Author
manjit
View
30
Download
1
Embed Size (px)
DESCRIPTION
O-26(15+3min.) 29May2008 [email protected] Spain. Radiation process of carbon ions in JT-60U detached divertor plasmas. J apan A tomic E nergy A gency T. Nakano , H. Kubo, N. Asakura, K. Shimizu, H. Kawashima, S. Higashijima. Introduction. - PowerPoint PPT Presentation
- 1 -
Radiation process of carbon ions in JT-60U detached divertor plasmas
O-26(15+3min.)29May2008
[email protected] Spain
Japan Atomic Energy AgencyT. Nakano, H. Kubo, N. Asakura, K. Shimizu, H. Kawashima, S. Higashijima
• Heat & particle control is essential in future fusion devices Remote radiative cooling by impurities ( 85% in Demo SS) Changes of plasma parameters and spatial distribution Radiation is not proportional to an impurity flux necessarily Radiation control requires understanding of physics
• Physics to be understood: elementary processes and transportRadiator ( C3+, C2+,,,,(Carbon devices))Recombination/IonizationSource (from divertor plates,
& main plasma)
Introduction
C3+ emissivityCq+
C
C
(q>3) Cq+
Cp+ Cp+
(p<3)
- 3 -
What is known & new
C3+
C 2+
C 2+
C 2+
Kubo H. et al 1995 PPCF 37 1133Fenstermacher M.E. et al 1997 PoP 4 1761
Ioniz. flux (1018 /m2s)
Recomb. flux (1018 /m2s)
C 3+
C3+
Nakano T. et al 2007 NF 47 1458
C4+
Outline
• ExperimentWaveforms of density-scan dischargeC2+ intensity distribution
• Analysis modelCollisional-radiative model for C2+
• ResultsDetermination of Te and ne
Flux balance ( Recombination vs. Ionization )Radiation power of C2+
• DiscussionTransport of C3+
• Summary
Radiation zone moves towards the X-point
Viewing chordsVisible spectrometerBolometer
C2+ emission also peaks around the X-point
1014
1015
1016
1017
1018
1019
1020
Intensity C
2+
(ph sr
-1m
2s-1 )
80604020Viewing chord
3s3S-3p
3P
3d1D
4f3F-5g
3G
5d3D-6f
3F
Vertical array
3p1P-
E045211
Horizontal arrayVUVSp
inSp
outSp
inSp
out
Xp
106
107
108
109
1010
1011
1012
nC
2+(p) L
/ w
g (p
) ( m-2 )
80604020Viewing chord
5g3G
3d1D
3p3P
6f3F
E045221
VUVVertical array Horizontal arraySp
inSp
inSp
outSp
out
Xp
Population
C2+ intensity peaks around the X-point 1 60
61
92
C2+: population decreases rapidly
108
109
1010
1011
1012
1013
nC
2+(p)
L /
wg (
p) ( m-2 )
5040302010
2p1P 3p
3P
3s3S
3d3D
3d1D
5g3G
6f3F
Excitation Energy from the ground state C2+
( 2s2 ) ( eV )
Ionization potential (47.9 eV )
C2+ C
3+
From visibleFrom VUV
Population
-49.7eV2s
n=4
n=7
n=3
n=6n=5
(De)
Exc
itatio
n
C2
+
(B
e-li
ke)
C 3
+
n=1
-13.6eVC
ha
rge
eX
chan
ge
re
com
b.
Spo
ntan
eous
tra
nsiti
on
Rec
ombi
natio
n
Collisional-Radiative model
Ioni
zatio
n
C2+ energy level
D+
D0 energy levell-,
Sin
g- &
trip
let
reso
lved
n=…
H-li
ke
D0
Solution of Rate Equation under Steady-State (~ 10-8s ) nC2+(p) = R0nenCV (Recombining )
+ R0'nDnCV (CX-Recomb. )
+ R1nenCIV (Ionizing )
108
109
1010
1011
1012
1013
5040302010
2p1P 3p
3P
3s3S
3d3D
3d1D
5g3G
6f3F
nC
2+(p)
L / w
g
(p) ( m
-2 )
Excitation Energy from the ground state ( 2s2 )( eV )
Ionization potential (47.9 eV )
C2+ C
3+
measured Cal ( Ioniz. )
Te = 7.8 eVne = 1 x 10
20 m
-3
C2+: Ionization components dominates
No recombining component.
Pop
ulat
ion
108
109
1010
1011
1012
nC
3+(p)
L / wg
(p) ( m
-2 )
65605550454035
Term Energy ( eV )
3s
3p
3d
4d6 7 9
Recomb.
ne = 7.8 x1020
m-3
Te = 6.3 eV
Ioniz.
nC4+ / nC
3+= 4.0
Ionization potential ( 64.5 eV )
C3+ :n < 4 : Ionizing component (Term Energy < ~50eV) n > 5 : Recombining component
Pop
ulat
ion
Nakano T. et al 2007 NF 47 1458Nakano T. et al 2007 NF 47 1458
TotalTotal
108
109
1010
1011
1012
1013
5040302010
2p1P 3p
3P
3s3S
3d3D
3d1D
5g3G
6f3F
nC
2+(p)
L / w
g
(p) ( m
-2 )
Excitation Energy from the ground state ( 2s2 )( eV )
Ionization potential (47.9 eV )
C2+ C
3+
measured Cal ( Ioniz. )
Te = 7.8 eVne = 1 x 10
20 m
-3
C2+: Ionizing components dominatesP
opul
atio
n
No recombining component.
