J. J. and J. J. Baik, 2004. A numerical study of the effects of ambient wind direction on owand dispersion in urban street canyon using the RNG k-ε turbulence model.  Atmos. Environ.38, 3039-3049.

Page 12: Raducan_Atmosfera

8/6/2019 Raducan_Atmosfera

http://slidepdf.com/reader/full/raducanatmosfera 12/12

108 G. Raducan and S. Stefan

Louka P., S. E. Belcher and R. G. Harrison, 2000. Coupling between air ow in streets and thewell-developed boundary layer aloft. Atmos. Environ. 34, 2613-2621.

Meroney R. N., M. Pavageau, S. Rafailidis and M. Schatzmann, 1996. Study of line source charac-

teristics for 2-D physical modeling of pollutant dispersion in street canyons. J. Wind Engineering and Industrial Aerodynamics 62, 37-56

Morris R. D., E. N. Naumova and R. L. Munasinghe, 1995. Background air pollution and hospi-talisation for congestive. Am. J. Pub. Health 85, 1361.

 Nieuwenhuijsen M. J., 2004. Exposure assessment in occupational and environmental epidemio-logy. Oxford University Press, Oxford 283 pp.

Theurer W., 1999. Typical building arrangements for urban air pollution modelling Atmos. Environ. 33, 4057-4066.

Tripathi R. M., A. Vinod Kumar, S. T. Manikandan, S. Bhalke, T. N. Mahadevan and V. D. Pura -nik, 2004, Vertical distribution of atmospheric trace metals and their sources at Mumbai, India, Atmos. Environ. 38, 135-146.