0.1
1
10
100
Events / photon
0.1 1 10 100Te ( eV )
21
20
19
Flux balance : C2+ ioniz. >> C3+ recomb.
C4+
C2+
C3+
Transport loss of C3+ is suggested
Flux (1018 /m2s)Flux (1018 /m2s)
Ioni
zatio
n C
2+ (
3s3S
-3p3
P)
10-17
10-16
10-15
10-14
1 10 100
Te ( eV )
19
21
20
C4+
C2+
C3+
Radiation power : C2+ contributes 30%
C4+
C2+
C3+
160
C3+ & C2+ contribute 90% of total radiation
Rad
iatio
n C
2+ (
3s3S
-3p3
P)
(J/p
h)(J
/ph)
Source of C3+:main plasma and divertor comparable
Cq+
C
C
(q>3) Cq+
Cp+ Cp+
(p<3)
Suggesting C4+ source from
main plasma.
Suggesting C4+ source from
main plasma.
Suggesting C2+ source
from divertor
Suggesting C2+ source
from divertor
C4+
C2+
C3+
Recomb. flux (1018 /m2s)C4+
C2+
C3+
Ioniz. flux (1018 /m2s)
from divertorfrom divertor
from main plasmafrom main plasma
Summary
In a detached plasma with an X-point MARFE of JT-60U, • Absolute C2+ line intensity was measured with a VUV and
a visible spectrometer.• The C2+ line intensity ratios ( population ratios ) were
analyzed with a collisional-radiative model.• C2+ population was dominated by an ionizing plasma component ( excitation from the ground state ).
No recombination of C3+ was observed.With the results of C3+ ,
• C3+ & C2+ radiate 60% and 30%, respectively, of total radiation power
• C3+ is produced by C2+ ionization and C4+ recombination• C3+ is NOT lost by C3+ ionization and C3+ recombination Significant transport loss of C3+ from the X-point • C3+ originates the main plasma and the divertor, comparably
Thank your for your attention.
This work was partly supported by Grant-in-Aid for Scientific Research for Priority Area #19055005
- 17 -
Specifications• Instrumental width (FWHM):
~ 0.74 nm (2.3 pixels)• Spectral band: ~ 430 nm ( 350 - 780 nm)• Spatial resolution (92ch): ~ 1 cm
Spectrometer• Grating : 300 g/mm• F : 2• f : 0.2 m
CCD• Back-illuminated• Pixel size : 20 x 20 m• Format : 1340 x1300
32ch
60ch
2D wide-spectral-band spectrometer
- 18 -
Grating:Holographic ( 300g / mm )Incident angle : 85o
Dispersion : 2 nm / mmResolution:
Slit: 10m x 5mm
Detector : MCP 50 m x 1024ch
Vacuum Ultra Violet spectrometer
• Similar viewing chord to the visible spectrometer• Absolute calibration of sensitivity by a branching ratio method Comparison of visible and VUV spectrum
- 19 -
555045403530Wavelength ( nm )
10090
4
2
0
x1020
4
2
0
x1021
Intensity ( 10
21
ph / sr m
2
nm s )
C III 2p
3P0,1,2
-3d3D1,2,3
E045211
C III 2p
3P0,1,2
-4d3D1,2,3
C III 2p
3P0,1,2
-5d3D1,2,3
C III 2p
3P0,1,2
-3s3S1
C III 2p
1P1
-3d1D2
Intensity ( 10
22
ph / sr m
2
nm s )
C III 2s
1S0
- 2p1P1
VUV スペクトル
可視 スペクトル1.0
0.5
0.0
x1018
750700650600550500450400Wavelength ( nm )
Intensity ( 10
18
ph / sr m
2
nm s )
C III 4f
3
F -5g3G
C III 3p
3
S -3p
3P
C III 3p
1P1
-3d1D2
C III 5d
3
D -6f3F
8 本の C III スペクトル線を同時解析
- 20 -
1.0
0.8
0.6
0.4
0.2
0.0
x1021
50454035302520Wavelength ( nm )
Intensity ( 10
21
ph / sr m
2
nm s )
C IV 2s
2S1/2
- 3p2P
3/2,1/2
C IV 2p
2P
3/2,1/2
- 3d2D
5/2,3/2
C IV 2p
2P
1/2,3/2
- 3s2S1/2
C III 2p
3P0,1,2
-3d3D1,2,3
C IV 2s
2S1/2
- 4p2P
3/2,1/2
C IV 2p
2P
3/2,1/2
- 4d2D
5/2,3/2
C IV 2p
2P
1/2,3/2
-4s2S1/2
C IV ( 2 - 3, 4 ) が観測された
C IV スペクトル( VUV )
- 21 -
1.5
1.0
0.5
0.0
x1020
3432302826242220Wavelength ( nm )
Intensity ( 10
20
ph / sr m
2
nm s )
C IV 2s
2S1/2
- 3p2P
3/2,1/2
C IV 2s
2S1/2
- 4p2P
3/2,1/2
C IV 2p
2P
3/2,1/2
- 4d2D
5/2,3/2
C IV 2p
2P
1/2,3/2
-4s2S1/2
C IV 2p
2P
3/2,1/2
- 5d2D
5/2,3/2
C IV ( 2 - 5 ) は弱く、解析は困難
C IV スペクトル( VUV )